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Summary.

Estimation of long term exposure to air pollution levels over a large spatial domain,
such as the mainland UK, entails a challenging modelling task since exposure data
are often only observed by a network of sparse monitoring sites with variable amounts
of missing data. This article develops and compares several flexible non-stationary
hierarchical Bayesian models for the four most harmful air pollutants: NO,, O3, PMy
and PM, 5, in England and Wales during the five year period 2007-2011. The mod-
els make use of observed data from the UK’s Automatic Urban and Rural Network
(AURN) as well as output of an atmospheric air quality dispersion model developed
recently especially for the UK. Land use information, incorporated as a predictor in
the model, further enhances the accuracy of the model. Using daily data for all four
pollutants over the five year period we obtain empirically verified maps which are the
most accurate among the competition. Monte Carlo integration methods for spatial
aggregation are developed and these allow us to obtain predictions, and their uncer-
tainties, at the level of a given administrative geography. These estimates for local
authority areas can readily be used for many purposes such as modelling of aggre-
gated health outcome data and are made publicly available alongside this paper.

Introduction

Long term exposure to outdoor air pollution has been associated with many adverse effects
on human health, such as respiratory and cardiovascular diseases. The literature establish-
ing this linkage is rapidly growing (Boezen et al., 1999; Dockery and Pope, 1994; Samet
et al., 2000; Kassomenos et al., 1995; Bell et al., 2004). Such efforts require accurate mea-
surements of air quality and since the latter is not available everywhere in a large spatial
study domain, methods for spatial interpolation are in high demand. Typically, air pol-
lution concentrations are monitored at a handful of sites which are then associated with
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large surrounding geographical regions. However, the outdoor air we breathe is a toxic
mix of airborne particles which travel 100s and 1000s of kilometres — e.g. see recent news
headlines that Saharan dust and pollution from continental Europe are triggering high air
pollution levels in the UK?. The absence of physical boundary walls between nations and
smaller administrative geographies, and the predominant weather patterns at the time, will
always allow movement of air pollution both spatially and temporally. Estimation of the
spatial and temporal variation in air pollution levels must then be performed by appropriate
spatio-temporal modelling which also directly allows estimation and then reporting of the
associated uncertainties.

Recently, there has been a lot of interest in developing statistical space-time models for
air pollution levels observed over large spatial domains, e.g. the continental USA, Europe
and other parts of the world such as Asia and South America where air pollution is a
very prominent health hazard. Methodological developments include: downscaler models;
(Berrocal et al., 2010; Alkuwari et al., 2013), data fusion models (Sahu et al., 2010), land
use regression (Jerrett et al., 2005; Hoek et al., 2008; Shaddick et al., 2013; Venegas et al.,
2014; Morrison et al., 2016), hierarchical space-time autoregressive models (Sahu et al.,
2007). Model based methods for real-time forecasting of air pollution have also been
developed (Huerta et al., 2004; McMillan et al., 2005; Sahu et al., 2009).

Statistical modelling of UK air pollution data for estimating long term exposure poses
a unique set of challenges because of the sparsity of the monitoring sites (about 144 sites
covering England and Wales, which is the study region in this paper), irregular monitoring
leading to a large percentage of missing data, and the proximity to continental Europe with
which the UK exchanges emission and pollution depending on the prevailing weather. Key
articles discussing Bayesian modelling for UK data include: Lee and Shaddick (2010);
Shaddick and Wakefield (2002) and Pirani et al. (2014). The spatial domain used in these
three papers is only the Greater London area with a limited number of monitoring sites.
In particular, Lee and Shaddick (2010) model daily data from 30 monitoring sites between
2003 and 2005. They perform a simulation study for four pollutants: carbon monoxide
(CO), ozone (O3), nitrogen di-oxide (NO2) and PM;g. However, they do not validate the
air pollution modelling for the real life data from Greater London. Pirani et al. (2014)
model daily PM;g exposure data from 45 sites for 728 days during 2002-2003. Lastly,
Shaddick and Wakefield (2002) consider spatio-temporal modelling of four pollutants mea-
sured daily at eight monitoring sites in London over the 4-year period, 1994-1997.

There have been numerous other air pollution modelling and validation efforts which
are based on non-Bayesian methods. For example, Gulliver et al. (2011) provide a com-
parative assessment of methods to predict mean annual PM;y concentrations across 52
monitoring sites in London. This article does not, however, model temporal variation of
the pollutants. Gulliver and Briggs (2011) discuss GIS-based air pollution dispersion mod-
els for city-wide exposure assessment at daily temporal resolution. In a similar vein, the
ADMS-Urban model, see e.g. Carruthers et al. (2000) provide city-wide exposure maps. A
number of other articles, e.g., Atkinson et al. (2012); Pirani et al. (2014, 2015); Rushworth

Thttp://www.bbc.com/news/science-environment-26848489, accessed 10/11/2016,
http://www.bbc.co.uk/news/uk-32233922, accessed 10/11/2016
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et al. (2014) discuss and use air pollution estimates in order to estimate health effects.
However, their main purpose is not exposure modelling and validation, and hence these
articles do not report the accuracy of their air pollution estimates.

There has been much less interest in modelling UK-wide air pollution data. Recently,
Lee et al. (2016) developed space-time models for air pollution data from England and
Wales but only at the monthly temporal resolution to allow linkage with aggregated monthly
health outcome data, which was the main purpose of that paper. High resolution spatial
maps of UK-wide annual air pollution exposure levels for NOy and PM;q for the year
2001 only are available from the website, http://www.envhealthatlas.co.uk/
(accessed 27/10/2016) which has been prepared by the Small Area Health Statistics Unit
(SAHSU) of the Imperial College, London. They use land-use regression methods for pre-
dicting concentrations at a 100m x 100m spatial resolution. However, the website does
not report the accuracy of the estimates nor does it provide estimates of air pollution at the
daily temporal resolution.

