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Abstract

We construct a model of asset market exuberance, collapse and recov-
ery using subjective investor-based rational expectations about the impact
of fundamentals on the market price. Investors are assumed to have het-
erogeneous market sentiments, allowing them to be exuberant, cautious,
or fundamentalist via boundary conditions that describe their respective
views of the market impact of the same economic fundamentals. Equi-
librium solution paths of the model take varying forms, depending on
the parameter settings that reflect the importance of each type of market
participant. This rational expectations model of asset pricing is shown
to be consistent with a simple explosive continuous time autoregression
when exuberant sentiment dominates the market. The model explains as-
set price bubbles, including expansion and subsequent collapse, together
with long term recovery. Extensions of the model allow for contagion ef-
fects in which market sentiments are transmitted from a primary market
to a secondary market, reproducing speculative behavior and corrections
in the secondary market. Some of the implications of the model for em-
pirical work are explored.
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“Stock prices are created by investors, and recognizing that in-
vestors may form different opinions even when they have the same
substantive information, we contend that there can be no intrinsic
value for the stock. Instead, we propose that the relevant notion
of intrinsic value is obtained through market aggregation of diverse
investor assessments”(Harrison and Kreps, 1978).

1 Introduction

The present work seeks to model asset price bubble formation and the subse-
quent aftermath in a manner that is well suited to econometric analysis and
testing. The approach adopted draws its inspiration from Krugman’s (1991)
stochastic process driven rational expectations model of exchange rate target
zones. This simple but highly influential model demonstrated the existence of
an exchange rate equilibrium path in a currency target zone that followed an S
curve over a certain specified domain, thereby ensuring that the equilibrium ex-
change rate is maintained within a given currency band. The model formulated
a single equation that related (in logarithms) the exchange rate to economic
fundamentals that evolve according to a Brownian motion process, accompa-
nied by a rational expectations term that involved the expected rate of change
of the exchange rate. The solution of this equation can be represented in terms
of exponential functions that are tied down locally by boundary tangency con-
ditions (or smooth pasting by arbitrage or other considerations as in options
and optimal investment theory, c.f. Dixit, 1992, Bertola, 1998) which represent
mathematically the effect of countervailing actions by the monetary authority as
the exchange rate nears the edges of the target band. A great advantage of this
model to economic theorists and practitioners is its agnosticism with respect to
the measurement of fundamentals, so that investigators may concentrate atten-
tion on the implied properties of the exchange rate rather than on structural
models which seek to explain the exchange rate in terms of a (potentially long)
shopping list of policy drivers and fundamentals.
The model for asset prices that we introduce here is motivated by a similar

thematic. Without having to introduce a list of explicit economic fundamen-
tals, we seek a reduced form model which encapsulates structural notions that
drive stock market, commodity market, and real estate behavior and that have
the capacity to explain bubble-like behavior in prices. The underlying notions
may involve behavioral, game theoretic, or learning characteristics and they can
be embodied in a rational expectations mechanism that accounts for subjec-
tive market assessments influencing market prices. The resulting mechanism is
therefore compatible with a variety of structural notions and earlier work on
modeling bubbles.
For instance, behavioral ideas of markets driven by animal spirits involving

fear and greed have long existed, were presented (and the term coined) in Keynes
(1936) and are now placed at centre stage in the recent work by Akerlof and
Shiller (2009) that seeks to explain bubbles in financial asset and real estate
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prices in terms of such animal spirits. Earlier work by Harrison and Kreps (1978)
provided an analysis of bubble behavior based on heterogeneous beliefs among
investors whose market assessments aggregate to yield prices that can involve
bubble characteristics when there are short sales constraints. Scheinkman and
Xiong (2003) developed this notion further, providing a continuous time model
of speculative bubbles driven by overconfident investors trading in a market
with short sales constraints. In other recent work, Li and Xue (2009) provide
a subjective Bayesian investor perspective in which “new economy thinking”
acts as a driver for “belief evolution”concerning the productivity gains of new
technology, leading to “rational investor” exuberance that is used to explain
the 1990s Nasdaq bubble. In an alternative approach, Abreu and Brunnemeier
(2003) provide a dynamic gaming explanation to justify sustained departures
from fundamentals by “rational investors”riding a bubble wave even in the face
of widespread recognition of inflated prices.
All of these approaches involve the use of subjective assessments about in-

coming economic fundamentals in investor decision making. It is this idea that
is encapsulated in the model we present here. We are particularly interested in
developing a reduced form model that captures a variety of structural notions
such as those just described, while opening up the possibility of econometric
analysis and testing. The model we develop, as will become clear, implies a
discrete time version and local approximations that accord with the mildly ex-
plosive processes that have been used in recent econometric work to capture
bubble-like phenomena in stock markets, commodity markets and real estate
markets (see, e.g., Phillips and Yu, 2011; Phillips Shi and Yu, 2015a, 2015b).
With some extension, the model can also capture cross-market contagion of
speculative and negative market sentiment about the impact of fundamentals.
Solutions paths reveal the effects of sentiment transmission from a primary
to a secondary market, reproducing speculative bubbles with amplification or
diminution depending on the extent of the contagion. Transmission effects of
this type may be captured in discrete time autoregressive formulations that are
suited to empirical work.
The paper is organized as follows. The next section develops the model, de-

rives its solution, and shows how the solution is compatible with the existence
of a bubble and its ultimate collapse. The conditions for bubble behavior in
the sample paths are provided and some illustrations are provided. Section 3
studies the asset price dynamics arising from this model in stochastic differen-
tial equation form. The dynamics are shown to be consistent with an explosive
continuous time autoregression under certain conditions on the proportion of
exuberant investors and a measure of their exuberance. Section 4 extends the
framework to allow for contagion effects across markets. Some empirical impli-
cations are explored in Section 5. Section 6 concludes.
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2 Stochastic Rational Expectations and Asset
Price Bubbles

