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Abstract

We propose a renormalisable model based on A4 family symmetry with an SU(5)
grand unified theory (GUT) which leads to the minimal supersymmetric standard
model (MSSM) with a two right-handed neutrino seesaw mechanism. Discrete
Z9 × Z6 symmetry provides the fermion mass hierarchy in both the quark and
lepton sectors, while ZR4 symmetry is broken to ZR2 , identified as usual R-parity.
Proton decay is highly suppressed by these symmetries. The strong CP problem is
solved in a similar way to the Nelson-Barr mechanism. We discuss both the A4 and
SU(5) symmetry breaking sectors, including doublet-triplet splitting, Higgs mixing
and the origin of the µ term. The model provides an excellent fit (better than
one sigma) to all quark and lepton (including neutrino) masses and mixing with
spontaneous CP violation. With the A4 vacuum alignments, (0, 1, 1) and (1, 3, 1),
the model predicts the entire PMNS mixing matrix with no free parameters, up
to a relative phase, selected to be 2π/3 from a choice of the nine complex roots of
unity, which is identified as the leptogenesis phase. The model predicts a normal
neutrino mass hierarchy with leptonic angles θl13 ≈ 8.7◦, θl12 ≈ 34◦, θl23 ≈ 46◦ and
an oscillation phase δl ≈ −87◦.
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1 Introduction

The Standard Model (SM), although highly successful, leaves many unanswered questions
in its wake such as: what (if anything) stabilises the recently discovered Higgs boson
mass? Are the three known gauge forces unified into a simple gauge group which also
explains charge quantisation? What is the origin of the three families of quarks and
leptons and their pattern of masses, mixing and CP violation? Why is CP so accurately
conserved by the strong interactions? The answers to such questions may help resolve
longstanding cosmological puzzles such as the nature of dark matter and the origin of
matter-antimatter asymmetry, both of which are unexplained within the SM.

In this paper we propose a realistic and fairly complete model capable of addressing
all the above questions unanswered by the SM. The basic ingredients of our model are
Supersymmetry (SUSY) together with an SU(5) Grand Unified Theory (GUT), flavoured
by an A4 family symmetry (for a review see e.g. [1]). The model is minimal in the sense
that SU(5) is the smallest GUT group and A4 is the smallest family symmetry group
that admits triplet representations. Also, below the GUT scale, the model yields the
minimal supersymmetric standard model (MSSM) supplemented by a minimal two right-
handed neutrino seesaw mechanism. The model is realistic in the sense that it provides a
successful (and natural) description of the fermion mass and mixing spectrum, including
spontaneous CP violation, while resolving the strong CP problem. It is fairly complete
in the sense that GUT and flavour symmetry breaking are addressed, including doublet-
triplet splitting, Higgs mixing and the origin of the MSSM µ term.

The model also allows a WIMP dark matter candidate due to the conserved MSSM
R-parity, and permits matter-antimatter asymmetry via leptogenesis involving the two
right-handed neutrinos. We shall show that the leptogenesis phase is equal to the single
phase appearing in the neutrino mass matrix, providing a direct link between neutrino
oscillations and matter-antimatter asymmetry, although we shall not discuss cosmological
aspects any further in this paper.

We emphasise the predictive nature of the model in the lepton sector, where the entire
PMNS matrix is predicted without any free parameters, up to a discrete choice of a
single phase. Large lepton mixing is accounted for by the seesaw mechanism [2] with
constrained sequential dominance (CSD) [3–5]). With a diagonal two right-handed neu-
trino mass matrix MR, the dominant right-handed neutrino νatm

R mainly responsible for
the atmospheric neutrino mass m3 has couplings to (νe, νµ, ντ ) proportional to (0, 1, 1),
while the subdominant right-handed neutrino νsol

R giving the solar neutrino mass m2 has
couplings to (νe, νµ, ντ ) proportional to (1, 3, 1). These couplings, corresponding to the so
called CSD3 scheme [6,7], originate from A4 vacuum alignment.5 The model consequently
predicts a normal neutrino mass hierarchy, m3 > m2 � m1 = 0.

As mentioned above, the lepton sector is controlled by a relative phase which is selected
to be 2π/3, chosen from the nine complex roots of unity arising from spontaneous CP
violation of a Z9 × Z6 discrete symmetry, by a mechanism proposed in [9]. Such a

5CSD4 models have been discussed in [8]



spontaneous CP violating scenario had been proposed previously in order to account for
the smallness of CP violation in the soft SUSY sector [10]. We also employ a ZR4 discrete
R-symmetry (as the origin of MSSM R-parity, as in [11]) and a missing partner (MP)
mechanism [12] for doublet-triplet splitting as recently advocated for flavoured GUTs
in [13]. The model predicts very sparse lepton and down-type quark Yukawa matrices,
with five texture zeroes, and Yukawa elements involving simple SU(5) Clebsch-Gordan
(CG) ratios of 4/9 and 9/2 for the first and second families, with mτ/mb = 1 for the
third family, all in excellent agreement with their experimental values run up to the GUT
scale [14].

Quark mixing originates predominantly from a non-diagonal and naturally hierarchical
up-type Yukawa matrix, provided by the broken Z9 discrete family symmetry. Quark
CP violation, however, comes exclusively from a single off-diagonal element in the down
Yukawa matrix. By contrast, to excellent approximation, all lepton mixing and CP
violation originates from the neutrino mass matrix, whose structure is also controlled by
the A4 family symmetry and the Z6 symmetry via the CSD3 type vacuum alignment as
described above [6].

Although there have been many attempts in the literature based on A4 flavoured SU(5)
SUSY GUTs (for an incomplete list see e.g. [15]), we would argue that none are as success-
ful or complete as the present one. For example, many of the previous models predicted
mixing very close to tri-bimaximal and are by now excluded. Indeed the present model
is the first one based on CSD3 capable of predicting all the lepton mixing parameters
consistent with current data on lepton mixing [6, 7] (see also [8]). The full literature on
flavoured SUSY GUTs, i.e. which involve a (discrete) family symmetry, is quite extensive
(for an incomplete list see e.g. [16]). The goal of all these models is clear: to address the
questions left unanswered by the SM. It will take some time and (experimental) effort
to resolve all these models. However the most promising models are those that make
testable predictions while being theoretically complete and consistent.

While there are many different chiral superfields in this model, indeed almost exactly
a hundred, it is important to note that we are explicitly presenting a renormalisable
model. Any “non-renormalisable terms” generated below the Planck scale are required
to have a specific well defined realization through multiple renormalisable terms involving
heavy messenger fields that can be integrated out around the GUT scale. The respective
effective theory after they are integrated out is actually more predictive than otherwise,
with a normal neutrino mass hierarchy, a zero lightest neutrino mass, and all lepton
mixing angles and CP phases predicted. The model presented here is amongst the most
predictive and complete SUSY GUTs of flavour, consistent with current data.

The layout of the remainder of the paper is as follows: in Section 2 we describe the
superfields directly related to the SM fermions and neutrinos, as well as their Yukawa
structures as imposed by the GUT and family symmetries when certain A4 breaking
vacuum expectation values (VEVs) are applied; we also perform a global fit to the pa-
rameters of the model and present our predictions for the lepton sector. In Section 3 we
describe the superfields that are responsible for breaking the family symmetries and how
the required A4 breaking VEVs arise. In Section 4 several aspects related to the GUT
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Field
Representation

A4 SU(5) Z9 Z6 ZR4

F 3 5̄ 0 0 1
T1 1 10 5 0 1
T2 1 10 7 0 1
T3 1 10 0 0 1
N c

1 1 1 7 3 1
N c

2 1 1 8 3 1
Γ 1 1 0 3 1

H5 1 5 0 0 0
H5̄ 1 5̄ 2 0 0
H24 1′ 24 3 0 0
Λ24 1′ 24 0 0 0
H45 1 45 4 0 2
H45 1 45 5 0 0

ξ 1 1 2 0 0
θ1 1 1 1 3 0
θ2 1 1 1 4 0

φe 3 1 0 0 0
φµ 3 1 3 0 0
φτ 3 1 7 0 0
φ1 3 1 3 2 0
φ2 3 1 1 3 0
φ3 3 1 3 1 0
φ4 3 1 2 1 0
φ5 3 1 6 2 0
φ6 3 1 5 2 0

Table 1: Superfields containing quarks and lep-
tons and symmetry breaking scalars.