Lack of statistical modelling for obtaining UK-wide air pollution estimates does not
imply a lack of air pollution dispersion modelling using physical and chemical transport
models. For example, Savage et al. (2013) develop the Air Quality Unified Model (AQUM)
model for the whole of the UK. AQUM is a 3-dimensional weather and chemistry trans-
port model used by the Met Office to deliver the UK national air quality forecast for the
Department of Environment Food and Rural Affairs (Defra) and for scientific studies of
atmospheric composition and air quality. The model has been run in hindcast mode to
re-create hourly varying, UK air pollution concentrations for the period 2007 to 2011.
However, the raw outputs of the AQUM are biased (Savage et al., 2013) and there are no
associated uncertainties for the air pollution estimates. This drawback excludes the direct
use of the AQUM estimates, or their deterministic adjusted values, in rigorous scientific
health effects studies where the uncertainties of the air pollution estimates must be taken
into account; otherwise the health effect estimates may be inflated (Lee et al., 2016). To
overcome the biases in the AQUM, we model monitoring data which are more accurate.
The use of the AQUM output frees us from having to use emission data, as in Pirani et al.
(2014), and relevant meteorological data as in Sahu et al. (2007). These additional vari-
ables, already included as inputs in the AQUM, do not remain significant in the Bayesian
model when outputs from a computer simulation model, such as the AQUM, are already
present (Sahu and Bakar, 2012).

The primary motivation for this article is to develop space-time models for daily air
pollution levels for five years, 2007-2011, in England and Wales. We use Bayesian model
selection methods to validate and select the best model for each of the four pollutants
NO2, O3, PM;p and PM3 5. Using the selected model we obtain air pollution estimates
at a 1 kilometre square grid covering the whole study region. Our modelling at the point
level, described by a latitude and a longitude pair, and at the daily temporal scale, allows
us to develop air pollution estimates at any coarser level of spatial resolution, e.g. local
authority levels and at any aggregated temporal levels, e.g. quarterly and annual. The
main advantage of the Bayesian methods, implemented using Markov chain Monte Carlo
(MCMC), lies in the ability to estimate the uncertainties associated with the aggregated
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pollution levels, as we demonstrate in detail. The resulting aggregated pollution estimates
are then available to be used to integrate modelling of health outcome data which are often
recorded for administrative geographies, such as the local authority areas, see e.g. Lee
et al. (2016).

The remainder of the paper is organised as follows. Section 2 describes the data sum-
maries and explores relationships between the pollutant levels and the AQUM values. In
Section 3 we discuss the methods including the models and how to obtain the predictions
at point level, and at coarser geographies. Data analysis and model validation results are
presented in Section 4. Finally, a few summary remarks are placed in Section 5.

2. Data description

We model daily air pollution data collected from the 144 active AURN stations in England
and Wales for the five years 2007 to 2011. AURN is the UK’s largest automatic monitoring
network and is the main network used for compliance reporting against the Ambient Air
Quality Directives, seee.g. http://uk-air.defra.gov.uk/networks (accessed
17/11/2016). The stations, see the top panel of Figure 1 for their locations, measure oxides
of nitrogen (NO,), sulphur dioxide (SO3), ozone (O3z), carbon monoxide (CO) and parti-
cles (PM1g, PM3 5). Data from these stations are publicly available from a wide range of
electronic, media and web platforms. The pollutants are measured at a height between 1.5
to 4 meters above the ground level§ depending on the type of pollutant. The data quality is
verified and ratified on an ongoing basis as detailed in the cited Defra website.

We obtain the daily concentration data for four pollutants: nitrogen dioxide (NOg),
ozone (O3) and particles less than 10um (PMyg) and 2.5um (PMs 5) in size since these
are the most harmful pollutants in the UK which may have health effects, see e.g. Lee
et al. (2016). All pollutants are measured in microgram per cubic metre (11g/m?) units.
In our modelling we have used the daily maximum for NOs, the daily maximum 8-hour
running mean for ozone and the daily mean for both PM;g and PM3 5 following the 2008
EU directive on air pollution, see Commission (2008).

For each pollutant, the total number of possible daily observations is 262,944 (= 144 x
1826). However, in our data set there are 162,826 (61.92%), 100,779 (38.32%), 81,959
(31.17%) and 59,789 (22.74%) daily observations present, respectively, for the four pollu-
tants NOs, O3, PMjg and PMs 5. The remaining observations are missing due to several
reasons including: instrument malfunction, discontinuation of some sites and then intro-
duction of new replacement sites during the study period, or the fact that not all sites mon-
itor all pollutants. Table 1 shows a year-wise break-up of the missing observations. Most
notably, more than 90% of the PM» 5 observations are missing for 2007 and 2008 because
this pollutant was not monitored before 2009 since this was not considered to be one of the
criteria pollutants (the ones which are regulated) until the publication of the 2008 EU air
pollution directive. In spite of the missing values the spatio-temporal models in Section 3
are estimated using the large number of available observations as noted above.

Shttps://uk-air.defra.gov.uk/networks/site-info?site_id=L.B
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Fig. 1. A map showing the boundaries of 346 local authorities in England and Wales and
the locations of 144 AURN monitoring sites. The (blue) stars represent the 90 modelling
sites and the (red triangles) locate the 54 validation sites.

Table 1. Percentage of missing daily data out of the total number
of observations in a year, which is 52704 (366x 144) for 2008
and 52560 (365x 144) for the other years.
Pollutant | 2007 | 2008 | 2009 | 2010 | 2011 | Overall
NOs | 39.16 | 39.23 | 38.39 | 38.09 | 35.47 38.07
O3 | 56.56 | 62.87 | 64.05 | 63.05 | 61.81 61.67
PMyq | 64.99 | 66.71 | 70.24 | 72.41 | 69.78 68.83
PMs 5 | 96.66 | 92.21 | 67.57 | 65.18 | 64.75 77.26
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The location of each of the 144 sites is classified into one of 3 site types: “Rural”,
“Urban” (which also includes suburban), and “Road and Kerbside” (denoted by RKS).
Summary statistics, as reported in Table 2, show significant variability in all four pollu-
tants across these three site types. As expected, the table shows that the Rural sites are
less polluted than the Urban and the RKS sites for NOy, PM;g and PMjy swhile the con-
verse is true for O3. Ozone concentrations are generally lower in urban areas than in
the surrounding rural areas due to reaction with NOx (mostly NO) emissions, which are
greatest in urban areas, see e.g. Grewe et al. (2012) and also page 3 of the report, “Ozone
in the United Kingdom”, prepared by the Air Quality Expert Group and available from
http://www.defra.gov.uk/environment/airquality/ageg. Boxplots of
the distributions of each pollutant by site type are displayed in Figure 2. These plots also
show differences in variances for each pollutant by site type, with RKS sites having a larger
spread for NOy, PM1g and PMj 5 due to many extreme observations. Finally, boxplots of
the pollution concentrations by year (plots omitted for brevity) showed little variability in
the median from year to year, although there is considerable variation in the distribution of
the extreme values.