2.1 Heterogeneous agent sentiment

To fix ideas, we imagine a financial asset market with three heterogeneous types
of investors that we call fundamentalists, exuberants and circumspects. These
investors all look at the same incoming (log) fundamentals (ft) but interpret
them in different ways thinking that the market will follow, exaggerate or di-
minish their impact. In their financial market actions, we may regard such
investors as responsive (making proportionate responses to changes in funda-
mentals), over-responsive (exuberant when fundamentals increase and gloomy
when fundamentals decline), or underresponsive (cautious and reacting more
slowly when fundamentals change). Cautious investors tend to reduce overall
variation and overreponsive investors tend to raise volatility by exaggerating
fundamental effects.
This classification of investor type simplifies the reality of a much more

general (and evolving) distribution of market participants covering a continuous
spectrum of bull, bear, and conservative sentiment. The market price is affected
by economic fundamentals in conjunction with the interplay of the various types
of investors and their differing subjective view about the impact of the market
fundamentals on asset prices over some forthcoming horizon. The structural
process by which this interplay occurs, via brokerage orders, limit orders, or
mutual fund and hedge fund operations is not specified. Instead, we provide
the market price to be determined by a probabilistic mechanism that embodies
the outcome of investor actions and sentiment which is expressed through a
subjective, speculative, rational expectations component. The mechanism is
explained as follows.
We suppose there are three classes of investors —exuberant (a), cautious (b),

and fundamentalist (c) - signified by these subscripts and with respective pro-
portions in the population given by pa, pb, and pc satisfying pa+pb+pc = 1. Each
class implements an investment strategy based on subjective response functions
to the same fundamentals. The reactions may also depend on (typically) unob-
served extraneous data that these investors introduce to their decision making
and market positions. Fundamentals are also typically unobserved (to the econo-
metrician) and summarize a vast amount of incoming information, assumed to
be embodied in a scalar stochastic process index that represents fundamental
value ft. We assume that the market (log) price response (st) to fundamentals
is influenced by the sentiments and strategies of these investors according to
their respective proportions in the market leading to outcomes sit, i = a, b, c.
For our initial development, these proportions are taken as fixed, but may also
be considered time dependent and/or responsive to market conditions, as will
be pursued later. The collective market response function then takes the form
of the weighted average of these outcomes, viz.,

st = pasat + pbsbt + pcsct = pcft + pasat + pbsbt, (1)
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which uses the fact that sct = ft because the fundamentalist strategy follows
fundamentals exactly. The aggregation involved in yielding the market price (1)
reflects the notion emphasized by Harrison and Kreps (1978) cited in the header
that “intrinsic value is obtained through market aggregation of diverse investor
assessments.”
The behavior of exuberant and cautious investors takes account of subjective

“rational expectations” of the impact of fundamentals on the market price.
Analogous to Krugman’s (1991) exchange rate model, we write

sit = ft + γiEit (dsit) /dt, i = a, b, (2)

where Eit (i = a, b) is investor i expectation given information up to time t, in-
cluding fundamentals ft. The term Eit (dsit) /dt represents investor i’s expected
rate of change of the stock price and sit = ft + γiEit (dsit) /dt is the overall
response to common fundamentals ft that is expected by investors in this class.
These expectations are influenced by investor sentiment about how prices will
be affected by a change in fundamentals, with investor a anticipating a more ag-
gressive response than investor b. Combining these effects we have the collective
market response

st = pcft +
∑
i=a,b

pi {ft + γiEit (dsit) /dt}

= ft +
∑
i=a,b

piγiEit (dsit) /dt, (3)

which depends on investor expectations and the proportion of investors in each
class.

2.2 Model solution

While each component sit follows (2), the solution turns out to be different
from the Krugman S curve, where fundamentals are attentuated by tangency
conditions to keep the exchange rate within a fixed band at least within a local
region of fundamentals. In the present case, exuberant investors (a) anticipate a
stronger response of prices to fundamentals, an effect which generates stronger
growth in the presence of favorable economic conditions and greater volatility
(and risk) when conditions turn unfavorable. The framework is therefore hier-
archical with each submodel generating its own solution according to its own
boundary conditions that characterize the investor sentiment.
The model for exuberant investors sat = ft + γaEat (dsat) /dt is solved as

in Krugman (1991) using a trial solution sa = sa (f) = f +Aa
(
eαaf − e−αaf

)
.

The model differs from the Krugman model in the way we incorporate investor
sentiment through first order boundary conditions. To characterize exuberance,
the right derivative of s = s (f) is assumed to satisfy s′a (0+) = 1 + λa > 1,
where λa > 0 is a measure of the market exuberance of the investor at the
origin initial condition f = 0 in response to a positive infinitesimal change in
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fundamentals f > 0. This boundary condition implies an accentuated effect of
(positive) fundamentals on asset prices relative to a normal market reaction that
directly responds to fundamentals through the equation st = ft that accords
with fundamentals and has unit slope. In doing so, this boundary condition
also differs from Krugman’s smooth pasting tangency condition, which requires
that s′ (f∗) = 0 at some designated boundary points ±f∗ (determined by the
upper and lower limits of the exchange rate target zone). Importantly when
the Krugman boundary conditions s′ (f∗) = s′ (−f∗) = 0 are imposed, the
Krugman solution is well determined within the region [−f∗, f∗] whereas outside
this (local) region of the origin the solution will inevitably diverge in view of
the exponential form of the components of s (f) .

In the present case, upon differentiation of the trial solution, the boundary
condition s′a (0+) = 1 + λa yields Aa = λa/(2αa) > 0, and substitution gives

sa (f) = f +
λa

2αa

(
eαaf − e−αaf

)
, with αa =

√
2

γaσ
2
, (4)

for f ≥ 0. The parametric solution αa =
√

2/ (γaσ
2) is obtained as follows.

Assuming ft is Brownian motion with variance σ2 and using the stochastic
differential dsa = s′adf + σ2

2 s
′′
a (f) dt, we deduce that

Eat (dsa) /dt =
σ2

2
s′′a (f) =

αaσ
2

4
λa
(
eαaf − e−αaf

)
,

which in conjunction with the equation sat = ft + γaEat (dsat) /dt and (4)
implies that αa =

√
2/ (γaσ

2), a result that corresponds to Krugman’s (1991)
parametric solution for the exponent αa in terms of the structural parameters(
γa, σ

2
)
in the exchange rate model.

