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Abstract. Oxygen-free copper of 99.95 wt.% purity was severely deformed at room 
temperature by two modes of severe plastic deformation, equal-channel angular pressing 
(ECAP) and high-pressure torsion (HPT). ECAP was performed using 4, 16 and 24 
passes, and HPT was performed using 1/2, 1 and 10 turns. The results show that while 
recovery occurs during both ECAP and HPT processing, copper shows a faster recovery 
rate with HPT processing than ECAP. The occurrence of recovery was observed at an 
equivalent strain exceeding ~12 that led to an enhancement in the uniform plastic 
deformation. The influence of recovery behaviour on the mechanical properties was 
investigated using X-ray diffraction, microhardness and tensile testing.  
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1. Introduction 

High-pressure torsion (HPT) [1–4] and equal-channel angular pressing (ECAP) 
[2,5–7] are the most commonly used severe plastic deformation (SPD) techniques. The 
HPT procedure is widely used because it has the ability to produce exceptional grain 
refinement [4,8] and a large fraction of high-angle grain boundaries [9] while ECAP is 
popular because it is a simple process that has the ability to deform larger samples which 
makes it a better candidate for structural applications [10–12].  

It is well established that bulk ultrafine-grained (UFG) materials are successfully 

produced by SPD with very small grain sizes in the range between 1 m and 100 nm 
[2,13–16]. UFG materials normally exhibit an extraordinary increase in strength in 
comparison to their coarse grain counterparts [17,18]. The inverse relationship between 
the yield stress (𝜎𝑦) and the square root of the grain size (d) is described by the Hall-

Petch relationship [19,20]: 
 

𝜎𝑦 = 𝜎0 + 𝑘𝑦𝑑−1/2                                                                                             (1) 

 
where 𝜎0 is the lattice friction stress and 𝑘𝑦 is a yield constant. It is readily apparent from 

Eq. (1) that the strength of the material increases as a consequence of the reduction in 
grain size. Several studies have reported the achievement of a significant grain 
refinement in pure Cu using ECAP [21–29] and HPT [30–41]. To date, most studies have 
suggested that pure Cu shows hardening behavior without recovery during both HPT 
[31,35,41] and ECAP [42,43] at room temperature. Nevertheless, two recent studies have 
reported a softening behavior of pure Cu with recovery during HPT processing [44,45]. 
This softening is a well-documented behavior of pure Al [46–54] and has been observed 
in other materials such as pure Zn [53] and pure Mg [55].  

A third recent study also reported the occurrence of a recovery mechanism in pure 
Cu that contributed to the enhancement of ductility during 1-16 passes of ECAP at room 
temperature [25]. This latter report confirmed the results published in the classic study 
[43] that high ductility was achieved after 16 passes of ECAP as a result of grain boundary 
sliding. These findings were unexpected because it was previously claimed that the 
increase in strength in UFG materials is associated with a decrease in ductility at ambient 
temperature [18,56], and the poor ductility of UFG materials is due to the limited strain 
hardening ability [18,57,58].  

Two different deformation mechanisms are proposed for the simultaneous gain in 
strength and ductility after processing pure Cu by ECAP for 16 passes at room 
temperature: one is grain boundary sliding [43] and the other is a recovery mechanism 
[25]. The present study is designed to clarify the mechanism leading to the enhancement 
in ductility by processing oxygen-free Cu for 24 passes at room temperature. Twenty-four 
passes was chosen instead of 16 to impose similar maximum strain on the specimen 
because the die angle used in this study was 110° whereas 90° was used in the previous 
studies. In addition, it was possible to investigate the potential for achieving high strength 
and ductility by imposing very high strain on the specimens using HPT since imposing a 
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higher strain by ECAP was limited because it was difficult to process the specimens 
beyond 24 passes due to the initiation of cracks.  