The methods proposed in this paper address the sparsity of the observed AURN data
by including the hourly hindcasts of the AQUM, developed by Savage et al. (2013) espe-
cially for the UK. AQUM is a chemistry transport model based on weather and emission
inventory data for which full details are provided in Savage et al. (2013). However, AQUM
does not use the observed AURN data but it produces output on a 12 kilometre square grid
covering the whole of UK. We use bi-linear interpolation methods, which interpolate once
horizontally and then vertically, see e.g. the Wikipedia entry¥], to predict the hourly pol-
lution concentration values at the corners of a one kilometre square grid we use for our
prediction purposes. These hourly values are subsequently aggregated to daily values for
our modelling purposes. The corners of these 1 kilometre grid cells do not coincide with
the locations of the 144 AURN monitoring sites and to resolve this misalignment we use
bilinear interpolation, see e.g. of the four grid corners of each site to estimate the daily
AQUM output for the 144 observation sites. These output are moderately correlated with
the corresponding observations with correlations of 0.44 for NO3, 0.68 for O3, 0.59 for
PM;jg and 0.61 for PMs 5 respectively. We have also obtained scatter plots showing these
correlations but those are omitted for brevity. These moderate values of correlations help
us in regression modelling of the observations that we consider in the next section.

Inclusion of the site type classifications (Rural, Urban and RKS) poses a problem for
predictions at locations for which site types are unknown. We tackle the Rural/Urban
classification problem by using map data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite, see Schneider et al. (2009). These maps, based on satellite
data from 2001-2002, provide land use information (urban/rural) at a 500 metre spatial
resolution and has an overall accuracy of 93%. Thus the rural/urban classification for each
corner of a one kilometre predictive grid locations is accurately obtained from these maps.
However, these data do not provide the RKS site type classification for the one kilometre
predictive grid. To obtain these classifications, we use the detailed open data roads net-

Yhttps://en.wikipedia.org/wiki/Bilinear_interpolation
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Table 2. Summary statistics of the four pollutants measured at sites in
ug/m? units. AD stands for the available number of data points based
on which the summaries have been calculated, SD stands for standard
deviation. Total size of combined data is 262,944 (144 x 1826).

NO;
Site Type Min | Median | Mean Max SD AD
Rural (16) 0 14.70 | 19.55 | 183.9 | 15.54 | 20,292
Urban (80) 2 4740 | 4991 | 401.0 | 26.76 | 88,529
RKS (48) 2 69.0 | 76.02 | 506.0 | 43.62 | 54,005
Combined (144) 0 50.0 | 54.79 | 506.0 | 36.98 | 162,826
O3
Rural (16) 2.25 67.50 | 68.66 | 187.5 | 18.88 | 20,900
Urban (80) 0 55.75 | 56.08 | 171.0 | 21.95 | 70,473
RKS (48) 0 49.50 | 49.44 | 145.0 | 22.40 9,406
Combined (144) 0 58.25 | 58.07 | 187.50 | 22.15 | 100,779
PMyq
Rural (16) 0 15.0 | 16.99 | 117.60 | 9.82 4,364
Urban (80) 0.43 17.08 | 19.98 | 194.30 | 11.48 | 47,778
RKS (48) 0 19.12 | 22.54 | 174.70 | 12.69 | 29,817
Combined (144) 0 17.68 | 20.75 | 194.30 | 11.95 | 81,959
PM, 5
Rural (16) 2.20 892 | 10.72 | 67.62 | 6.49 3,199
Urban (80) 0.08 10.71 | 13.63 | 113.50 | 9.53 | 38,188
RKS (48) 0 11.85 | 14.66 | 9096 | 9.79 | 18,402
Combined (144) 0 1092 | 13.79 | 113.50 | 9.51 | 59,789
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Fig. 2. Boxplots of the daily average concentrations for each pollutant by three site types.
The central box in each plot here (and in the other figures below) shows the quartiles,
the whiskers show the farthest observation from the median which is still within 1.5 times
the inter-quartile range and any observations outside the whiskers are suspected outliers,
ploted by the symbol ‘0’.
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work product from the Ordnance Survey||. We calculate the distance of each of the one
kilometre grid locations to the nearest road. The grid locations which are within 4 metres
of the nearest road are classified as RKS.

3. Model specification and prediction

In our study region of England and Wales, we have daily data from n = 144 sites for 7' =
1826 days. As is common practice in modelling air pollution concentration data we model
on the square-root scale to stabilise the variance (Sahu et al., 2007; Berrocal et al., 2010).
However, for ease of interpretation, the accuracy of all predictions from the pollution model
are assessed on the original scale. Let z,(s;,t), and z(,)(s;,t) respectively denote the
measured and modelled AQUM pollution concentration on the square root scale at location
s; during day ¢ for pollutant p. In what follows we suppress the subscript p for notational
clarity.

3.1. Hierarchical model
As part of the Bayesian modelling hierarchy we proceed with the top-level specification

Z(Siat) = Y(Siat) + G(Si, t)) E(Si7t) ~ N(07 062)7 (1)

fori =1,...,nandt = 1,...,T, where Y (s;, ) is the true process and €(s;,t) is the
independent nugget effect absorbing micro-scale variability. (Henceforth, values of the
subscripts ¢ and ¢ will always be in the range mentioned here.) At the next stage of the
hierarchy we specify:

Y (si, t) = pu(si,t) +n(si, t) (2)

where yu(s;, t) denotes the mean surface and 7(s;, t) is a space-time process, which we
specify later. The mean surface is modelled as:

p(si, t) = ~vo + (s, t) + Z i (si) (vo5 + vrjz(sist)) 3)
=2

where we propose a site type specific regression on the modelled square-root AQUM con-
centrations z(s;, t). Here r = 3, corresponding to the three site types (Rural, Urban, RKS),
and the rural site type corresponds to j = 1 and is the base line level. Thus (vp,~1) are
respectively the slope and intercept terms for the Rural sites, while (o, 7v1;) are the in-
cremental adjustments for site type j, j = 2,3. Finally, §;(s;) is an indicator function,
equalling one if site s; is of the jth site type and zero otherwise.