Field
Representation

A4 SU(5) Z9 Z6 ZR4

X1 1 5̄ 7 0 1
X2 1 5 2 0 1
X3 1 5̄ 6 0 1
X4 1 5 3 0 1
X5 1′′ 5̄ 3 0 1
X6 1′ 5 6 0 1
X7 1 5̄ 2 0 1
X8 1′′ 5 7 0 1
X9 1′ 5̄ 0 0 1
X10 1′ 5 0 0 1

X11 1 5̄ 1 3 1
X12 1 5 7 5 1
X13 1 5̄ 2 3 1
X14 1 5 6 5 1

Σ1 1 5̄ 7 0 2
Σ2 1 5 2 0 0
Σ3 1 5̄ 5 0 2
Σ4 1 5 4 0 0
Σ5 1 5̄ 3 0 2
Σ6 1 5 6 0 0
Σ7 1 5̄ 1 0 2
Σ8 1 5 8 0 0
Σ9 1 5̄ 8 0 2
Σ10 1 5 1 0 0
Σ11 1 5̄ 6 0 2
Σ12 1 5 3 0 0
Σ13 1 5̄ 4 0 2
Σ14 1 5 5 0 0
Σ15 1 5̄ 2 0 2
Σ16 1 5 7 0 0

Table 2: Superfield messengers for the quark
and lepton Yukawa couplings (and other GUT
breaking couplings discussed in Section 4.2).

are discussed, particularly how to break SU(5) and ZR4 down to the MSSM with R-parity
in a viable way (i.e. addressing doublet-triplet splitting, the origin of the µ term and
proton decay). We also discuss the resolution to the strong CP problem. In Section 5 we
discuss the link between leptogenesis and the oscillation phase in this model. Finally in
Section 6 we summarise our main results and conclude. Appendix A summarises the A4

conventions used in this paper, in the basis of [17].

2 The Yukawa sector of the model

The model involves an A4×SU(5) CP invariant superpotential at the GUT scale, where all
symmetries, including CP, are spontaneously broken along supersymmetric flat directions,
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as discussed in Sections 3 and 4. As already noted, it involves a further Z9 × Z6 discrete
family symmetry as well as a ZR4 discrete R-symmetry. The purpose of this section is
to describe those aspects of the model pertaining to the Yukawa sector, i.e. relevant for
understanding quark and lepton masses, mixing and CP violation. The flavour sector
of the model is very important in our approach, since we make a serious attempt to
understand and, where possible, predict the experimentally observable fermion masses
and mixing matrices.

In Table 1 we show the matter superfields F , Ti that contain the quarks and leptons,
as well as the right-handed neutrino superfields N c

i and double seesaw superfield Γ, all
of which carry unit ZR4 charge. Apart from the A4 × SU(5) assignments of F ∼ (3, 5),
Ti ∼ (1, 10), N c

i ∼ (1, 1), under Z9 they transform as F ∼ 0, Ti ∼ (5, 7, 0), N c
i ∼ (7, 8).

Unlike the rest of the quarks and leptons, the right-handed neutrinos are further charged
under Z6 (as are some of the symmetry breaking scalars).

In Table 1 we also display the six Higgs superfields, generally denoted H (but also Λ)
which serve to break the SU(5) gauge symmetry. The two light MSSM Higgs doublet
superfields Hu and Hd will emerge from H5 and a mixture of H5̄ and H45 by a mechanism
discussed later. The superfield ξ which breaks Z9 is particularly central to this theory,
as it is responsible for both right-handed neutrino masses and the up-type quark mass
hierarchy. Finally we have the θi superfields which break Z6 and help to control Dirac
neutrino masses, and nine A4 breaking triplet flavons generally denoted φ, with various
vacuum alignments, responsible for large lepton mixing.

With these assignments, only the top quark gets a mass from a renormalisable Yukawa
coupling H5T3T3 (which has ZR4 charge 2 as required for an allowed superpotential term).
All the other quark and lepton Yukawa couplings must arise through higher order terms.
This provides the basic reason why most of the SM (or strictly MSSM) Yukawa couplings
appear to be so small. The observed hierarchy of Yukawa couplings between the three
families will be explained via a discrete Z9 version of the Froggatt-Nielsen mechanism [18],
with powers of the low VEV of ξ controlling the hierarchy in the up-type quark sector,
and also, in part, the smallness of the down quark and electron.

In order to enhance predictivity we need the messengers listed in Table 2, which is the
price we pay for having a renormalisable theory at the GUT scale. We denote these
superfields either as fermion messengers, Xi, or scalar messengers, Σi, depending on
whether they carry similar quantum numbers to, respectively, the quarks and leptons
(with odd ZR4 charge) or the symmetry breaking scalars (with even ZR4 charge). The
fermion messengers Xi carry similar quantum numbers to down-type quarks and charged
leptons (and neutrinos). Scalar messengers Σi have quantum numbers similar to H5 (the
superfield that gives the top quark a renormalisable mass term). The Σi messengers
do not get VEVs, which means we need not consider the effect of diagrams with Σi

superfields in external legs to the masses of SM fermions.

The messengers group themselves in pairs of two superfields with a renormalisable bare
mass coupling which respects all the symmetries. Their masses are therefore expected
to be at or around the GUT scale. Although there will be in general distinct masses for
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different pairs, for simplicity and because they are all expected to be at a similar mass
scale, we take masses of all such pairs to be M and set it equal to the GUT scale in our
numerical estimates. We emphasise that the successful predictions of the model in the
lepton sector (namely predicting the PMNS matrix) is independent of the specific values
of these mass parameters.

2.1 Up quarks

Apart from the top quark mass, which originates from a lowest order Yukawa coupling,
the remaining up-type quark Yukawa couplings appear from higher order terms that
result from combining several renormalisable terms involving Σi messengers and the GUT
singlet superfield ξ. To be precise, the up-type quark Yukawa couplings arise from Σi

messenger tower diagrams shown in Fig. 1. For example, the most suppressed coupling
arises from the first diagram in Fig. 1. Other less suppressed couplings arise from the
diagrams where at the base one has the respective TiTj, with a shorter tower leading up
to H5. The least suppressed coupling, the renormalisable H5T3T3 operator responsible
for the top quark mass, is the last diagram in Fig. 1.

The effective superpotential responsible for the up-type Yukawa couplings is

Wup = uijH5TiTj

(
ξ

M

)nij
. (2.1)

The resulting symmetric Yukawa matrix for up-type quarks is

Y u
ij = uij

(
〈ξ〉
M

)nij
∼

ξ̃4 ξ̃3 ξ̃2

ξ̃2 ξ̃
1

 , (2.2)

where ξ̃ = 〈ξ〉 /M ∼ 0.1. The explicit form of Y u is given in Eq. 2.18 and includes the
coefficients uij, which are O(1) and, by enforcing CP conservation at the GUT scale,
necessarily real. Thus, the hierarchy of the up quark masses as well as the CKM mixing
angles are given by powers of ξ̃. Due to the structure of this matrix, any phase introduced
by 〈ξ〉 can be reabsorbed by appropriate redefinition of the three Ti fields, so Y u does
not contain a source of CP violation.

2.2 Down quarks, charged leptons and flavons

When considering the Yukawa structures of down quarks and charged leptons we must
inevitably discuss A4 triplet flavons.6 The assignments of all the flavons under the family
symmetries appear in Table 1. Indeed, since the three families of F transform as a triplet
of A4 (see Table 1), all TiH5̄F terms require a contraction with at least one A4 triplet
flavon to be invariant.

6As a point of terminology, we refer to as “flavons” any superfields that are GUT singlets transforming
non-trivially under the family symmetry and that get VEVs. In particular not only A4 but strictly
speaking also Z9 and Z6 are family symmetries, so we also refer to ξ as a “flavon”.
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Figure 1: Diagrams responsible for the masses and mixings of the up-type quarks.

T3 FX1 X2

H5̄ φτ

(a)

T2

H4̄5 φµH24

X3 X4 X5 X6 F

(b)

T1

H5̄ φeξ

X7 X8 X9 X10 F

Λ24 Λ24

(c)

T1

H5̄ φµξ

X7 X8 X9 X6 F

Λ24 H24

(d)

Figure 2: Diagrams responsible for the masses of the down-type quarks and charged leptons.

From the diagrams shown in Fig. 2, integrating out the fermion messengers X, which
acquire large masses as a result of either explicit mass terms or GUT scale Higgs VEVs,
we obtain effective operators of the form

Wdown = d33T3
H5̄φτ
M

F + d22T2
H45H24φµ

M2
F + d11T1

H5̄ξφe

〈Λ24〉2
F + d12T1

H5̄ξφµ
〈Λ24〉 〈H24〉

F, (2.3)

where dij are O(1) couplings. The light MSSM doublet Hd is a combination of the
doublets inside H5̄ and H45, as discussed in Section 4.2, hence the d22 term also leads
to a relevant Yukawa coupling. The alignment of the respective flavon VEVs of φe,µ,τ
(discussed in Section 3) is

〈φe〉 = ve

1
0
0

 〈φµ〉 = vµ

0
1
0

 〈φτ 〉 = vτ

0
0
1

 , (2.4)

such that, apart from d12, the contraction appearing with T1,2,3 isolates the respective
F1,2,3 family. This would lead to diagonal Yukawa structures if not for the additional
term connecting T1(φµF ) (see Fig. 2d).
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The resulting effective Yukawa matrices are, schematically:

Y d
LR ∼ Y e

RL ∼


〈ξ〉 ve
v2

Λ24

〈ξ〉 vµ
vΛ24vH24

0

0
vH24vµ
M2

0

0 0
vτ
M

 , (2.5)

where vΛ24 and vH24 are the respective VEVs of Λ24 and H24 (given in Eq. 2.6), and we
include the subscripts LR to emphasise the role of the off-diagonal term to left-handed
mixing from Y d. The off-diagonal term in Y e also provides a tiny contribution to left-
handed charged lepton mixing θe12 ∼ me/mµ which may safely be neglected. It also
introduces CP violation to the CKM matrix via the phase of 〈ξ〉.