2. Experimental materials and procedures 

 

Oxygen-free Cu (99.95%) was used in this investigation. Billets of length 65 mm 
and 10 mm diameter were processed by ECAP at room temperature. These billets were 
pressed through a solid die having an internal channel angle, Φ, of 110º and an outer arc 
of curvature, Ψ, of 20º. An equivalent strain of ~0.76 was created on each separate pass 
based on the Φ and Ψ values [59]. The billets were pressed for 4, 16 and 24 passes 
repetitively and provided a maximum equivalent strain of ~18 using route BC. In this route, 
the samples are rotated by 90° in the same direction between each separate pass [60]. It 
is well documented that route BC is the best choice for ECAP processing to give an array 
of UFG microstructure with equiaxed grains separated by a high fraction of high-angle 
boundaries [61].  

HPT processing was conducted at room temperature using disc samples with 10 
mm diameter and ~0.83 mm thickness. The discs were compressed between two anvils 
under an applied pressure of 6.0 GPa and a torsional strain was imposed by rotating the 
lower anvil at a speed of 1 rpm. The discs were processed through 1/2, 1 and 10 turns 
using quasi-constrained conditions [62,63].   

Prior to ECAP and HPT processing, the samples were annealed within a vacuum 
tube furnace at 600°C for 1 hour. The average grain size in the annealed sample was ~24 
µm and the average Vickers microhardness was ~41 Hv. 

The grain structure of oxygen-free Cu was examined by electron backscatter 
diffraction (EBSD) using a JEOL JSM-7001 F analytical field emission scanning electron 
microscope. An operating voltage of 15 kV was used during the scanning process and a 
step size of 0.05 µm was used to collect the EBSD patterns. The OIM images for HPT 
discs were taken at a distance between ~3.0 mm to ~4.0 mm from the disc centre.  

The X-ray diffraction (XRD) testing was conducted on the samples after ECAP and HPT 
processing. A Bruker D2 Phaser X-ray diffractometer was used to analyse the whole 
surfaces of the samples using a copper target with Cu Kα (λ= 0.15406 nm) radiation. 
Recording the XRD patterns was performed by θ-2θ scans from 2θ = 40-100° and profile 
fitting was accomplished by Maud software. Crystallite size and microstrain were 
calculated based on the Rietveld method using Maud software and their values were used 
to calculate the dislocation density.  

Vickers microhardness measurements were recorded using a Future-Tech FM-
300 microhardness tester. 100 gf was used during the hardness indentations with a 15 s 
dwell time. For HPT, the average values were recorded along the radius (5.0 mm) of each 
disc with 0.3 mm between each indentation point. Four indentations were measured 
around each of these points, separated by a distance of 0.15 mm, then the average for 
these four points was calculated. For ECAP, the microhardness measurements were 
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recorded along the longitudinal axis of the ECAP billets over a distance of 25 mm with 0.5 
mm separation between each indentation point.  

For tensile testing, tensile specimens were machined from HPT discs and ECAP 
billets using electrical discharge machining. The HPT specimen had a gauge length of 
1.0 mm and cross-sectional area of 1.0 x 0.8 mm2 as shown in Fig. 1(a) and the ECAP 
specimen had a gauge length of 4.0 mm and cross-sectional area of 3.0 x 2.0 mm2 as 
shown in Fig. 1(b). A Zwick Z030 testing machine was used for pulling the specimens at 
room temperature using initial strain rates of 1.0x10-4 s-1 and 1.0x10-3 s-1. 

 

3. Experimental Results 
 

3.1 Microstructure after deformation 
 
Fig. 2 presents OIM images for oxygen-free copper after processing by ECAP for 

4 and 24 passes and HPT for 1/2 and 10 turns. The difference in colors represents the 
difference in the grain misorientations as denoted by the unit triangle.  

After 4 passes of ECAP, the grains were mostly large and elongated with a 
scattering of small grains as shown in Fig. 2(a). The average grain size was ~4.5 µm and 
the fraction of high-angle grain boundaries (HAGBs) was ~65%. HAGBs are defined as 
boundaries with misorientations larger than 15°, whereas boundaries with misorientations 
between 2° and 15° are defined as low-angle grain boundaries (LAGBs). A significant 
grain refinement was observed after 24 passes as displayed in Fig. 2(b). The 
microstructure evolved into reasonable homogeneity with ultrafine and equiaxed grains 
having an average grain size of ~600 nm and ~90% of HAGBs.  

