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Earth’s climate sensitivity has long been subject to heated debate and has spurred renewed 

interest after the latest IPCC assessment report suggested a downward adjustment of its most 

likely range1.  Recent observational studies have produced estimates of Transient Climate 

Sensitivity, i.e. the global mean surface temperature increase at the time of CO2 doubling, as low 

as 1.3K2,3, well below the best estimate produced by global climate models (1.8K). Here, we 

present an observation-based study of the time period 1964 to 2010, which does not rely on 

climate models. The method incorporates observations of greenhouse gas concentrations, 

temperature and radiation from approximately 1300 surface sites into an energy balance 

framework. Statistical methods commonly applied to economic time series are then used to 

decompose observed temperature trends into components attributable to changes in greenhouse 

gas concentrations and surface radiation. We find that surface radiation trends, which have been 

largely explained by changes in atmospheric aerosol loading, caused a cooling that masked 

approximately one third of the continental warming due to increasing greenhouse gas 



concentrations over the last half-century. In consequence, the method yields a higher transient 

climate sensitivity (2.0 +/- 0.8K) than other observational studies. 

 

Atmospheric CO2 concentration is projected to double from preindustrial levels during this 

century 1, and constraining Earth’s temperature response is a primary objective for designing 

mitigation and adaptation policies. While substantial attention has been devoted to model 

estimates of Earth’s equilibrium climate sensitivity 4 (i.e., the surface temperature response to 

CO2 doubling once a new equilibrium climate state has been reached), more relevant to public 

and policy makers is the temperature change that occurs at the time of CO2 doubling, known as 

‘transient climate sensitivity’ (TCS) 5. Constraining TCS based on observational records is 

complicated by the fact that recent climate change was not forced by CO2 changes alone. 

Downward solar radiation at the surface (DSRS, measured in Wm-2) reported at approximately 

1300 surface stations over the time period 1964 -2010 (Fig. 1a and b) display a downward trend 

in DSRS which is commonly referred to as ‘global dimming’ (Fig. 1c) 6. The most plausible 

explanation for global dimming is increased atmospheric aerosol loading derived from 

anthropogenic burning of fossil fuels and biomass 7. The overall effect of aerosols increases 

Earth’s albedo, either by direct interaction with solar radiation, or by increasing the lifetime, 

areal extent, and/or reflectivity of clouds 8. For some portions of the world, the appearance of 

regional trends opposing the global negative DSRS trend (‘regional brightening’) is observed 

towards the end of the 20th century, consistent with a reduction in aerosol emissions in much of 

the developed world 6.  Atmospheric aerosol loading is broadly reflected in global emissions of 

sulfur dioxide (SO2), a precursor for sulfate aerosols (Fig.1c). Sulfate is only one of several 

aerosol species emitted by human activity, but the relationship between SO2 emissions and 
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downward solar radiation broadly reflects the impact of anthropogenic atmospheric aerosol 

loading on global dimming, and thereafter on the somewhat weaker patterns of regional 

brightening. Note that trends in volcanic or solar activity also affect DSRS, and that similar SO2 

emissions may have different radiative effects depending on factors like latitude and climate 

regime. Cloudiness also impacts DSRS, but several studies that sought to explain trends in DSRS 

by changes in cloudiness have concluded that no such relationship could be identified 9. The fact 

that a subset of surface stations that can distinguish between clear and cloudy skies show 

dimming and brightening trends in clear-sky data further points to aerosols as the main driver of 

DSRS trends 6. 

 

Perturbations to Earth’s radiation budget, whether by greenhouse gases or aerosols, are 

commonly referred to as radiative forcings (RFs, Wm-2). Positive RFs exerted by anthropogenic 

CO2 imply a net energy gain by the Earth-atmosphere system and subsequent warming, while 

negative RFs exerted by anthropogenic aerosols, imply net energy loss. TCS relates the net RF 

(ΔF) to the change in global mean temperature (ΔT) through the following equation: 

 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐹𝐹2𝑥𝑥∆𝑇𝑇
∆𝐹𝐹

     (1) 