A similar approach leads to the solution for sb (f) . In this case we charac-
terize cautious investors by the requirement that the first derivative satisfies the
boundary condition s′b (0+) = 1 − λb < 1, where λb ∈ (0, 1) is a measure of
the cautious market sentiment exhibited by the circumspect investor at f = 0
in response to a positive infinitesimal change in fundamentals. This boundary
condition attenuates the effect of fundamentals at the origin by delivering a
slope less than unity, which corresponds to the normal market reaction to fun-
damentals in which sat = ft has martingale behavior. Proceeding as before we
obtain the solution

sb (f) = f − λb
2αb

(
eαbf − e−αbf

)
, with αb =

√
2

γbσ
2
. (5)

Combining (4) and (5) in (3) we have, for ft ≥ 0,

st = ft + pa
αaγaλaσ

2

4

(
eαaft − e−αaft

)
− pb

αbγbλbσ
2

4

(
eαbft − e−αbftt

)
= ft +

paλa
αa

sinh (αaft)−
pbλb
αb

sinh (αbft) . (6)
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Noting the form α =
√

2
γσ2 , we see that larger volatility (higher σ

2) reduces

α in both cases and therefore attenuates the exponential path and therefore
divergence from fundamentals. An extension of the model that allows for greater
flexibility is obtained by introducing a Bayesian prior perception of the volatility
in fundamentals. This is achieved by permitting the prior view of σ2 to differ
for i = a, b. Then, perception of higher risk with greater σ2a would lead to
a reduction in the exponential path, thereby attenuating exuberant investor
effects. Likewise, the perception of lower risk with smaller σ2b would lead to a
stronger exponential solution path that accentuates cautious investor effects on
the outcome and equilibrium path.

0 1 2 3 4 5
0
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Figure 1a: Solution paths s (f) for equilibrium asset prices with parameter
settings αa ∈ {1.62, 1.64, 1.66, 1.68} shown in sienna, blue, red, and black, and
using common settings for the other parameters, as given in the text. The

curves are plotted against the 45o line (green dashed) where s = f.

As is also apparent from the exponential component form of (6), the so-
lution st ultimately diverges as ft → ∞, just as the exhange rate solution in
the Krugman model does outside the smooth pasting limits at ±f∗. In the
case of Figure 1a, where αb > αa and negative investor sentiment ultimately
dominates, the solution for the log price st eventually diverges according as
st ∼ −pbλbαb

sinh (αbft) ∼ −pb αbγbλbσ
2

4 eαbft → −∞ as ft → ∞. Thus, (6) may
be interpreted as a local solution for st under positive fundamentals1 .
An analogous local solution for st holds for negative fundamentals under

response conditions at the origin where s′a (0−) = 1 − λa < 1 (so that ex-
uberant investors take a more optimistic view of the impact of negative fun-

1Correspondingly, the Krugman model provides a local solution for the exchange rate
within the domain [−f∗, f∗] as the boundary conditions imposed by the model do not prevent
divergence outside of this domain.
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damentals on price) and s′b (0−) = 1 + λb > 1 (so that cautious investors
take a more pessimistic view of negative fundamentals on price). In this al-
ternative scenario, pessimistic sentiment again eventually dominates and st ∼
−pb αbγbλbσ

2

4 e−αbft → −∞ as ft → −∞ when αb > αa. The combined solution
can therefore be written in the following form

st = ft +

{
paλa
αa

sinh (αaft)−
pbλb
αb

sinh (αbft)

}
1 {ft ≥ 0}

+

{
−paλa

αa
sinh (αaft) +

pbλb
αb

sinh (αbft)

}
1 {ft < 0} .

Figure 1b displays the two-sided solution paths consonant with such parameter
configurations that allow for positive and negative departures of fundamentals
from the origin with ultimate dominance of negative investor sentiment along
both paths.

4 2 2 4
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Figure 1b: Two sided solution paths s (f) for equilibrium asset prices with
parameter settings αa ∈ {1.62, 1.64, 1.66, 1.68} shown in sienna, blue, red, and
black, and using common settings for the other parameters, as given in the
text. The curves are plotted against the 45o line (green dashed) where s = f.

2.3 Illustrations

As is immediately apparent from (6), when the boundary effects cancel (λa = λb)
and the scale effects and proportions are both equal (γa = γb; and pa = pb), then
s = f and the solution path for s follows fundamentals. Disparities in these pa-
rameters produce divergences from the fundamental path and these take various
forms. Figures 1a and 1b show the solution paths s = s (f) for various values
of the parameters {λa, λb, pa, pb, αa, αa} against the effi cient market martingale
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model in which prices simply follow Brownian motion fundamentals along the
45o line s = f.
In these figures we set pa = 0.5, pb = 0.3, pc = 1− pa − pb = 0.2; λa = 0.2,

λb = 0.2; αa ∈ {1.62, 1.64, 1.66, 1.68} , and αb = 1.8. The difference in the
probability weights (pa, pb) and the range of values used for αa =

√
2/γaσ

2 show
how the strength of exuberance in relation to circumspection in investing plays
a large role in the shape of the market response to movements in fundamentals.
As is apparent in Figures 1a and 1b, the influence of exuberant investment
dominates st initially so that s (f) > f and prices exceed fundamentals until
the point of intersection s (f) = f, a value that is dependent on the particular
parameter configuration (pa, pb, λa, λb, αa, αb) . Cases where aa is larger clearly
exaggerate the differential between s and f. This dominance occurs even though
in the above example the exponent αa < αb and is explained by the fact that the
proportion of exuberant investors, pa = 0.5, exceeds the proportion of cautious
investors, pb = 0.3. However, since αb > αa, the influence of the circumspect
investors eventually takes over and the bubble collapses. The peak of the bubble
s
(
f̄
)
when f > 0 occurs at the stationary point f̄ which satisfies

s′
(
f̄
)

= 1 + paλa cosh
(
αaf̄

)
− pbλb cosh

(
αbf̄

)
= 0. (7)

The equation (7) can be solved numerically2 , giving f̄ = 3.32, 3.55, 3.87, 4.36
when αa = 1.62, 1.64, 1.66, 1.68. These values of f̄ match those corresponding
to the peaks of the curves shown in Figure 1a.
Further differentiation yields ∂s′ (f) /∂αa = paλaαa sinh (αaf) > 0 and

∂s′ (f) /∂αb = −pbλbαb sinh (αbf) < 0, so that the slope of the solution path
s (f) increases with αa and decreases as αb increases. Thus, speculative bubble
effects become stronger as the exuberance exponent αa rises and become weaker
with increases in αb. It is apparent from the shape of the curves in Figure 1a
that the change from ascent to descent around the peak of the bubble appears
most rapid in the case where αa takes the largest value and the peak differential
over fundamentals is the greatest. In this case, the derivative s′ (f) changes
rapidly from the largest exponential rate (αa = 1.68) of increase during the
bubble expansion to the descent rate (αb = 1.80) that is common for the other
cases.