3.2. Specification of the spatio-temporal process
We consider four modelling possibilities for the spatio-temporal process 7(s;, t), which
differ in their level of sophistication. The first one is the simplest that assumes 7(s;,t) =

||https://www.ordnancesurvey.co.uk/opendatadownload/products.html, accessed 10/11/2016
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0 for all sites s; and times ¢, which renders (1) a simple regression model that is used
for comparison purposes with the other two models. The second model for 7(s;, t) is an
independent over time Gaussian process (GP) with zero mean and a Matérn covariance
function given by:

2

Cov(n(s, ), (s, 1)) = QV_‘I;(V)@\MS —[0) K, (2vPls — I6), @)
for ¢ > 0 and v > 0, where I'(v) is the standard gamma function, K, is the modified
Bessel function of the second kind with order v, and ||s — s'|| is the distance between
sites s and s’. The parameter ¢ controls the rate of decay of the correlation as the distance
||s; —s;|| increases and the parameter v controls smoothness of the random field (Banerjee
et al., 2004; Cressie, 1993). That is, for each time ¢,

ny = (77(517 t)? s 777(Sn7 t))T ~ N(07 U%Hn(¢a V))? &)

where Hy(¢,v)ij = C(||si — sjl|;¢,v),j = 1,...,n, which is assumed to be the Matérn
correlation function with decay and smoothness parameters ¢ and v respectively. The
special case of the Matérn correlation function when v = 0.5 is called the exponential
correlation function given by:

Corr(n(s, 1), 1(s',)) = exp(—]|s — ]| 6).

In this case ¢ alone determines the rate of decay of the spatial correlation as the distance
d = ||s — §'|| between two sites increases. A related quantity, called the effective range,
best describes the limit of the correlation decay to zero in practical situations. However,
exp(—d @) # 0 for any finite value of d and ¢. Hence the effective range, for a given
value of ¢, is defined to be the value of the distance d for which exp(—d¢) = 0.05, which
implies d = 3/¢.

The third model introduces non-stationary covariance structure following Sahu and
Mukhopadhyay (2015). This is achieved by first assuming a set of knot-locations, S}, =

(s],...,sy,), which are specified below, for a value of m which will be chosen by out of

r m
sample prediction performance. Given S¥,, we assume that n} = (n(st,t),...,n(s5,, 1)) "
is a zero mean GP with the Matérn covariance function (4). The non-stationary modelling

proposal is to replace 7(s;, t) in (2) by
M(si,t) = E[n(si, t)|my] - (6)

The n-+m dimensional vector (1), i} ) is assumed to be a realisation of the same underlying
GP as in (4) independently for each ¢. By writing 1, = (7i(s1,t),...,7(sn,t)) " and using
multivariate Gaussian theory we have

My = C* (6, V) Hy (6, v)my ™
where C*(¢, v) is the n x m cross-correlation matrix between 7, and n;, i.e. (C*);; =
C(lsi—sil;¢,v)fori=1,...,nandj =1,...,mand H,-(¢, ) is an m x m correlation
matrix having elements H,-(¢, v)r; = C(|[sy, — sj|[; ¢, v), for k,j = 1,...,m. Clearly,

Var(nj,) = C* (¢, v)H,. (¢,v)C*T (¢, v),
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which shows non-stationarity of the 77, process.

The 7, surface, is now based on linear functions of the m-dimensional 0} instead of
the n-dimensional 7),. This leads to a reduction of computational burden when m is much
smaller than n. However, n = 144 is not very large in this paper and hence dimension
reduction by Gaussian Predictive Process approximation (Banerjee et al., 2008) is not re-
quired here. We still use (7) to benefit from having a flexible non-stationary model for
the spatial random effects. Sahu and Mukhopadhyay (2015) show that this flexibility in
modelling, even when m > n, leads to more accurate predictive models, which are also
considered as candidate models in this paper.

Finally, we remove the temporal independence assumption in the previous model by
introducing an autoregressive model for 1. Here we assume that

77: ~ N (Qnrfho-%H’I]*((ﬁ? I/)) ) fort = 17 cee 7T7 (8)

with 77, = 0 as the initial condition and ¢ as the unknown auto-regressive parameter for
which we specify a prior distribution. Thus, given m and S}, 1} is determined from the

above auto-regressive process, and then 7, is obtained by using (7) forallt =1,...,T.

3.3.  Specifying the knot locations

Now we return to specifying the knot locations S}, for a given m where m is to be chosen
by cross-validation. Sahu and Mukhopadhyay (2015) show that a random selection of S},
is preferable to a space filling design that distributes the m locations evenly within the
study region. In our implementation, we discretise by M points, which are the corners of
a set of 1-kilometre grid squares covering the study region. To add flexibility we assume a
probability surface p(s}),j = 1,..., M such that Z;Vil p(s;) = Land p(s}) > 0 for j =
1,..., M. The p(s;) can be a normalised population density surface that will guarantee
knots being placed at high density areas. A random sample of m locations is proposed to
be used as the knot-locations S, . In effect, this implies a discrete prior distribution for S7,
and MCMC model fitting is easily accomplished by using a Metropolis-Hastings step for
Sy, where the proposal samples are drawn from the prior itself. Throughout, we choose
m = 25 which was chosen by an out of sample root mean square prediction error criterion
(see Section 3.6 below) among the possible values of 16, 25, 36, 49 and 100. A complete
square value, e.g. 25, are put forward as candidates so that an equal number of points are
chosen in the two co-ordinate directions.

3.4. Specification of the prior distributions

Our proposed Bayesian model is completed by assigning vague but proper prior distribu-
tions for the remaining model parameters. These include zero-mean Gaussian priors for
the regression parameters ’s in (3) with large variances of 10%, inverse gamma prior distri-
bution for the variance parameters (o2, 072,) with hyper-parameters (2, 1) parameterised to
have mean 1 and infinite variance. Informative (and thus proper) prior distributions must be

specified for the two parameters v and ¢ describing the Matérn correlation function, since
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these are weakly identified in the likelihood, see e.g. Zhang (2004), who shows that consis-
tent estimation is not possible for these parameters. In addition, sparsely observed spatial
data are not very informative for the smoothness parameter v, see e.g. Stein (1999). Hence
we shall adopt the exponential correlation function corresponding to v = 0.5 following
many authors, e.g. Berrocal et al. (2010); Sahu et al. (2007).

Now it remains to specify a proper prior distribution for ¢. Here, besides fixing ¢ at
several plausible effective ranges we entertain two proper prior distributions: (1) a uniform
prior distribution in the interval (0.001,0.01) corresponding to having an effective range
between 300 and 3000 kilometres and (2) a gamma prior distribution with parameters 2
and 1, parameterised to have mean 2 but with infinite variance. The implied effective
range between 300 and 3000 kilometres corresponding to the uniform prior distribution
provides opportunities for the models to have adequate spatial correlation but avoiding
singularity corresponding to an infinite range. However, the gamma prior distribution does
not bound ¢ within any finite range unlike the uniform prior distribution. In Section 4,
suitable prediction validation criteria will be used to choose between these contrasting
specifications.