 

where F2X is the forcing due to a doubling of atmospheric CO2 concentrations. Over the last 

century, the net forcing has been dominated by the two competing RFs due to long-lived 

greenhouse gases (GHGs) and aerosols (ΔF≈ΔFGHG+ΔFAER) 8. For an observed temperature 

change, an overestimation of ∆F translates into an underestimation of the TCS (Equation 1), and 

vice versa 10. Compared to the RF resulting from GHG increases, the RF associated with aerosol 
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forcing is poorly constrained. While tremendous progress has been made on the representation of 

various aerosol processes in GCMs, aerosol-cloud interactions remain a major source of 

uncertainty8, and the spread in GCM estimates of cloud-mediated and total aerosol effects on 

climate is almost as wide today as when the field emerged two decades ago 11. Several studies 

also suggest that GCMs are generally not able to reproduce the observed global dimming and 

subsequent regional brightening e.g.,7. Because of the intimate coupling between the uncertain 

ΔF and TCS 12, estimates of the TCS simulated by GCMs are considered unreliable. TCS 

estimates that are independent of GCMs are thus critical for advancing the topic. 

 In this study, we estimate TCS by applying surface air temperature observations from the 

high-resolution (0.5°) data set from the Climate Research Unit (CRU) 13, equivalent CO2 

concentrations (CO2,eq, in ppm, see Methods) from the Annual Greenhouse Gas Index (AGGI) 14 

and DSRS from the Global Energy Balance Archive (GEBA) 15. Observations from the ~1300 

surface stations considered were used to estimate the free parameters of a set of equations 

predicting temperature at individual stations as a function of CO2,eq  and DSRS, using dynamic 

panel data methods that allow for potential long run cointegrating links among component global 

time series 16 (See Methods). Econometric analysis using cointegration methodology has 

previously been successfully applied to global mean climate time series, in attempts to link 

observed climate change to anthropogenic and natural climate forcings e.g., 17,18. The present 

study goes beyond this body of research by applying dynamic panel modeling methods in 

conjunction with cointegration techniques to assess individual station responses to long run 

movements using a rich data set with a spatial as well as temporal dimension, including 

temperature, CO2,eq and surface radiation. Using this framework, the observed continental 

temperature evolution from 1964 to 2010 can be reasonably reproduced, and yields a spatially 
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averaged temperature increase of approximately 0.8K (Fig. 2). The same analysis applied for 

zonal bands that contain subsets of the ~1300 surface stations produces consistent results across 

latitude-bands, but yields a higher sensitivity to CO2,eq in the extratropics than at the equator, in 

alignment with the well-known and expected amplification of greenhouse warming with latitude 

(see Online-only Methods). 

 

Using the method to calculate temperature evolution under the hypothetical case that CO2,eq 

remained constant at 1964 values results in a cooling that reflects the total aerosol effect. Surface 

cooling is approximately 0.4K averaged over the surface stations considered. Conversely, if 

DSRS is kept constant at 1964 levels, corresponding to constant atmospheric aerosol 

concentrations, a warming of 1.2K is calculated. In other words, about one third of potential 

continental warming attributable to increased greenhouse gas concentrations has been masked by 

aerosol cooling during this time period. The masking effect is strongest before 1990, consistent 

with previous studies for that time period 19. An important consequence of this result is that 

comparable analyses that fail to account for the aerosol masking will erroneously lead to a TCS 

that is too low by a factor of approximately 2/3. This is consistent with a recent GCM analysis 

suggesting that aerosol forcing (and forcing associated with other short-lived species) yields a 

disproportionately larger surface temperature response than CO2 forcing because of the nature 

and spatial pattern of the forcings 20. However, note that since the DSRS data set used here 

provides radiation trends at the surface, as opposed to at the top-of-the-atmosphere where RFs 

are evaluated, the DSRS change and the resulting cooling found in this study should not be 

thought of as a traditional forcing-response relationship. 
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The analysis further yields a best estimate of the TCS of 3.1K over land, with a 95% 

confidence interval of 1.7 – 4.4K, which is obtained by computing γ3log2 where γ3 is the 

parameter in Equation 3 that controls the sensitivity to CO2,eq (see Methods). We deem this TCS 

estimate as representative for the global land surface, despite the inhomogeneous spatial 

coverage of surface stations providing data for the analysis (Fig. 1a); For greenhouse warming, 

variations with latitude are large and important, whereas variations within a given latitude band 

are considered of secondary importance. Because the number of surface stations in each latitude 

band corresponds well with the relative contribution to global land coverage from any given 

latitude, latitudinal dependence should be well represented (Fig. 1b). Given that land has warmed 

at exactly double the rate of the ocean over the past century 21, TCS for the entire globe is 

estimated to be ~2.0K (95% confidence interval 1.1 – 2.9K) (obtained by taking TCSGlobe ≈ 

