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Abstract

Dark Matter (DM), arising from an Inert Higgs Doublet, may either be light, below the
W mass, or heavy, above about 525 GeV. While the light region may soon be excluded,
the heavy region is known to be very difficult to probe with either Direct Detection
(DD) experiments or the Large Hadron Collider (LHC). We show that adding a second
Inert Higgs Doublet helps to make the heavy DM region accessible to both DD and
the LHC, by either increasing its couplings to the observed Higgs boson, or lowering its
mass to 360 GeV . mDM , or both.
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1 Introduction

The long-awaited Higgs boson, with a mass of mh ≈ 125 GeV, was famously discovered in
2012 by the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) [1, 2].
Although its properties are in accordance with the predictions of the Standard Model (SM),
including Electro-Weak (EW) precision data, it remains an intruiging possibility that the
observed Higgs boson, denoted here as h, may just be one member of an extended Higgs
sector. A good motivation for the latter is the idea that it might provide a candidate for
Cold Dark Matter (CDM).

Although the nature of Dark Matter (DM) is not yet known, according to the Standard
Cosmological Lambda-CDM Model [3] it should be a particle which is stable on cosmological
time scales, cold, i.e., non-relativistic at the onset of galaxy formation, non-baryonic, neutral
and weakly interacting. Various candidates for such a state exist in the literature, the most
well-studied being the Weakly Interacting Massive Particles (WIMPs) [4, 5, 6], with masses
between a few GeV and a few TeV. Any such WIMP candidate must be cosmologically stable,
usually due to the conservation of a discrete symmetry, and must freeze-out (i.e., drop out
of thermal equilibrium) to yield the observed relic density [3]1:

ΩDMh
2 = 0.1199± 0.0027. (1)

It is clear that the SM Higgs sector cannot provide a WIMP candidate, since its Higgs
boson is unstable. However, it was suggested some time ago that the Higgs sector could be
extended by the addition of an extra doublet, which may not develop a Vacuum Expectation
Value (VEV), leaving a discrete Z2 symmetry unbroken [7]. Independently, it was later
shown that an extra scalar doublet with zero VEV, odd under a discrete Z2 symmetry, could
yield monojets at hadron colliders while being constrained by DM considerations (the first
time to our knowledge that any connection with hadron colliders or DM was made) [8].
This possibility, which became known as the Inert Doublet Model (IDM), has been studied
extensively for the last few years (see, e.g., [9, 10, 11]). Since the IDM involves 1 Inert
Doublet plus 1 active Higgs Doublet, we shall also refer to it henceforth as the I(1+1)HDM.

In the IDM, aka the I(1+1)HDM, one extra spin-zero SU(2)L doublet with the same
quantum numbers as the SM Higgs doublet is introduced. One of the possible vacuum states
in this model involves the first doublet acquiring a VEV, henceforth called the active doublet,
while the second doublet does not develop a VEV and is referred to as the inert doublet since
it does not take part in EW Symmetry Breaking (EWSB). Since this doublet does not couple
to fermions and it is by construction the only Z2-odd field in the model, it provides a stable
DM candidate, namely the lightest state among scalar and pseudo-scalar Z2-odd particles.

The I(1+1)HDM remains a viable model for a scalar DM candidate, being in agreement
with current experimental constraints. As of now, there are two regions of DM masses where

1Since the Planck 2015 results quotes various results for ΩDMh
2, depending on which spectra such as TT,

TE and EE are used, we prefer to use here the Planck 2013 result whose error encompasses all of them.
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one can expect viable solutions: a low DM mass region, 53 GeV . mDM . mW and a heavy
DM mass region, mDM & 525 GeV. The most recent experimental data, both from direct
detection experiments and from the LHC, has reduced the viable parameter space in the low
mass region [12, 13]. In the heavy mass region, however, where the sensitivity of DM direct
detection experiments decreases significantly with increasing DM mass, the DM candidate
may escape possible detection in this model.

In a recent paper [14] we studied DM in a model with 2 inert Higgs plus 1 active Higgs
doublet, which we referred to as the I(2+1)HDM. In particular we focused on the region of
parameter space of the I(2+1)HDM where the DM candidate, the lightest inert scalar, is in
the light mass region (mDM . mW ). We found that the extended scalar sector can relax
the exclusion limits from direct detection experiments, providing a viable DM candidate in
a region of parameter space which would be excluded in the I(1+1)HDM. In this paper we
study the heavy DM mass region of the I(2+1)HDM. We show that heavy Higgs DM in
this model becomes more readily observable as a result of either lowering the DM mass to
360 GeV . mDM , or increasing the DM-Higgs coupling, or both, while always maintaining
the DM relic density within the required region.

The layout of the remainder of this paper is as follows. In section 2 we review the
I(2+1)HDM and focus on a simplified version of the model based on a smaller number of
parameters. In section 3 we calculate the relic density in the I(2+1)HDM, discussing the
relevant DM annihilation scenarios, including the extended co-annhilating (pseudo-)scalar
sector. Section 4 will be focused on new features of the I(2+1)HDM with respect to the
I(1+1)HDM in the context of DM phenomenology, including enhanced DM-Higgs couplings
and the new mass region 360 GeV . mDM . 525 GeV as well as on discussing the resulting
improved prospects for direct detection. In section 5 we present heavy DM signals via Higgs
mediation at the LHC in the I(2+1)HDM which look more promising than in the I(1+1)HDM.
Finally in section 6 we conclude the paper.

2 The I(2+1)HDM

2.1 The scalar potential

It has been shown in [15] that an N-Higgs-Doublet Model potential symmetric under a group
G of phase rotations can be divided into two parts; a phase invariant part, V0, and a collection
of extra terms ensuring the symmetry group G, VG.

We construct our Z2-symmetric 3-Higgs Doublet Model potential generated by the group

g = diag (−1,−1, 1) . (2)
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which is of the following form2:

VI(2+1)HDM = V0 + VZ2 (3)

V0 = −µ2
1(φ
†
1φ1)− µ2

2(φ
†
2φ2)− µ2

3(φ
†
3φ3)

+λ11(φ
†
1φ1)

2 + λ22(φ
†
2φ2)

2 + λ33(φ
†
3φ3)

2

+λ12(φ
†
1φ1)(φ

†
2φ2) + λ23(φ

†
2φ2)(φ

†
3φ3) + λ31(φ

†
3φ3)(φ

†
1φ1)

+λ′12(φ
†
1φ2)(φ

†
2φ1) + λ′23(φ

†
2φ3)(φ

†
3φ2) + λ′31(φ

†
3φ1)(φ

†
1φ3).