Furthermore, because the underlying renormalisable theory is known, the diagrams in
Fig. 2 are the only contributions for each family. The SU(5) contractions and associated
CG coefficients appearing for each family are unique [13, 14]. With the GUT scale sym-
metry breaking as discussed in Section 4, each of the scalars here get a VEV with the
group structure:

〈H5̄〉a = δa5 vd/
√

2

〈H45〉
ab
c = (δ[a

c − δ
[a|
5 δ5

c − 4δ
[a|
4 δ4

c )δ
b]
5 vd/

√
2

〈H24〉ab = diag(2, 2, 2,−3,−3) vH24

〈Λ24〉ab = diag(2, 2, 2,−3,−3) vΛ24 ,

(2.6)

where the indices run a, b, c = 1, ..., 5. This leads to the GUT scale prediction:

Y e
33

Y d
33

= 1,
Y e

22

Y d
22

=
9

2
,

Y e
11

Y d
11

=
Y e

21

Y d
12

=
4

9
. (2.7)

The explicit forms of Y d and Y e, including CG and dij coefficients, are given later in
Eq. 2.19 and Eq. 2.20, respectively.

2.3 Neutrinos and CSD3

In order to obtain the CSD3 vacuum alignment in this model we couple the neutrinos to
a set of flavons distinguished by the Z6 symmetry. Of the superfields in Table 1, only
the right-handed neutrinos and some of the flavons are charged under this symmetry.
For clarity, we relabel two of the flavon fields as φatm ≡ φ3 and φsol ≡ φ4, to highlight
their role in producing neutrino mixing. We also write N c

atm ≡ N c
1 to denote the right-

handed neutrino that dominantly leads to the atmospheric neutrino mass, and N c
sol ≡ N c

2

as that which contributes mainly to the solar neutrino mass. The relevant terms in the
superpotential giving neutrino masses are thus

Wν = y1H5F
φatm

〈θ2〉
N c

atm + y2H5F
φsol

〈θ2〉
N c

sol + y3
ξ2

M
N c

atmN
c
atm + y4ξN

c
solN

c
sol. (2.8)
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The flavons φatm and φatm gain VEVs according to the CSD3 alignment:

〈φatm〉 = vatm

0
1
1

 〈φsol〉 = vsol

1
3
1

 , (2.9)

where vatm and vsol are generally complex. Denoting the phases of VEVs as ρi = arg(vi),
only the relative phase ρatm−ρsol between the VEVs is physically relevant, and is con-
strained to a discrete set of values, as discussed in Section 3.3. The flavon ξ (already
responsible for the up quark masses) is also acting as a Majoron by generating hierar-
chical right-handed neutrino masses. At the effective level, the Dirac terms result from
coupling the neutrinos (and H5) to φatm and φsol via the flavon θ2 (an A4 singlet carrying
Z6 charge). The corresponding diagrams with associated messengers appear in Fig 3.

N c
atm X13

H5 φatm

FX14

θ2

(a)

N c
sol X11

H5 φsol

FX12

θ2

(b)

N c
atm

ξ ξ

N c
atmΓ Γ

(c)

N c
sol N c

sol

ξ

(d)

Figure 3: Renormalisable diagrams leading to neutrino effective terms. Diagrams (a) and (b)
are responsible for neutrino Yukawa terms (leading to Dirac masses) while (c) and (d) give
right-handed neutrino Majorana mass terms.

In turn, the Majorana mass term for N c
atm is also non-renormalisable and we refer to the

superfield Γ as the respective messenger. It couples only to N c
atm and simply provides the

non-renormalisable mass term for N c
atm, suppressed relative to the mass of N c

sol. As Γ has
the quantum numbers of a third right-handed neutrino, one can also consider this field as
mediating a double seesaw mechanism, responsible for the N c

atm mass. The mixing term
ξ6

M5N
c
atmN

c
sol, though allowed by the symmetries, is absent as there is no combination of

messengers able to produce it.

We write 〈ξ〉 = |vξ|eiρξ , where ρξ is chosen from a discrete set of available phases, discussed
in Section 4.1 (see Eq. 4.2). This phase originates from the spontaneous CP violation of
a discrete Abelian symmetry [9, 10], in our case the Z9. We will now show that ρξ and
ρatm−ρsol fix the relative phases within the effective neutrino mass matrix and consequently
the leptonic mixing angles.

In a Supersymmetric (SUSY) model, the relevant terms in the superpotential giving
neutrino masses, in the diagonal charged lepton basis, are

Wν = yiatmHLiN
c
atm + yisolHLiN

c
sol +MatmN

c
atmN

c
atm +MsolN

c
solN

c
sol, (2.10)
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where Li are three families of lepton doublets and the (CP conjugated) right-handed
neutrinos N c

atm and N c
sol with real positive masses Matm and Msol do not mix.

The structure of λν is determined by the vacuum alignments of φatm and φsol. The Dirac
and Majorana matrices, derived by comparing the superpotential terms in Eqs. 2.8 and
2.10 are

λν =

0 b
a 3b
a b

 M c =

y3 〈ξ〉2

M
0

0 y4 〈ξ〉

 , (2.11)

where a = y1vatm/ 〈θ2〉 and b = y2vsol/ 〈θ2〉.

For the see-saw mechanism we shall introduce a different convention for Yukawa and
Majorana masses. The Yukawa matrices Y e, Y ν are defined in a LR convention by

LLR = −HdY e
ijL

i

Le
j
R −H

uY ν
ijL

i

Lν
i
R + h.c., (2.12)

where i, j = 1, 2, 3 label the three families of lepton doublets Li, right-handed charged
leptons ejR and right-handed neutrinos νjR below the GUT scale; Hu, Hd are the Higgs
doublets which develop VEVs vu, vd. The physical effective neutrino Majorana mass
matrix mν is determined by the seesaw mechanism,

mν = v2
uY

νM−1
R Y νT, (2.13)

where the light Majorana neutrino mass matrix mν is defined7 by LLLν = −1
2
mννLν

c
L+h.c.,

while the heavy right-handed Majorana neutrino mass matrix MR is defined by LRRν =
−1

2
MRνcRνR + h.c..

There is a simple dictionary between the seesaw basis and the SUSY basis, as follows:
compared to the SUSY basis in Eq. 2.8 used in leptogenesis calculations we see that
Y ν = (λν)∗, while MR = (M c)∗. Hence the neutrino matrices become, in the seesaw
basis,

Y ν = (λν)∗ =

 0 b∗

a∗ nb∗

a∗ (n− 2)b∗

 MR = (M c)∗ =


(
y3 〈ξ〉2

M

)∗
0

0 (y4 〈ξ〉)∗

 . (2.14)

Seesaw produces the effective neutrino mass matrix

mν = ma

0 0 0
0 1 1
0 1 1

+mbe
iη

1 3 1
3 9 3
1 3 1

 , (2.15)

where ma = v2
u|a|2/(y3|vξ|2/M) and mb = v2

u|b|2/(y4|vξ|) and we have multiplied through-
out by an overall phase which we subsequently drop, keeping only the (physical) relative
phase

η ≡ −ρξ + 2(ρatm−ρsol), (2.16)

7The conventions for Y ν,e and mν differ, respectively, by overall Hermitian and overall complex
conjugation compared to those used in the Mixing Parameter Tools package [19], which was used when
performing global fits.
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where we recall the above definitions of phases,

ρξ ≡ arg(〈ξ〉), ρatm−ρsol ≡ arg(vatmv
∗
sol), (2.17)

and that CP conservation at high energies ensures that yi and M are real. By arguments
given in Section 3.3 and Section 4.1, we can restrict the physical phase η to a discrete
choice, namely one of the nine complex roots of unity. The values η = ±2π/3 are preferred
by CSD3 [6, 7]. Note that the model predicts a normal neutrino mass hierarchy, namely
m3 > m2 � m1 = 0, which will be tested in the near future.