TCSLand(fLand+0.5fOcean), where fOcean and fLand refer to the global land/ocean fractions). A recent 

analysis used energy budget calculations combined with observations to constrain climate 

sensitivity 2, but required GCMs for information on radiative forcings. That study reported a 95% 

confidence interval for TCS based on the time period 1970-2009 of 0.7-2.5K, and a best estimate 

of 1.4K, 0.6K lower than the best estimate produced by our GCM-independent method. A 

comprehensive survey of observational studies of TCS to date yields a wide range, from 0.7 to 

3.6K, but generally central estimates below 2K18. Given that the globe has warmed by 

approximately 1K since pre-industrial times, mainly due to increasing atmospheric CO2 8, TCS 

estimates below 1K appear highly implausible. Incidentally, the present study produces a TCS 

estimate that is identical to the amount of warming that more than 100 countries have adopted as 

a limit beyond which severe risks and damage due to global warming are thought to ensue 22. 

However, recent arguments have been made for an even lower limit of ‘acceptable warming’ of 
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1.5K23. One implication of our findings is that warming will exceed this limit by the middle of 

the present century without a rapid transition to net zero carbon emission worldwide.  

 

The apparent hiatus in global warming observed over the last decade has been the topic 

of numerous papers in recent years, and its cause and even existence is currently being debated 

24,25. Some recent estimates of climate sensitivity that incorporate the most up-to-date 

observational data sets, including the so-called hiatus, have reported very low climate 

sensitivities 3,26. To test the sensitivity of our method to the period selected for analysis, we 

analyzed 25-year subsets of the time period 1964 to 2010, and produced probability density 

functions (PDFs) for TCS (Fig. 3).  Independent of which 25-year time window is selected, the 

TCS for land lies in the interval 2-4.5K. The PDFs are relatively broad, with high TCSs typically 

stemming from 25-year periods of rapid warming and lower values during periods with weak 

temperature trends. Analyses based on shorter time windows are obviously more susceptible to 

climate variability, and therefore more likely to produce biased trends. Nevertheless, the PDFs 

peak at a land TCS of 3-4K, increasing the confidence in the best estimate from the full 46-year 

time period. Thus, the observational-based and GCM-independent analysis presented here 

supports the best TCS estimate and range produced by GCMs, despite incorporating observations 

from the so-called hiatus, which has caused other observational methods to produce anomalously 

low TCS estimates. The temperature evolution predicted by our method does not notably diverge 

from observations during the hiatus period (1998 – 2010, Fig. 2), suggesting that regions with 

weak temperature trends also experienced a DSRS decrease during this period, thus hinting at a 

potential contribution to the hiatus from anthropogenic aerosols trends. However, the current 

prevailing view is that the hiatus can be attributed to variability internal to the climate system, 
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which temporarily causes more heat to mix into the deep ocean via the Equatorial Pacific 27. 

Thus, we suggest that observational studies that produce anomalously low climate sensitivities as 

a result of incorporating the hiatus period are either overly sensitive to temperature trends of the 

past decade, or alternatively not properly accounting for the effect of aerosols.  
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Figure 1: Radiation measurements from 1300 surface stations. (a) Geographical location of 

each of the ~1300 surface stations incorporated in the study (map courtesy NASA Earth 

Observatory). (b) Number of surface stations (blue bars, bottom axis) and contribution to global 

land area, Antarctica excluded (red line, top axis) per 10° latitude-band. (c) Trend in DSRS, 

shown as the change relative to 1964, calculated by averaging the year-to-year change over all 

stations displayed above (right axis, green curve). Also shown are global mean emissions of 

sulfur dioxide, SO2 (blue curve, left axis, reversed) 28,29, a precursor to sulfate aerosols. Both 

curves show 5-year running means. 

