

1 Integrated optical waveguide-based fluorescent immunosensor for fast
2 and sensitive detection of microcystin-LR in lakes: Optimization and
3 Analysis

4 Lanhua Liu^a, Xiaohong Zhou^{a*}, James S. Wilkinson^b, Ping Hua^{b**},
5 Baodong Song^a, Hanchang Shi^a

6 a.Center for Sensor Technology of Environment and Health, State Key
7 Joint Laboratory of ESPC, School of Environment, Tsinghua University,
8 Beijing 10084, China

9 b.Optoelectronics Research Centre, Southampton University, Highfield,
10 Southampton, SO17 1BJ, UK

11 [*xhzhou@mail.tsinghua.edu.cn](mailto:xhzhou@mail.tsinghua.edu.cn); [**ph2@orc.soton.ac.uk](mailto:ph2@orc.soton.ac.uk)

12 Abstract: Nowadays, biosensor technologies which can detect various
13 contaminants in water quickly and cost-effectively are in great demand.
14 Herein, we report an integrated channel waveguide-based fluorescent
15 immunosensor with the ability to detect a maximum of 32 contaminants
16 rapidly and simultaneously. In particular, we use waveguide tapers to
17 improve the efficiency of excitation and collection of fluorescent signals
18 in the presence of fluorophore photobleaching in a solid surface bioassay.

19 Under the optimized waveguide geometry, this is the first demonstration
20 of using such a type of waveguide immunosensor for the detection of
21 microcystin-LR (MC-LR) in lake water. The waveguide chip was
22 activated by **(3-Mercaptopropyl)**

23 trimethoxysilane/N-(4-maleimidobutyryloxy) succinimide (MTS/GMBS)
24 for immobilization of BSA-MC-LR conjugate, which was confirmed to
25 have uniform monolayer distribution by atomic force microscopy. All real
26 lake samples, even those containing MC-LR in the sub-microgram per
27 liter range (e.g. 0.5 μ g/L), could be determined by the immunosensor
28 with recovery rates between 84% and 108%, confirming its application
29 potential in the measurement of MC-LR in real water samples.

30 **Keywords:** Multi-channel waveguide; Immunoassay; Total internal
31 reflection fluorescence; Microcystin-LR

32 **Introduction**

33 Research activities on chemical and biochemical sensors have progressed
34 dramatically over the past three decades. At present, much research work
35 is focused on the development of systems capable of multi-analyte
36 detection in a single sample, for environmental, clinical or security
37 applications^{1,2}. Optical sensors have great potential in this field because
38 of their ability to probe surface films using a range of optical phenomena
39 while achieving low noise and high sensitivity. In addition, they have
40 advantages in speed and permit in-situ sensing and real-time
41 measurements. Optical sensors are also suitable for miniaturization and
42 for remote and multi-analyte sensing. Another important feature of an
43 optical sensor system is that it is substantially free from electromagnetic
44 interference and has a reduced possibility of causing an explosion in a

45 dangerous environment, compared to electrical transduction systems.
46 Therefore, optical biosensors offer **several** advantages over
47 laboratory-based systems **when** compared to other sensing systems.
48 Among these, waveguide-based evanescent **wave** fluorescent biosensors
49 have attracted intensive attention because of their potential for easy
50 miniaturization and their high sensitivity and selectivity^{1,2}. The
51 evanescent wave **provides** the excitation energy to induce fluorophore
52 emission which can **then** be detected and directly related to the analyte
53 concentration in samples. **In principle**, the combination of evanescent
54 wave **excitation** and **fluorescent** labeling offers both **outstanding**
55 sensitivity and selectivity. The evanescent wave essentially confines **the**
56 **excitation power** within a **submicron** distance from the sensor surface,
57 providing **the** selectivity to excite only the fluorophores attached **to** the
58 sensor surface, **thereby** minimizing **the** interference or contribution from
59 the bulk phase³. Furthermore, the excitation light is waveguided away
60 from the detection region, allowing **simple** discrimination of the
61 fluorescence signal from the excitation light and achieving high
62 sensitivities and low limits of detection (LODs)³⁻⁶.
63 Microcystin-LR (MC-LR) is one of the most toxic cyclic heptapeptide
64 cyanotoxins released by cyanobacterial blooms in surface waters, for
65 which sensitive and specific detection methods are necessary to carry out
66 recognition and quantification⁷. **Although several analytical techniques**

67 for microcystin detection such as ELISA, HPLC and LC-MS/MS etc.
68 have already been established, the development of biosensors offers rapid
69 and accurate detection, high reproducibility and portability⁸. Shi *et al.*
70 reported an automated online waveguide-based evanescent wave
71 fluorescent immunosensor for the detection of microcystin-LR, which
72 adopted a rectangular glass chip with a polished 45° bevel on one endface
73 for light coupling as the evanescent wave transducer⁹. Following this
74 approach, a linear strip laser excitation beam was used to expand the
75 multi-analyte analysis capability, allowing for simultaneous
76 measurements of up to twenty-four analytes; subsequently, the target
77 compound of MC-LR was selected as a paradigm to validate the
78 sensitivity of the biosensor, achieving a LOD of 0.67 µg/L¹⁰. However,
79 single mode waveguides are of great interest compared with the
80 extremely multimode waveguides demonstrated in the above studies^{9,10},
81 because of several specific advantages¹¹. For example, single mode
82 planar waveguides (i) yield much higher surface intensity than multimode
83 waveguides for a given waveguide power¹², allowing high signal strength
84 for low laser power, (ii) provide very stable and well-defined surface
85 intensity distributions and unique optical velocity leading to much greater
86 stability and hence low noise, and (iii) allow stable monolithic integration
87 of multiple functions leading to multisensor integration and potentially
88 on-chip processing. As far as we know, there are no other studies of using

89 single mode waveguide-based fluorescent biosensors for MC-LR
90 measurement. The indirect competitive assay is commonly adopted in
91 immunoassays to create a stably regenerable biosensing chip surface,
92 which is especially critical for the application of such an immunosensor
93 for on-line and semicontinuous operation^{9-10,13-18}. Extensive efforts have
94 been devoted to control the configuration and orientation of functional
95 molecules on the chip surface, forming a well-accepted conclusion that a
96 monolayer of bioactive solid surface enhances the performance of
97 immunosensors¹⁶. However, there is still a dearth of direct imaging data
98 on the biosensitive surface to confirm monolayer formation.

99 Herein, we reported a 32-analyte integrated optical fluorescence-based
100 multi-channel sensor, and its integration to an automated biosensing
101 system. A beam-propagation model which simulates the propagation of
102 light throughout the waveguide layout, including surface intensity
103 distribution for fluorescence excitation, has been established allowing
104 design optimization of waveguides for immunosensing applications.
105 Moreover, we describe the first demonstration of the use of such a
106 waveguide immunosensor for the detection of Microcystin-LR in lakes.
107 An indirect competitive immunoassay is adopted with the MC-LR-protein
108 conjugate immobilized on the chip surface, which is investigated using
109 the Atomic Force Microscopy (AFM) technology.

110 **Results**

111 **Waveguide Geometry: Simulation and Optimization**

112 Herein, a fibre-pigtailed waveguide chip consisting of a channel
113 waveguide circuit which distributes excitation light to 32 separate sensing
114 patches on the surface is presented, following the layout shown in **Figure**
115 **1a**. In order to obtain low-loss, single-mode waveguides with a modal
116 spot size similar to that of optical fibre at 635 nm, potassium
117 ion-exchange in BK7 glass substrates was selected to give a good index
118 match to optical fibre. A tapered waveguide section is introduced into the
119 chip design to address the dilemma that the high surface excitation
120 intensity will be accompanied by photobleaching of the dye molecules,
121 which would reduce the sensitivity of the device, due to rapid decay of
122 the signal¹⁹. In our design, an **adiabatic** taper section is employed to
123 broaden the waveguides in order to reduce the power density of excitation
124 radiation at the surface of the waveguide, while increasing the area over
125 which the fluorescent-tagged molecules are exposed to the evanescent
126 field. In this way, the peak emitted fluorescence power is maintained (as
127 the product of area and surface power density is maintained) but the
128 photobleaching rate is reduced, allowing longer acquisition time and
129 hence improved signal to noise ratio and lower LOD.

130 A silica isolation layer of thickness 1 μm is used to coat the waveguide
131 surface, with areas of $1500 \mu\text{m} \times 300 \mu\text{m}$ opened as sensing windows. The
132 intensity at the surface of the isolation layer is negligible compared with

133 that at the waveguide surface within the window, effectively isolating the
134 chip from the analyte outside these windows. A cross-sectional view
135 along one of the sensing patches, showing the waveguide, isolation layer
136 and location of the surface chemistry is shown in **Figure 1b** and a
137 photographic image of light propagation along the waveguide **chip** is
138 shown in **Figure 1c**.

139 Modal intensity profiles and fibre to waveguide coupling efficiency: The
140 device we discuss here would ultimately be used in a portable instrument
141 which requires the sensor chip to be pigtailed with a fibre, allowing easy
142 connection and coupling of light from a laser source. The
143 fibre-to-waveguide coupling efficiency was optimized as a first step in
144 optimizing the sensor chip design.

145 Waveguide modal intensity profiles were measured using a CCD camera
146 and compared with that of the fibre to be used for pigtailing, and the
147 optimum fabrication conditions **was** selected to give a minimum coupling
148 loss²⁰; Subsequently, fibre-waveguide coupling efficiency measurements
149 were made on these waveguides to confirm the optimum fabrication
150 conditions for fibre coupling. As a result a 2.5 μm photolithographic
151 mask opening was chosen for the waveguides in order to maximize the
152 fibre/waveguide coupling efficiency at approximately 80%.