VZ2 = −µ2
12(φ

†
1φ2) + λ1(φ

†
1φ2)

2 + λ2(φ
†
2φ3)

2 + λ3(φ
†
3φ1)

2 + h.c.

We shall not consider CP-violation in this paper, therefore, we require all parameters of
the potential to be real.

The doublets are defined as

φ1 =

(
φ+1

H0
1+iA

0
1√

2

)
, φ2 =

(
φ+2

H0
2+iA

0
2√

2

)
, φ3 =

(
G+

v+h+iG0
√
2

)
, (4)

where φ1 and φ2 are the two inert doublets and φ3 is the one active doublet which plays the
role of the SM Higgs doublet, with h being the SM-Higgs boson and G±, G0 are the would-be
Goldstone bosons.

We assign Z2 charges to each doublet according to the Z2 generator in Eq.(2): odd-Z2

charge to the inert doublets, φ1 and φ2, and even-Z2 charge to the active doublet, φ3. It
is clear that the symmetry of the potential is respected by the vacuum alignment (0, 0, v√

2
).

The neutral fields from the inert doublets could then in principle be DM candidates. These
neutral fields are stabilised from decaying into SM particles as a result of the conserved Z2

symmetry of the potential after EWSB.
To make sure that the entire Lagrangian and not only the scalar potential is Z2 sym-

metric, we assign an even Z2 parity to all SM particles, identical to the Z2 parity of the
only doublet that couples to them, i.e., the active doublet φ3. With this parity assignment
Flavour Changing Neutral Currents (FCNCs) are avoided as the extra doublets are forbidden
to couple to fermions by Z2 conservation.

The Yukawa Lagrangian of the model is identical to the SM Yukawa Lagrangian, with φ3

playing the role of the SM Higgs doublet:

LY ukawa = Γumnq̄m,Lφ̃3un,R + Γdmnq̄m,Lφ3dn,R

+Γemnl̄m,Lφ3en,R + Γνmnl̄m,Lφ̃3νn,R + h.c. (5)

2Note that adding extra Z2-respecting terms such as (φ†3φ1)(φ†2φ3), (φ†1φ2)(φ†3φ3), (φ†1φ2)(φ†1φ1) and/or

(φ†1φ2)(φ†2φ2) does not change the phenomenology of the model. The coefficients of these terms, therefore,
have been set to zero for simplicity.
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2.2 Mass eigenstates

The minimum of the potential sits at the point (0, 0, v√
2
) with v2 =

µ23
λ33
.

The mass spectrum of the scalar particles are as follows.

• The fields from the active doublet
The fields from the third doublet, G0, G±, h, which play the role of the SM Higgs
doublet fields have squared masses:

m2
G0 = m2

G± = 0

m2
h = 2µ2

3 (6)

• The CP-even neutral inert fields
The pair of inert neutral scalar gauge eigenstates, H0

1 , H
0
2 , which are rotated by

Rθh =

(
cos θh sin θh
− sin θh cos θh

)
, with tan 2θh =

2µ2
12

µ2
1 − Λφ1 − µ2

2 + Λφ2

into the mass eigenstates, H1, H2, have squared masses:

m2
H1

= (−µ2
1 + Λφ1) cos2 θh + (−µ2

2 + Λφ2) sin2 θh − 2µ2
12 sin θh cos θh

m2
H2

= (−µ2
1 + Λφ1) sin2 θh + (−µ2

2 + Λφ2) cos2 θh + 2µ2
12 sin θh cos θh

where Λφ1 =
1

2
(λ31 + λ′31 + 2λ3)v

2, Λφ2 =
1

2
(λ23 + λ′23 + 2λ2)v

2 (7)

• The charged inert fields
The pair of inert charged gauge eigenstates, φ±1 , φ

±
2 , which are rotated by

Rθc =

(
cos θc sin θc
− sin θc cos θc

)
, with tan 2θc =

2µ2
12

µ2
1 − Λ′φ1 − µ

2
2 + Λ′φ2

into the mass eigenstates, H±1 , H
±
2 , have squared masses:

m2
H±

1
= (−µ2

1 + Λ′φ1) cos2 θc + (−µ2
2 + Λ′φ2) sin2 θc − 2µ2

12 sin θc cos θc

m2
H±

2
= (−µ2

1 + Λ′φ1) sin2 θc + (−µ2
2 + Λ′φ2) cos2 θc + 2µ2

12 sin θc cos θc

where Λ′φ1 =
1

2
(λ31)v

2, Λ′φ2 =
1

2
(λ23)v

2 (8)

• The CP-odd neutral inert fields
The pair of inert pseudo-scalar gauge eigenstates, A0

1, A
0
2, which are rotated by

Rθa =

(
cos θa sin θa
− sin θa cos θa

)
, with tan 2θa =

2µ2
12

µ2
1 − Λ′′φ1 − µ

2
2 + Λ′′φ2
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into the mass eigenstates, A1, A2, have squared masses:

m2
A1

= (−µ2
1 + Λ′′φ1) cos2 θa + (−µ2

2 + Λ′′φ2) sin2 θa − 2µ2
12 sin θa cos θa

m2
A2

= (−µ2
1 + Λ′′φ1) sin2 θa + (−µ2

2 + Λ′′φ2) cos2 θa + 2µ2
12 sin θa cos θa

where Λ′′φ1 =
1

2
(λ31 + λ′31 − 2λ3)v

2, Λ′′φ2 =
1

2
(λ23 + λ′23 − 2λ2)v

2 (9)

We will refer to (H1, A1, H
±
1 ) as the fields from the first generation and to (H2, A2, H

±
2 )

as the fields from the second generation. Each of the four neutral particles could, in prin-
ciple, be the DM candidate, provided it is lighter than the other neutral states. In what
follows, without loss of generality, we assume the CP-even3 neutral particle H1 from the first
generation to be lighter than all other inert particles, that is:

mH1 < mH2 ,mA1,2 ,mH±
1,2
. (10)

(Note that this choice is arbitrary: if the CP-even particle from the second generation, H2,
where to be assumed lighter than the other inert states, then H2 will play the role of the DM
candidate.)

Assuming the CP-even neutral inert particles are lighter than the CP-odd and charged
inert particles puts the following constraints on the parameters:

2λ2, 2λ3 < λ′23, λ
′
31 < 0. (11)

In our DM analysis, we consider cases where the mass alignment is changed, but where H1 is
always the lightest inert state and hence is the DM particle. In the remainder of the paper
the notations H1 and DM particle will be used interchangeably.