3.5. Prediction details
The hierarchical space-time model allows us to predict pollutant concentrations at any
location s’ and at any time point ¢,1 < ¢t < T. We first consider prediction of the large
percentages of the missing data as noted in Section 2. Suppose that Z(s;, t) is missing
for particular values of s; and ¢. By virtue of the Bayesian model, implemented using
MCMC, we have a value of the p(s;, 1)) at each iteration £ for ¢ = 1,...,L of the
implemented MCMC algorithm. (Henceforth ¢ will denote the MCMC iteration index and
L will denote the retained number of MCMC iterates we use for inference.) Using the
sampled values of the spatio-temporal process 7(s;, t)(*) we obtain Y (s;,¢)) following
Equation (2). Subsequently, we sample Z(s;, t)(z) using (1) which also needs ol © At
the end of the MCMC run, we utilse the samples Z(s;, t)(e), ¢ =1,...,L to esimate the
missing Z(s;, t) value and its variability.

Prediction of Z(s',t) at a new location s’, where s’ is not one of s1, ..., s,, using the
Bayesian model, proceeds by evaluating the posterior predictive distribution:

m(2(s,t)]z) = /W(Z(S’,t)lsim??*,&Z)W(an,n*,GIZ)dSZ@d??*dO, ©)

where 8 = (v, 0,02, 03], #)T denotes the model parameters and n* = (n7,...,n%). Here
m(z(s',t)|SE,, n*, 0) requires 7j(s’, t), see (1), which is calculated as ¢*7 (s'; ¢, zj)Hn’*1 (¢, v)my},
analogous to (7), where c*(s'; ¢, v) is m x 1 with the ith element given by c}(s'; ¢,v) =
C(|sf —s'|; ¢,v). Composition sampling is used to simulate from (9) as follows. At the

{th MCMC iteration samples of (Sj;?), O, 0(12)) are drawn from the joint posterior dis-
tribution. Now z(f)(s’ ,1) is to be sampled from the Gaussian distribution given by (1).
However, this requires Y () (s’, t) which in turn requires ;{9 (s’, t) and 79 (s, t), see (2).
The mean term (9 (s', t) is evaluated using the () in (3). This evaluation also requires
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the site type indicators ¢;(s’), 7 = 2, ..., r which we take from the MODIS satellite data as
discussed in Section 2. Also note that (3) requires z(s’, t) which we obtain using bilinear
interpolation as mentioned in Section 2.

For 1Y) (s', t) we note that according to (7) we have 7i(s’, t) = c*7'(s'; ¢, v)H, Mo, v)nt
Hence 77(9)(s', t) is obtained as:

7O, 1) = T (6O, OV H (@O, O yr®),

Now we obtain Y (O (s', 1) = (O (s’, 1)+ 7 (s/, t) using (2). Finally, (9 (s’, t) is obtained
2(6)

as a draw from the Gaussian distribution with mean Y'(Y)(s’, ¢) and variance o

3.6. Evaluating the predictive performance

The predictive performance of each pollution model is assessed by a cross-validation
exercise, where data at sites (si,...,Sy,,) are used to fit the model while data at sites
(Sng+1s - - - »Sp) are held out to assess predictive performance. The root mean square pre-
diction error (RMSPE) and mean absolute prediction error (MAPE) are used to quantify
prediction accuracy, which are given by

RMSPE = Z Z 2(sj,t) = £(s5,1))%,

] =no+1 t=1

MAPE = — Z Z!z (sj,t) — £(sj, 1),

_] =no+1 t=1

where Z(s;, t) is the posterior median from the predictive distribution. Here N, is the total
number of available (i.e. non-missing) observations from these validation sites over the
T = 1826 days. These criteria are used to select the best model. Once the best model has
been chosen, we use all the available data from n = 144 sites for inferential purposes.

3.7. Aggregating predictions to administrative geographies

The proposed geo-statistical models are able to predict at any unmonitored location s’
using the methodology described above. In this section we consider spatial aggregation to
any coarser level administrative geography, e.g., local authorities or electoral wards, which
may be required to align with aggregated health outcome data. For the kth administrative

region, denoted by Ay, for k =1,..., K, where K is the total number of such regions, we
define the average pollution concentration at time ¢ by
1
Ty = —— Z (s, t)ds, (10)
| Akl Ja,

where |Ay| is the area of the region Ax. We approximate (10) using numerical integration
as

1
T =— Y Z(sj,1), (11)
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where (sg1, ..., Skn,) forms a fine grid of prediction locations within the kth region. As
mentioned in the Introduction, we perform the predictions at a 1 kilometre square grid
covering the study region. Hence, the ny locations, (Sk1, ... ,Skn, ), are simply taken as
the corners of the 1 kilometre square grid which fall within Ay.

Under the Bayesian inference setting, Z;; will have a posterior predictive distribution
given the observed data z since each Z(sy;,t) also has such a distribution. This poste-
rior predictive distribution can be summarised using MCMC samples drawn from it using
composition sampling. Corresponding to each draw from the joint posterior distribution we
draw a sample z(f)(skj, t) from the posterior predictive distribution (9). At each MCMC
iteration ¢, we form the average

—(0 1 &
Zy) = - > 2O (spy,1).
7j=1

These MCMC iterates, Zli?, = 1,..., L are summarised to estimate Z;;. Uncertainties
in these estimates are also easily estimated using the MCMC iterates. Note that tempo-
ral aggregation can easily be performed using the MCMC iterates. For example, if it is
required to estimate Zj, = & 3/, Zj, then we simply obtain

0 _ 1y 1

AN il (g,

: fTanZz (Skj» 1) (12)
t=1 j=1

foreach ¢ = 1,..., L and summaries e.g, mean and median of these MCMC iterates are

used. Moreover, uncertainties in these estimates expressed through, for example, credible
intervals and standard deviations are also obtained using the MCMC iterates. Prediction
details for z(*) (sk;, t) for any arbitrary site sj; have been noted in the previous sub-section.
Lastly, we also note that temporal aggregation for a sub-period (e.g. annual) of the whole
time domain can be performed similarly by simply taking the average similar to the one
in (12) but only using the simulations =) (skj, t) for all the individual time points ¢ which
fall in that sub-period. For example, we can find annual averages from modelling five
years’ data.