153 Waveguide surface intensity:

154 Having established the single mode input waveguide design for efficient

155 fibre coupling, the modal surface intensity in the sensing window regions
156 must be optimised for efficient fluorescence excitation before designing
157 the overall waveguide layout. The laser pump or excitation intensity at
158 the waveguide surface directly affects the excitation efficiency of the
159 fluorescent dye, thus affecting the fluorescent power and sensitivity of the
160 sensor. The fluorescence emission power density, $I_{emitted}$, is given by:

$$161 \quad I_{emitted} = D \times \eta \times (\lambda_p/\lambda_e) \times \sigma_a \times I_s \quad \text{Eqn 1}$$

162 In which D is the molecule surface density, η is the quantum efficiency of
163 the fluorescent dye (for Cy5.5, $\eta=0.28$), λ_p is the pump wavelength of
164 635nm and λ_e is the emission wavelength of Cy5.5 at 700nm, σ_a is the
165 absorption cross-section of Cy5.5, which is $3.6 \times 10^{-20} \text{ m}^2$ and I_s is the
166 surface intensity, which is calculated by numerical simulation. It has been
167 found using aqueous dye solutions for preliminary characterization that a
168 detection limit of 10^{-8} M Cy5.5 solution results in sufficient detection
169 limit for subsequent immunoassay¹⁰. The 10^{-8} M fluorophore solution
170 will bring the same number of fluorophores into the excited volume as a
171 dye molecule surface density of $D \approx 1.8 \times 10^{12} (\text{Cy5.5 molecules}) \cdot \text{m}^{-2}$.

172 A beam propagation model was established to design adiabatic tapers to
173 connect the single mode input waveguides to the sensing patches and to
174 determine waveguide surface intensity distributions. The 3D beam
175 propagation method (OlympIOs BPM) was used with the refractive index
176 profile for potassium ion-exchange in BK7 glass. The taper used was

177 parabolic in width without tapering of the depth and the length was set at
178 10 mm due to chip-size constraints. Waveguides tapering from 2.5
179 microns width at the input to 60 microns, 30 microns and 2.5 microns
180 (untapered) widths at the output were modelled. Wider tapering was
181 found to lead to significant excitation of higher-order modes in the wide
182 sections, which would result in undesirable surface intensity fluctuations.

183 **Figure 2a** shows the simulation result for waveguide surface intensity
184 and estimated emitted fluorescence intensity for the untapered
185 waveguides (2.5 μ m), and at the ends of the 30 μ m and 60 μ m taper
186 waveguides. It can be seen that as the waveguide width increases, the
187 surface intensity and fluorescence power density decrease but cover a
188 larger surface, as discussed above. To estimate the emitted intensity, a
189 surface coverage of 18×10^{12} Cy5.5 molecules per m^2 , corresponding to a
190 10^{-7} M solution, and 1 mW input power into a single waveguide are
191 assumed. Given the expected laser/waveguide coupling efficiency and the
192 1x4 splitter, this corresponds to approximately 5 mW laser power from
193 the fibre. To illustrate the near-adiabatic tapering, **Figure 2b** shows a
194 surface plot of the electric field along the length of the 2.5 μ m to 60 μ m
195 taper, where it is clearly shown that the mode remains in the the
196 fundamental mode of the broadened waveguide.

197 The emitted fluorescent power can be calculated from Eqn 1 using the
198 laser surface intensity in **Figure 2 a** by integration over the excited area,

199 resulting in $\sim 0.45 \times 10^{-9}$ W fluorescent power in the case of the 30 μm
200 wide waveguide over a 1.5 mm length, for a 10^{-8} M dye solution with 1
201 mW laser power in the waveguide.

202 We have estimated the maximum fractional pump power absorbed by dye
203 molecules bound at a patch so that we can quantify the effect of binding
204 on one patch upstream of another. Using the maximum surface dye
205 density and the absorption cross-section and knowing the surface
206 intensity normalized to the input power, this was estimated to be $< 0.1\%$,
207 so that a binding reaction on one patch will have an insignificant effect on
208 the excitation power at downstream sensing patches.

209 **Instrumentation**

210 **Figure 3** illustrates the experimental configuration of the multi-channel
211 waveguide-based fluorescent evanescent wave biosensing platform.
212 Briefly, light from a semiconductor laser emitting approximately 5 mW at
213 635 nm is coupled to the fibre-pigtailed multi-channel ion-exchange
214 waveguide. The emitted fluorescent light is collected by 32 polymer
215 fibres (NA = 0.46, 1 mm in diameter) located beneath the waveguide
216 opposite to the biosensing surface (please see Supplementary Materials:
217 design of the fibre collection system, Page 2). The end faces of the fibres
218 are parallel to the chip surface. The fluorescent light is subsequently
219 filtered by a high-pass filter to reject the scattered laser light. The
220 fluorescent power is further processed and detected by photodiodes with

221 Noise Equivalent Power (NEP) of $0.15 \text{ pW/Hz}^{-\frac{1}{2}}$, through a lock-in
222 amplifier, and the peak fluorescent power received is used as the
223 characteristic signal associated with the concentration. The received
224 power is related to the emitted fluorescent power by the collection
225 efficiency, which takes into account the collection fibre area and
226 numerical aperture and other geometrical factors, and is estimated to be
227 0.08% for the $30 \mu\text{m}$ waveguide²⁰. If a minimum emitted power of 0.45
228 nW must be detected, this would require a minimum detected power on
229 the photodiode of 0.36 pW, which is achievable with this detection
230 system **using a 1 Hz receiver bandwidth**. A syringe pump, a six-way
231 injection valve, a preincubation loop (1 mL), a solenoid valve, and a flow
232 cell comprise the flow injection system. The antibody and the
233 preincubation loop are stored in two individual thermostats, where the
234 temperatures are maintained at 4°C and 37°C , respectively, to ensure the
235 activity and stability of biological reagents. Fluid handling and data
236 acquisition is fully automated and controlled by an embedded computer.

237 ***Chip validation***

238 In order to achieve the highest sensitivity for the device, we investigated
239 three different waveguide widths for the immune chip with different
240 concentrations of Cy5.5 labeled MC-LR antibody to determine response
241 signals. From **Figure 4**, it can be seen that when the width of the
242 waveguide channel is $2.5 \mu\text{m}$ along its full length, the collected signal is

243 very weak due to the strong photobleaching. With the 30 μm waveguides,
244 the cross section of the waveguide is enlarged and the optical density is
245 decreased. After the antibody is attached to the sensing region, the signal
246 is relatively high. However, with 60 μm taper waveguide, the signal
247 collected is lower due to reduced efficiency of collection into the fibre.
248 Therefore, the waveguide chip with the 30 μm taper was selected for the
249 subsequent tests. Based on the sensor system, Cy5.5 fluorescent dyes
250 with different concentrations were tested at 32 detection sites of the
251 waveguide chip. It was determined that 80% of the detection sites reached
252 a detection limit for aqueous solution of fluorescent dye of 2.8×10^{-9} M,
253 indicating that the sensitivity of the system is sufficient for the
254 immunoassay. **Figure S3** is the result of the response of 32 sensor sites
255 with 30 μm waveguides to 10^{-6} M Cy5.5 solutions captured by the 32
256 fibres which indicates the system has good parallel operation and can
257 achieve detection of up to 32 substances simultaneously.

258 **Immunoassay**

259 An indirect competitive immunoassay is adopted to enable regeneration
260 of the transducer for reuse without loss of activity, thereby allowing
261 semicontinuous water monitoring. A monolayer of BSA-MC-LR
262 conjugate with good binding affinity and excellent long-term stability
263 will form on the chip surface, thereby providing more effective binding of
264 fluorophore-labeled antibody compared with non-monolayer-based

265 immunosensors. AFM images of the bare and chemically modified
266 waveguide chip surfaces are presented in **Figure 5**. The surface
267 roughness of the waveguide chip increased significantly as a result of the
268 covalently coated BSA-MC-LR conjugate. Extensive analysis of the
269 AFM topography cross-sections shows that the bare waveguide displayed
270 the height variation of 0.51 nm; however, the value increased to 6.89 nm
271 after chemical modification. Considering that the diameter one BSA
272 molecular was about $7.2 \pm 0.2 \text{ nm}^{21}$, the AFM images clearly revealed that
273 a monolayer of BSA-MC-LR conjugate successfully formed on the chip
274 surface.