2.3 Simplified couplings in the I(2+1)HDM

Due to the large number of free parameters in the I(2+1)HDM which makes it impractical to
analyse the model in the general case, we focus on a simplified case where parameters related
to the first inert doublet are k times the parameters related to the second doublet

µ2
1 = kµ2

2, λ3 = kλ2, λ31 = kλ23, λ′31 = kλ′23, (12)

resulting in
Λφ1 = kΛφ2 , Λ′φ1 = kΛ′φ2 , Λ′′φ1 = kΛ′′φ2 , (13)

without introducing any new symmetry to the potential. The motivation for this simplified
scenario is that in the k = 0 limit the model reduces to the well-known I(1+1)HDM. We

3For the CP-even particle to be the DM candidate rather than the CP-odd particle, it is required that
mH1

< mA1
, which leads to λ2, λ3 < 0. If instead A1 is assumed to be the DM candidate, λ2, λ3 > 0. Hence,

the results of our analysis are also applicable to the A1 DM case by changing the sign of λ2 and λ3.
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assume no specific relation among the other parameters of the potential. It is important
to note that the remaining quartic parameters do not influencethe discussed DM and LHC
phenomenology of the model and thus their values have been fixed in agreement with the
theoretical constraints discussed in the original paper [14] and compliant with the results on
unitarity obtained in [16].

The k = 1 case

In this paper we focus on the k = 1 case in the heavy DM mass region4. The mass spectrum
in this case is simplified to:

m2
H1

= −µ2
2 + Λφ2 − µ2

12, m2
H2

= m2
H1

+ 2µ2
12, (14)

m2
H±

1
= −µ2

2 + Λ′φ2 − µ
2
12, m2

H±
2

= m2
H±

1
+ 2µ2

12,

m2
A1

= −µ2
2 + Λ′′φ2 − µ

2
12, m2

A2
= m2

A1
+ 2µ2

12.

The quartic couplings in the potential can be written in terms of the masses of the physical
particles as:

λ′23 =
1

v2
(m2

H1
+m2

A1
− 2m2

H±
1

),

λ2 =
1

2v2
(m2

H1
−m2

A1
), (15)

λ23 = gH1H1h −
2

v2
(m2

H1
−m2

H±
1

),

where gH1H1h = λ23 +λ′23 + 2λ2 is the Higgs-DM coupling. The Feynman rules for this model
are presented in Appendix A.

3 Calculating the relic density in the I(2+1)HDM

The relic density of the WIMP (identified in our model as the lightest inert scalar H1) is
calculated with the assumption that the WIMP was in thermal equilibrium with the SM
particles after inflation. Once the rate of

DM DM↔ SM SM

reactions becomes smaller than the Hubble expansion rate of the Universe, the WIMP freezes
out, i.e., drops out of the thermal equilibrium. After freeze-out the co-moving WIMP density
remains essentially constant with the current value estimated by the Planck experiment to
be the one already given in Eq. (1).

4Other scenarios with k 6= 1 are studied in [14].
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As mentioned, in the I(2+1)HDM one of the neutral inert (pseudo-)scalar particles play
the role of the DM. The relic density of a (pseudo-) scalar DM candidate, S, after freeze-out
is given by the solution to the Boltzmann equation:

dnS
dt

= −3HnS − 〈σeffv〉(n2
S − n

eq 2
S ), S = H1, H2, A1, A2, (16)

where the thermally averaged effective (co)annihilation cross-section contains all relevant
scattering processes of any SiSj pair into SM particles:

〈σeffv〉 =
∑
ij

〈σijvij〉
neqi
neqS

neqj
neqS

, (17)

where
neqi
neqS
∼ exp(−mi −mS

T
). (18)

Therefore, only processes in which the mass splitting between a state Si and the lightest Z2-
odd particle S (H1 in our case) are comparable to the thermal bath temperature T provide
a sizeable contribution to this sum.

In the I(2+1)HDM, the presence of additional inert particles has important consequences
in the heavy mass regime. For lighter masses the most important channel for the annihilation
of DM particles is the Higgs-mediated process

H1H1 → ff̄

(see Fig. 12a), as studied in [14]. However, coannhilation with H2, A1 and A2 may change
the results significantly (see Fig. 12b).

For heavier masses the diagrams including one or two virtual gauge bosons, shown in Fig.
13 also contribute to the total annihilation cross-section. Finally, co-annihilation plays an
important role in scenarios with multiple particles which are close in mass. This scenario
is realised in the I(2+1)HDM for the heavy DM mass region. Particles up to 20% heavier
than the DM candidate may influence the DM relic density. Therefore, the co-annihilation
diagrams should be included in calculating the effective annihilation cross-section. These dia-
grams are presented in Figs. 14 and 15 – representing pure gauge channels and coannhilation
channels involving the SM-like Higgs particle, respectively.

3.1 Relevant co-annihilation scenarios

In the I(2+1)HDM, the strength and importance of coannhilation processes depend on the
mass splittings between the inert particles. We define δA and δC as the splitting between H1

and the pseudoscalar and charged state from the first generation, respectively,

δA = mA1 −mH1 , δC = mH±
1
−mH1 . (19)
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δA,C are related to the quartic couplings in the potential, which are constrained by the
perturbativity (and unitarity) conditions, i.e., the λi’s cannot be too large. As a result of
this, all particles within one generation will have a similar mass. These masses, however,
could have high values because of the (almost) unconstrained quadratic parameters µ2

2 and
µ2
12:

m2
H1

= −µ2
2 − µ2

12 +
v2

2
gH1H1h. (20)

It is important to stress that, even if bounds on λi were relaxed leading to larger values
of δA,C , there exist very stringent limits from relic density analysis. Coannihilation must
occur at least between H1, A1 and H± to achieve DM relic density in agreement with the
current experimental measurements. This is a pattern followed by all general heavy scalar
DM models. In the absence of these co-annihilation channels, the maximum relic density
that can be achieved through H1H1 → SM SM (even when HiHj → SM SM is allowed) is
of order 10−3 which is well below the observed value.

The other important mass splitting, ∆, is defined as the mass difference between H1 and
the other CP-even state H2 (“splitting between doublets”):

∆ = mH2 −mH1 (21)

∆ is related to the quadratic parameter µ2
12 through

µ2
12 =

1

2
(m2

H2
−m2

H1
) =

1

2

(
∆2 + 2mH1∆

)
. (22)

Note that µ2
12 is not limited by any theoretical constraints – similar to µ2

2 – and therefore
∆ can in principle be very large. So, unless ∆ is forced to be small by limits put on µ2

12, one
should also consider a case where the second doublet is decoupled from the first, leading to
a scenario which was not listed in [14]. Therefore, in the very heavy mass region one can
consider:

• Case G: with small δA, δC ,∆, where all inert particles are close in mass and co-
annihilate with each other.