4. Results

4.1. Implementation details and models setup

All model fitting and model choice results are based on L = 5000 MCMC iterations, after
discarding first 5000 iterations at which point convergence was assessed. We first consider
the issue of model choice and validation for each pollutant separately. These tasks are
performed by fitting the models with data from 90 (62.5%) randomly selected sites and
then validating the available observations from the remaining 54 sites. Thus model fitting
is done using a maximum of 164,340 (= 90 x 1826) observations and validation is done
using a maximum of 98,604 (= 54 x 1826) observations. For individual pollutants the
actual numbers of fitting and validation observations will be less than these maximums
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because of missing data. The 90 fitting sites contained 50 Urban, 11 Rural and 29 RKS
sites while the 54 validations sites contained 31 Urban, 5 Rural and 18 RKS sites. Thus
all three site types are adequately represented in both the fitting and validation set of sites.
For model comparison purposes we consider the RMSPE, MAPE, bias, actual coverage of
the 95% prediction intervals, since spatial prediction is the main objective here.

For each pollutant, in addition to the AQUM, we entertain nine modelling possibilities
as follows. The first one is simple Kriging, performed independently for each time point
(day here), using the well known fields package (Furrer et al. (2013)) in the R program-
ming language. The second model is a simple linear regression model, implemented using
MCMC in the Bayesian framework, that does not take care of the spatio-temporal depen-
dence in the data, viz. models (1), (2) and (3) with 7(s;,¢) = 0 for all ¢ and ¢. To introduce
spatial dependence only we consider the independent in time GP model described as the
second model in Section 3. These three models are chosen solely for benchmarking pur-
poses since these off-the-shelf methods are often used in practice and also these are simple
stationary GP Versions of our proposed models.

The remaining seven Bayesian models are all based on the most complex non-stationary
spatio-temporal models described in Section 3. The first five of the seven models are
obtained for five different fixed values of ¢, the decay parameter. The five values, denoted
by ¢;,t = 1,...,5 correspond to effective ranges of 3500 (¢1), 3000 (¢2), 600 (¢3), 300
(¢4) and 100 (¢s5) kilometres respectively, and these choices are guided by the need to
include large to moderate amounts of spatial correlation into the model. In the final two
modelling attempts we specify the uniform and gamma prior distributions for the decay
parameter ¢ as mentioned in Section 3.1.

4.2. Model validation and comparison results

Tables 3 and 4 report the validation results for AQUM and all nine modelling scenarios
noted above. The tables show that the raw AQUM outputs are far worse than all nine
modelling strategies including Kriging. This is expected as AQUM does not use the actual
observations and those output are heavily biased as noted previously. All six Bayesian
models, based on the non-stationary spatio-temporal models, perform much better than
the three bench marking strategies: Kriging, Linear and GP. The differences between the
performances of the six Bayesian models are not very large which is due to the fact that the
dominant linear model part is same for all six models. Slight differences in performance
are observed by varying the spatial correlation structure. For NOy the model with ¢ fixed
at ¢ is chosen to be the best; the model with the Uniform prior distribution is best for
O3 and the model with the Gamma prior distribution is best for PM;y and PMs 5. Each
of the four best models reports an R? value, which is the value of the sample correlation
coefficient between the observations and their predictions, between 80 to 90% which shows
very good agreement between the model based predictions and the held out observations.
Model adequacy can be checked by the achieved coverages of the 95% prediction intervals
which are seen to be more than 90% for NOy, O3 and PM;y. However, the achieved
coverages are between 80 to 84.6% for PMs 5. This is most likely because of the smaller
sample sizes available both for fitting and validation for this pollutant. However, RMSPE
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of the best model is 4.30, which is less than half of the standard deviation of 9.52 for the
full data (see Table 2) and hence the model does perform quite well in reducing prediction
variability.

Next we investigate if the best chosen model for each of the four pollutants performs
similarly in validating the three site types: Rural, Urban and RKS. Recall that there were
31 Urban, 5 Rural and 18 RKS sites among the 54 validation sites. Table 5 shows the
RMSPE’s aggregated by the site types. The table shows that the RMSPE is slightly smaller
for the Urban sites for NO3, PM;g and PMs 5. This is expected since the Urban sites
outnumber the other site types both among the fitting and validation sites, which leads to
more accurate estimation and more stable value of the RMSPE. For O3, the Rural sites
have a smaller RMSPE value, which shows that the higher pollution values are estimated
with on average more accuracy.

So that we can compare the accuracy of the proposed models with that of the previous
modelling efforts of Pirani et al. (2014) we consider fitting our models to data from mon-
itoring sites in Greater London only. We only perform this experiment for PM;( because
comparable model validation results for daily data are available from Pirani et al. (2014)
for this pollutant only. Table 6 reports the results for their best model and the best perform-
ing model in this paper. Our model has much lower RMSPE with a better R? value than
the Pirani et al. (2014) modelling effort, although this is not an exact comparison since the
data used in Pirani et al. (2014) and in this paper are different. However, some justification
for the comparison comes from the fact that the error rates are for daily data observed in
the same spatial domain of Greater London.

4.3. Parameter estimates

Parameter estimates for the best Bayesian models are presented in Table 7. These parame-
ter estimates have been obtained by fitting the models with all the available data from 144
sites, see the last column of Table 2. The models rightly find significantly elevated levels
of NOy concentration in the urban and roadside sites compared to the rural sites since all
the incremental slopes and intercepts are positively significant in Table 7. However, this
behaviour reverses for O3 which is known to be lower in urban and roadside areas due to
its negative correlation with NOs. The estimates for the same parameters for models fitted
to the two species of particulate matter show a mixed behaviour regarding the three site
types. The estimates show moderately significant temporal correlation, but spatial corre-
lation seems to be more dominant since the estimates of ¢, gZ; show large effective ranges
(3/9).

The spatial variance, 0% is estimated to be higher than the nugget effect o2 except for the
case of modelling NOs. This is plausible since the variability of NO3 is much higher than
the other three pollutants (see Table2) and the model absorbs the extra variability using
the nugget effect parameter, o2. Overall, all of the linear parameters show significantly
different linear relationships between the AQUM model output and the observations in the
square-root transformed scale. Hence, this implies considerable modelling success with
the AQUM outputs that results in very low out of sample root mean square prediction
erTors.
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Table 3. Assessment of predictive performance for a range of mod-
els for NO; and Os. SS stands for sample size which is the number
of daily observations. R? denotes the sample correlation coefficient

between the predictions and actual observations.