275 In established biosensors for indirect competitive immunoassay, several
276 factors are critical for device performance, including the preincubation
277 time of labeled antibody and free antigen in samples, the incubation time
278 when the preincubated mixture comes into contact with the biosensor
279 surface, and the concentrations of immobilized antigen and labeled
280 antibody. Among these factors, the concentration of labeled antibody is
281 an important factor in immunoassays because it strongly affects the LODs
282 and working ranges of immunosensors^{13,22-23}. **Figure 6a** shows the
283 relationship between the Cy5.5-labeled MC-LR antibody concentration
284 and collected fluorescence signals. Through curve-fitting with the logistic
285 function embedded in Origin Software, the linear range between the
286 labeled antibody concentrations and the fluorescence signals was 0.31–

287 3.9 $\mu\text{g}/\text{mL}$. The optimized labeled antibody concentration was selected to
288 be 0.3 $\mu\text{g}/\text{mL}$ anti-MC-LR antibody, close to the minimum value of the
289 linear range for achieving both of the high sensitivity and low cost.
290 **Figure 6b** shows the relationship between the incubation time and
291 collected fluorescence signals. Not surprisingly, the signals increased
292 with the increased incubation time, however, the rate **of increase** slowed
293 **significantly** after 600 s. As the nonequilibrium state for the
294 surface-based immunoassay may be used for measurement to shorten the
295 detection time⁹, the optimum incubation time was selected to be 600 s.
296 The fluorescence signals reached a plateau when the preincubation time
297 was more than 300 s as shown in **Figure 6c**, indicating that the
298 immunoassay between the antibody and antigen in samples had reached
299 equilibrium. Therefore, 300 s was used as the incubation time for this
300 biosensor. Under the optimized detection conditions, the entire test cycle
301 time is shown in **Figure S4**. The peak value with **the** laser on less the
302 average value during the baseline acquisition is used as the
303 immunosensor signal for subsequent analysis, such as in **Figures 4 and 6**.
304 **Figure 6d** shows the typical calibration curve for this immunosensor
305 towards MC-LR in series concentrations. The linear dynamic response
306 range was 0.36 $\mu\text{g}/\text{L}$ - 2.50 $\mu\text{g}/\text{L}$ with a detection limit (LOD) of 0.21
307 $\mu\text{g}/\text{L}$. Moreover, **a complete test cycle of** the immunosensor described
308 herein is **obtained within** 20 min.

309 ***Regeneration and reusability***

310 Creating a regenerated biochip surface is critical for cost-effective,
311 on-line and semi-continuous water monitoring. In the indirect competitive
312 immunoassay described herein, the BSA-MC-LR conjugate, which is
313 tolerant of a harsh regeneration environment^{13,24}, is covalently coated on
314 the chip surface. **Figure S5** illustrates the signal recovery after 20
315 consecutive determinations when the regeneration solution of 0.5% SDS
316 was used at a constant flow rate of 1 mL/min. With the use of the
317 regeneration agent, the surface regeneration was conducted up to 100
318 times with less than 10% decrease in the signal for lake water detection,
319 indicating no significant degradation of the surface chemistry.

320 ***Recovery study***

321 A recovery study was performed, in triplicate, using two real lake water
322 samples taken from Fuhai lake and Beihai lake in Beijing, respectively,
323 spiked with three different standard concentrations (0, 0.5 and 1 µg/L) of
324 MC-LR. Before the measurement, the real lake water samples were
325 filtered through a 0.45 µm filter. The concentrations measured were
326 compared with the concentrations added and the results are summarized
327 in **Table 1**. This shows that the average recoveries vary from 84%±7% to
328 108%±6%, demonstrating the satisfactory accuracy of the biosensor and
329 confirming the application potential of our method to measure MC-LR in
330 real lake samples.

331 **Discussion**

332 New trends in water environmental monitoring highlight the need to
333 develop tools for rapid, low-cost, routine and on-line contaminant
334 detection for protecting the safety of water sources, risk identification and
335 early warning for accidental water pollution. Based on its performance
336 **compared** with laboratory-based technologies, the biosensor platform
337 emerges as a suitable tool to detect large classes of compounds found in
338 water environments²⁵.

339 Herein, we have reported a 32-analyte optical fluorescence-based
340 multi-channel waveguide biosensor integrated with fluidics and signal
341 control and processing. An extensive study was undertaken theoretically
342 and experimentally in order to optimize the sensor chip design,
343 fabrication and sensing system. A taper width of 30 μm was found to be
344 optimum and was chosen for the final waveguide design. The surface
345 intensity in the sensor region was also studied in depth, based upon beam
346 propagation method simulation of waveguides which had been optimized
347 for fibre to waveguide coupling efficiency. A low loss, high signal
348 strength and robust optical transducer for multiple parallel fluorescence
349 immunoassay **was** realized.

350 The surface immunochemistry used in this research was based on **an**
351 indirect competitive immunoassay that requires the analyte derivatives
352 covalently bound to the transducer surface, thereby bringing highly stable

353 regeneration capacity. The AFM images of a waveguide chip before and
354 after covalently chemical modification revealed that a monolayer of
355 BSA-MC-LR conjugate successfully formed on the chip surface. This
356 allows for more than 100 regeneration cycles, consistent with the
357 previous results reported by other researchers^{10,15}. Under optimized
358 detection conditions, single and multiplexed detection of contaminants in
359 water samples are expected to be realized.

360 The target compound of MC-LR was chosen as a paradigm to validate the
361 sensitivity of the biosensor because accidental animal poisoning and
362 human diseases, even death, due to exposure to MCs by way of drinking
363 and surface water have been much reported²⁶⁻²⁷. In this regard, the World
364 Health Organization (WHO) has proposed an MC-LR guideline
365 maximum value of 1 $\mu\text{g}/\text{L}$ in drinking water in order to minimize public
366 exposure to MCs²⁸. In 2002, China introduced the guideline value for
367 MC-LR in drinking water with a recommended limit of 1 $\mu\text{g}/\text{L}$. Therefore,
368 there is a great need to establish the cost-effective, reliable and sensitive
369 methods for the detection of MC-LR within natural systems for protecting
370 environment and public health. By using the home-made anti-MC-LR
371 monoclonal antibody (MC-LR-MAb, 8C10), the linear dynamic response
372 range was 0.36 $\mu\text{g}/\text{L}$ -2.50 $\mu\text{g}/\text{L}$ with a LOD of 0.21 $\mu\text{g}/\text{L}$. This is
373 sufficiently sensitive for detection of MC-LR at the maximum
374 concentration levels as established by the Chinese government, WHO and

375 other countries. The entire test cycle time is no more than 20 min. All real
376 lake samples, even those containing MC-LR in the sub-microgram per
377 liter range could be determined using the biosensor with recovery rates
378 between 84 and 108%. If there are sufficient available monoclonal
379 antibodies with good performance, such as high sensitivity, selectivity
380 and negligible cross-reactivity, the multi-analyte detection can be realized
381 on one chip via immobilizing the different antigen-protein conjugates on
382 the separate sensing patches. Moreover, the biosensor can perform
383 simultaneous testing of multiple water samples for one analyte through
384 the design of independent flow cells along with flow injection system.
385 Overall, the biosensor reported herein can serve as a common platform
386 for the immunoassay of environmental contaminants, providing a reliable,
387 feasible and cost-effective alternative to laboratory-based analytical
388 technologies.

389 **Methods**

390 ***Materials and reagents***

391 The fluorescent dye Cy5.5 and N-hydroxysuccinimide (NHS) ester were
392 purchased from GE Healthcare Life Sciences. Labeling of the
393 anti-MC-LR-antibody with dye Cy5.5 was performed based on the
394 method as previously described by Mujumdar et al²⁹. The hapten
395 conjugates were synthesized based on the procedure previously reported¹⁷.
396 The Cy5.5-labeled antibody and the hapten conjugates were purified and

397 stored at -20°C in small aliquots for use. All chemicals were analytical
398 grade and were used without further purification. Deionized water was
399 used throughout the experiments. 1 mg/L MC-LR stock solutions were
400 prepared in methanol solvent and stored at -20°C before use. Phosphate
401 buffered saline (10 mM PBS, pH 7.4) was prepared using deionized water
402 (18.2 $\Omega\text{-cm}$). All the stock solutions were diluted to a series of
403 concentration levels using the 10 mM PBS buffer solution.

404 ***Waveguide chip fabrication by potassium ion-exchange***

405 Multi-channel sensor chips were fabricated by potassium ion-exchange in
406 BK7 glass, since BK7 is of good optical quality and exhibits low
407 fluorescence, and the process produces low loss waveguides. The overall
408 chip dimensions were 67 mm \times 15 mm, the length allowing low-loss bends
409 and tapers and the width dictated by ease of handling. On each chip the
410 monomode input waveguide was split into four monomode waveguides to
411 provide equal power division and parabolic taper waveguides were
412 introduced into each waveguide branch after the Y-junction splitters in
413 order to reduce the optical power density at the waveguide surface, and
414 hence to reduce the rate of fluorophore photobleaching. Separate chips
415 were made with no tapering, with tapering to 30 μm and with tapering to
416 60 μm .

417 The waveguide circuit was defined by opening tracks in an aluminium
418 film deposited on the glass substrate, ranging from 2.5 μm wide for a

419 single mode waveguide at 635 nm to 60 μ m wide for the tapers, using
420 conventional photolithography.

421 Ion exchange was carried out by immersing the masked substrates in
422 KNO_3 at 400 ± 5 °C for 2 h to produce single mode channel waveguides
423 with good coupling to optical fibre.

424 A silica layer thickness of 1 μ m was deposited on top of the waveguides
425 by RF sputtering **and** the sensing windows **were** defined by lift-off
426 photolithography. **The intensity at the surface of the isolation layer is**
427 **negligible**, isolating the chip from the analyte outside the window
428 regions.

429 The ends of the chips were polished to allow fibre coupling. A fibre
430 pigtail was permanently bonded to the input end of the sensor chip with
431 UV-curing epoxy.