2An approximate solution of (7) is obtained by factoring out the dominant exponential and
using a logarithmic expansion to simplify the equation and obtain an approximate analytic
solution. This has the form

f̄ '
ln
(
paλa
pbλb

)
αb − αa

+
2

paλa (αb − αa)

(
pbλb

paλa

)αa(αb−αa)
, (8)

when f̄ is large. The first term of (8) yields the approximate values f̄ = 2.55 (3.32), 2.84
(3.55), 3.65 (3.87), 4.26 (4.36) with true values in parentheses, corresponding to the cases
αa = 1.62, 1.64, 1.66, 1.68.
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2.4 Modeling long-run market recovery

We may superpose on the above model a decay system that achieves long-run
recovery returning the market to fundamental values. The mechanism inhibits
market exuberance at peak levels and controls negativism following a down-
turn. The mechanism operates through the market proportions of exuberant
and cautious investors. Instead of fixing these proportions as parameters, we
allow them to be ex post dependent on fundamentals using the functional forms
pa = pae

−δaf2t and pb = pbe
−δbf2t with δa, δb ≥ 0, so that the proportions of

exuberant and cautious investors decay to zero eventually as f → ±∞, bringing
the model back to fundamental values.3 The modified model incorporating the
decay feature has the following form for ft ≥ 0

st = ft +
paλae

−δaf2t

αa
sinh (αaft)−

pbλbe
−δbf2t

αb
sinh (αbft) . (9)

With some adjustments to the decay mechanism such as the use of an endoge-
nous response like e−δ(st−ft)

2

in place of e−δf
2
t , the mechanism may be associated

with policy intervention. For instance, to control housing market exuberance in
relation to fundamentals, regulators may resort to macro-prudential measures
such as capping loan to value ratios, imposing or increasing stamp duties, and
reducing debt servicing ratios. These measures may be introduced over a period
of time with the goal of attenuating market exuberance. Their effects are in-
tended to take heat out of the property market and promote long term market
recovery. Recovery is accomplished by diminishing overall investor exuberance.
In the present context, the mechanism works by reducing the proportion pa,
the exuberance measure λa, and counteracting the exponential growth effects
in the solution. As such policy intervention occurs, cautious investors gain in
confidence that the market will better reflect fundamental values, which leads
to a corresponding attenuation of the effects of negative sentiment.
A recent example of such sustained policy intervention in the property mar-

ket is the series of ten successive rounds of macro-prudential cooling measures
implemented by regulatory authorities in Singapore over the period 2009 - 2013.
Using bubble detection techniques based on the estimation of a reduced form
autoregression and the use of right-sided unit root tests for explosive behavior,
Liang et al (2016) found that these measures appear to have been effective in
containing exuberance in Singapore’s private housing market.
The decay mechanism in (9) may also be interpreted as a transversality con-

dition which ensures that the market price returns to fundamentals in the long
run as fundamental values evolve and local departures from fundamentals are
eliminated as the proportions of optimistic and pessimistic investors declines.
Transversality conditions have been used in past work to exclude the occurrence
of bubbles in asset pricing models by completely eliminating all solutions that
include bubbles (e.g., see Becker, 2008). In (9), the transversality decay mech-
anism does not prevent the emergence of bubbles and crashes in finite horizon

3This formulation may be interpreted as time dependent changes in the proportions (pa, pb)
under the assumption that fundamentals f eventually diverge with the passage of time.
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(local) solutions but its imposition ensures that fundamental values are followed
eventually.

0 2 4 6 8 10
0

5

10
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s(f)

Figure 2: Solution paths for equilibrium asset prices that follow the same
settings and schematic as Figure 1a, but now allow for evolutionary decay in
the proportions of exuberant and circumspect investors with pa (f) = e−δaf

2

and pb (f) = e−δbf
2

. The curves show both decay in exuberance (sienna and
blue with settings δa = 0.16, δb = 0.14) and decay in negativism (red and black

with equal settings δa = δb = 0.15).

Figure 2 shows the impact of this decay system on the solution paths given
in Figure 1a. The solution paths use the same settings and color schematics as
those given in Figure 1a but introduce evolutionary decay in the proportions
according to pa (f) = pae

−δaf2 and pb (f) = pbe
−δbf2 . The curves show both

decay in exuberance (the sienna and blue curves with settings δa = 0.14 and
δb = 0.16) and decay in negativism (red and black with equal settings δa = δb =
0.15).
Various refined specifications are possible. For instance, the proportions

could be made time dependent directly, so that pa = pa (t) and pb = pb (t) , a
specification that embodies exogenous forcing of the investor proportions and
may reflect the influence of unspecified and unobserved driver variables. The
price path would then have the form st = s (ft, t; θ) and stochastic differentia-
tion of st would correspondingly involve further terms arising from direct time
differentiation. The specification (9) is a simplification that ensures ex post
that the effects of evolution in the proportion of exuberant and circumspect in-
vestors are directly embodied in the reduced form. The decay system acts like a
transversality condition that brings the model back to fundamentals eventually,
while not preventing intermediate episodes of exuberance and collapse. While
the exponential formulation of the decay system is arbitrary, it is necessary to
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use some form of (higher order) exponential decay to ensure that the exponen-
tial effects involved in the episodes of exuberance and collapse are eventually
moderated and there is no permanent divergence from fundamentals.
In a structural model, investors would recognize that departures from fun-

damentals are unlikely to continue indefinitely (in view of the presence of such
long term market effects, arbitrage, or policy intervention) and that the oppor-
tunities for more aggressive investing than may be warranted by fundamentals
are inevitably finite horizon (subjectively apparent) opportunities. Investment
decisions based on present value calculations would then need to take into ac-
count the implied finite horizon framework. Lee and Phillips (2016) provide
some analysis of investment time horizons that acommodate myopic investing
and the impact of speculative behavior that focuses on short run market gains
over the long run effects of fundamentals.