Model | RMSPE | MAPE | Bias | Coverage (%) | R*
NO-: Fitting SS = 100,138, validation SS=62,688
AQUM 39.12 25.50 | -17.06 - 1042
Kriging 32.87 22.88 2.56 69.59 | 0.53
Linear 30.46 19.63 -5.09 94.43 | 0.60
GP 31.46 22.08 1.73 98.08 | 0.58
1 18.30 13.60 1.22 96.64 | 0.88
b2 17.65 12.99 0.41 97.42 | 0.89
P3 17.90 12.86 -0.70 97.43 | 0.89
o 20.85 14.56 0.05 96.59 | 0.84
Unif 17.82 13.07 0.32 97.35 | 0.89
Gamma 19.23 13.64 -1.81 95.36 | 0.87
Og: Fitting SS = 64,373, validation SS=36,406
AQUM 20.80 16.04 -2.95 — 1 0.68
Kriging 13.30 9.86 -2.95 78.25 | 0.80
Linear 16.0 12.42 8.47 93.86 | 0.69
GP 16.53 12.81 3.76 99.52 | 0.66
D1 10.22 7.62 0.09 91.61 | 0.89
o> 10.33 7.68 0.11 91.18 | 0.88
b3 10.27 7.65 0.22 91.93 | 0.88
o 11.31 8.41 0.29 92.38 | 0.86
Uniform 10.17 7.59 0.07 91.72 | 0.89
Gamma 10.42 7.75 0.20 91.03 | 0.88
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Table 4. Assessment of predictive performance for a range of mod-
els for PM;y and PMy 5. SS stands for sample size which is the
number of daily observations. R? denotes the sample correlation
coefficient between the predictions and actual observations.

Model | RMSPE | MAPE | Bias | Coverage (%) | R®
PM: Fitting SS = 52,625, validation SS=29,334
AQUM 14.70 11.36 | —-10.74 - 10.59
Kriging 7.34 475 | -0.75 64.96 | 0.77
Linear 9.98 6.74 -1.74 93.70 | 0.61
GP 10.24 7.75 1.89 99.79 | 0.57
D1 5.49 3.58 -0.62 89.23 | 0.80
o) 5.51 3.63 | 046 89.07 | 0.80
b3 5.59 3.61 -0.80 90.75 | 0.80
o 6.21 397 | -0.57 87.32 | 0.79
Unif 5.65 3.17 -0.52 89.02 | 0.80
Gamma 5.48 3.56 | -0.65 90.03 | 0.81
PM, ;: Fitting SS = 38,481, validation SS=21,308
AQUM 9.29 635 | -4.53 -1 0.58
Kriging 4.63 2.96 -0.72 67.84 | 0.81
Linear 8.03 530 | -1.87 92.73 | 0.60
GP 8.38 6.59 2.08 99.92 | 0.85
b1 4.45 325 | -1.23 82.74 | 0.85
o) 4.32 2.66 | -1.17 83.84 | 0.85
b3 4.38 2.72 -1.03 84.61 | 0.85
o 4.99 305 | -1.54 83.30 | 0.81
Uniform 4.56 2.85 -1.13 84.21 | 0.85
Gamma 4.30 2.66 | -0.97 82.38 | 0.85
Table 5. Aggregated RMSPEs of individ-
ual pollutants according to the three site
types. The results corresponds to the best
model for each pollutant as reported in Ta-
ble 3 and Table 4.
Pollutant | Rural | Urban | RKS
NO- 18.69 15.63 | 19.53
O3 9.59 10.35 | 11.40
PM; 5.52 5.15 6.13
PMs 5 4.42 4.16 4.55
Table 6. Model validation measures for PM; within London.
Model | RMSPE | MAPE | Bias | R® | Coverage (%)
PM;: Fitting SS = 11,828, validation SS=1,393
AQUM 14.48 12.72 | 3.39 | 043 -
Gamma 3.81 2.85 | 0.87 | 0.85 89.37
Pirani et al. (2014) 4.75 - - 10.63 -
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Table 7. Estimates (posterior median) and the 95% credible interval
for the parameters of the best model for NO5, O3, PM;y and PM, ;.
Here the rural sites have been set as the base category. Hence ~o;
and vy, are incremental intercept and slope for the urban sites when
j = 2 and for the RKS sites when j = 3.

Parameter Estimates for NOo Estimates for O3
Yo 3.66 (3.51, 3.80) 6.28 (6.16, 6.39)
Y 0.23 (0.22, 0.24) 0.22 (0.21, 0.23)
Yo2 1.27 (1.20, 1.35) —-0.93 (-0.99, -0.88)
Y12 0.07 (0.06, 0.08) 0.05 (0.04, 0.06)
703 2.52 (2.44, 2.60) -0.53 (-0.59, -0.48)
Y13 0.03 (0.02, 0.04) 0.007 (0.003, 0.013)
p 0.11 (0.09, 0.12) 0.27 (0.26, 0.28)
o? 1.97 (1.95, 1.99) 0.29 (0.28, 0.31)
0727 1.12 (1.06, 1.19) 0.57 (0.55, 0.59)
10} 0.001 (fixed) 0.005 (0.0049, 0.0051)

Estimates for PMj Estimates for PMs 5
Yo 4.03 (3.92, 4.13) 3.21(3.14, 3.28)
Y 0.11 (0.09, 0.12) 0.077 (0.070, 0.084)
Yo2 -0.09 (-0.11, -0.07) -0.11 (-0.12, -0.09)
Y12 0.03 (0.02, 0.04) 0.043 (0.038, 0.047)
703 -0.04 (-0.06, —0.02) —-0.10 (=0.12, -0.09)
Y13 0.03 (0.02, 0.04) 0.041 (0.036, 0.045)
p 0.20 (0.18, 0.21) 0.16 (0.15, 0.18)
o? 0.12 (0.11, 0.14) 0.0749 (0.0743, 0.0754)
0727 0.48 (0.46, 0.51) 0.51 (0.48, 0.51)
10} 0.0008 (0.0007, 0.0009) | 0.00030 (0.00022, 0.00035)




A Bayesian model to estimate long term exposure to outdoor air pollution 19

4.4. Spatio-temporal aggregation results

Aggregation of the point level predictions to any given administrative geographies is per-
formed by using block averaging at each MCMC iteration as detailed in Section 3.7. We
also perform annual aggregation as detailed in Section 3.7. Here we illustrate annual ag-
gregation for the 346 local authorities in England and Wales for 2011, boundaries of which
have been shown in Figure 1.