432 ***Immunoassay and evaluation***

433 An indirect competitive immunoassay for the trace concentration of
434 MC-LR detection is developed and stepped as follows. The MC-LR-BSA
435 conjugate is covalently immobilized on the chip surface by a similar
436 procedure described by Long et al.¹⁷ (**Figure 1b** and **Figure S6**). When
437 performing the test cycle, 0.8 mL of sample solution and 0.2 mL of 0.3
438 μ g/mL Cy5.5-labelled antibody solution (in 10 mM PBS containing 5.0
439 mg/mL BSA and 0.1 mg/mL thiomersal) is firstly transferred to the
440 preincubation loop for 5 min to make the antibody-binding sites occupied

441 with the analyte. Subsequently, the mixture is delivered into the flow cell.
442 Antibodies with free binding sites **remaining** interact with the coated
443 antigen immobilized on the biochip for 10 min. To reduce the effect of
444 free antibody in solution and its non-specific adsorption on the detection
445 result, the fluorescence signal is detected after the mixture is washed with
446 PBS solution. The amount of antibody **coupled** on the chip surface is
447 inversely correlated to the concentrations of MC-LR in samples, **which**
448 **can be reflected by** the fluorescence signal.

449 The signal intensities were fitted to a four parameter logistic equation¹⁰,

450
$$A = \frac{A_1 - A_2}{1 + (x/x_0)^p} + A_2 \quad \text{Eqn 2}$$

451 where A is fluorescence intensity, x is the MC-LR concentration; A₁ is the
452 upper asymptote and A₂ is the lower asymptote (background signal) to the
453 titration curve; x₀ is the analyte concentration at inflection and p is the
454 slope at the inflection point. The quantitative detection range is defined as
455 the signals from 20% to 80% of the signal difference region (A₁-A₂),
456 which is defined as a linear range. The limit of detection (LOD) is
457 determined using the 90% of the signal difference region (A₁-A₂)¹⁷.

458 **References**

459 1. Leung, A., Shankar, P.M. & Mutharasan, R. A review of fiber-optic
460 biosensors. *Sensor Actuat B Chem.* 125, 688-703 (2007).

461 2. Wang, X.D. & Wolfbeis, O.S. Fiber-optic chemical sensors and
462 biosensors (2008-2012). *Anal Chem.* 85, 487-508 (2013).

463 3. Taitt, C.R., Anderson, G.P. & Ligler, F.S. Evanescent wave
464 fluorescence biosensors. *Biosens Bioelectron.* 20, 2470-2487 (2005).

465 4. Farré, M. et al. Biosensors for Environmental Monitoring at Global
466 Scale and the EU Level. *Biosensors for Environmental Monitoring of*
467 *Aquatic Systems*, Springer Berlin Heidelberg. 5J, 1-32 (2009).

468 5. Golden, J.P. et al. Fluorometer and tapered fiber optic probes for
469 sensing in the evanescent wave. *Opt Eng.* 31, 1458-1462 (1992).

470 6. Wadkins, R.M., Vladu, B.& Tung, C.-S. Actinomycin D binds to
471 metastable hairpins in single-stranded DNA. *Biochemistry* 37,
472 11915-11923 (1998).

473 7. Tan, F., Saucedo, N.M., Ramnani, P. & Mulchandani, A. Label-free
474 electrical immunosensor for highly sensitive and specific detection of
475 microcystin-LR in water samples. *Environ Sci Technol.* 49, 9256-9263
476 (2015).

477 8. Singh, S., Srivastava, A., Oh, H-M., Ahn, C-Y., Choi, G-G., Asthana,
478 R.K., Recent trends in development of biosensors for detection of
479 microcystin. *Toxicon.* 60(5), 878-894 (2012).

480 9. Shi, H. C. et al. Automated online optical biosensing system for
481 continuous real-time determination of microcystin-LR with high
482 sensitivity and specificity: Early warning for cyanotoxin risk in
483 drinking water sources. *Environ Sci Technol.* 47, 4434-4441 (2013).

484 10. Liu, L. H. et al. An array fluorescent biosensor based on planar

485 waveguide for multi-analyte determination in water samples. *Sensor*
486 *Actuat B Chem.* 240, 107-113 (2017).

487 11. Mukundan, H. et al. Waveguide-based biosensors for pathogen
488 detection. *Sensors*, 9, 5783-5809 (2009).

489 12. Lukosz, W. Principles and sensitivities of integrated optical and
490 surface plasmon sensors for direct affinity sensing and
491 immunosensing. *Biosens Bioelectron.* 6, 215-225 (1991).

492 13. Hua, P. et al. Integrated optical fluorescence multisensor for water
493 pollution. *Opt. Express.* 13, 1124-1130 (2005).

494 14. Liu, L. H. et al. Highly sensitive detection of sulfadimidine in water
495 and dairy products by means of an evanescent wave optical biosensor,
496 *RSC Adv.* 4, 60227-60233 (2014).

497 15. Long, F. et al. Highly sensitive and selective optofluidics-based
498 immunosensor for rapid assessment of Bisphenol A leaching risk.
499 *Biosens Bioelectron.* 55, 19-25 (2014).

500 16. Vengatagalabathy Gobi, K. et al. Enhanced sensitivity of
501 self-assembled-monolayer-based SPR immunosensor for detection of
502 benzaldehyde using a single-step multi-sandwich immunoassay, *Anal*
503 *Bioanal Chem.* 387, 2727-2735 (2007).

504 17. Long, F. et al. Portable optical immunosensor for highly sensitive
505 detection of microcystin-LR in water samples. *Biosens Bioelectron.* 24,
506 2346-2351 (2009).

507 18. Barzen, C., Brecht, A. & Gauglitz, G. Optical multiple analyte
508 immunosensor for water pollution control, *Biosens Bioelectron.* 17,
509 289-295 (2002).

510 19. Harris, R. D. et al. Waveguide Immunofluorescence Sensor for Water
511 Pollution Analysis. *International Society for Optics and Photonics.*
512 3539, 27-35 (1998).

513 20. Hua, P. Integrated optical fluorescence multi-sensor system
514 [Dissertation]. *University of Southampton* (2009).

515 21. Wang, S. et al. Binding between proteins and cationic spherical
516 polyelectrolyte brushes: effect of pH, ionic strength, and stoichiometry.
517 *Biomacromolecules.* 14, 818-827 (2013).

518 22. Mauriz, E. et al. Real-time detection of chlorpyrifos at part per trillion
519 levels in ground, surface and drinking water samples by a portable
520 surface plasmon resonance immunosensor. *Anal Chimi Acta.* 561,
521 40-47 (2006).

522 23. Sheng, J. W. et al. A comprehensive immunoassay for the detection of
523 microcystins in waters based on polyclonal antibodies. *Anal Chimi
524 Acta.* 572, 309-315 (2006).

525 24. Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance
526 sensors: review. *Sensor Actuat B Chem.* 54, 3-15 (1999).

527 25. McNamee, S. E. et al. Development of a planar waveguide microarray
528 for the monitoring and early detection of five harmful algal toxins in

529 water and cultures. *Environ Sci Technol.* 48, 13340-13349 (2014).

530 26. Fitzgeorge, R.B. et al. Detection methods for cyanobacterial toxins,
531 *Royal Society of Chemistry*, (1994).

532 27. Dietrich, D. & Hoeger, S. Guidance values for microcystins in water
533 and cyanobacterial supplement products (blue-green algal
534 supplements): a reasonable or misguided approach? *Toxicology and*
535 *applied pharmacology*. 203, 273-289 (2005).

536 28. Guidelines for Drinking Water Quality, 3rd ed. World Health
537 Organization (2004).

538 29. Mujumdar, S.R. et al. Cyanine-labeling reagents:
539 sulfobenzindocyanine succinimidyl esters, *Bioconjug Chem.* 7,
540 356-362 (1996).

541 **Acknowledgement**

542 This research is supported by the National Nature Science Foundation
543 (21677082). JSW and PH gratefully acknowledge support from the
544 European Research Council under GA 291216 ‘‘Wideband Integrated
545 Photonics for Accessible Biomedical Diagnostics.’’

546 **Author contributions**

547 L. L. X. Z., and P. H. designed and performed all the experiments, and
548 wrote the manuscript. H. S., J.S. W. and B. S. discussed the results and
549 commented on the manuscript. X. Z. and P. H. designed and managed the
550 project. All the authors reviewed the manuscript.

551 **Additional information**

552 Competing financial interests: The authors declare no competing financial

553 interests.

554

555 Integrated optical waveguide-based fluorescent immunosensor for fast
556 and sensitive detection of microcystin-LR in lakes: Optimization and
557 Analysis

558 Lanhua Liu^a, Xiaohong Zhou^{a*}, James S. Wilkinson^b, Ping Hua^{b**},
559 Baodong Song^a, Hanchang Shi^a

560 a. Center for Sensor Technology of Environment and Health State, Key
561 Joint Laboratory of ESPC, School of Environment, Tsinghua University,
562 Beijing 10084, China

563 b. Optoelectronics Research Centre, Southampton University, Highfield,
564 Southampton, SO17 1BJ, UK