3 Asset Price Dynamics

The solution (6) delivers asset price dynamics for st by stochastic differen-
tiation. These dynamics are of interest because they help guide empirical
specifications. We simplify notation by introducing the parameter vector θ =(
pa, pb, λa, λb, αa, αb, σ

2
)
. Then, differentiation of the solution st (ft; θ) yields

the nonlinear stochastic differential equation

dst = µ (ft; θ) dt+ σ (ft; θ) dft, (10)

with instantaneous drift given by

µ (ft; θ) =
σ2

2
{paλaαa sinh (αaft)− pbλbαb sinh (αbft)} ,

and instantaneous volatility

σ (ft; θ) = 1 + paλa cosh (αaft)− pbλb cosh (αbft) .

3.1 Local behavior after initialization

The properties of the diffusion (10) can be investigated locally in the neighbor-
hood of certain points. For instance, in the vicinity of the origin ft ∼ 0, we
may use the power series representation of the hyperbolic functions to give local
approximations to µ (ft; θ) and σ (ft; θ) . We obtain

µ (ft; θ) =
σ2

2

{
paλaα

2
a − pbλbα2b

}
ft +O

(
f3t
)
' σ2

2

{
paλaα

2
a − pbλbα2b

1 + paλa − pbλb

}
st,

(11)
since st = ft + paλa

αa
sinh (αaft) − pbλb

αb
sinh (αbft) = (1 + paλa − pbλb) ft for

ft ∼ 0. Also

σ (ft; θ) = 1+paλa cosh (αaft)−pbλb cosh (αbft) = (1 + paλa − pbλb)+O
(
f2t
)
.

(12)
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Combining (11) and (12) we can approximate (10) by the first order stochastic
differential equation

dst = βstdt+ ωdft, (13)

where

β =
σ2

2

{
paλaα

2
a − pbλbα2b

1 + paλa − pbλb

}
and ω = 1 + paλa − pbλb.

Hence, in the vicinity ft ∼ 0, st follows an Ornstein-Uhlenbeck (OU) process
with constant coeffi cients β = σ2

2

{
paλaα

2
a − pbλbα2b

}
/ω and ω = 1+paλa−pbλb.

When β > 0, it is clear that the model (13) is explosive and, correspondingly,
the solution process st is locally explosive in the vicinity of the origin. Observe
that this condition for an explosive model (β > 0) is satisfied when the model
parameters satisfy α2a >

pbλb
paλa

α2b . It follows that explosive behavior may arise
even when αa < αb and λa = λb, provided the proportion of exuberant investors
(pa) is suffi ciently great relative to the proportion of circumspect investors (pb) .
Such a configuration arises in the example of Figure 1a, which shows how explo-
sive behavior may dominate negative sentiment initially, even though stronger
negative exponential effects manifest through the term sinh (αbft) in the solu-
tion. These negative effects eventually become dominant for large ft producing
bubble collapse, as is clearly evident in Figure 1a.
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Figure 3: Solution paths for equilibrium asset prices with the reverse settings
of Figure 1a (see footnote 3) and with evolutionary decay in the proportions of
exuberant and circumspect investors with pa (f) = e−δaf

2

and pb (f) = e−δbf
2

.
The curves show both the erosion of negativism (sienna and blue with settings
δa = 0.16, δb = 0.14) and decay in subsequent exuberance (red and black with

equal settings δa = δb = 0.15).

Explosive behavior also manifests when the market exuberance measure λa
is large enough relative to the market caution measure λb even in situations

13



where the proportion of exuberant investors may not be as great as that of
circumspect investors (i.e., pa ≤ pb) provided the condition paλaα2a > pbλbα

2
b

still holds. In short, the subjective rational expectations model of asset pricing
is consistent with a simple explosive continuous time autoregression when ex-
uberant sentiment dominants the market either by the proportion (pa) of such
investors or the strength of their market positions (λa and aa).
Next consider the case where paλaα2a < pbλbα

2
b and the coeffi cient β < 0 in

(13). This case arises when cautious investors dominate the market initially due
to the size of pb and λb relative to pa and λa. Their behavior leads to a dimin-
ished response of market prices to fundamentals. The process st then follows
a stationary Ornstein-Uhlenbeck process which produces a market correction.
As this correction continues, it is viewed by exuberant investors as a buying
opportunity in which fundamental values exceed market prices. Ultimately, the
sustained bear market is overtaken by exuberance among these investors and a
new bubble emerges, due to the fact that αa > αb. Figure 3 gives an illustration
of such a market correction and recovery using parametric settings that are the
reverse to those shown in Figure 2 with the same decay effects active.4

3.2 Peak and trough behavior

In the vicinity of the peak value f̄ that satisfies (7) we have the following
expansions of the drift and volatility functions

µ (ft; θ) = µ
(
f̄ ; θ
)

+
σ2

2

{
paλaα

2
a cosh

(
αaf̄

)
− pbλbα2b cosh

(
αbf̄

)}
dft+Op (dt) ,

and

σ (ft; θ) = σ
(
f̄ ; θ
)

+
{
paλaαa sinh

(
αaf̄

)
− pbλbαb sinh

(
αbf̄

)}
dft +Op (dt)

=
{
paλaαa sinh

(
αaf̄

)
− pbλbαb sinh

(
αbf̄

)}
dft +Op (dt) ,

since σ
(
f̄ ; θ
)

= 1 + paλa cosh
(
αaf̄

)
− pbλb cosh

(
αbf̄

)
= 0 at the peak value f̄

in view of (7). Combining these representations in (10), we find that the local
change of st at ft ∼ f̄ is given by

dst = µ
(
f̄ ; θ
)
dt+

[
σ
(
f̄ ; θ
)

+
{
paλaαa sinh

(
αaf̄

)
− pbλbαb sinh

(
αbf̄

)}
dft
]
dft + op (dt)

= µ
(
f̄ ; θ
)
dt+

{
paλaαa sinh

(
αaf̄

)
− pbλbαb sinh

(
αbf̄

)}
σ2dt+ op (dt)

=
3σ2

2

{
paλaαa sinh

(
αaf̄

)
− pbλbαb sinh

(
αbf̄

)}
dt.