After 1/2 turn of HPT shown in Fig. 2(c), a rapid evolution towards microstructural 
homogeneity was observed. The microstructure consisted of ultrafine and equiaxed 
grains with an average size of ~700 nm and ~85% of HAGBs. A further grain refinement 
was observed after deforming the disc with 10 turns as displayed in Fig. 2(d). High strain 
deformation produced an average grain size of ~500 nm with ~82% of HAGBs.  

 
3.2 XRD analysis 

 
The values of the calculated dislocation densities and crystallite sizes obtained 

from XRD measurements are shown in Fig. 3. The dislocation density was calculated 
based on the data obtained from XRD analysis using the equation [64,65]: 

𝜌 =  
2√3<𝜀2>1/2

𝐷𝑐𝑏
                                                                                                    (2) 

where < 𝜀2 >1/2 is the lattice microstrain, DC is the average crystallite size and b is the 
Burgers vector. The XRD analysis on the annealed condition showed a dislocation density 
of ~3.9 x 1012 m-2 and a crystallite size of ~480 nm.  
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During ECAP processing, the dislocation density increased to ~8.2 x 1013 m-2 after 
4 passes and then increased further to ~4.0 x 1014 m-2 after 16 passes, followed by a 
decrease to a value of ~2.2 x 1014 m-2 after 24 passes, as shown in Fig. 3(a). The 
crystallite size, on the other hand, decreased from ~480 nm to ~172 nm after 4 passes 
and ~111 nm after 16 passes then increased to ~134 nm after 24 passes as in Fig. 3(a). 

During HPT processing, the dislocation density increased to ~5.6 x 1013 m-2 after 
1/2 turn followed by a decrease to values of ~3.2 x 1013 m-2 and ~2.8 x 1013 m-2 after 1 
and 10 turns, respectively, as shown in Fig. 3(b). The crystallite size decreased to ~132 
nm after 1/2 turn then increased to ~154 nm and ~179 after 1 and 10 turns, respectively.  

 

3.3 Microhardness measurements 
 
For the ECAP specimens, the microhardness measurements were recorded along 

the longitudinal axes of the billets. It is readily apparent from Fig. 4(a) that the average 
hardness increased significantly to ~110 Hv after 4 ECAP passes in comparison to ~41 
Hv measured for the annealed condition. The average hardness further increased to ~120 
Hv after 16 passes. This was followed by a drop after 24 passes to ~112 Hv.  

The microhardness measurements were recorded along the 5 mm radius of the 
discs processed by HPT as shown in Fig. 4(b). The variation of microhardness 
measurements between the centre and edge positions in the HPT discs was neglected in 
this study. It follows from Fig. 4(b) that a substantial increase in the average hardness 
was recorded after 1/2 turn during HPT processing. The average hardness increased to 
~133 Hv after 1/2 turn then saturated at a lower value of ~127 Hv after 10 turns.  

  
3.4 Tensile properties 

 
Fig. 5 shows engineering stress-engineering strain curves truncated to the peak 

stress, which demonstrate the strain hardening behavior for a) ECAP and b) HPT samples 
when tested at 1.0 x 10-4 s-1. The values of the tensile properties are summarized in Table 
1. As can be seen from Fig. 5(a), the mechanical strength increased for up to 16 passes 
followed by a drop after 24 passes. This drop in strength was associated with an increase 
in the uniform elongation from 2.1% to 3.6%. The same trend was observed during HPT, 
however it occurred at a faster rate. The mechanical strength decreased after 1 turn while 
the uniform elongation increased with further strain, as in Fig. 5(b). 