565 ^{*}xhzhou@mail.tsinghua.edu.cn; ^{**}ph2@orc.soton.ac.uk

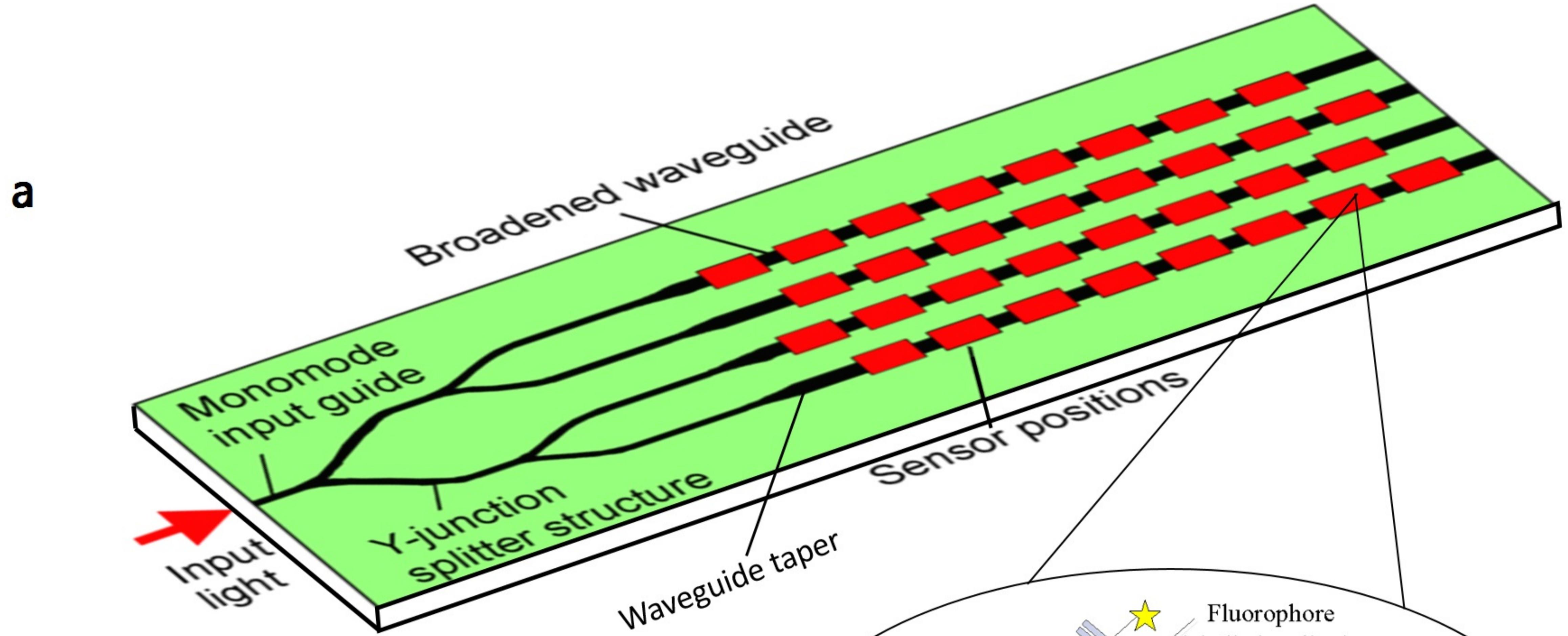
566 **Figure 1** (a) Schematic diagram of the sensor layout; (b) A
567 cross-sectional view along one of the sensing patches, showing the
568 waveguide, isolation layer and location of the surface chemistry; (c) A
569 photographic image of light propagation along the waveguide chip (Photo
570 by Lanhua Liu)

571 **Figure 2** (a) Surface intensity of the start (2.5 μm) and the end of 30 μm
572 and 60 μm tapered waveguides in the lateral direction and emitted
573 fluorescence intensity; (b) Electric field strength at the surface of a
574 waveguide tapered from 2.5 μm to 60 μm over 10 mm

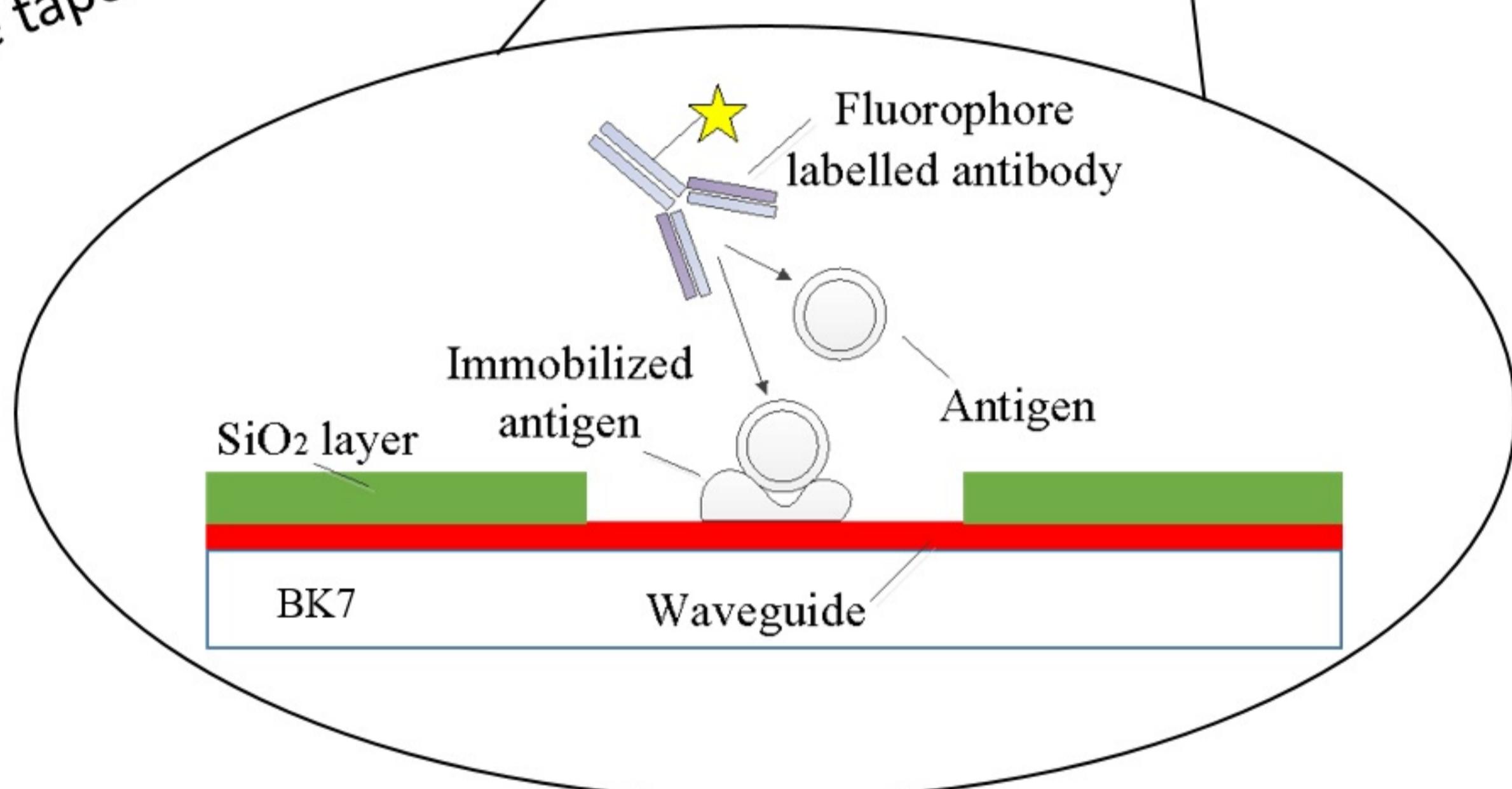
575 **Figure 3** Schematic diagram of the integrated optical fluorescence
576 multi-channel biosensor

577 **Figure 4** Fluorescence signals from untapered, 30 μm and 60 μm tapered
578 waveguides, respectively, towards Cy5.5-labelled anti-MC-LR antibody
579 solution at different concentrations

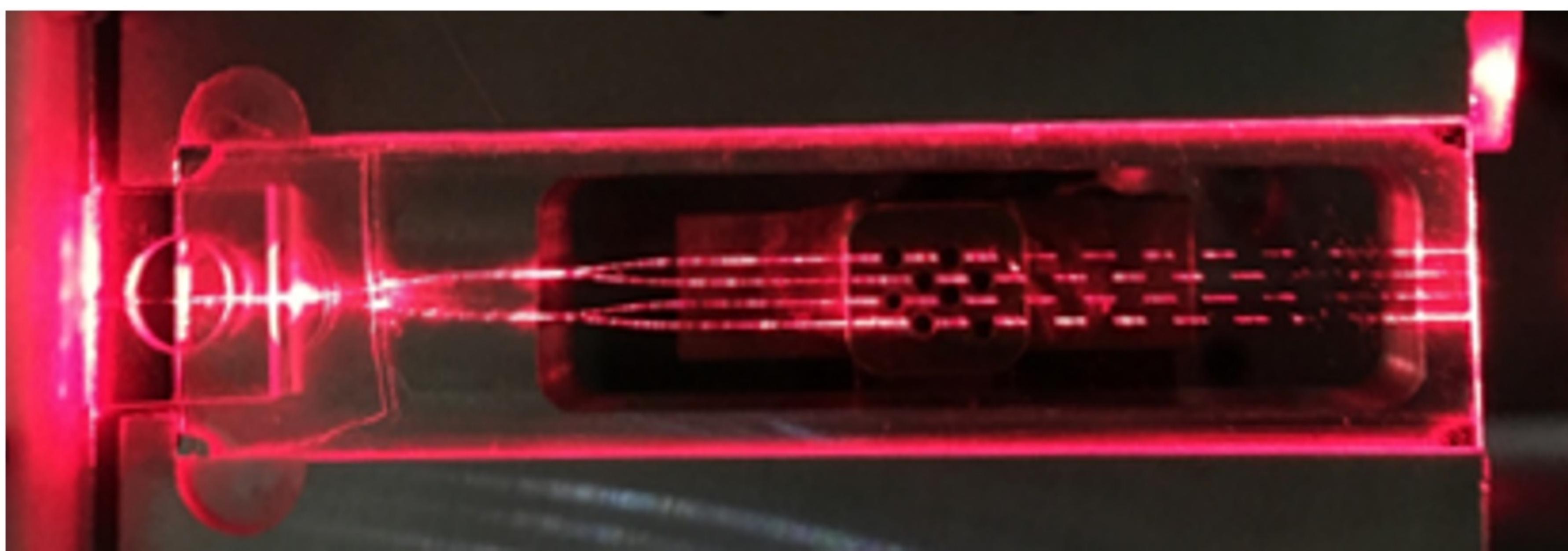
580 **Figure 5** AFM topography images of (a) bare and (b) BSA-MC-LR
581 conjugate modified waveguide chip, including a 1 $\mu\text{m} \times 1 \mu\text{m}$ plane AFM
582 image (Higher left), a 3-D AFM topography image (Higher right), and
583 cross-section height variations taken at a rough area (Lower: position
584 indicated by blue line in the topographic images)