The sign of η has phenomenological significance, as it fixes the leptonic Dirac phase δl.
Specifically, a positive η uniquely leads to negative δl, and vice versa [7]. As experimental
data hints at δl ∼ −π/2, the a posteriori preferred solution has positive η = +2π/3. The
sign of η also has cosmological significance, as discussed in Section 5. For example a
positive η = +2π/3, together with the requirement that baryon asymmetry is positive,
implies that the lightest right-handed neutrino should be N c

1 = N c
atm, while N c

2 = N c
sol

should be somewhat heavier, which is the natural ordering in our model.

2.4 Full parameter fit

The structure of the Yukawa matrices and neutrino mass matrix is set by the theory,
up to O(1) coefficients. The VEVs of the fields ξ, Λ24 and H24 are at or near the GUT
scale, but otherwise undetermined. This freedom coincides with the choice of coefficients
in the Yukawa matrices, providing no extra degrees of freedom in the determination of
the Yukawas other than to provide the appropriate scale. The same is true for the flavon
fields φe, φµ and φτ , which provide the necessary hierarchy in the down-quark and charged
lepton Yukawa sector.

The neutrino matrix mν is given in Eq. 2.15. Letting vf represent the VEV of a field f ,
the Yukawa matrices are as follows:

Y u =


u11|ξ̃4| u12|ξ̃3| u13|ξ̃2|

u12|ξ̃3| u22|ξ̃2| u23|ξ̃|

u13|ξ̃2| u23|ξ̃| u33

 (2.18)

Y d =
1√
2



1

4
d11
|vξve|
|vΛ24|2

d12
|vξvµ|
|vΛ24vH24|

eiζ 0

0 2d22
|vH24vµ|
M2

0

0 0 d33
|vτ |
M


(2.19)
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Y e =
1√
2



1

9
d11
|vξve|
|vΛ24|2

0 0

d12
|vξvµ|
|vΛ24vH24|

eiζ 9d22
|vH24vµ|
M2

0

0 0 d33
|vτ |
M

.


(2.20)

As already remarked, the phases in Y u from powers of 〈ξ〉 = |vξ|eiρξ can be removed
by field redefinition. Without loss of generality we have rephased fields such that the
only phase appearing in Y d and Y e is the phase ζ as shown in Eqs. 2.19, 2.20, so all
quark CP violation originates from the single phase ζ appearing in Y d

12. In turn, ζ is
determined by a combination of phases coming from various field VEVs; more precisely,
ζ = ρξ−2ρH24−ρΛ24 . As long as it is reasonably far from zero, it can produce the necessary
CP violation. Different choices of ζ do not affect the goodness-of-fit, corresponding simply
to different but equally valid choices of O(1) coefficients. For our fit we choose ζ = π/3.
Note that the corresponding phase in Y e

21 does not contribute to leptonic CP violation,
since this term does not affect left-handed mixing, to an accuracy of O(me/mµ).

To fit the real coefficients uij, dij, ma and mb, we propose a function χ2 that relates the
N physical predictions Pi({x}) for a given set of input parameters {x} to their current
best-fit values µi and their associated 1σ errors, denoted σi, by

χ2 =
N∑
i=1

(
Pi({x})− µi

σi

)2

. (2.21)

The errors σi are equivalent to the standard deviation of the experimental fits to a Gaus-
sian distribution. For most parameters, this is essentially the case, with the exception of
the (lepton) atmospheric angle θl23. For a normal hierarchy, the distribution is roughly
centered on θl23 = 45◦, while the best fit value is given by θl23 = 42.3◦. So as to not
overstate the error for θl23, we approximate its distribution by a Gaussian about 42.3◦,
setting σθl23 = 1.6◦.

We now wish to minimise χ2. In this analysis, N = 18, corresponding to six mixing angles
θlij (neutrinos) and θqij (quarks), the CKM phase δq, nine Yukawa eigenvalues for the
quarks and charged leptons, and two neutrino mass-squared differences ∆m2

21 and ∆m2
31.

In the lepton sector, we use the PDG parametrisation of the PMNS matrix [20] UPMNS =
Rl

23U
l
13R

l
12PPDG in terms of sij = sin θlij, cij = cos θlij, the Dirac CP violating phase δl and

further Majorana phases contained in PPDG = diag(1, ei
α21
2 , ei

α31
2 ). Experimentally, the

leptonic phase δl is poorly constrained at 1σ (and completely unconstrained at 3σ), so is
not fit, and left as a pure prediction of the model, as are the (completely unconstrained)
Majorana phases α21 and α31. As this model predicts only two massive left-handed
neutrinos, i.e. m1 = 0, one Majorana phase is zero, which we take to be α31 = 0.

The running of best-fit and error values to the GUT scale are generally dependent on
SUSY parameters, notably tan β, as well as contributions from SUSY threshold correc-
tions. We extract the GUT scale CKM parameters and all Yukawa couplings (with associ-
ated errors) from [21] for judicious choices of tan β. In further reference to [21], we choose
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Parameter
(from [21])

tanβ = 5 tanβ = 10

µi σi µi σi

θq12 13.027◦ 0.0814◦ 13.027◦ 0.0814◦

θq13 0.1802◦ 0.0281◦ 0.1802◦ 0.0281◦

θq23 2.054◦ 0.384◦ 2.054◦ 0.384◦

δq 69.21◦ 6.19◦ 69.21◦ 6.19◦

yu 2.92 ×10−6 1.81 ×10−6 2.88 ×10−6 1.79 ×10−6

yc 1.43 ×10−3 1.00 ×10−4 1.41 ×10−3 9.87 ×10−5

yt 5.34 ×10−1 3.41 ×10−2 5.20 ×10−1 3.15 ×10−2

yd 4.81 ×10−6 1.06 ×10−6 4.84 ×10−6 1.07 ×10−6

ys 9.52 ×10−5 1.03 ×10−5 9.59 ×10−5 1.04 ×10−5

yb 6.95 ×10−3 1.75 ×10−4 7.01 ×10−3 1.78 ×10−4

ye 1.97 ×10−6 2.36 ×10−8 1.98 ×10−6 2.38 ×10−8

yµ 4.16 ×10−4 4.97 ×10−6 4.19 ×10−4 5.02 ×10−6

yτ 7.07 ×10−3 7.27 ×10−5 7.15 ×10−3 7.42 ×10−5

Table 3: Best fit values for quark and charged lepton parameters when run to the GUT
scale as calculated in [21], with the SUSY breaking scale set at 1 TeV. We have included an
overall contribution from threshold corrections corresponding to η̄b = −0.24375 which affects
primarily the b quark Yukawa coupling yb. µi represents the best-fit value and σi the error, as
defined in Eq. 2.21.

for the parameter η̄b parametrising the threshold corrections a value η̄b = −0.24375; a
non-zero value is required primarily to produce a necessary (small) difference in b and τ
Yukawa couplings. Experimental neutrino parameters are extracted from [22]. All data
is reproduced in Tables 3 and 4.

Parameter
(from [22])

µi ± 1σ 3σ range

θl12 (◦) 33.48 +0.78
−0.75 31.29 → 35.91

θl23 (◦) 42.3 +3.0
−1.6 38.2 → 53.3

θl13 (◦) 8.5 +0.20
−0.21 7.85 → 9.10

δl (◦) 306 +39
−70 0 → 360

∆m2
21

10−5
eV2 7.50 +0.19

−0.17 7.02 → 8.09

∆m2
31

10−3
eV2 +2.457 +0.047

−0.047 +2.317 → +2.607

Table 4: Table of current best fits to experimental data for lepton mixing angles and neutrino
masses case of normal mass squared ordering taken from [22], with 1σ and 3σ uncertainty
ranges.

Minimisation by differential evolution was performed in Mathematica, producing the set
of O(1) input coefficients and the corresponding physical parameters seen in Table 5,
with an associated χ2 = 7.98 (for tan β = 5) and χ2 = 7.84 (for tan β = 10).