Although the equilibrium path s = s (f) has a turning point at f = f̄ , this
fact does not imply that the stochastic process st = s (ft) has zero differential
at f̄ . Instead, dst = Op (dt) and this drift term is, in fact, negative at ft = f̄ .

4The parameter settings for Figure 3 are: pa = 0.3, pb = 0.5, pc = 1 − pa − pb = 0.2;
λa = 0.2, λb = 0.2; αb ∈ {1.62, 1.64, 1.66, 1.68} , and αa = 1.80. The decay effect pairs are
(δa, δb) = (0.16, 014) and (δa, δb) = (0.15, 0.15) .
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To see this, note that f̄ is a local maximum of s (f) so that s′
(
f̄
)

= 0 and
s′′
(
f̄
)
< 0. But, s′′

(
f̄
)

= paλaαa sinh
(
αaf̄

)
− pbλbαb sinh

(
αbf̄

)
, so that

dst =
3σ2

2

{
paλaαa sinh

(
αaf̄

)
− pbλbαb sinh

(
αbf̄

)}
dt < 0. (14)

Thus, at the peak of the bubble the local direction of change becomes negative.
The collapse of the stochastic asset price process st begins at the peak and is
embodied in the (second order) downward drift of the differential dst at ft = f̄ .

The model manifests similar behavior in the case where the parameter con-
figuration involves a market downturn. In that case, s = s (f) still has a turning
point at f = f̄ but this point now corresponds to a market trough rather than
a market peak. Since s′

(
f̄
)

= 0 and s′′
(
f̄
)
> 0 in this case, we find that (14) is

positive rather than negative, so that at the trough f̄ we have dst > 0. Hence,
recovery from the downturn begins at the trough and is embodied in the upward
drift of the differential dst.

4 Modeling Contagion

The model may be extended to allow for cross market contagion effects. Suppose
we have two related markets, such as two real estate markets in different loca-
tions or metropolitan districts within the same country. In such cases, we might
expect broadly similar fundamentals and regulatory conditions to hold. In par-
ticular, if the fundamentals are cointegrated across the two markets, then it will
be a reasonable approximation to regard the fundamentals in each case as corre-
sponding to a common stochastic trend in continuous time (c.f., Phillips, 1991)
which we represent as ft. One of the markets (perhaps the larger metropolitan
area with greater population) might be considered as the core market and the
other market a peripheral or secondary market If a speculative bubble arises
in one of the markets —say the core market —then interest focuses on possible
contagion effects from this market to the other market. Contagion effects can
be explored within the framework developed above in the following manner.
We assume that the core market has the specification and equilibrium so-

lution path developed above in (3) and (6). We use the same notation for the
variables and parameters that describe this market. The secondary market is
assumed to follow the same general specification with the same three classes of
investors as before but with possibly different parameterizations and a corre-
spondingly different equilibrium solution. Using the framework above, we write
the model and solution for the secondary market using asterisk affi xes to dis-
tinguish this market from the core market. In particular, employing subjective
rational expectations as before we have the following generating mechanism for
the two divergent investor types (a and b) present in the secondary market

s∗it = ft +
∑
i=a,b

p∗i γ
∗
iEit (ds∗it) /dt, (15)
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and respective solutions s∗a (f) = f +
λ∗i
2α∗i

(
eα

∗
i f − e−α∗i f

)
, for i = a, b and with

αi =
√

2
γ∗i σ

2 . Aggregating these effects together with the third (fundamentalist)

investor type (c) as before, we obtain the solution

s∗ = f +
p∗aλ
∗
a

α∗a
sinh (α∗af)− p∗bλ

∗
b

α∗b
sinh (α∗bf) . (16)

The exuberance and negativity measures λ∗i (i = a, b) of the divergent investors
in the secondary market are assumed to be based on observed behavior in the
core market. In particular, we assume that the λ∗i (i = a, b) are functionalized
ex post to inherit effects of potential contagion from the core market, so that
λ∗i = λ∗i (s (f)− f) and these secondary market measures of deviation from
fundamentals then depend on the extent to which market prices in the core are
observed to exceed fundamentals, i.e., s (f)− f. Using a linear specification for
these inherited effects, we write the dependencies in the following form with no
intercept

λ∗a (f) = λ∗a (s (f)− f) , λ∗b (f) = λ∗b (s (f)− f) , (17)

where λ∗a and λ
∗
b are fixed slope parameters. The zero intercept in (17) implies

that λ∗a (f) = λ∗b (f) = 0 at the origin f = 0, so that the secondary market
follows fundamentals and experiences no exuberant or negative sentiment at
the origin, as distinct from the core market where sentiment diverges from fun-
damentals initially at f = 0 because λa, λb > 0 in the core market. With this
specification and using s (f)−f = paλa

αa
sinh (αaf)− pbλb

αb
sinh (αbf), the solution

for s∗ takes the following form

s∗ (f) = f +
p∗aλ
∗
a

[
paλa
αa

sinh (αaf)− pbλb
αb

sinh (αbf)
]

α∗a
sinh (α∗af)

−
p∗bλ
∗
b

[
paλa
αa

sinh (αaf)− pbλb
αb

sinh (αbf)
]

α∗b
sinh (α∗bf) , (18)

which depends on both sets of parameters (αa, αb, pa, pb, λa, λb) and (α∗a, α
∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b) ,

thereby involving both core market and secondary market behavior in the solu-
tion path.
Differentiating (18) gives

s∗′ (f) = 1 +
p∗aλ
∗
a (s′ (f)− 1)

α∗a
sinh (α∗af)− p∗bλ

∗
b ((s′ (f)− 1))

α∗b
sinh (α∗bf)