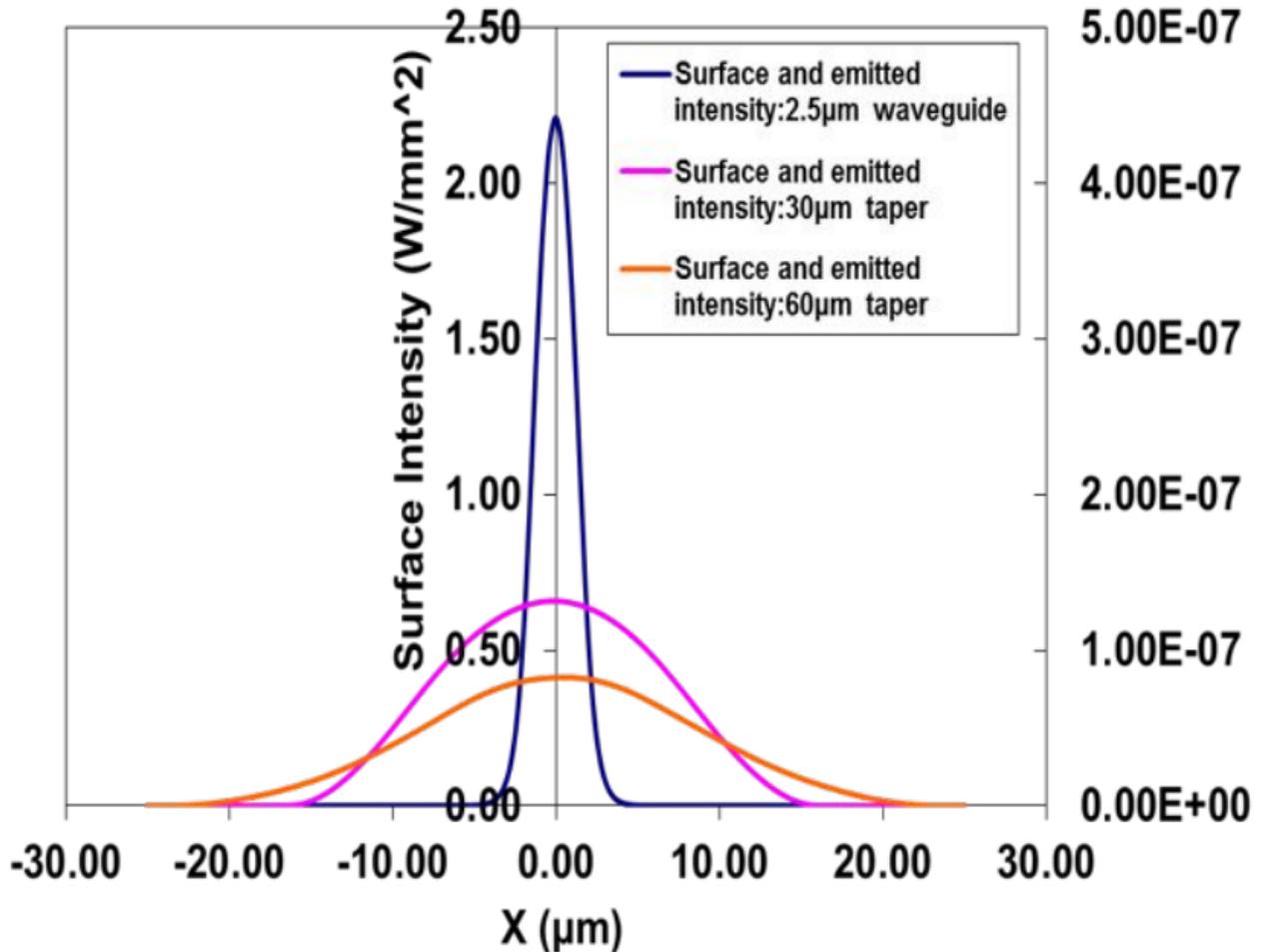
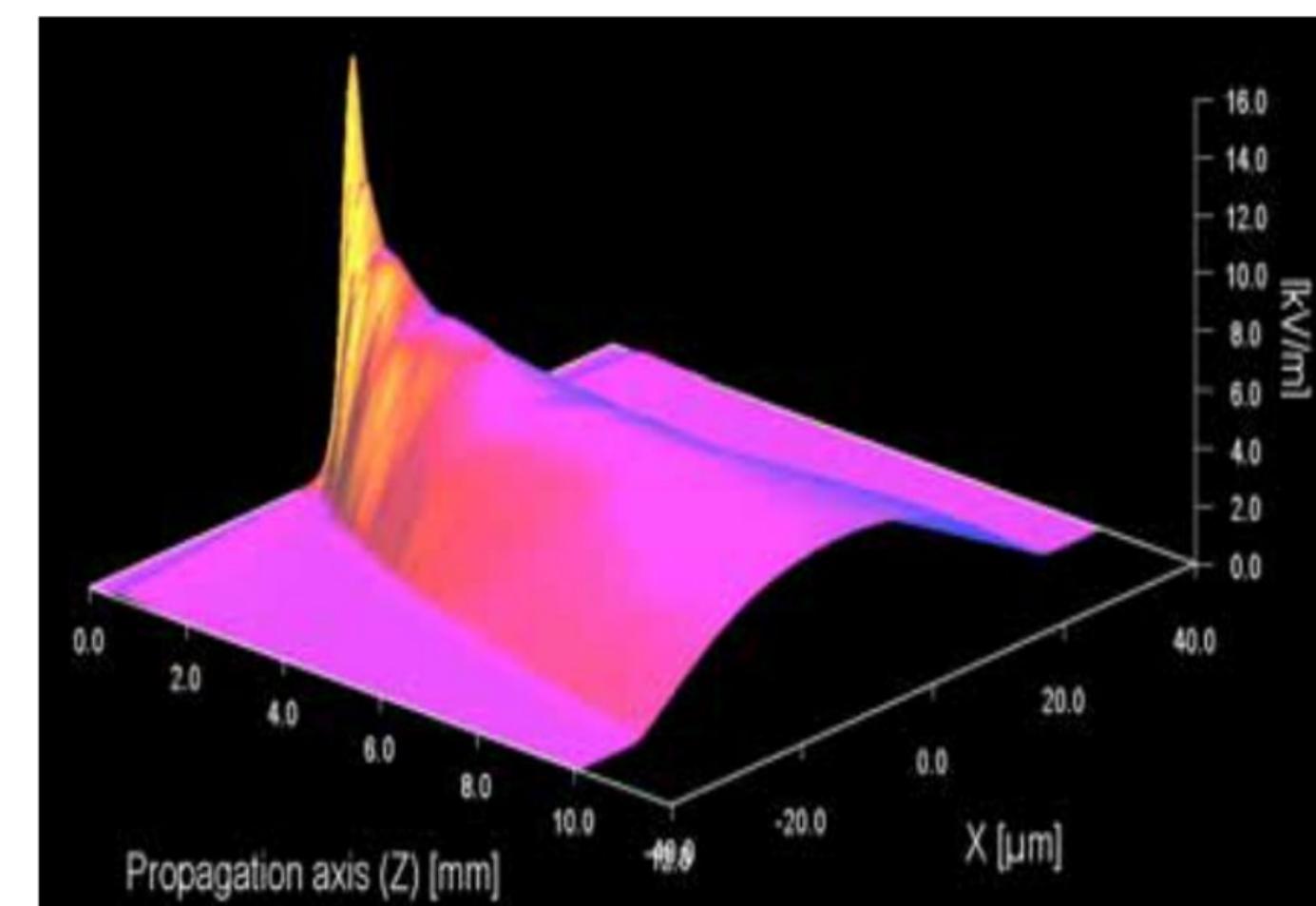

585 **Figure 6** Relationships between (a) the Cy5.5-labeled MC-LR antibody
586 concentration, (b) the incubation time, (c) the preincubation time and
587 fluorescence signals, respectively; (d) Typical calibration curve in triple
588 measurements (Green line represents 95% confidence range) for MC-LR
589 by using the immunosensor