In this fit, the VEVs of ξ, Λ24, H24 and the three φe,µ,τ are fixed by hand in terms of
the scale M , which is taken to be the GUT scale, i.e. M ≈ 3× 1016 GeV. Similarly, the
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Higgs doublet VEV enters only implicitly through ma and mb, but is understood to take
(at the GUT scale) the value vH = 174 GeV. We set

vξ = 6× 10−2M

vΛ24 = M

vH24 = 3× 10−1M

ve = 10−3M

vµ = 10−3M

vτ = 5× 10−2M

. (2.22)

The value of vξ is chosen to accommodate not only the fit to Y u parameters but also to
control the µ-term, as discussed in Section 4.2. Meanwhile the factor ∼3 split between
vΛ24 and vH24 assists in establishing a hierarchy between the e and µ families. With the
above numerical values for the VEVs, we get the following Yukawa matrices in terms only
of O(1) coefficients and the complex phase ζ:

Y u =

1.296×10−5 · u11 2.16×10−4 · u12 3.6×10−3 · u13

2.16×10−4 · u21 3.6×10−3 · u22 6×10−2 · u23

3.6×10−3 · u31 6×10−2 · u32 u33

 (2.23)

Y d =
1√
2

1.5×10−5 · d11 2×10−4 · d12e
iζ 0

0 6×10−4 · d22 0
0 0 5×10−2 · d33

 (2.24)

Y e =
1√
2

6.67×10−6 · d11 0 0
2×10−4 · d12e

iζ 2.7×10−3 · d22 0
0 0 5×10−2 · d33

 . (2.25)

It is worth reiterating that the neutrino mass matrix phase η can be forced to admit only
phases coming from the nine complex roots of unity, essentially due to spontaneous CP
violation with the Z9 symmetry, where we select η = ±2π/3, both of which yield equally
good χ2 fits, with only minor adjustments to O(1) coefficients. The primary effect is in
the prediction of δl; as previously stated, positive η corresponds to negative δl. As this
is preferred by experiment, the results presented in Table 5 are for η = +2π/3. The fit
also predicts the Majorana phases α21 = 72◦ and α31 = 0.

In order to understand the significance of the χ2 fit, and assess the strength of the model
overall, it is prudent to enumerate the parameters and predictions of the model. The
nominal parameter count at the GUT scale is very large, owing to the diverse field content.
However, at the scale where we are able to make predictions, many of these parameters
combine to give a constrained set of free parameters that need to be determined. Notably,
the VEVs of Higgs and flavon fields such as those given in Eq. 2.22 do not constitute true
degrees of freedom, as they can be absorbed by redefining other parameters.

Relevant parameters that require consideration include: six uij, four dij, masses ma

and mb, phases η and ζ, the threshold factor η̄b, and tan β, for a total of NI = 16
input parameters. However three of these parameters, namely tan β, η and ζ, are fixed
prior to the fit, with the latter two phases restricted to discrete choices, as discussed
previously. Finally, the factor η̄b affects only the coupling yb and is fitted by hand. As
mentioned earlier, the model fits N = 18 observables, including nine Yukawa eigenvalues,
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tanβ Input Output

5

uij :

0.9566 0.7346 0.7198
· 0.5961 0.3224
· · 0.5435



dij :

2.133 0.8363
1.108

1.021



θq12 13.027◦ θl12 34.3◦

θq13 0.1802◦ θl13 8.67◦

θq23 2.054◦ θl23 45.8◦

δq 69.18◦ δl -86.7◦

yu 2.92 ×10−6 ∆m2
21 7.38 ×10−5 eV2

yc 1.43 ×10−3 ∆m2
31 2.48 ×10−3 eV2

yt 5.34 ×10−1

yd 4.30 ×10−6 ye 1.97 ×10−6

ma : 26.57 meV ys 9.51 ×10−5 yµ 4.16 ×10−4

mb : 2.684 meV yb 7.05 ×10−3 yτ 7.05 ×10−3

10

uij :

0.9182 0.7087 0.6910
· 0.5768 0.3095
· · 0.5218



dij :

4.236 1.661
2.200

2.034



θq12 13.027◦ θl12 34.3◦

θq13 0.1802◦ θl13 8.67◦

θq23 2.054◦ θl23 45.8◦

δq 69.18◦ δl -86.7◦

yu 2.88 ×10−6 ∆m2
21 7.38 ×10−5 eV2

yc 1.41 ×10−3 ∆m2
31 2.48 ×10−3 eV2

yt 5.20 ×10−1

yd 4.33 ×10−6 ye 1.98 ×10−6

ma : 26.57 meV ys 9.58 ×10−5 yµ 4.19 ×10−4

mb : 2.684 meV yb 7.13 ×10−3 yτ 7.13 ×10−3

Table 5: Fitted input quark Yukawa coefficients uij and dij (arranged by their position in the
Y u and Y d matrices, respectively) and neutrino mass parameters ma and mb, and associated
physical parameters produced by minimising the function χ2. We choose ζ = π/3. With
tanβ = 5, the fit gives χ2 = 7.98, while tanβ = 10 gives χ2 = 7.84, both very good fits. The
largest single contribution to χ2 is from the fit to the atmospheric angle θl23. These results are
given with η = +2π/3. The non-zero Majorana phase is also predicted to be α21 = 72◦, and
is insensitive to tanβ, as indeed are all the mixing angles and phases.

two neutrino mass squared differences, six mixing angles and the quark CP phase. In
addition the model predicts the leptonic CP phase δl, two Majorana phases (one of which
is zero) and a massless physical neutrino.

3 A4 symmetry breaking and the flavon vacuum

In order to address A4 symmetry breaking we need to address three aspects of the flavon
vacuum: what drives some flavons to have VEVs a few orders of magnitude below the
GUT scale, what determines their vacuum alignment, and what fixes the relative vacuum
phase ρatm−ρsol ≡ arg(vatmv

∗
sol) (and consequently the physical phase η). In this section

we consider each of these issues in turn.
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3.1 Driving the flavon vacuum expectation values

The flavon φ VEVs are driven by radiative breaking [23] (see e.g. [24] for a recent review).
The soft squared mass terms appear as m2

iφiφ
†
i ln(φiφ

†
i/Λ

2
i ) and become negative at the

required scales Λi < M , lifting the respective flat direction to a few orders of magnitude
below the GUT scale for each flavon: 〈φiφ†i〉 ∼ Λ2

i . Hierarchies of VEVs are thus natu-
rally expected due to the logarithmic nature of this mechanism. The precise symmetry
breaking scale Λi for each field φi depends on otherwise undetermined parameters in the
model which are different for each flavon, such as superpotential terms involving messen-
gers.8 Therefore a hierarchy for such flavon VEVs is generated and remains stable due
to radiative breaking [25]. On the other hand those for ve, vµ, vτ in Eq. 2.22 arise from
F -terms as discussed later.

3.2 Flavon vacuum alignment

Thus far we have assumed that the A4 triplet VEVs are aligned in special directions. In
this section we describe how these directions are obtained by the superpotential terms
allowed by the symmetries. In doing this, the role of Z6 becomes clearer. The driving
sector, a set of superfields Ai and Oij with ZR4 charge 2, is listed fully in Table 7.9 The
inclusion of the Z6 symmetry is necessary because the driving superpotential, responsible
for aligning the flavons, needs to have each driving field isolated, as shown below (see
also [6]):

Walign ∼ Aµφµφµ + Aτφτφτ + A2(φ2φ2 + φ2θ1)

+Oeµφeφµ +Oeτφeφτ +Oµτφµφτ

+Oe3φeφ3 +O23φ2φ3 +O12φ1φ2 +O13φ1φ3

+Oµ5φµφ5 +O25φ2φ5 +Oµ6φµφ6 +O56φ5φ6

+O64φ6φ4 +O14φ1φ4.

(3.1)

The additional Z6 charges ensure each term is separated from all others, leading to an
array of vanishing F -term conditions that force mutual orthogonality conditions between
many of the vacuum alignments. Since this was fully discussed in [6], we need only state

8Examples of such a Yukawa coupling for the neutrino flavons are φatmFX14 and φsolFX12.
9Note that the O (and P ) fields that carry no Z6 charge couple to H5H5̄ξ

n (with some power of ξ),
e.g. P22H5H5̄. We do not discuss these further as the respective F -terms do not affect the alignment
nor the origin of the µ-term.
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Field
Representation

A4 SU(5) Z9 Z6 ZR4

Z1 1′′ 24 0 0 2
Z2 1′′ 24 3 0 2
Z3 1′ 24 3 0 2

Υ1 1′ 24 7 0 0
Υ2 1′′ 24 2 0 2
Υ3 1′ 24 5 0 0
Υ4 1′′ 24 4 0 2
Υ5 1′ 24 4 0 0
Υ6 1′′ 24 5 0 2
Υ7 1′ 24 2 0 0
Υ8 1′′ 24 7 0 2

Υ9 1 75 0 0 0
Υ10 1 75 0 0 2
Υ11 1 75 6 0 0
Υ12 1 75 3 0 2

Ω1 1 50 4 0 2
Ω2 1 50 3 0 0
Ω3 1 50 1 0 2
Ω4 1 50 8 0 0
Π1 1 75 6 0 2
Π2 1 75 3 0 0

Table 6: Superfields that break R symmetry
and cause doublet-triplet splitting through the
missing partner mechanism.