• Case H: with small δA, δC and large ∆, where the second generation is effectively
decoupled from the first generation and does not influence relic density calculations. In
this case, the relevant diagrams are the (co)annihilation channels between fields from
the lighter generation only, H1, A1, H

±
1 .

Tab. 1 summarises the two possible scenarios for relic density studies.
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Small δA, δC Large δA, δC

Small ∆ Case G is realised

Coannhilation between H1, H2 is not efficient
enough and DM density is below experimen-
tal bounds.

Large ∆ Case H is realised

There are no co-annihilatin channels open
and gauge annihlation reduces DM relic
density effectively below the experimental
bounds.

Table 1: Valid regions of the parameter space schematically shown in terms of δA, δC and ∆
in the heavy mass regime of I(2+1)HDM.

3.2 The gauge limit

To illustrate the difference between cases G and H, let us first consider the gauge limit in
both scenarios, which is the limit where all quartic couplings λi are set to zero. Therefore,
all scalar self-couplings, including the DM-Higgs coupling, are removed in this limit. As a
result δA,C = 0, leading to degenerate H1, A1, H

±
1 states. Note that this limit is excluded

by results of direct detection experiments, nevertheless, it is an interesting limit to study as
it represents the main difference between cases G and H. In this limit H1 annihilates solely
through the gauge annihilation channels presented in Fig. 14.

Non-zero λi will lift this degeneracy and, at the same time, reduce the effective annihila-
tion cross-section for a given mass. Therefore, the gauge limit corresponds to the minimum
value of mH1 , for which it is possible to obtain a proper relic density for any value of the
Higgs-DM coupling.

These results are presented in Fig. 1 for the two scenarios: case G where all particles
have degenerate mass (in the δA,C ,∆ → 0 ⇔ λi → 0, µ2

12 → 0 limit) and case H with large
∆ where the second generation is decoupled from the first generation and all particles in the
first generation are degenerate in mass (in the δA,C → 0⇔ λi → 0 limit).

It is clear that, for a given mass of mH1 the destructive interference between an increased
number of coannhilation diagrams in case G leads to a reduced cross-section, i.e. larger DM
relic density with respect to case H. The important consequence of this interference is that
for case G it is possible to obtain proper relic density for smaller masses of DM candidate in
comparison to case H. Note also that case H behaves like the I(1+1)HDM (the Inert Doublet
Model) in this limit. This similarity in behaviour will be repeated as we will show in the
following sections.
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h
2

mH1
 [GeV]

Gauge limit for the I(2+1)HDM

G: Δ → 0 GeV 
H: Δ → 100 GeV 

Planck-3σ
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Figure 1: The gauge limit in case G (blue curve) where all particles have degenerate mass
(in the δA,C ,∆ → 0) and case H (red curve) with large ∆ where the second generation is
decoupled from the first generation and all particles in the first generation are degenerate in
mass (in the δA,C → 0 limit).

3.3 The benchmark points

With non-zero scalar couplings and mass splitting more diagrams contribute to the co-
annihilation of DM – all diagrams shown in Figs. 14 and 15 contribute to the total an-
nihilation cross-section. Here we present two benchmarks points, two sets of parameters, for
which we have studied the DM relic density:

• For case G with δA = δC = 1 GeV and ∆ = 1 GeV
Here all inert particles have similar masses and therefore can co-annihilate with each
other. The degeneracy between charged and “pseudo-scalar” particles is allowed and
doesn’t lead to any unacceptable results. The important degeneracy which must be
avoided is H1-A1 degeneracy leading to the scattering through the Z boson which is
tightly constrained by direct detection experiments and puts a lower limit on δA.

• For case H with δA = δC = 1 GeV and ∆ = 100 GeV
Here the second generation of inert scalars is significantly heavier than the first one.
Within each generation, however, particles are almost degenerate.

Note that there are certain differences between cases G and H. In case H, the heavier
generation of inert particles is decoupled from the first generation particles and does not
influence the relic density calculations. The model in this case resembles the I(1+1)HDM.
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Furthermore, in case G the Higgs-DM couplings which result in a relic density in agreement
with experiment are larger in comparison to case H for the same DM mass. This difference
is explicit in Fig. 2.

-0.4 -0.2 0.0 0.2 0.4
gH1 H1 h

0.10

0.15

0.20

0.25
ΩDMh

2

Case G

Case H

Planck+3σ

Planck-3σ

Figure 2: Relic density plots in case G (∆ = 1 GeV, blue line) and H (∆ = 100 GeV, red
line) for mH1 = 550 GeV. The dashed horizontal lines show the 3σ relic density limits from
Planck in Eq. (1).

This leads to the fact that for case G we can obtain viable relic density values for mDM

much smaller than in case H (or the I(1+1)HDM) in which the minimal value of mDM

resulting in DM relic density in agreement with Planck limits is mH1 ≈ 525 − 535 GeV. In
case G (with ∆ = 1 GeV), however, the DM mass can be as low as ∼ 375 GeV. This result
is shown in Fig. 3 which represents relic density plots for cases G (left) and H (right). Note
that in case G the minimum mH1 which touches the lowest acceptable relic density limit (the
green solid line) is 375 GeV (for a given ∆ of 1 GeV), whereas in case H this minimum value
is 525 GeV (the solid red line).

Fig. 4 is meant to represent the same benchmark points as in Fig. 3, in the mH1-gH1H1h

plane. The bands correspond to proper relic density in agreement with Planck measurements
in case G (for an exemplary ∆ = 1 GeV, δ = 1 GeV) in red and case H (for an exemplary
∆ = 100 GeV, δ = 1 GeV) in red. Note that, for the a given DM mass (and same δ), the
Higgs-DM coupling in case G is much larger than in case H.

4 DM in the I(2+1)HDM: direct detection

4.1 Changes in ∆, δA, δC

For the two viable scenarios G and H we allow the physical parameters to vary in the following
regions:

100 keV . δA, δC . 15 GeV. (23)
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Figure 3: Relic density plots for case G (left) with ∆ = 1 GeV, δ = 1 GeV and case H (right)
with ∆ = 100 GeV, δ = 1 GeV. Note the solid red line in the case H which represents the
minimum DM mass mH1 = 525 GeV which just touching the lower relic density limit. The
relic density plot for the same DM mass has been highlighted in case G (red solid line) which
is well within the acceptable relic density limits. The dashed horizontal lines show the 3σ
relic density limits from Planck in Eq. (1).
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Figure 4: Relic density bands in agreement with Planck measurements in case G (for an
exemplary ∆ = 1 GeV, δ = 1 GeV) in red and case H (for an exemplary ∆ = 100 GeV, δ = 1
GeV) in red. Note that for the a given DM mass, the Higgs-DM coupling in case G is much
larger than in case H.