 

Figure 2: Temperature trend decomposition. Global land temperature as observed (black 

curve, CRU TS3.2 data sampled at GEBA stations only, displayed as 5-year running mean), and 

as predicted with Equations 1 and 2 (green curve). The red curve is calculated using the same 

framework, but setting CO2,eq concentrations constant at 1964 values, such that the temperature 

trend is controlled by the DSRS trend alone. Likewise the blue curve shows the temperature 

predicted with DSRS constant at 1964 values, such that the temperature trend is controlled only 

by CO2,eq. Predicted temperatures are all shown as 5-year running means. Shadings represent the 

standard error.  

 

Figure 3: Probably density functions for TCS valid for land. TCS distributions calculated 

based on 25-year rolling windows: (a) For 25-year periods beginning in 1964-1974, (b) For 25-

year periods beginning in 1975-1985, (c) For all 25-year periods of the 46-year record. Also 

shown (d) are the median (horizontal lines), 25th and 75th percentiles  (boxes) and 
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maximum/minimum values for all distributions (outliers marked with circles). Note that these 

TCS estimates are valid for land areas only. 

 

Methods 

 

This study relies on three observational datasets: The Global Energy Balance Archive (GEBA, 

www.geba.ethz.ch), the Climate Research Unit Time Series (CRU TS, version 3.2, 

badc.nerc.ac.uk/data/cru/) and the National Oceanic and Atmospheric Administration (NOAA) 

Annual Greenhouse Gas Index (AGGI, http://www.esrl.noaa.gov/gmd/aggi/) datasets. The latter 

provides a global and annual mean time series of equivalent CO2 concentrations in the 

atmosphere, which is calculated by taking the radiative forcings associated with changes in all 

non-CO2 GHGs and converting them into equivalent changes in atmospheric CO2 (i.e. the CO2 

increase required to produce the same forcing). The GEBA dataset reports monthly mean 

downwelling shortwave radiation (DSRS) reaching the surface, as measured at approximately 

2,500 instrumented surface stations worldwide. Out of these, data only from about 1,300 surface 

stations are selected for the purpose of this study, based on strict criteria on time series length 

and continuity, as well as data quality control. The availability of high-quality continuous data 

limited the time period studied here to 1964 – 2010. For each selected station, i, the annual mean 

time series of DSRS, denoted Ri, is assigned a corresponding high-resolution temperature time 

series Ti from CRU TS3.2. The CRU TS3.2 dataset is available for download from the British 

Atmospheric Data Center (BADC) and is provided on a 0.5ºx0.5º horizontal resolution. The third 

and final dataset, AGGI, provides annual and global mean atmospheric abundances for all major 

well-mixed long-lived greenhouse gases: carbon dioxide, methane, nitrous oxide, CFC-12 and 
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CFC-11, as well as 15 minor halogenated gases from the NOAA global air sampling network. By 

converting the abundances of all other gases than CO2 into CO2 equivalent abundances, the 

AGGI data set can offer an annual and global mean time series of equivalent CO2 abundance 

(CO2,eq), which is the time series that is used here. Because these well-mixed GHGs exhibit little 

spatial variability, the global mean values can be taken as valid for all surface stations 8. These 

time series, two of them specific to each of the 1300 surface stations and the third offering one 

single annual value for the entire globe, are incorporated into Equations 2 and 3 below, which 

combined predict the temperature evolution at individual surface sites 30.  

The equations (originally derived in ref. 28) thus describe the annual mean temperature at any 

given station in year t+1 as a function of local and global mean temperatures (Ti and T), local 

and global mean DSRS, as well as the global mean CO2,eq, all for the previous year t. The 

dependence of local temperature evolution on these variables is justified based on energy balance 

considerations, but note that we are not explicitly solving an energy balance model here. Instead, 

the energy balance framework is simply used to identify variables that might be expected to exert 

an influence on local temperature evolution . Thereafter, the parameters that relate local 

temperature evolution to these variables are determined entirely by our observed time series, 

using the following equations: 

 

𝑇𝑇𝑖𝑖,𝑡𝑡+1 = 𝛽𝛽1𝑇𝑇𝑖𝑖,𝑡𝑡 + 𝛽𝛽2𝑅𝑅𝑖𝑖,𝑡𝑡 + 𝜆𝜆𝑡𝑡 + 𝑢𝑢𝑖𝑖,𝑡𝑡+1                (2) 

 