 
 

4. Discussion 
 
Earlier research demonstrated that grain boundary sliding is the reason for the 

enhancement of both strength and ductility due to the increase of strain rate sensitivity 
[43]. The paradox of strength and ductility was first observed by processing pure Cu by 
ECAP for up to 16 passes and pure Ti by HPT for 5 turns at room temperature. However, 
this study has not focused on the intrinsic properties of the material. In the present study, 
oxygen-free Cu was processed by ECAP and HPT and then the crystallite size and 
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dislocation density were examined and correlated with the mechanical properties such as 
microhardness and tensile properties. It was found that the hardness and strength 
dropped slightly at a certain strain while uniform plastic elongation of the specimens was 
enhanced by processing using either ECAP or HPT.  

UFG materials normally show an onset of early necking when pulled in tension, 
due to their low work hardening rate and low strain rate sensitivity after SPD processing 
which leads to a fall in their uniform plastic deformation. The high rate of work hardening 
is caused by the accumulation of dislocations within the grains; however in UFG metals 
the grains are small which makes dislocation storage more difficult [58]. Dislocations are 
emitted and absorbed at the grain boundaries instead of accumulating within the grain 
interior. Thus, most UFG metals exhibit limited ductility at room temperature [66]. The low 
hardening capacity in nanostructured Cu produced by ECAP was discussed in an earlier 
study and three strategies were suggested to prolong the uniform tensile deformation 
[67]. These strategies included creating a microstructure with a bimodal grain size 
distribution, deforming the material at a low temperature and/or high strain rates and 
increasing the strain rate sensitivity [67].   

The strain rate sensitivity is a crucial factor that is considered when evaluating the 
strain hardening of the material. According to Hart’s criterion, increasing the strain rate 
sensitivity can delay the onset of localized deformation and prolong the ductility of the 
material [68]. UFG materials tend to exhibit higher strain rate sensitivity at low 
temperatures in comparison to their coarse-grained counterparts [69,70]. The strain rate 
sensitivity for polycrystalline materials is defined as [68]: 

 

𝑚 =  (
𝜕𝑙𝑛𝜎

𝜕𝑙𝑛𝜀̇
)

𝜀
                                                                                                      (3) 

 

where 𝜎 is the true stress and 𝜀̇ the strain rate. In practice, it is well documented that a 
large value of m in the presence of small grains and a large fraction of HAGBs can trigger 
grain boundary sliding [71]. It has been reported that grain boundary sliding occurred in 
UFG Cu during the ECAP process at room temperature [12,43]. The occurrence of grain 
boundary sliding generally requires a high homologous temperature (~0.5Tm) [72,73], 
however, it has been reported that grain boundary sliding also occurs at lower 
temperatures during ECAP and HPT processing [12,74–76]. The grain boundaries are in 
a nonequilibrium state during processing by ECAP or HPT due to the surplus of extrinsic 
dislocations which are not geometrically necessary [7] and grain boundary sliding is 
therefore facilitated by their movement [77].  

Thus, in order to investigate the influence of the strain rate sensitivity on the 
ductility of the Cu specimens, another set of samples were pulled in tension using a 
uniaxial tensile test at a strain rate of 1.0x10-3 s-1 in order to calculate the strain rate 
sensitivity using equation (3). Initially, the m value of the annealed specimen was 
~0.0083. The strain rate sensitivity increases with increasing number of ECAP passes as 
well as increasing HPT turns. The calculated m values of the ECAP specimens were 
~0.00941, ~0.0193 and ~0.0216 for 4, 16 and 24 passes, respectively, whereas for the 
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HPT specimens were ~0.036, ~0.039 and ~0.045 for 1/2, 1 and 10 turns, respectively. 
This is in agreement with an earlier report showing an increase in the strain rate sensitivity 
from 0.007 to 0.023 after processing pure Cu by ECAP from 1 to 12 passes [78]. There 
may be a small contribution towards the delay of the onset of early necking by increasing 
the strain rate sensitivity with ECAP passes and HPT turns, however the value is very 
small to facilitate grain boundary sliding.  