Since δA and δC are related to the quartic parameters λi’s, they are constrained from
unitarity bounds and are required to be small. However, regardless of any limits on λi from
unitarity, relic density studies show that both δA and δC must be relatively small to allow
for co-annihilation between particles which is crucial in the heavy DM mass region. The
upper limit follows the following rough rule: co-annihilation effects take place when the mass
difference between co-annihilating particles is of the order of 20% of their mass.

The lower bound on δA comes from direct detection experiments where a degeneracy
between H1 and A1 leads to the scattering through the Z boson which is tightly constrained.
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Further, the above limits in Eq. (23) are in agreement with LEP searches for exotic particles.
Finally, below δA,C ∼ 0.1 GeV there is no visible difference in the results.

As mentioned before, a large difference between δA and δC violates relic density limits.
In the cases we study below, we have set δA = δC = δ for simplicity5. The mass splitting
between the two generations, ∆, is proportional to and therefore unconstrained by unitarity.
The maximum value for ∆ is proportional to the arbitrary maximum value chosen for µ2

12.
In general, we allow for ∆ to vary in the following region

100 keV . ∆ . 200 GeV. (24)

For large ∆ values, ∆ & 20− 50 GeV (depending on mH1 , since the story-changing mass
splitting is roughly 20%mH1), co-annihilation effects between the two generations are not
strong enough to compete with the standard (co)annhilation between H1, A1, H

±
1 , in which

case the I(2+1)HDM acts just like the I(1+1)HDM. The second generation is effectively
decoupled from the first generation and does not influence DM phenomenology. Therefore,
scenario H is realised for:

∆ & 20 GeV ⇒ scenario H (25)

The exact value of ∆, when above ∼ 20 − 50 GeV does not make any significant difference
in the relic density calculations.

For small values of ∆, the co-annihilation effects between all particles are important. The
smaller ∆ is, the more relevant particles from the second generation are for DM studies:
for ∆ ≈ 1.5 GeV the relative contribution to relic density calculation coming from particles
from the lighter generation to the heavier generation is 70%-30%. For ∆ ≈ 0.0001 GeV this
relation is 50%-50%. The case G, is therefore realised when ∆ varies in the following window

0.0001 GeV . ∆ . 20 GeV ⇒ scenario G (26)

The closer ∆ gets to this upper limit, the weaker the coannnihilation effects and the more
scenario H is realised. Finally, notice that, for our studies, the Higgs-DM coupling, ghH1H1 ,
is kept within the |ghH1H1| < 1 range.

Fig. 5 illustrates the effect of changing ∆ on the relic density. In all four plots mDM

has been set to 400 GeV as the value of ∆ changes, 0.1 GeV in the top left plot, 1 GeV
in the top right plot, 5 GeV in the bottom left plot and 10 GeV in the bottom right plot.
In each plot different colours represent different δs. For small values of ∆ (0.1 GeV), the
H1-H2 co-annihilation leads to viable relic density values even for large δ (i.e. the H1, A1, H

±

co-annihilation is absent). For large values of ∆ (10 GeV) H1-H2 co-annihilation does not
exist and even small values of δ cannot compensate this lack, thus, the relic density is below
the acceptable limit.

In Fig. 6 the value of δ is set to 0.5 GeV for mDM = 400 GeV in the left plot and
mDM = 550 GeV in the right plot. In each plot, different colours correspond to changing ∆s.

5Cases with δA 6= δC do not lead to any new phenomenology and in fact the region of validity for gH1H1h

decreases as we increase the difference between δA and δC .
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Figure 5: The effect of changing ∆ on the relic density. In all four plots mDM has been set to
400 GeV as the value of ∆ changes, 0.1 GeV in the top left plot, 1 GeV in the top right plot,
5 GeV in the bottom left plot and 10 GeV in the bottom right plot. In each plot different
colours represent different δs. For small values of ∆ (0.1 GeV), the H1-H2 co-annihilation
leads to viable relic density values even for large δ (i.e. the H1, A1, H

± co-annihilation is
absent). For large values of ∆ (10 GeV) H1-H2 co-annihilation does not exist and even small
values of δ cannot compensate this lack, thus, the relic density is below the acceptable limit.

Note that in the left plot only small values of ∆ lead to viable relic density values, which is
where case G is realised. In the right plot, small values of ∆ correspond to case G and large
values of ∆ correspond to case H, and they all lead to acceptable relic density values. Note
that for ∆ & 50 GeV all curves correspond to the same value.

4.2 Changes in mDM

Here we describe several sub-regimes where the DM mass can vary with important charac-
teristics.

• In the region
mDM . 360 GeV (27)

neither scenario H nor G results in viable relic density values6. This lower limit can be
reached in case G by very specific points in the parameter space: (a) when the mass

6In extensions of the I(2+1)HDM with more inert doublets, this mDM limit could be lowered as more
co-annihilation channels are present due to the extended number of inert particles.
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Figure 6: Relic density plot for δ = 0.5 GeV for mDM = 400 GeV in the left plot and
mDM = 550 GeV in the right plot. In each plot, different colours correspond to changing ∆s.
Note that in the left plot only small values of ∆ lead to viable relic density values, which is
where case G is realised. In the right plot, small values of ∆ correspond to case G and large
values of ∆ correspond to case H, and they all lead to acceptable relic density values. Note
that for ∆ & 50 GeV all curves correspond to the same value.

splitting between all particles is tiny and all particles are almost degenerate in mass
(up to O(100 keV) mass splitting to avoid direct detection limits), (b) when ghH1H1 is
close to 0.

• In the region
360 GeV . mDM . 525 GeV (28)

only scenario G leads to acceptable values of DM relic density for specific values of ∆
in the 0.0001 GeV . ∆ . 20 GeV and |gH1H1h| . 0.3 window. As a rule of thumb,
smaller ∆ allows for a wider viable region in the parameter space and the larger mH1

is the larger |ghH1H1| must be.

• In the region
535 GeV . mDM . 1.5− 2 TeV (29)

both scenarios, G and H, lead to viable values of DM relic density. The appropriate
value of gH1H1h coupling depends on the DM mass in each case. In scenario G, couplings
are generally larger compared to scenario H and a larger DM mass requires larger values
of the gH1H1h coupling.