𝜆𝜆𝑡𝑡 = 𝛾𝛾0 + 𝛾𝛾1𝑇𝑇𝑡𝑡 + 𝛾𝛾2𝑅𝑅𝑡𝑡 + 𝛾𝛾3log (𝐶𝐶𝑂𝑂2,𝑒𝑒𝑒𝑒)    (3) 
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where β1 , β2 , γ0, γ1, γ2 and γ3 are parameters that are constrained by the 3-dimentional datasets 

and 𝑢𝑢𝑖𝑖,𝑡𝑡+1 is a station-specific idiosyncratic shock. Estimation is performed using dynamic panel 

data and cointegration methods. The goal is to estimate the parameter values (the β′𝑠𝑠 and γ’s) 

that best describe all observations over time and space in a predictive framework (for 𝑇𝑇𝑖𝑖,𝑡𝑡+1), 

allowing for local transient responses (via 𝛽𝛽1𝑇𝑇𝑖𝑖,𝑡𝑡) to long-run global influences (𝜆𝜆𝑡𝑡) and the 

presence of stochastic trends in those global forcing factors. Time series nonstationarity and co-

movement among the global variable constituents of 𝜆𝜆𝑡𝑡 is accommodated through the predictive 

regression form of Equation 2 and the use of cointegrating regression and error correction 

techniques that allow for nonstationarity in the global drivers. In particular, when 𝑇𝑇𝑡𝑡, 𝑅𝑅𝑡𝑡, and 

𝐶𝐶𝑂𝑂2,𝑒𝑒𝑒𝑒 are cointegrated, the time series effect 𝜆𝜆𝑡𝑡 may be interpreted as a long run equilibrium 

global forcing effect that acts as one of the drivers in Equation 2. Table 1 shows the parameter 

values that result from the direct application of dynamic panel methods. Further econometric 

analysis and discussion is provided in the online-only Methods section and Supplementary 

Tables S1-S5. Note that this approach implicitly assumes that there is no long-term trend in 

Earth’s heat capacity, which is dominated by ocean heat uptake. 

As expected, at any year the present temperature will be a relatively good predictor of next 

year’s temperature (parameter β1). The temperature influence of the local DSRS is evident by the 

fact that β2 is positive and significantly different from zero – the more incoming solar radiation at 

the surface, the warmer. The parameter that relates local temperature in year t+1 to the station 

mean temperature in year t (γ1) represents two processes; transport of heat to/from the stations 

from/to the surroundings, as well as the Planck feedback (a warmer land surface loses more 

energy to space through infrared radiation). The observations suggest that the latter dominates. 

The parameter relating local temperature to global (that is, station-mean) DSRS (γ2) is not 
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significantly different from zero, and the observations therefore suggest that the global solar 

radiation balance does not have a strong influence on local temperature trends. An alternative 

interpretation is that a significant proportion of the DSRS trend is due to atmospheric black 

carbon (BC) aerosols. Because of the positive forcing that BC exerts at the top of the 

atmosphere, an associated warming would in this case be expected outside major source regions. 

However, since the impact of the global radiation trend on local temperature is not statistically 

significant, this could be indicative of a combination of sulfate and BC, which causes 

temperature perturbations due to non-local radiation trends to be small. Finally, CO2,eq has a 

strong impact on local temperatures, as evident by the positive γ3 which is significantly different 

from zero. The value of γ3 allows for calculations of the TCS through Equation 2 and 3. The 

equations yield the temperature response to a doubling of CO2,eq, for example over the 

preindustrial value of 280ppm, as follows: ∆T2xCO2 = γ3log(560) - γ3log(280) = γ3log(560/280) = 

γ3log2. 

 

Code availability: The code used to generate the parameters of Table 1 and the test results in 

Supplementary Tables S1-S5 are available from the corresponding author upon request. 
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Online-only Methods 

The panel model for local temperature evolution given in Equations 2 and 3 is formulated in the 

predictive regression format31, where the time specific variate λt captures common global 

temperature, radiation, and greenhouse gas influences on station specific temperature. These 

global variables typically manifest evidence of stochastic trend (or autoregressive unit root 32) 

behavior over time, as is known from earlier climate research17,33,34. The data used in the present 

study were tested for evidence of unit roots using augmented Dickey Fuller (ADF)35, Phillips-

Perron (PP)32,36 and KPSS37 tests. The results (which are shown in Table S1 of the 

Supplementary Information) are confirmatory of the presence of stochastic trends for all 

variables, although for variable T the ADF and PP coefficient test results are sensitive to the 

inclusion of deterministic trends in the regression, favoring trend stationarity in that case. 