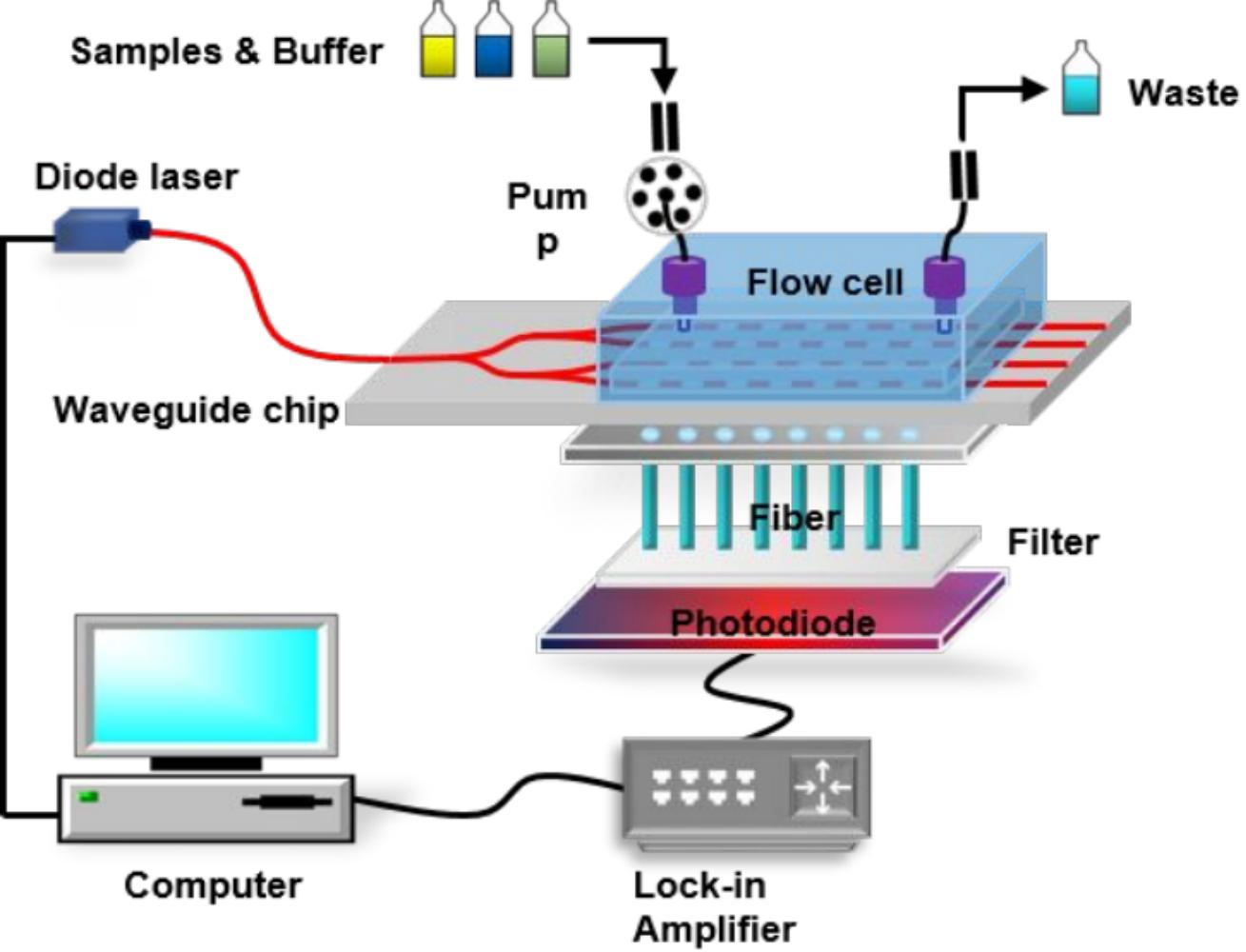
590

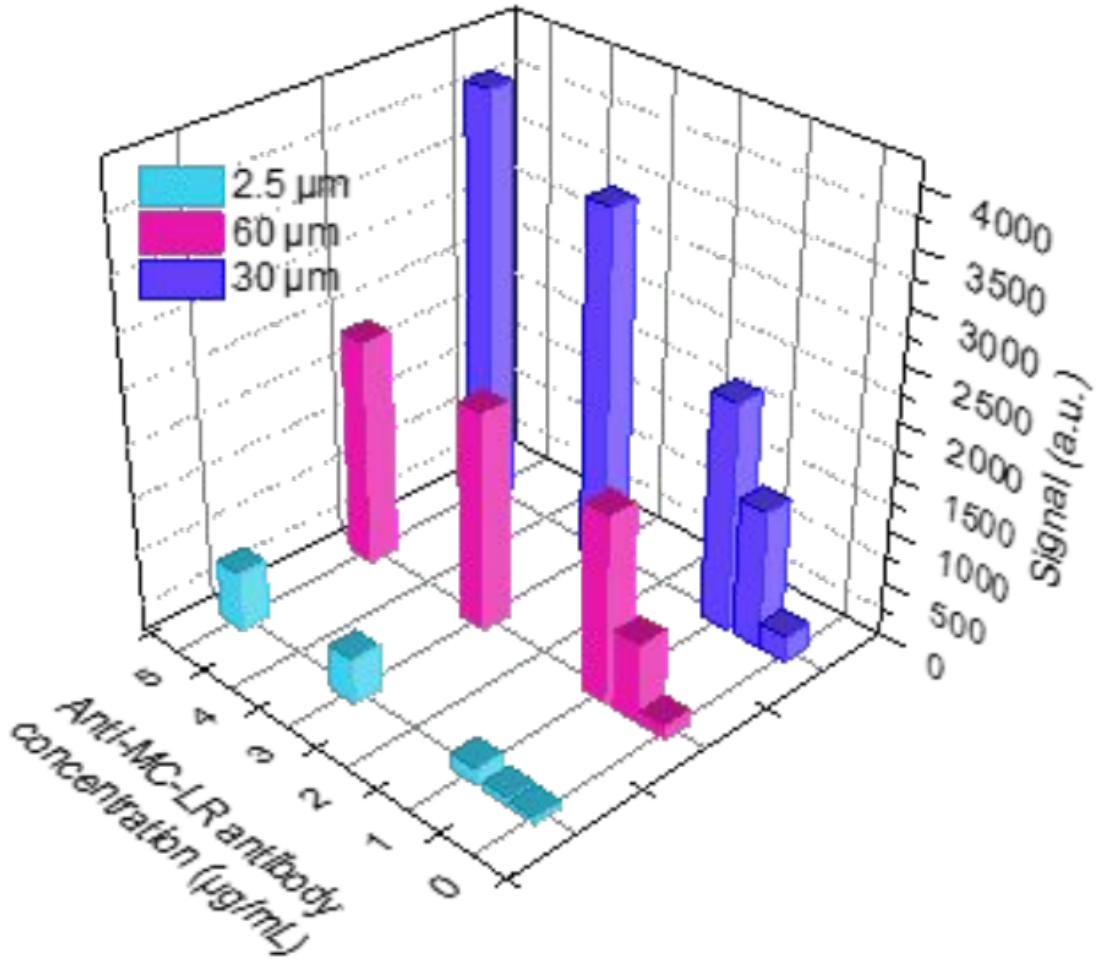

591 **Table 1** Recovery of MC-LR in real lake samples using the
592 immunosensor (n=3)

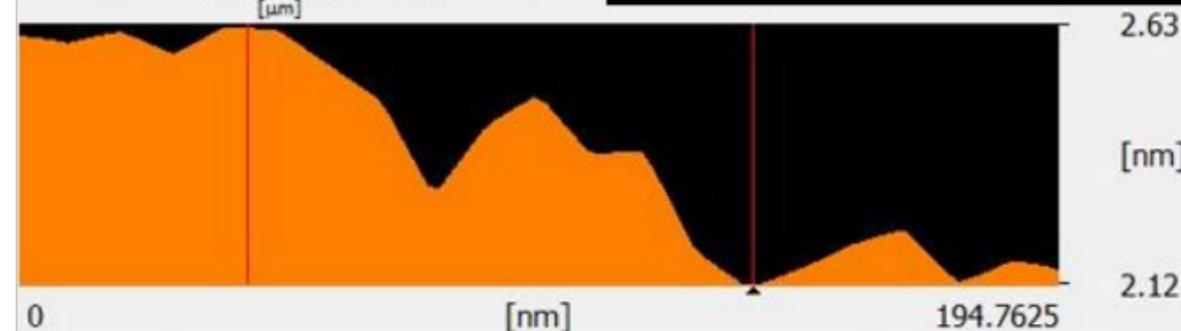
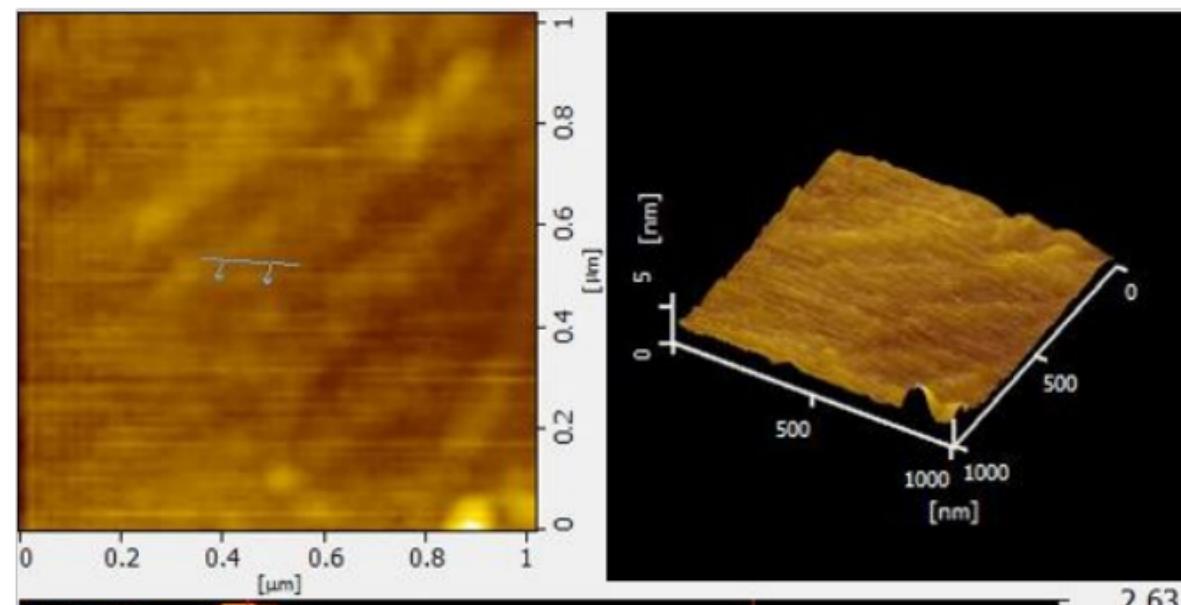
Sample	Spiked MC-LR ($\mu\text{g/L}$)	Detected MC-LR ($\mu\text{g/L}$)	Recovery %	Coefficient variation (CV) %
	0	/	/	/
Fuhai lake	0.5	0.42 \pm 0.03	84	7
	1	0.98 \pm 0.09	98	9
Beihai lake	0	/	/	/
	0.5	0.45 \pm 0.05	90	9
	1	1.08 \pm 0.06	108	6