Fig. 7 is meant to summarise all that was said above in one plot with Gi and Hi repre-
senting certain points in the parameter space corresponding to cases G and H, respectively.
The shaded region is where the I(2+1)HDM has acceptable relic density results. To the left
of the vertical dashed line case G is realised and to the right of it both cases G and H are
realised. Generally the outermost parts of the shaded region are populated by Gi since they
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correspond to larger Higgs-DM couplings whereas the innermost parts of the region corre-
spond to case H. However, depending on the values of δ the Higgs-DM coupling changes and
Gi points can appear close to the ghH1H1 = 0 line as well, which is apparent in comparing
the points G5, H1 and G6. Other points are shown on the plot for different values of ∆ and
δ for comparison.
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Figure 7: Here Gi and Hi represent certain points in the parameter space corresponding to
cases G and H, respectively. The shaded region is where the I(2+1)HDM has acceptable
relic density results. To the left of the vertical dashed line case G is realised and to the right
of it both cases G and H are realised. Generally the outermost parts of the shaded region
are populated by Gi since they correspond to larger Higgs-DM couplings, and the innermost
parts of the region correspond to case H. However, depending on the values of δ the Higgs-
DM coupling changes and Gi points can appear close to the ghH1H1 = 0 line as well, which
is apparent in comparing the points G5, H1 and G6. Other points are shown on the plot for
different values of ∆ and δ for comparison.

4.3 Direct detection

Direct detection experiments, which are mostly designed to hunt for the standard EW-scale
WIMP, are the most sensitive to DM masses of the order of 100 GeV. For heavier DM masses
the sensitivity of these experiments drops significantly. The most recent LUX results set the
limit of the DM-nucleon scattering cross-section to be σDM−N ≈ 10−8 pb for DM masses
≈ 500− 1000 GeV [17].

In the I(2+1)HDM, similar to the other scalar DM models, DM candidate can be detected
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through elastic scattering on nuclei through the exchange of a Higgs particle. Therefore,
σDM−N will depend on the value of DM-Higgs coupling, and the DM mass.

These results are presented in Fig. 8 where the shaded region corresponds to the probed
phase space of the I(2+1)HDM for various choices of ∆ and δ (as shown in Fig. 7), all
of which have relic density in agreement with Planck measurements. Also, results for the
benchmark points studied in section 3 are presented explicitly. We found that the current
experimental limits do not constrain the heavy DM mass region, neither for case H nor for
case G, even though the Higgs-DM coupling is larger in the latter case.

Recall that for certain choices of ∆ and δ one can obtain proper DM relic density for
gH1H1h ≈ 0. This leads to a strongly suppressed scattering cross-section, which may not be
detected as it lies within the coherent neutrino-nucleus scattering regime [18].

Fig. 8 also shows a limit from the future XENON1T experiment [19], with a proposed
sensitivity of the order of 10−9−10−10 pb (dashed black line). We expect the next generation
of DM detectors, such as XENON1T, to be able to test a large portion of the parameter
space of the heavy DM in the I(2+1)HDM for mH1 . 1 TeV.
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XENON 1T

ν background

case G
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Figure 8: The DM-nucleon scattering cross-section for the I(2+1)HDM in comparison with
the direct detection limits set by LUX (black line) and projected XENON 1T (black dashed
line). Coherent neutrino scattering limit is also shown (dashed blue line). The shaded region
corresponds to points with relic density in agreement with Planck measurements; results for
benchmark points for case G (∆ = 1 GeV, δ = 1 GeV, blue) and case H (∆ = 100 GeV, δ =
1 GeV) are presented.

As a final note to this subsection, we should like to mention that a viable intermediate
DM mass region, mW . mDM . 160 GeV, regarding relic density studies, has been found
in the I(1+1)HDM. The correct relic density in this region is obtained due to cancellations
between different diagrams contributing to DM annihilation into gauge bosons (W+W− and
ZZ). In [20] it was shown that this scenario is realised if the inert particles, in particular the
charged scalar, are heavy enough, ∼ 300 − 500 GeV. A relatively large DM-Higgs coupling
is also required for the DM in this mass region to stay within relic density limits, however,
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this large Higgs-DM coupling is excluded by LUX. Similarly, we did not find any solutions
in the medium mass region with viable relic density and in agreement with direct detection
experiments in the I(2+1)HDM.

5 Heavy Higgs DM at the LHC in the I(2+1)HDM

A scalar DM candidate is a stable particle with limited interactions with all SM particles and
therefore it cannot be directly detected at the LHC. However, its presence can influence the
detectable properties of SM particles. One way to ascertain the influence of DM candidate
on the properties of a Higgs particle is to look at the Higgs invisible decays, h → SS,
where S is a scalar DM candidate with mass below mh/2. Invisible decays of the SM-like
Higgs particle in the I(2+1)HDM were studied in [14, 21], where limits for the mass of a
light DM candidate combined with Planck limits for the relic density measurements provided
constraints comparable or stronger than those from direct detection experiments.

Another strategy, useful for a heavy DM particle, is to look for a high pT monojet or a two
jet/two lepton signal, accompanied by a large missing transverse energy ��ET . The monojet
signature in the I(2+1)HDM, pp → H1H1 + jet, corresponds to h coupling to an invisible
pair of DM particles (yielding the large ��ET ) with produced in association with an energetic
quark or gluon jet. The following processes are considered in our analysis.

1. gg → gH1H1 (Fig. 16) via a triple gluon and a hgg effective vertex. Note, that the hgg
effective vertex in the I(2+1)HDM is the same as in the SM, as the Higgs production
here is not modified by presence of additional scalar states. This is the dominant
contribution to the monojet process, as the gluon fusion is an enhanced production
mechanism for the Higgs particle.

2. qq̄ → gH1H1 (Fig. 17), where q = u, d, c, s, b. The dominant contribution comes from
the s-channel via the gqq̄ tree-level vertex and the hgg effective coupling (Fig. 17a).

3. qg → qH1H1 (Fig. 18), where q = u, d, c, s, b. The dominant contributions here come
from gb→ H1H1b with the Higgs boson radiated off of the b quark legs (Fig. 18a) and
qg → qH1H1 t-channel via a gqq̄ tree-level vertex and the hgg effective coupling (Fig.
18b).

Note, that all above processes contain the h→ H1H1 vertex, therefore a strong dependency
on the gH1H1h coupling is expected, i.e., a significant difference between scenarios G and H,
as discussed in the previous section.

For the studies of pp→ H1H1 + 2jets we have considered the Vector Boson Fusion (VBF)
process of the form qiqj → H1H1qkql, with q = u, d where a pair of DM particles (with large

��ET ) is produced by the neutral (Fig. 19) or charged (Fig. 20) VBF processes, either directly
or mediated by the Higgs particle or another neutral scalar.
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We have also considered the Higgs-Strahlung (HS) processes of the form qiq̄j → V ∗H1H1

where a pair of DM particles is radiated off the Z or W± boson leg (Fig. 21 and Fig. 22,
respectively), either directly or mediated by the Higgs particle or another neutral scalar.