 
The work hardening rate of the material is another factor contributing to the onset 

of the localized deformation during tensile testing as given by the Considère criterion 
[79,80]: 

 

(
𝜕𝜎

𝜕𝜀
)

𝜀̇
≤  𝜎,                                                                                                         (4) 

 

where 𝜎 is the true stress, 𝜀 is the true strain and 𝜀̇ is the strain rate. Plastic instability 

occurs when the work hardening rate (
𝜕𝜎

𝜕𝜀
) becomes equal to or less than the flow stress 

during tension. Generally, the grains become smaller with increasing strain during SPD 
processing which decreases the dislocation storage capacity and limits the uniform 
deformation. Fig. 6 presents the work hardening rate as a function of the true stress for 
oxygen-free Cu processed by a) ECAP and b) HPT. It is readily apparent from Fig. 6(a) 
that the specimen processed by ECAP for 24 passes exhibited a higher work hardening 
rate than the specimen processed by 4 passes. Also, it is apparent from Fig. 6(b) that the 
specimen processed by HPT for 10 turns exhibited a higher work hardening rate than the 
specimen processed by 1/2 turn. This indicates that the work hardening rate increases 
with numbers of passes or turns.  

As shown in Fig. 3(a) the crystallite size decreases with increasing numbers of 
passes and reaches a minimum value in the region of 16 passes but then increases at 24 
passes. On the other hand, there is a maximum in the dislocation density for a specimen 
processed by 16 passes, after which the density decreases. Similar trends were observed 
in Fig. 3(b) during the HPT process, where the crystallite size reached a minimum after 
1/2 turn then increased with further straining, whereas the maximum value of the 
dislocation density occurred with the specimen subjected to 1/2 turn after which a rapid 
drop was observed at 1 turn followed by a continuous and gradual decrease in the 
dislocation density up to 10 turns.  These trends of crystallite size and dislocation density 
displayed in Fig. 3(a) for ECAP specimens and in Fig. 3(b) for HPT specimens matches 
the drop in microhardness values shown in Fig. 4(a-b) and are also in a good agreement 
with the decrease in the strength shown in Fig. 5(a-b). These observations suggests the 
occurrence of a recovery mechanism during ECAP and HPT processing.  

In the present study, the occurrence of the recovery mechanism highly influences 
the work hardening rate of oxygen-free Cu. The increase of the uniform plastic 
deformation presented in Table 1 is due to the decrease in both strength and dislocation 
densities observed during both processes, as shown in Fig. 3(a) and Fig. 3(b). This 
decrease in the dislocation density enhances the dislocation storage and increases the 
ability to accommodate more dislocations and regain the capacity of work hardening. The 
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decrease in the dislocation density with the increase in the crystallite size is attributed to 
the recovery mechanism occurring during the ECAP and HPT processing that increases 
the mean free path of dislocations thus increasing the work hardening rate. This is 
consistent with a previous study on pure Cu processed by ECAP for 16 passes at room 
temperature [25].  

A close inspection of Fig. 3 shows that the occurrence of the recovery mechanism 
during HPT is faster than for ECAP. This may be due to the intensive strain imposed by 
HPT. Accordingly, the equivalent strains for ECAP specimens are calculated using [59]: 
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where N is the number of passes, Φ is the internal channel angle and Ψ is the outer arc 
of curvature. The equivalent strains for 4, 16 and 24 passes are ~3, ~12 and ~18, 
respectively.  

The equivalent strains for HPT specimens were calculated using [81]: 
 

              𝜀 =  
2𝜋𝑟𝑁

ℎ√3
                                                                           (6) 

 
where N is the number of rotations, r is the distance from the disc centre and h is the 
thickness of the disc. Since the strain varies across the disc, an average strain is 
calculated for each condition. The equivalent strains for 1/2, 1 and 10 turns are ~7, ~16 
and ~173, respectively. It is readily apparent that the recovery mechanism takes place at 
an equivalent strain exceeding ~12. Thus, it is concluded that uniform plastic deformation 
can be prolonged by deforming the oxygen-free Cu beyond a certain equivalent strain.  