The spatial panel formulation (Equations 2 and 3) allows for local site dynamic responses (via 

β1Ti,t) to local radiation effects (Ri,t) while controlling for the time series impact of global climate 

indicators and forcing agents through the presence of λt. Time series nonstationarity, as well as 

potential cointegration among these global variables, is accommodated by the predictive 

regression form of the formulation. 

 

When Tt, Rt, and CO2,eq are cointegrated, the time specific effect λt may be interpreted as a long 

run equilibrium global forcing effect that acts as one of the drivers of the local temperature 

dynamics in Equation 2. This equation then falls within the (spatial panel) framework of error 

correction mechanisms in econometrics38. The site specific innovations ui,t+1 are assumed to be 

martingale differences with respect to past information and aggregate shocks. (In effect, site-
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specific individual innovations at time t+1 are uncorrelated with aggregate shocks and radiation 

effects that have occurred up to time t). Since estimation and inference involves spatial averaging 

as well as temporal averaging, the asymptotic theory is normal and inference is standard for the 

parameters in Equation 239. This conclusion holds even when the global variables are themselves 

cointegrated rather than full rank nonstationary. 

 

Cointegration tests among the global variables were conducted and these are reported in 

Supplementary Table S2. The residual based tests used here are the Phillips and Ouliaris40 

coefficient (z) and t-ratio ADF (τ) tests for the presence of unit roots in the residuals from 

cointegrating regressions among the global variables (details are provided in Table S2). Critical 

values are obtained from MacKinnon41. The test results show strong evidence of cointegration 

among the global variables and these results are robust to the presence of a deterministic trend in 

the cointegrating regression. There is also evidence of dyadic cointegration in the pairs (Tt, Rt) 

and (Tt, CO2,eq), the latter corroborating evidence in earlier work33,34,42.  

 

We considered two extensions that involve model formulation and estimation. First, Equations 2 

and 3 were formulated to allow for latitudinal coefficient variation. We analyzed the impact of 

latitude on the parameter estimates by parameterizing according to four spatial regions: the 

southern hemisphere (SH, 90°S-15°S), the tropics (Tr, 15°S-15°N), the northern hemisphere 

subtropics (NHs, 15°N-45°N), and the northern hemisphere high latitudes (NHh, 45°N-90°N). 

The observations from surface stations in these separate regions are then used to estimate the 

region-specific parameters. Note that Equations 2 and 3 are based on global energy balance 

considerations, and thus the outcome of applying the same equations to separate regions, albeit 
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large, must be interpreted with that in mind. The results are reported in Supplementary Table S3. 

The main features to emerge from these findings are as follows: 

(i) A larger sensitivity to CO2 at high latitudes than in the tropics, with the northern hemisphere 

(NH) mid-latitudes yielding the largest γ3 values. This is consistent with the well-known and 

expected polar amplification of CO2 warming. 

(ii) Remarkably consistent parameter values across latitude bands, with local radiation effects 

generally being statistically significant, in contrast with the global radiation effect. 

(iii) In the tropics and southern hemisphere (SH), a global radiation effect similar in magnitude, 

but of opposite sign, compared to the local radiation effect. This is suggestive of a significant 

contribution to dimming from black carbon (BC) in this region, which is consistent with the large 

BC sources from biomass burning in the tropics and SH. In the NH, there is no such cancellation, 

suggesting that cooling aerosols like sulfate dominate the radiation trends there. This is again 

consistent with global climate modeling and satellite observations. 

(iv) NH sub-tropics and mid-latitudes (15-45 degrees N) show the highest sensitivity to trends in 

DSRS. This is consistent with the findings of ref. 20. The rationale is that NH mid-latitudes have 

the most land coverage (see Fig. 1b), so the DSRS triggers more rapid land responses and 

climate feedback mechanisms there than elsewhere. 