Notice, that in the dijet searches only one diagram out of each set depends on the gH1H1h,
therefore we expect smaller differences between scenarios H and G than in the monojet
searches. The strength of the other diagrams is set by the gauge interactions.

Also, it is important to stress that, given our initial choice of parameters, i.e. introducing
the k = 1 relation between the doublets (see Eq.(12)), we have limited the number of possible
diagrams, because vertices of the type ZHiAj and W±HiH

∓
j (i 6= j) are absent when k = 1.

Relaxing this initial assumption would in principle not only influence the evolution of DM
relic density, but could also lead to a possibly stronger difference between scenarios G and H
in the dijet analysis.

In the following subsections we present results for the monojet and dijet analysis, for the
14 TeV LHC. The following selections were used.

1. For the monojet searches, we require the following cuts on the transverse momentum
of the jet, pjT , and the pseudo-rapidity of the jet, ηj,

pjT > 20 GeV and |ηj| > 2.5 (30)

2. For the dijet searches, we require the following cuts on the invariant mass of the two jets,
M(j, j), and the difference between the pseudo-rapidity of the forward and backward
jet,

M(j, j) > 700 GeV and |ηjf − η
j
b | > 4 (31)

Calculations were done with the aid of LanHEP [22] and CalcHEP [23] packages.

5.1 Monojet results

In Fig. 9 results for monojet signals of scenarios G (δA = δC = 1 GeV,∆ = 1 GeV) and H
(δA = δC = 1 GeV,∆ = 100 GeV) are shown. For comparison, we also present results for the
I(1+1)HDM, with δA = δC = 1 from [12]. The DM-Higgs coupling (defined as λ345 in [12])
is the same as gH1H1h in scenario H for equal DM masses, therefore the monojet diagrams in
case H and in I(1+1)HDM are identical.

Scenario G, which corresponds to much larger Higgs-DM couplings compared to that of
scenario H or the I(1+1)HDM, results in a significantly larger cross-section in the monojet
process. Also the special features of the model are more visible in this process. For masses up
to mH1 ≈ 450 GeV we observe a rise in the cross-section connected to an opening of the phase
space combined with an increasing Higgs-DM coupling. After that peak, the cross-section
decreases with increasing DM mass regardless of the rising of ghH1H1 .

Notice that for the lower masses, the difference between scenario G and H is significant,
as every diagram involved in the monojet process contains the hH1H1 vertex, whose coupling
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differs significantly in cases G and H. Notice the low end of the allowed mass region in case
G with a large cross-section for the mass region which is not even accessible by case H or the
I(1+1)HDM. As the DM mass grows, results for both cases get closer together, stabilising
for the very heavy mass region in the decoupling limit.
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case G
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Figure 9: Monojet searches for cases G and H. For comparison we also provide monojet
searches for the I(1+1)HDM which resemble case H in the I(2+1)HDM as expected.

5.2 Dijet VBF results

Fig. 10 presents values of the dijet cross-section for scenarios H and G in terms of the DM
mass. The difference between cases H and G is less prominent compared to the monojet
analysis, as only one of the involved diagrams in this process depends on the value of the
Higgs-DM coupling (see Figs. 19 and 20 for diagrams involved in the neutral and charged
VBF processes, respectively). We can still observe some differences in the lower mass range.
The cross-section for case G is generally larger (as is the ghH1H1 strength) than in case H.
Also, charged channels have slightly larger cross-sections than the neutral ones, since the
cross-section for producing the W± boson is larger than the cross-section for producing the
Z boson. For the heavier masses all results, for both scenarios G and H, as well as for charged
and neutral channels, tend to converge.

5.3 HS results

HS signatures depend on the W and Z decay patterns. While at the LHC, leptonic signatures
are preferred, hadronic ones are also possible. The latter potentially interfere with the VBF
topologies, but the effect is small so that we can safely ignore it here.

The results of the (on-shell) HS process cross-sections in terms of the DM mass are
presented in Fig. 11. It is clear that the general picture is different from the VBF studies.
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Figure 10: The cross-section in dijet VBF processes in terms of the DM mass in charged
(top) and neutral (bottom) processes.

The largest cross-section again appears in the lower mass region where only case G can be
realised. Similarly to the VBF case, the charged channels have larger cross-section compared
to the neutral channels since the W± production in theses processes has a larger cross-section
than the Z boson production. All cross-sections in neutral and charged processes in both
cases G and H converge to a similar value as mDM approaches very large values.

Note that the cross-section in both G and H are similar in the region of DM mass above
525 GeV, i.e., where both cases can be realised (unlike in the VBF processes). This similarity
is the result of the fact that the difference in the Higgs-DM coupling does not translate into a
difference in the cross-section between cases G and H. To explain this similarity let us focus,
e.g., on the neutral VBF and HS processes (Fig. 19 and Fig. 21)7.

In the neutral VBF process, out of all the involved diagrams (Fig. 19a,b,c) there is only
one diagram, Fig. 19a, which depends on the Higgs-DM coupling. The cross-section of this

7The same argument applies to comparing the charged VBF and HS processes.
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Figure 11: The cross-section in HS processes in terms of the DM mass in charged (top) and
neutral (bottom) processes.

diagram (σh) for a given mDM relative to the cross-section of all three diagrams involved
(σtot) is σh/σtot = 0.1445 for case G and σh/σtot = 0.2416 for case H. Recall that the main
difference between cases G and H is that for a chosen mDM the Higgs-DM is larger in case G
than in case H. We conclude that the Higgs-mediated diagram plays a much more important
role in case H than it does in case G. As a result, even though the ghH1H1 coupling is much
smaller in case H, the total cross-section does not fall far below the total cross-section in case
G, which is depicted in Fig. 10.

Now, let us consider the HS neutral processes (Fig. 21a,b,c). Again, only one diagram,
Fig. 21a, depends on the Higgs-DM coupling. Repeating the procedure above, we calculate
the relative cross-section of this one diagram (σh) relative to the cross-section of all diagrams
involved (σtot). For a given mDM , we obtain σh/σtot = 0.9736 in case G and σh/σtot = 0.9708
in case H. So, this diagram plays only a slight role in case H compared to case G. We
therefore conclude that the difference in ghH1H1 coupling does not play an important role in
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distinguishing case G and H in the HS processes. Thus, we do not expect to see a difference
between cases G and H, which is depicted in Fig. 11, with the important exception that
case G allows for the heavy Higgs DM mass to be below 525 GeV, making its cross-section
significantly larger.