Field
Representation

A4 SU(5) Z9 Z6 ZR4

Aµ 3 1 3 0 2
Aτ 3 1 4 0 2
A2 3 1 7 0 2

Oeµ 1 1 6 0 2
Oeτ 1 1 2 0 2
Oµτ 1 1 8 0 2
Oe3 1 1 6 5 2
O23 1 1 5 2 2
O12 1 1 5 1 2
O13 1 1 3 3 2
Oµ5 1 1 0 4 2
O25 1 1 2 1 2
Oµ6 1 1 1 4 2
O56 1 1 7 2 2
O64 1 1 2 3 2
O14 1 1 4 3 2

Pee 1 1 0 0 2
Pµµ 1 1 3 0 2
P22 1 1 7 0 2
Pe4 1 1 7 5 2
P1e 1 1 6 4 2
P44 1 1 5 4 2
P34 1 1 4 4 2

P 1,2
33 1 1 3 4 2
P2τ 1 1 1 3 2

Table 7: Driving superfields for the flavon
alignment potential.

the results here, namely that Eq. 3.1 leads to the following vacuum alignment patterns:

〈φe〉 ∼

1
0
0

 〈φµ〉 ∼

0
1
0

 〈φτ 〉 ∼

0
0
1



〈φ1〉 ∼

 2
−1
1

 〈φ2〉 ∼

 1
1
−1

 〈φ3〉 ∼

0
1
1



〈φ4〉 ∼

1
3
1

 〈φ5〉 ∼

1
0
1

 〈φ6〉 ∼

 1
0
−1

 .

(3.2)

The role of the VEVs (containing two zero entries) of the superfields φe,µ,τ appearing in
Eq. 2.3 was already discussed in Section 2.2. Meanwhile, the role of the VEVs of the
flavons φ3,4 (redubbed φatm,sol) was described in Section 2.3. It is the special structure
of these vacuum alignments, combined with the phase of η in the neutrino mass matrix,
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that leads to the very successful prediction of the leptonic mixing angles (as described in
Section 2.4). The remaining VEVs are not directly relevant to the masses and mixings
of SM fermions, but help shape the VEVs of φatm and φsol.

3.3 Flavon vacuum phases

With the direction of the A4 triplet flavons φ fixed, we turn now to a discussion of
how to fix the relative phase ρatm−ρsol ≡ arg(vatmv

∗
sol) to a discrete choice. We present

a mechanism which does this by adding a number of fields P that are A4 and SU(5)
singlets, also given in Table 7, and which resemble the O fields except they do not force
orthogonality between the flavons φ.

These fields and their respective charge assignments result in the following invariant
superpotential terms:

Wphase ∼ Pee(φeφe +M2 + P 2
ee) + Pµµ(φµφµ + Z2Z3 + P 2

µµ)

+ Pe4(φeφ4 + θ1θ2) + P22(φ2φ2 + θ1θ1)

+ P1e(φ1φe + φ6φτ ) + P44(φ4φ4 + φ5φτ ) + P34(φ3φ4 + φ6φe)

+ P 1,2
33 (φ3φ3 + φ1φµ + φ5φe) + P2τ (φ2φτ + φ3φ6 + φ4φ5),

(3.3)

where each term technically has an associated real coupling λ which is O(1) and may be
made positive by field redefinitions. We omit these for simplicity as they have no effect
on the general argument presented here, with one caveat: the two superfields P 1,2

33 have
exactly the same quantum numbers but different λ couplings to flavons. Due to this du-
plication there are two independent relations between the flavon VEVs involving different
λ couplings which leads to an additional constraint on the phases of the respective VEVs.
Exact values of these λ are not specified; it suffices that they are not equal.

Furthermore, the primary role of the SU(5) adjoint fields Z2 and Z3 which couple to Pµµ
is in the GUT breaking mechanism (as discussed in Section 4.1). Their phases are fixed
separately by other superpotential terms.

We begin the analysis of these terms by noting they do not affect the alignments of
the flavons φ. The corresponding F -terms for each field Pij produces a set of coupled
equations that admit a solution where none of the A, O, and P fields but all the flavons
obtain a VEV. Omitting the (real, positive, O(1)) λ coefficients, these VEVs have the
structure:

ve ∼M vµ ∼ (vZ2vZ3)
1
2

vτ ∼ (vZ2 vZ3)
− 1

3M
5
3 v1 ∼ (vZ2vZ3)

− 1
2 v2

3

v2 ∼ (vZ2vZ3)
− 1

6M− 7
3 v3

3 v4 ∼ (vZ2vZ3)
− 1

6M
1
3 v3

v5 ∼M−1 v2
3 v6 ∼ (vZ2vZ3)

− 1
6M− 2

3 v2
3

vθ1 ∼ (vZ2vZ3)
1
6M− 7

3 v3
3 vθ2 ∼ (vZ2vZ3)

− 1
6M

11
3 v−2

3

vO = vP = vA = 0.

(3.4)
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Regarding the magnitudes of the VEVs, two comments are in order. We assumed above
that M sets the scale of the VEV of φe, which is in contradiction with our previous
assumption that it be O(10−3)M . This violates our simplifying assumption that all mass
scales are equal, and demonstrates that some spectrum of mass scales is in fact required
in this model. As for the VEV v3, as discussed earlier, it is driven to a specific scale Λ3

radiatively [25]. Writing ρi ≡ arg(vi), this VEV structure gives (up to multiples of π) the
phase relation

ρ4 =
2πn

3
− 1

6
(ρZ2 + ρZ3) + ρ3, (3.5)

where n is an integer, and similar relations for the other flavons as linear combinations
of ρ3, (ρZ2 + ρZ3) and multiples of 2π/3. This is an important equation since it fixes the
relative phase ρ3 − ρ4 = ρatm−ρsol in terms of 1

6
(ρZ2 + ρZ3). As discussed in Section 4.1,

ρZ2 + ρZ3 = 2πk′

3
, where we also establish that ρξ = 2πk

9
, for integers k, k′. From Eq. 2.16,

η ≡ −ρξ + 2(ρatm−ρsol), so we conclude that η is one of the nine complex roots of unity.

4 GUT scale symmetry breaking, proton decay and

the strong CP problem

In this section we discuss the aspects of the model related to grand unification, starting
with how the R-symmetry and the GUT gauge group are spontaneously broken. We refer
to the superfields involved as the scalar sector; they are listed in Tables 1 and 6. We then
describe the details of the MP mechanism, and finish this section with an analysis that
justifies the absence of dangerous proton decay operators in the model.

4.1 SU(5) and ZR4 breaking

As previously discussed, the Υ messengers form pairs; their mass scale, unprotected by
any symmetry, is near the highest scale of the theory, which we represent generically as
M . The GUT breaking superpotential with non-renormalisable terms is then10

WGUT = Z1

(
MΛ24 +

λ1

M2
H24ξ

3 + λ2Z
2
1

)
+ Z2

(
λ3

M2
Λ24ξ

3 + λ4Z
2
2

)
+ Z3

(
λ5H

2
24 + λ6Z

2
3

)
.

(4.1)

We have five GUT adjoint superfields, three of which (the Z fields) are charged by 2 and
two (Λ24 and H24) by 0 under the R-symmetry. Also appearing in WGUT is the Majoron

10A renormalisable term of the form Z2H24Π2, allowed by the symmetries, has been dropped to make
the discussion more transparent. This term mixes the VEVs of the GUT breaking scalars with the ones
in the MP mechanism so they should be naturally around the same scale (M ∼MGUT). Beyond this, its
practical effect is minimal: the fields obtain VEVs with or without this term. Since the VEVs get very
complicated when this “mixing” term is included, we ignore it for simplicity, simply bearing in mind
that VEVs from both sets of fields are related.
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ξ, the GUT singlet field which we have seen is involved in giving mass to several SM
fermions and whose VEV breaks lepton number by giving the right-handed neutrinos
their Majorana mass. The supressions of the non-renormalisable terms in Eq. 4.1 come
precisely from the mass of the Υ messengers, as displayed in Fig. 4.

ξ

Υ3Z1 Υ2Υ1 Υ4

ξξ

H24

(a)

ξ

Υ7

ξ

Z2 Υ6Υ5 Υ8 Λ24

ξ

(b)

Figure 4: Diagrams for non-renormalisable potential terms.

WGUT has a non-trivial minimum:

vZ1 = −i2
2/3λ1λ

1/3
4 λ

1/6
6

31/2λ2λ3λ
1/2
5

M

vZ2 =
i21/3λ1λ

1/6
6

31/2λ
2/3
2 λ3λ

1/2
5

M

vZ3 =
iλ1λ

1/3
4

31/2λ
2/3
2 λ3λ

1/2
5 λ

1/6
6

M

vH24 =
λ1λ

1/3
4 λ

1/3
6

λ
2/3
2 λ3λ5

M

vΛ24 =
21/3λ2

1λ
2/3
4 λ

1/3
6

λ2λ2
3λ5

M

〈ξ〉3 =
21/3λ

1/3
4

λ
1/3
2 λ3

M3,

(4.2)

where all the adjoint scalars get a VEV of the form 〈Φ24〉 = vΦ24 diag(2, 2, 2,−3,−3). By
themselves, the F -terms associated with WGUT also allow a trivial minimum where the
magnitude of each VEV vanishes. But after SUSY is broken and we consider the effects of
the small contribution from radiative breaking [23] to the scalar components of the GUT
breaking superfields (as we did in Section 3 for the A4 breaking flavons), the stationary
point with vanishing magnitudes is no longer a minimum due to the radiatively induced
negative squared mass term. To a very good approximation the true minima are given
by the magnitudes in Eq. 4.2, which are now a lower energy state than the trivial F -term
solution.