+p∗aλ
∗
a (s (f)− f) cosh (α∗af)− p∗bλ∗b ((s (f)− f)) cosh (α∗bf) ,

from which it follows that s∗′ (0) = 1 at f = 0. Thus, the secondary market
follows fundamentals in the vicinity of the origin in contrast to the core market
where s′ (0) = 1+paλa−pbλb.While the positive and negative sentiments of core
market investors impact the core market immediately, peripheral investor senti-
ment follows fundamentals at the origin. But when f > 0, investor sentiment in
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the core market leads to divergence between the market price and fundamentals
so that s (f) 6= f. This divergence is then transmitted to the secondary market
via the functional dependencies λ∗a (s (f)− f) and λ∗b (s (f)− f) . Since these
functions are linear, the exuberance and negativity measures in the secondary
market are proportional to the divergence s (f) − f and therefore can be ex-
pected to reproduce certain features of the bubble and collapse experienced in
the core market with amplification and diminution of these features depending
on the magnitude of the divergence s (f) − f and the parametric values of the
various coeffi cients in (18). As such, the model provides a mechanism of direct
transmission or contagion from the core to the periphery.
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Figure 4: Solution paths s∗ (f) for equilibrium asset prices in the peripheral
market (shown in blue, red, black, black dashed) against the solution path s (t)
in the core market. Parameter settings are given in Table 1. The curves are
plotted against the 45o effi cient markets line (green dashed) where s = f.

Table 1: Parameter Settings for Figure 4

Curve Color Parameters Values
Core: sienna (αa, αb, pa, pb, λa, λb) (1.62, 1.8, 0.5, 0.3, 0.2, 0.2)
Secondary: blue (α∗a, α

∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b)

(
1.62, 1.8, 0.5, 0.3, 110 ,

1
10

)
red (α∗a, α

∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b)

(
1.62, 1.8, 0.5, 0.3, 120 ,

1
20

)
black (α∗a, α

∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b)

(
1.62, 1.8, 0.5, 0.3, 140 ,

1
40

)
dashed black (α∗a, α

∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b)

(
1.62, 1.8, 0.5, 0.3, 1

100 ,
1
100

)
Fundamentals dashed green

We illustrate the impact of these contagion effects by displaying the equi-
librium solution curves s∗ (f) for the periphery for various parameter values
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against the corresponding solution curve s (f) for the core market. We use
the parameter settings given in Table 1. These settings are the same as those
used earlier for the core market and they are replicated here for the secondary
market, which is therefore identical in response except for the exuberance and
negativity measures for which we use the linear function settings λ∗i (s (f)− f)
with constant slope λ∗i for i = a, b. Thus, in (18), we use the slope settings
λ∗i = 0.10, 0.05, 0.025, for both i = a, b, and these slopes deliver the secondary
market exuberance and negativity departure measures as respective proportions
of the core market excess over fundamentals.
Figure 4 shows these solution paths s∗ (f) for the peripheral market in the

blue, red, black, and dashed black curves, against the solution path s (f) for the
core market which is given by the sienna curve. The parameter values are given
in Table 1. As is apparent in the figure, the core market solution s (f) diverges
from fundamentals before the secondary market departs from fundamentals.
But once the secondary market inherits sentiment from the core market, the
secondary market can be quickly overtaken by contagion. For the blue, red and
black parameter settings used in Figure 4 (λ∗i = 0.1, 0.2, 0.4; i = a, b), contagion
from the core market amplifies exuberance and accelerates the eventual collapse
in the periphery. Other settings, such as the dashed black setting (λ∗i = 0.01;
i = a, b) reduce the induced exuberance in the secondary market.
As earlier, we superpose on the components of the model (18) a decay system

that achieves long-run recovery returning both the core and periphery markets to
fundamental values. The mechanism for the core matches (9) and inhibits both
exuberance and negativism in the core in the long run by a decay factor using the
functional specifications pa = pae

−δaf2 and pb = pbe
−δbf2 with δa, δb ≥ 0. This

mechanism is supplemented with a decay factor for the impact of contagion
from the core to the periphery so that λ∗i (s (f)− f) 7→ λ∗i e

−δ∗i f
2

(s (f)− f) ,
which discounts exuberance in the primary market and ensures that contagion
effects ultimately die out. The fully modified model that incorporates these
decay features has the following explicit form

s∗ (f) = f +

p∗aλ
∗
ae
−δ∗af

2

[
paλae

−δaf2

αa
sinh (αaf)− pbλbe

−δbf
2

αb
sinh (αbf)

]
α∗a

sinh (α∗af)

−
p∗bλ
∗
be
−δ∗bf

2

[
paλae

−δaf2

αa
sinh (αaf)− pbλbe

−δbf
2

αb
sinh (αbf)

]
α∗b

sinh (α∗bf) . (19)

Figure 5 shows the solution paths s∗ (f) based on (19) for the parameter
settings given in Table 2. The parameter values closely match those used for
Figure 4 but are supplemented with the functionalized long run decay factors
pie
−δif2 and contagion factors λ∗i e

−δ∗i f
2

(s (f)− f) for i = a, b. The settings
for (δi, δ

∗
i )i=a,b are given in Table 2. As is apparent in the figure from a com-

parison of the blue and sienna paths with the black and red paths, the decay
parameter settings (δi, δ

∗
i )i=a,b play an important role in the shape of the paths.

In particular, small differences in the coeffi cients (δ∗i )i=a,b alter the paths from
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those where the secondary market bubble collapses back to fundamentals (blue
and sienna; with (δ∗a, δ

∗
b) = (−0.14,−0.16)) to those where the secondary mar-

ket bubble collapses in a downturn market below fundamentals before recovery
(δ∗a, δ

∗
b) = (−0.15,−0.16)). These alternate paths show the impact of small

changes in the contagion factors on the equilibrium solution in the secondary
market.
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Figure 5: Solution paths for equilibrium asset prices s∗ (f) in the secondary
market allowing for evolutionary decay in the proportions of exuberant and

circumspect investors. Parameter values are given in Table 1.