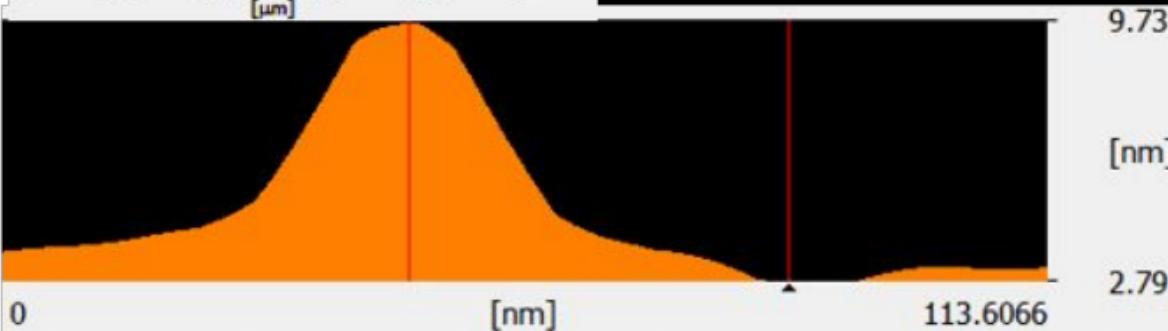
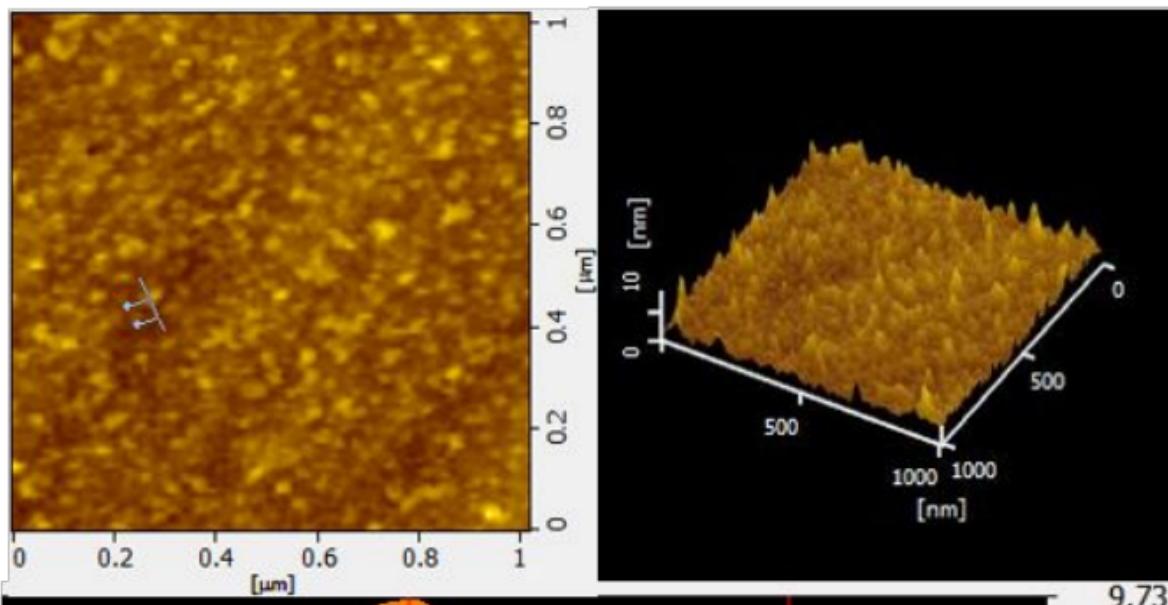

593 “/” means not detectable

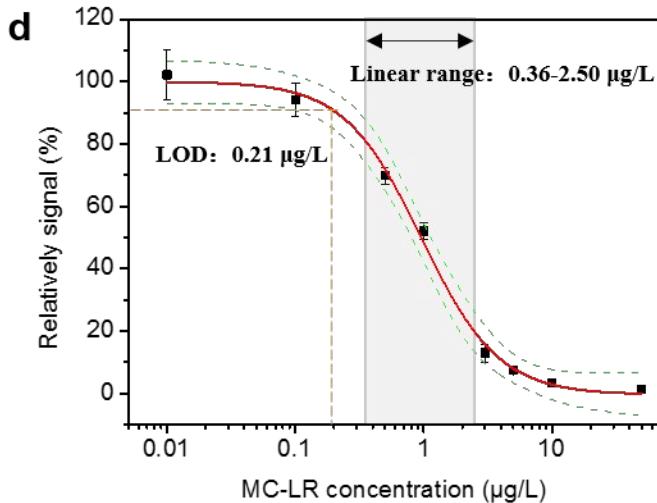
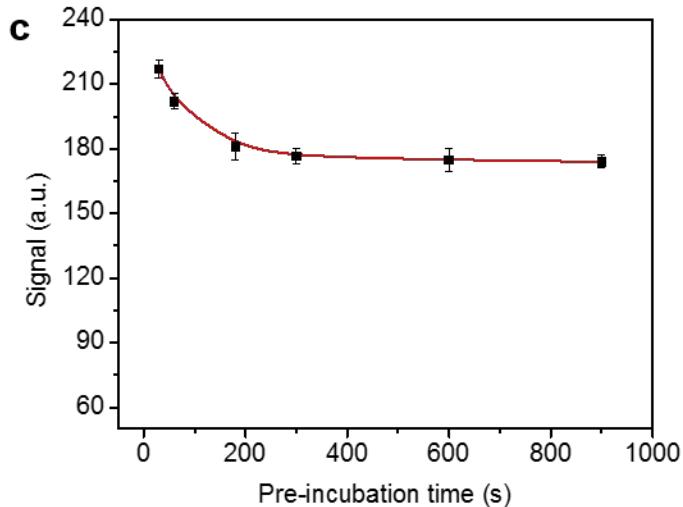
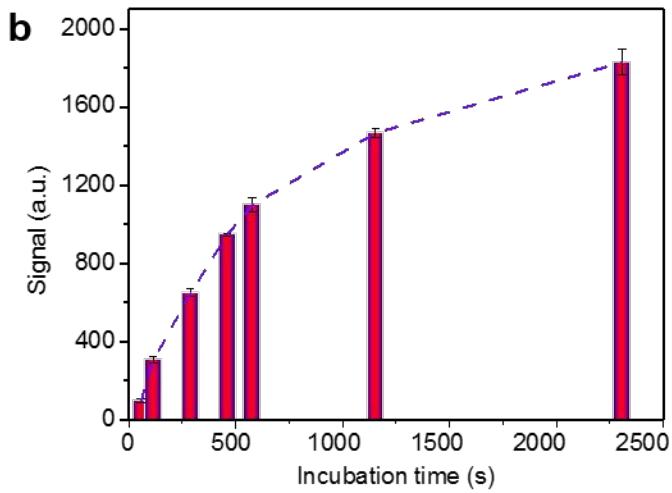
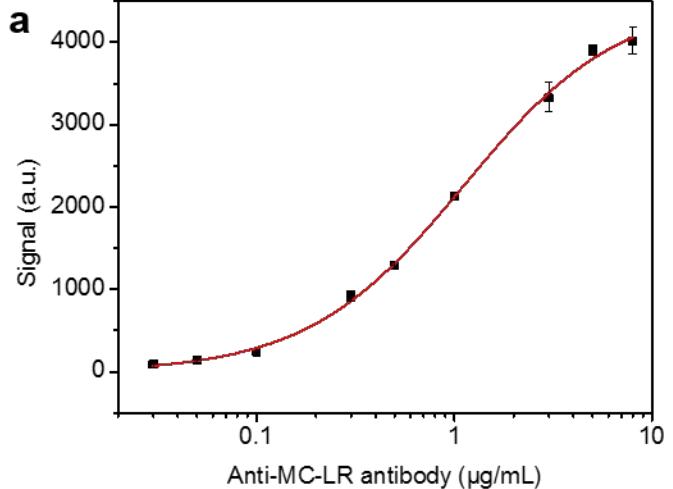




b





c



a**b**

a

	Z1 [nm]	Z2 [nm]	ΔZ [nm]	Distance [nm]	Φ [°]
■	2.63	2.12	0.51	94.74	0.3

b

	Z1 [nm]	Z2 [nm]	ΔZ [nm]	Distance [nm]	Φ [°]
■	9.71	2.82	6.89	41.28	9.5