6 Conclusion

We have calculated the relic density for heavy Higgs DM in the I(2+1)HDM and shown
that the prospects for its discovery at both DD experiments and the LHC are significantly
enhanced as compared to the I(1+1)HDM, where the heavy Higgs DM particle must have
a mass above about 525 GeV and is weakly coupled to the observed Higgs boson. Adding
a second inert Higgs doublet helps to make the heavy Higgs DM region accessible to both
DD and the LHC, by either increasing its couplings to the observed Higgs or lowering its
mass to 360 GeV . mDM , or both. In particular we have presented LHC signatures of the
I(2+1)HDM in the monojet, VBF (dijet) and HS processes and shown that the prospects for
heavy Higgs DM discovery are significantly brighter for all channels.

In DD experiments, although the standard values of annihilation cross-section for the
heavy Higgs DM masses in the I(2+1)HDM are well below current experimental exclusion
limits for DM decaying into pairs of gauge bosons or fermions, the prospects for a future DD
discovery remain open due to the complementary nature of collider vs cosmological limits
and the fact that the DD cross-sections are higher than in the I(1+1)HDM.

Turning to indirect detection signatures of the I(2+1)HDM, there is the possibility of in-
ternal bremsstrahlung in the processes of H1H1 → W+W−γ, generated through the exchange
of any of the two charged scalars H±1,2. It was shown that one can expect such signatures in
the I(1+1)HDM [24], mediated by a charged scalar in the t-channel, which would correspond
to scenario H considered in the I(2+1)HDM. In principle, the signal could even be stronger
for scenario G, as the scalar couplings are enhanced.

Finally we comment on the observed h → γγ channel where, in the I(1+1)HDM, only
in the heavy DM mass region are both proper DM relic density and (minimal) enhancement
in the h → γγ channel realised. By contrast, in the I(2+1)HDM there exist two charged
scalars, H±1 and H±2 , which contribute to the h → γγ loop which may enhance the rate for
a wide range of parameters.

In conclusion, adding a second inert Higgs doublet significantly improves the prospects
for observability of heavy Higgs dark matter in future experiments both underground and at
the CERN LHC.
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A Feynman rules in the simplified I(2+1)HDM

Here we present the Feynman rules of the model.

H+
2 H

−
2 h, H

+
1 H

−
1 h λ23v

H1H1h, H2H2h (λ23 + λ′23 + 2λ2)
v

2

A1A1h, A2A2h (λ23 + λ′23 − 2λ2)
v

2

H+
2 H

−
2 γ, H

+
1 H

−
1 γ

i

2
(g sin θW + g′ cos θW )(K +K ′)µ

H+
2 H

−
2 Z, H

+
1 H

−
1 Z

i

2
(g cos θW − g′ sin θW )(K +K ′)µ

H±1 H1W
±, H±2 H2W

± ig

2
cos(θh − θc)(K +K ′)µ

H±2 H1W
±, H±1 H2W

± ig

2
sin(θh − θc)(K +K ′)µ

H±1 A1W
±, H±2 A2W

± g

2
cos(θa − θc)(K +K ′)µ

H±2 A1W
±, H±1 A2W

± g

2
sin(θa − θc)(K +K ′)µ

H1A1, H2A2Z
1

2
(g cos θW + g′ sin θW ) cos(θh − θa)(K +K ′)µ

H2A1, H1A2Z
1

2
(g cos θW + g′ sin θW ) sin(θh − θa)(K +K ′)µ

where K and K ′ are the momenta of the associated particles in the decay channel and θW
is the Weak mixing angle. The Yukawa couplings in the model are identical to those of the
SM.

B Feynman diagrams for relic density calculations

Here we present the DM (co)annihilation diagrams which play a role in our relic density
studies.
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Figure 12: For light DM masses the most important channel for the annihilation of DM
particles is the Higgs-mediated process (a). Coannhilation with other neutral scalars could
have a significant effect on the relic density (b).
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Figure 13: For heavy DM masses, the processes involving one or two virtual gauge bosons,
also contribute to the total annihilation cross-section and affect the relic density.
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Figure 14: Heavy DM (co)annihilation diagrams with pure gauge boson final states.
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Figure 15: Heavy DM (co)annhilation channels involving the SM-like Higgs boson.

C Feynman diagrams for the LHC analysis

Here we present the DM (co)annihilation diagrams which play a role in our LHC studies.

C.1 Diagrams with monojet final states
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g
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g

g

h

H1

H1

(b)

g

g

g

g

h

H1

H1

(c)

Figure 16: Relevant monojet diagrams with initial gluon states (gg → hg → gH1H1)
containing triple gluon vertex and an effective ggh vertex.
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Figure 17: Relevant monojet diagrams with initial quark states (qq̄ → gH1H1 + diagrams
with initial particles reversed) containing ggh effective vertex, where q = u, d, c, s, b.
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Figure 18: Relevant monojet diagrams with initial quark and gluon states (qg → qH1H1 +
equivalent q̄g → q̄H1H1 diagrams + diagrams with initial particles reversed) containing ggh
effective vertex, where q = u, d, c, s, b.
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C.2 VBF diagrams with dijet final states
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Z

qj
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qj
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qj

qi

qj

H1
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Figure 19: Relevant VBF diagrams with dijet final states (qiqj → H1H1qiqj)
with only neutral intermediate gauge bosons, where q = u, d. Note that
only one of the involved diagrams in this process depends on the value of
the Higgs-DM coupling.
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Figure 20: Relevant VBF diagrams with dijet final states (qiqj → H1H1qkql)
with only charged intermediate gauge bosons, where q = u, d. Note that
only one of the involved diagrams in this process depends on the value of
the Higgs-DM coupling.
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C.3 HS diagrams with (on-shell) gauge boson final states

qi

q̄i
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(b)

q

q̄

Z

H1
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Figure 21: Relevant HS diagrams with (on-shell) neutral gauge boson final
states (qiq̄i → H1H1Z

∗) and only neutral intermediate gauge bosons, where
q = u, d. Note that only one of the involved diagrams in this process
depends on the value of the Higgs-DM coupling.

qi

q̄j

W+ h

H1

H1

W+∗

(a)

qi

q̄j

W+

H1

H1

W+∗

(b)

qi

q̄j

W+

H1

A1
H1

W+∗

(c)

Figure 22: Relevant HS diagrams with (on-shell) charged gauge boson final
states (qiq̄j → H1H1W

∗+) and only charged intermediate gauge bosons,
where q = u, d. Note that only one of the involved diagrams in this process
depends on the value of the Higgs-DM coupling.
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