We conclude that Eq. 4.1 can generate GUT and R-symmetry breaking at high scale,
with ZR4 broken to ZR2 (standard R-parity preserved) by the Zi VEVs. Because ZR4 is
broken at a high scale, the no-go theorem from [26] does not apply to our model and we
verified that all the components of the SU(5) adjoints acquire GUT scale masses.

A slightly unappealing issue with WGUT is that the minimum requires some non-O(1)
choice of λ parameters if we are to obtain a hierarchy between the VEVs of H24 and
Λ24, and an appropriate value for 〈ξ〉/M as shown in Eq. 2.22. These requirements come
from the successful fit to up and down quark and charged lepton masses, as discussed
in Sections 2.1, 2.2 and 2.4, and partly also for the µ term, as will be discussed shortly.
However, since the messengers will in general have different masses (recall we set them all
equal to M only for simplicity), the λ parameters need not be as hierarchical as Eq. 4.2
appears to indicate. For example, if the masses of messengers Σ are slighly larger than
the GUT scale masses of messengers Υ, this would allow all λ to be O(1).
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We note also that, although we are considering a situation where the superpotential
parameters (the M and λ couplings) are real due to CP conservation, the VEVs of the
GUT breaking scalars may be complex, since they depend on nth order roots of real
numbers. As has been shown in Sections 2.3 and 3.3, the phases of the fields ξ, Z2 and
Z3 are relevant for establishing the physical phase η in the neutrino mass matrix, which
controls neutrino masses and mixing. We see immediately that ρξ = 2πk

9
, for integer k,

i.e. one of nine roots of unity. While ρZ2 and ρZ3 individually can be any of six roots,

originating in the factor λ
1/6
5 , their product Z2Z3 cancels this factor such that the largest

root is a third, giving ρZ2 + ρZ3 = 2πk′

3
, for integer k′.

4.2 Doublet-triplet splitting, Higgs mixing and the µ term

Given that we have a number of GUT representations containing (SM gauge group) SU(2)
doublets and triplets we turn now to a brief discussion of how doublet-triplet splitting
is achieved in this model. Although one could alternatively introduce the double MP
mechanism [27] as demonstrated in [13], here we limit ourselves to describing how the
MP mechanism is implemented with the fields listed in Table 6.

We have a superpotential

WΠ = Π1

(
λ7Π2

1 +MΠ2 +
λ8

M2
Π4

2

)
, (4.3)

which gives Π, the 75s of SU(5), their VEVs

vΠ1 = − 1

161/3λ
1/2
7 λ

1/6
8

M, vΠ2 = − 1

4λ
1/3
8

M, (4.4)

which are aligned with the SM singlet inside the SU(5) 75. The non-renormalisable term
in WΠ comes from the diagram in Fig. 5.

Π2

Υ11Π1 Υ10Υ9 Υ12

Π2Π2

Π2

Figure 5: Diagram for non-renormalisable term in the 75 potential.

With Eq. 4.4, the MP mechanism proceeds through the superpotential:

WMP ∼ H5̄Ω1Π2 +H5Ω2Π1 + ξΩ1Ω2

+H4̄5Ω3Π2 +MH4̄5H45 +MΩ3Ω4

+H5̄H45Π2 +H5H4̄5Π1

(
ξ

M

)8

.

(4.5)
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The very high order non-renormalisable term at the end arises through the Σ messengers
already listed in Table 2 (half of which participate in the up quark Yukawa terms, as
discussed in Section 2.1 and illustrated in Fig. 1). Strictly speaking this term does not
participate in splitting the masses of SU(2) doublets and triplets, rather it is the source
of the µ term in our model, as shown below.

The terms in WMP generate mixing between the 45s and 5s of SU(5). The mass matrix
for the SU(2) triplets contained in the 45s and 5s is:

M3 = 3
T


0 vΠ2 vΠ2 0

vΠ1 ξ̃
8 M 0 vΠ2

vΠ1 0 〈ξ〉 0
0 0 0 M

3

3
T

=
(
3(H5̄) 3(H4̄5) 3(Ω2) 3(Ω4)

)
3T =

(
3(H5) 3(H45) 3(Ω1) 3(Ω3)

)
,

(4.6)

where once again ξ̃ = vξ/M . Taking 〈Π1,2〉 ∼M , the eigenvalues of this mass matrix are
all of order M (i.e. at the GUT scale), leading us to conclude there are no light SU(2)
triplets. Conversely, for the doublets we have the matrix:(

2(H5̄) 2(H45)
)( 0 vΠ2

vΠ1 ξ̃
8 M

)(
2(H5)
2(H45)

)
. (4.7)

It is clear that were it not for ξ̃8, the determinant of this mass matrix would vanish.
We may rotate to the basis of the MSSM Higgs doublets Hu,d and a pair of very heavy
doublets HH

u,d: (
2(H5̄)
2(H45)

)
≈ 1√

2

(
1 −1
1 1

)(
HH
d

Hd

)
(

2(H5)
2(H45)

)
≈
(
ξ̃8 1

−1 ξ̃8

)(
HH
u

Hu

)
.

(4.8)

The usual MSSM term µHdHu comes from this mechanism with:

µ ∼ vΠ1vΠ2

M
ξ̃8, (4.9)

where vΠ1 provides the necessary ZR4 breaking. Using the fit from Eq. 2.22 we see that
ξ̃8 ∼ 1.6 × 10−10MGUT. If we choose the couplings at the vertices of the tower that
generates the ξ8 term to be ∼ 0.5 we may get a term µ ∼ O(102− 103) GeV without any
fine-tuning.

4.3 Proton decay

A classic problem in GUT theories, and in particular those based on SU(5), is the pre-
diction of excessively fast proton decay. The most dangerous processes come from the
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“dimension 5” operators TTTF (for a discussion of dimension 6 operators we refer the
reader to [13]). The “dimension 5” operators are forbidden by the symmetries of the
model, but related higher order operators of the following form are allowed:

TiTjTkF
Zφ

M3

(
ξ

M

)nijk
, (4.10)

where the extra superfields shown are needed for such terms to be invariant under the
symmetries. Since we are working with the renormalisable theory, in order for this type
of effective term to be present at the GUT scale, there must be messengers allowing
them. In this case, an analysis of the SU(5) index structure revels there should either be
messengers that are SU(5) 10, or SU(5) 5 that are also charged under ZR4 . As one can
confirm from Table 2, our model has neither: 10 messengers were not used, and the 5
messengers are all neutral under ZR4 . We conclude therefore that our symmetry content,
together with the existing set of messengers, do not allow any such GUT scale suppressed
operators that would lead to excessively fast proton decay to be generated. The operators
in Eq. 4.10 may in principle be generated by physics at the Planck scale, with the scale
M replaced by the Planck mass, leading to highly suppressed proton decay.

4.4 Strong CP problem and the Nelson-Barr resolution

We first recall the strong CP problem, namely that the physical angle θ = θQCD − θq,
where θQCD multiplies the topological gluon term (g2

s/32π2)GG̃ and θq = arg det(Y uY d),
is limited to be θ < 10−10 by the non-observation of the neutron EDM [20,28]. The origin
of such a small number, θ < 10−10, is commonly called the strong CP problem. It is inter-
esting to compare this with the CP violation related to the weak interaction in the quark
sector; the relevant quantity is the Jarlskog invariant Jq ∼ det[Y uY u†, Y dY d†], which,
when compared to data, is required to be non-vanishing, and indeed in the standard
parameterisation, requires a large phase angle δq ∼ 1.

It turns out that our model resolves the strong CP problem without relying on the
introduction of axions. Unlike the axion solution, which requires a global U(1) symmetry
with a colour anomaly, we shall rely on the fact that the high energy theory conserves
CP, ensuring that θQCD = 0. CP is then spontaneously broken in such a way as to yield
δq ∼ 1 while maintaining θ < 10−10 and in particular θq < 10−10. How it achieves this
feat can be seen from Eq. 2.18 where Y u is real, while the structure of Y d in Eq. 2.19 gives
it a real determinant. This is due to the lack of a Yukawa term Y d

21, meaning the coupling
Y d

12 (which is the only complex Yukawa coupling) does not appear in the determinant of
Y d. Therefore there are no contributions to θq even after spontaneous CP breaking. This
is similar to the Nelson-Barr mechanism [29, 30], where the triangular form of Yukawa
matrices was proposed, although in our model θq vanishes due to the triangular form of
Y d only, with Y u being non-triangular and real.