 
5. Summary and conclusions 

 
1. Dislocation density and crystallite size for oxygen-free Cu both decreased after 

deformation by ECAP and HPT, however, at a certain strain the dislocation density 
decreased while the crystallite size increased indicating the occurrence of a 
recovery mechanism. The occurrence of this recovery is much faster during HPT 
than ECAP. This is attributed to the intensive strain imposed by HPT.  

2. Microhardness measurements are in agreement with the XRD results. The Hv 
values decreased after 24 ECAP passes and after 1 turn of HPT. The 
microhardness values increased significantly after ECAP and HPT deformation by 
comparison to the annealed condition.  

3. Although the strain rate sensitivity values are very small, it appears that it assists 
in the delay of early necking but not to the extent of facilitating a grain boundary 
sliding mechanism.  

4. The uniform plastic elongation of oxygen-free Cu was enhanced after ECAP and 
HPT processing as a result of the recovery mechanism whereby the dislocation 
annihilation process reduces the dislocation density in the presence of high-angle 
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grain boundaries and also due to the increase in the crystallite size, which 
increases the mean free path of dislocations and restores the work-hardening 
ability of the material.  

5. The uniform plastic elongation is improved in oxygen-free Cu by imposing 
equivalent strains higher than ~12.  
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Figure captions 

Fig. 1 Schematic illustration showing the dimensions of the miniature tensile specimens 

cut from a) ECAP billet and b) HPT disc.  

Fig. 2 EBSD orientation images showing the evolution of microstructure in oxygen-free 

copper specimens after ECAP processing through a) 4 passes, b) 24 passes and after 

HPT processing through c) 1/2 turn, d) 10 turns.  

Fig. 3 Dislocation density and crystallite size as a function of the number of a) ECAP 

passes and b) HPT turns. 

Fig. 4 Vickers microhardness measurements for oxygen-free Cu a) along the longitudinal 

axis of the ECAP billet and b) along the radius of the HPT discs.   

Fig.  5 Truncated engineering stress – engineering strain curves demonstrating the strain 

hardening behaviour for a) ECAP and b) HPT specimens.  

Fig. 6 Work hardening rate as a function of true stress for oxygen-free Cu deformed by 

a) ECAP and b) HPT.  

 

Table captions 

Table 1. Values of yield stress (YS), ultimate tensile stress (UTS) and uniform elongation 

(UEL%) for Cu specimens subjected to HPT and ECAP. 

 

 

 

 

 

 

 

 



Fig. 1 Schematic illustration showing the dimensions of the miniature tensile 
specimens cut from a) ECAP billet and b) HPT disc. 

a)

b)



Fig. 2 EBSD orientation images show the evolution of microstructure in oxygen-free 
copper specimens after ECAP processing through a) 4 passes, b) 24 passes and after 
HPT processing through c) 1/2 turn, d) 10 turns. 

a)

(a) (b)

(c) (d)



 

 

Fig. 3 Dislocation density and crystallite size as a function of the number of a) ECAP 
passes and b) HPT turns.

b)

a)



Fig. 4 Vickers microhardness measurements for oxygen-free Cu a) along the 
longitudinal axis of the ECAP billet and b) along the radius of the HPT discs.  

a)

b)



Fig.  5 Truncated true stress – true strain curves demonstrating the strain hardening 
behaviour for a) ECAP and b) HPT specimens. 

a)

b)



Fig. 6 Work hardening rate as a function of true stress for oxygen-free Cu deformed 
by a) ECAP and b) HPT. 

a)

b)



Table 1. Values of yield stress (YS), ultimate tensile stress (UTS) and uniform 
elongation (UEL%) for Cu specimens subjected to HPT and ECAP.

Process 
Condition

YS (MPa) UTS (MPa) UEL (%)

4 passes 382 404 2.1
16 passes 376 426 2.4
24 passes 358 415 3.6
½ turn 474 512 2.0
1 turn 464 497 2.6
10 turns 444 487 4.0