Table 2: Parameter Settings for Figure 5

Curve Color Parameters Values
Core (αa, αb, pa, pb, λa, λb) (1.62, 1.8, 0.5, 0.3, 0.2, 0.2)

Secondary: blue (α∗a, α
∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b)

(
1.62, 1.8, 0.5, 0.3, 130 ,

1
30

)
sienna (α∗a, α

∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b)

(
1.62, 1.8, 0.5, 0.3, 140 ,

1
40

)
black (α∗a, α

∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b)

(
1.62, 1.8, 0.5, 0.3, 130 ,

1
30

)
red (α∗a, α

∗
b , p
∗
a, p
∗
b , λ
∗
a, λ
∗
b)

(
1.62, 1.8, 0.5, 0.3, 120 ,

1
20

)
Decay factor blue & sienna (δa, δb) , (δ∗a, δ

∗
b) (−0.15,−0.15) , (−0.14,−0.16)

black & red (δa, δb) , (δ∗a, δ
∗
b) (−0.15,−0.15) , (−0.15,−0.16)

Fundamentals dashed green

More generally, this example demonstrate the fragility of the bubble expan-
sion and collapse paths to small changes in the model parameters. There is
a good reason why such fragility might be anticipated. The fragility of the
shapes of these solution paths may be taken as indicative of a well-known em-
pirical phenomena concerning bubbles. Real world bubbles share many common
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characteristics of speculative expansion followed by contraction. But each new
bubble nonetheless appears different from past bubbles, justifying the appel-
lation that “this time is different” and thereby necessitating flexibility in the
range of possible solution paths if a theory model is to be useful in practical
work.

5 Empirical Model Implications

From (13), the local behavior of the price process following the point of origina-
tion is governed by a linear diffusion. The solution of this equation is given by
st =

∫ t
0
eβ(t−r)dfr and discrete time observations (skhn)

K
k=0 taken at the sam-

pling interval hn (where n is the number of sample observations) are known to
follow the first order autoregression (AR)

skhn = ρnskhn−hn + ukhn , with ρn = eβhn and ukhn =

∫ khn

khn−hn
eβ(khn−r)dfr,

(20)
(see Phillips, 1972). This autoregression (20) is (mildly) explosive when the O-U
coeffi cient β > 0 and the sampling interval hn = 1

kn
for some sequence kn →∞

for which kn
n → 0. In such cases the AR coeffi cient ρn ∼ 1 + β

kn
> 1 and the

autoregression is said to be mildly explosive in the terminology of Phillips and
Magdalinos (2007). When β < 0, the AR coeffi cient is ρn = 1 + β

kn
< 1 and is

called mildly integrated.
Mildly explosive AR processes of the form (20) have been used as empirical

models of bubble behavior in several recent articles (Phillips, Wu and Yu, 2011;
Phillips and Yu, 2011; Phillips, Shi and Yu, 2015a, 2015b). In this empirical
work, the model (20) is treated as a reduced form and is used to test for the
existence of bubbles in financial, commodity, and real estate asset prices by
means of right-sided unit root tests of the hypothesis H0 : ρn = 1 in (20)
or β = 0 in (13). H0 is used to represent martingale behavior under market
normalcy corresponding to dst = ωdft in (13), as distinct from mildly explosive
behavior of st under the alternative hypothesis H1 : ρn ∼ 1 + β

kn
> 1, or β > 0

in (13).
The present work shows that such reduced form models can be justified in

terms of a structural model based on subjective rational expectations of market
opportunities and the aggregation of diverse investor assessments of the impact
of fundamentals in determining market prices. In other recent work (Phillips
and Shi, 2014), a mildly integrated AR process has been used as a reduced form
to model the bubble collapse process. Again, this formulation may be justified
using the present rational expectations framework.
In addition to testing and dating bubbles, the framework may be used to

assess empirical evidence of contagion between two markets. In practical em-
pirical work it is most convenient again to work with the local specifications in
terms of linear diffusions and focus on linkages between the implied parame-
ters β and β∗ of the core and secondary models in continuous time with the
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associated AR parametric specifications ρn and ρ
∗
n relating to discrete time ob-

servations in the core and secondary markets. Empirical evidence of contagion
can be explored empirically by examining linkages between these parameters
over time when they are estimated by a recursive or moving window approach
through the sample. In recent work, Greenaway-McGrevy and Phillips (2016)
provide an empirical illustration of this linkage technique in detecting contagion
between metropolitan real estate markets. The econometric methods used in
fitting the recursive relationship between the AR coeffi cients involves a time
varying coeffi cient model, which allows the relationship between ρn and ρ

∗
n to

vary over time and which can be estimated by kernel regression methods.

6 Conclusion

The model developed in this paper has a simple stylized form involving only
three types of investors, working with their own assessments of the impact of
fundamentals on prices via a subjective rational expectations framework. The
model uses an aggregative mechanism to determine market price and does not
attempt to capture the trading mechanism through which these diverse market
assessments coalesce and work to determine market prices. From this perspec-
tive, the present model offers only a plausible behavioral mechanism of price
determination.
Despite its simplicity, the model is capable of capturing some of the major

features of financial and real estate markets that manifest bubble-like behav-
ior involving exuberance and collapse. Multi-market versions of the model also
accommodate cross-market contagion of speculative and negative market senti-
ment about the impact of fundamentals. Local approximations show that the
model is compatible with reduced form autoregressive specifications that are
now being used to provide empirical tests for the existence of bubbles in finan-
cial and real estate markets, as well as dating algorithms that can consistently
estimate origination and termination dates of bubble activity. These methods
are used recursively and, in so doing, are able to provide mechanisms for real
time assessments of financial market conditions by surveillance teams in central
banks. The present model helps to furnish support for the use of these reduced
form specifications in empirical work and to interpret their findings in terms of
the impact of investor sentiment and expectations.
One feature to emerge from the workings of the model is the fragility of the

solution paths to certain parameter settings. This fragility is partly explained
by the fact that the general solution involves exponential departures from fun-
damentals that may be accentuated or attenuated depending on the magnitude
of the exuberance and negativity measures, the proportions of investors of each
type, and any incoming contagion effects from another market. The fragility of
the shapes of these solution paths may be taken as indicative of a well-known
empirical phenomena concerning bubbles. Real world bubbles share many com-
mon characteristics of speculative expansion followed by contraction. But each
new bubble nonetheless appears different from past bubbles, justifying the ap-
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pellation that “this time is different”and thereby necessitating flexibility in the
range of possible solution paths if a theory model is to be useful in practical
work.
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