(v) Parameter γ1 is negative everywhere, indicative of the dominant influence of the Planck 

feedback on this parameter. However, γ1 is less negative in the NH than in the tropics and SH 

sub-tropics (though their confidence intervals overlap), possibly suggesting that increased heat 

transport from the SH and tropics into the NH extra-tropics may compensate for some of the 

additional heat lost to space through infrared radiation as the NH surface warms. This would be 

consistent with the observation of a southward shift in the Intertropical Convergence Zone 
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(ITCZ) during the second half of the 20th century, and an associated increased energy flux from 

the southern to the northern hemisphere43. The ITCZ shift has been attributed to the 

hemispherically asymmetric cooling effect from anthropogenic aerosols. 

 

The second extension involves the method of estimation. In view of the stochastic trends in the 

global variables (Tt, Rt, CO2,eq,t), the system was re-estimated using dynamic ordinary least 

squares (DOLS)44-46. This technique includes lead and lag differences in the regression and, as 

explained in the cited works, provides a convenient linear regression approach for dealing with 

any error correlation contamination and bias that might arise in nonstationary cointegrating 

regression. The technique has been used in earlier work by Kaufmann et al.34. This modification 

leads to the following reformulation of Equations 2 and 3 as 

 

𝑇𝑇𝑖𝑖,𝑡𝑡+1 = 𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑇𝑇𝑖𝑖,𝑡𝑡 + 𝛽𝛽2 ∙ 𝑅𝑅𝑖𝑖,𝑡𝑡 + 𝜆𝜆𝑡𝑡 + 𝑢𝑢𝑖𝑖,𝑡𝑡+1     (4) 

𝜆𝜆𝑡𝑡 = 𝛾𝛾0 + 𝛾𝛾1 ∙ 𝑇𝑇𝑡𝑡 + 𝛾𝛾2 ∙ 𝑅𝑅𝑡𝑡 + 𝛾𝛾3 ∙ ln�𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒,𝑡𝑡� + 𝛾𝛾𝑏𝑏 ∙ ∆𝑋𝑋𝑡𝑡−1 + 𝛾𝛾𝑐𝑐 ∙ Δ𝑋𝑋𝑡𝑡+1  (5) 

 

where 𝑋𝑋 = [𝑅𝑅, ln (𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒)] with corresponding coefficient vectors 𝛾𝛾𝑏𝑏 = [𝛾𝛾2,𝑏𝑏,𝛾𝛾3,𝑏𝑏], 𝛾𝛾𝑐𝑐 =

[𝛾𝛾2,𝑐𝑐 ,𝛾𝛾3,𝑐𝑐]. In this system, as noted above, the time specific effect λt serves as a long run 

equilibrium error in the global energy balance, an interpretation that is confirmed by unit root 

tests which strongly reject the presence of a stochastic trend in λt (see Supplementary Table S4) 

and corroborate the finding of cointegration among the trending variables (Tt, Rt, CO2,eq,t). Note 

that Equation 4 is formulated with lead differences ∆Xt+1 and lagged differences ∆Xt-1 in the 

primary driver variables Xt, just as in the usual formulation of a DOLS cointegrating regression 

of Tt on Xt. Equation 4 then falls within the well-studied framework of an error correction 
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mechanism in econometrics38, although its significance in the present spatial-panel context 

emerges from the role that the global forcing variables Xt and temperature Tt play in the 

determination of site specific dynamics of Ti,t+1 in Equation 4. 

The parameter estimates obtained from DOLS regression are given in Supplementary Table S5. 

The estimates of the global level variable coefficients (γ1, γ2, γ3) and the associated confidence 

intervals are in each case close to those reported in Table 1. The findings therefore corroborate 

those from the direct panel regression given without the inclusion of lead and lagged differences, 

showing that the results are robust to the use of cointegrating methods that allow for the presence 

of stochastic trends in the data. 
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Table 1: Parameter values, standard errors and confidence intervals for the parameters of 

Equations 2 and 3. Green shading indicates statistical significance, red shading shows lack 

thereof. 

Parameter Value 
Std. 

Error 

95% confidence 

interval 

Relevant 

variable 

β1 0.9212 0.0040 (0.9133, 0.9292) Ti 

β2 0.0127 0.0006 (0.0108, 0.0146) Ri 

ϒ1 -0.8438 0.1573 (-1.1611, -0.5266) T 

ϒ2 0.0025 0.0089 (-0.0154, 0.0205) R 

ϒ3 4.4056 0.9892 (2.4107, 6.4005) CO2, eq 
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