For a successful resolution of the strong CP problem, we must ensure that no higher order
corrections to the Yukawa matrices arise which would violate the bound θq < 10−10. The
main focus is on the Yukawa coupling Y d

21 which is zero at leading order but which may
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in principle receive higher order corrections, violating the triangular structure. However
in our model such higher order corrections are absent at the field theory level with the
specified messenger sector. This entry in the Yukawa matrix would arise from the coupling
of the bilinears T2H5̄,45 to the bilinear φeF . Since these terms are non-renormalisable, we
require messengers to form them. The messengers that could produce such terms are the
Xi fields in Table 2. With these messengers, the only allowed connection to φeF is T1H5̄

(contributing to Y d
11), thus forbidding the Y d

21 term, even when allowing for all higher-
order corrections. Therefore the specified model has no strong CP violation arising from
Y d

21 since the required operators are not generated at the field theory level.

It is also important to consider the effect of higher order corrections arising from the
Planck scale, since such operators only have to respect the symmetries of the model, and
do not require the specified messenger sector to generate them. The biggest contribution
would come from the term11

T2H5̄

φe
MP

F. (4.11)

With a general choice of phase, such a term would lead to θq ∼ 10−4 which is far too big.
However the contribution to θq may be avoided by a judicious choice of GUT breaking
phases. As stated in section 2.4, the physical phase in the down quark Yukawa matrix
is ζ = ρξ − 2ρH24 − ρΛ24 . The new Planck suppressed term has a phase ζ ′ = −ρξ +
2ρΛ24 . Choosing a relation between phases 2ρH24 = ρΛ24 , then ζ = −ζ ′ and this way
the contribution to θq vanishes. This happens for one in three cases. The next biggest
contribution comes from a term

T2H4̄5

ξ2φe
M3

P

F, (4.12)

giving θq ∼ 10−14 which is several orders of magnitude below the current experimen-
tal bound. Any other Planck suppressed terms allowed by the symmetries are further
suppressed so we need not consider them. Therefore the model may resolve the strong
CP problem even in the presence of Planck scale operators controlled only by symmetry.
Finally, extra contributions may come from SUSY breaking terms. If we assume that
there is no extra CP violation in this sector, which is controlled by the spontaneously CP
violating flavons, the SUSY flavour problem is under control and such contributions to θ
are also expected to be negligible [31].

5 The leptogenesis link

The link between leptogenesis and the PMNS matrix was first studied for sequential
dominance in [32]. In the original form of CSD, the columns of the Dirac mass matrix
in the flavour basis were orthogonal to each other and consequently the CP asymmetries
for cosmological leptogenesis [33] vanished [34–37]. In this model, leptogenesis does not
vanish since the columns of the Dirac mass matrix in the flavour basis are not orthogonal.

11This term would also give a contribution to lepton angles of O(10−3) which is negligible.
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Interestingly, since the seesaw mechanism in this model with two right-handed neutrinos
only involves a single phase η = 2π/3, both the leptogenesis asymmetries and the neu-
trino oscillation phase must necessarily originate from this phase, providing a direct link
between the two CP violating phenomena in this model.

Following the arguments in [34], the produced baryon asymmetry YB from leptogenesis
in the seesaw model in Eq. 2.11 satisfies

YB ∝ ± sin η, (5.1)

where the “+” sign applies to the case Matm �Msol and the “−” sign holds for the case
Msol � Matm. Since the observed baryon asymmetry YB is positive, it follows that, for
Matm � Msol, we must have sin η to be positive, while for Msol � Matm we must have
sin η to be negative. We have seen that positive η is associated with negative δl and
vice versa. Although the global fits do not distinguish the sign of η, the present hint
that δl ∼ −π/2 would require positive η, then in order to achieve positive YB we require
Matm � Msol, which is natural in our model, corresponding to “light sequential domi-
nance”, where successful leptogenesis may be achieved in the two right-handed neutrino
model as discussed in [38].

6 Conclusion

We have presented here a fairly complete realisation of an SU(5) GUT flavoured with
A4, which leads to the MSSM plus two right-handed neutrinos below the GUT scale.
The A4 family symmetry unifies the three families of 5-plets F and its vacuum alignment
determines the Yukawa matrices. In addition a Z9 × Z6 symmetry provides the mass
hierarchy and controls spontaneous CP violation in both the quark and lepton sectors
while a ZR4 symmetry is broken to ZR2 , identified as the usual R-parity. Proton decay
is under control in this model, with the symmetries forbidding dangerous dimension-5
operators, and similar (but higher order) operators being very suppressed. The strong CP
problem is resolved in a similar way to the Nelson-Barr mechanism. The model is highly
predictive and satisfies many distinct (and non-trivial) phenomenological requirements.

Imposing CP at the high scale is an important feature of the model. If we do not impose
CP then all couplings become complex, leading to all VEVs having undetermined phases.
In particular the phase η, present in both neutrino mixing and leptogenesis, is no longer
restricted to a discrete choice. However the link between leptogenesis and low energy
phenomenology remains. On the other hand we would no longer solve the strong CP
problem.

We highlight the ubiquitous nature of the flavon field ξ across all the sectors of the model:
it triggers spontaneous CP violation in both the quark and lepton sectors, generates up-
type quark mass hierarchies and CKM mixing, explains the smallness of down quark
and electron masses and breaks lepton number, providing the hierarchy between solar
and atmospheric right-handed neutrino masses. In addition, the ξ field is responsible for
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generating the small (complex) µ term. The phase of the ξ field VEV also contributes
to the relative phase η appearing in the neutrino mass matrix. This phase, the only one
appearing in the neutrino mass matrix and in the formula for the baryon asymmetry of
the universe, provides a direct link between the PMNS phase δl and leptogenesis.

We emphasise that the entire PMNS matrix is predicted without any free parameters,
up to nine choices for η, where we select η = +2π/3, since it is preferred by comparing
CSD3 to data. The required vacuum alignments are provided from A4. The model
effectively serves to yield the CSD3 scheme (with two right-handed neutrinos) within a
fully working and viable SUSY GUT of flavour in which all quark and lepton masses and
mixings are successfully described. Indeed the model provides an excellent fit (better
than one sigma) to all quark and lepton (including neutrino) masses, mixing and CP
violation. All fermion mass hierarchies are understood in the sense that purportedly O(1)
couplings indeed contain no strong hierarchies. However the most immediate predictions
of the model are those of CSD3 with two right-handed neutrinos and η = +2π/3, namely
a normal neutrino mass hierarchy with m1 = 0, a reactor angle of θl13 ≈ 8.7◦, a solar
angle θl12 ≈ 34◦, close to maximal atmospheric mixing θl23 ≈ 46◦ and almost maximal
leptonic CP violation, with an oscillation phase δl ≈ −87◦ consistent with the current
hint δl ≈ −π/2.

The reason why the field content is so large is that the model is fairly complete. In
particular it is renormalisable at the GUT scale, which requires a large explicit field
content including many heavy messenger superfields. It also addresses many aspects
relevant both to a GUT and to family symmetry models (stopping short of discussing the
details of SUSY breaking and its string theory completion). In particular, the A4, SU(5)
and R-symmetry symmetry breaking sectors all require large field content. For example,
the GUT symmetry is broken by an explicit superpotential at the GUT scale, including
doublet-triplet splitting via a missing partner mechanism (leaving no light exotic degrees
of freedom at the low scale), Higgs mixing and the origin of the MSSM µ term of the
right order of magnitude.

Despite the many successes of the model, there are inevitably several important issues
that lie beyond the scope of this paper. To take one example, we do not discuss GUT scale
threshold corrections, which will be important in maintaining successful gauge coupling
unification in the presence of many fields, including colour triplets, at the GUT scale.
In fact all the additional superfields in non-trivial representations of the gauge group
may have masses at or above the GUT scale. Another important issue is that of the
low energy superpartner spectrum in this model. While we expect SUSY induced flavour
changing to be under control for the 5-plets, which are unified into an A4 triplet, this is
not the case for the 10-plets Ti which are singlets of A4, leading to flavour violation in
the super-CKM basis. It would be interesting to study this in the future.
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A A4 basis convention

In the basis we are using (see [17] for more details), one has the following Clebsch-Gordan
rules for the multiplication of two triplets, 3× 3 = 1 + 1′ + 1′′ + 31 + 32,

(ab)1 = a1b1 + a2b2 + a3b3

(ab)1′ = a1b1 + ωa2b2 + ω2a3b3

(ab)1′′ = a1b1 + ω2a2b2 + ωa3b3

(ab)31 = (a2b3, a3b1, a1b2)
(ab)32 = (a3b2, a1b3, a2b1)

(A.1)

where the components of the two triplets are given by a = (a1, a2, a3) and b = (b1, b2, b3),
and ω3 = 1.
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