Within each local authority, k, where k = 1,. .., 346, we evaluate the Bayesian predic-
tions z(®) (skj,t) for each grid point sy; of a one kilometre square grid. At each MCMC
iteration ¢, these predictions are spatially and temporally aggregated to produce average
local authority specific pollution estimates. These are then summarised to produce the
predictive maps and their standard deviations, which are shown in Figures 3 to 6.

The plotted annual pollution maps, along with their uncertainties, show considerable
spatial variation. As expected, the NOg levels are higher in London and other urban areas
than the rural areas. However, the reverse happens for O3. The particulate matter levels are
consistently higher in urban areas. However, these values are lower in a few local author-
ities in central London according to Figures 5 and 6. This is very plausible as particulate
matter pollution is linked to wood burning and such activities are not very common in cen-
tral London, see Fuller et al. (2014). As expected, predictive uncertainties, (see the maps
of standard deviation) are generally higher for the local authorities where there are not
many monitoring sites. Also higher pollutant levels are generally associated with higher
prediction standard deviations. This is expected since the boxplots in Figure 2 reveal much
more variability for the suspected extreme observations than the observations lying in the
central box. The adopted square-root transformation reduces such mean-variance relation-
ship, but does not completely eliminate it in the empirical modelling (Sahu et al., 2007).
Further illustrations of the predictive maps are provided in the accompanied supplemental
material.

5. Discussion

This paper has developed statistical modelling and prediction methodologies for long term
exposure to outdoor air pollution levels and illustrated these for England and Wales with
daily data from the five year period 2007-11. We have considered the four most important
pollutants: NOg, O3, PM;g and PM; 5. Novelty in the statistical model has been introduced
through space-time random effects by means of a temporally correlated Gaussian Process
(GP) that is allowed to be anchored at a random set of locations within the study region.
The random effect at any arbitrary location is obtained as a Kriged value of the realisations
of the GP at the anchoring points known as knots. By also varying the number of knots
we obtain a highly flexible non-stationary random effects surface that is able to match
the non-stationarity in the daily air pollution surface. Further local information has been
injected into the model through a site classification variable that describes the location of
the monitoring sites. We have found that the site classifier taking three possible values best
contrasts the pollution data according to land use. A site type specific regression model
with site type varying intercept and slope has been put forward at the heart of the Bayesian
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Fig. 3. Local authority-wise annual prediction plot for NO, using the 1 kilometre predictive
grid (left panel) and their standard deviations (right panel) for 2011. The locations of the
144 AURN sites are superimposed as points on both the panels.
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Fig. 4. Local authority-wise annual prediction plot for O3 using the 1 kilometre predictive
grid (left panel) and their standard deviations (right panel) for 2011. The locations of the
144 AURN sites are superimposed as points on both the panels.
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Fig. 5. Local authority-wise annual prediction plot for PM; using the 1 kilometre predictive
grid (top panel) and their standard deviations (bottom panel) for 2011. The locations of the

144 AURN sites are superimposed as points on both the panels.
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Fig. 6. Local authority-wise annual prediction plot for PM, 5 using the 1 kilometre predictive
grid (top panel) and their standard deviations (bottom panel) for 2011. The locations of the

144 AURN sites are superimposed as points on both the panels.
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space-time model. Empirical results show significance of the site specific regression model
for all four pollutants. It is also possible to incorporate a spatially varying co-efficient
model for the AQUM outputs. However, our preliminary results using those models did
not show any gain in predictive capability and as a result, we have not considered those in
this paper.

The proposed models have been empirically verified with hold-out data and have achieved
the least, as far as we are aware, root mean square error rates for daily PM g data over the 5
year period. Comparable error rates for daily data for the other pollutants are not available
for modelling data from England and Wales. However, many authors model annual aver-
age data and error rates from such modelling are available. For example, Shaddick et al.
(2013) model the 2001 annual average NOy data from 934 sites in EU-15 countries and
their best model has an RMSE of 8. This is not directly comparable to our model RMSPE
for the daily data as provided in Table 3 since daily data and annual average data have
different variabilities. However, their RMSE of 8 is relative to the standard deviation of 12
for the annual average as reported in their Table 1. Similar comparison for our best model
for NOy shows the RMSPE value of 17.65 which is relative to the overall data standard
deviation of 36.98 as reported in Table 2 here. Thus our model has much lower relative
root mean square error, compared to the standard deviation of the full data, than what has
been reported in Shaddick et al. (2013). For PM;q, Gulliver et al. (2011) model annual
mean data from 52 monitoring sites in Londom and their best land use regression model,
PMLUR, report an R? value of 0.58. This is much lower than the Gamma model R? of
0.85 in Table 6, although the R? values are not fully comparable since our models are at
the daily temporal resolution and the Gulliver et. al. model is at the annual temporal res-
olution. We have also performed, though not reported here, other cross-validation studies
with hold out data from one site at a time and those also provide favourable verdicts for the
proposed models. Thus using variants of the proposed models we obtain the most accurate
empirically verified maps of daily air pollution levels for England and Wales over the five
year period.

The developed Bayesian prediction methodology has been applied to a 1-kilometre
square grid covering England and Wales. This allows us to aggregate the predictions to
any administrative geographies coarser than the 1-kilometre square grid, e.g. to electoral
wards or local authority areas. These predictions are on daily time scale and hence can be
aggregated to monthly, seasonal and annual scales. For each aggregation task, one needs
to average the MCMC iterates of the predictions. These aggregated MCMC iterates enable
us to provide uncertainty estimates in the aggregated predictions. We have illustrated the
local authority wise prediction maps for the year 2011. All the predictions and data sets
are published online alongside this paper from the website of the Medical & Environmen-
tal Data Mash-up Infrastructure project.«* The accompanying supplement contains the
descriptions of the files and further illustrative maps.

The published predictive values and maps can be used in many different types of sci-
entific studies. For example, health effects estimation studies, such as Lee et al. (2016),

sxhttps://www.data-mashup.org.uk/research-projects/statistical-downscaling-of-gridded-air-
quality-data/
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can benefit from accurate air pollution estimates at any spatial and temporal resolution for
any spatial domain (such as Greater London) within England and Wales. Compliance to
air pollution regulation can also be judged at any un-monitored site by performing spa-
tial prediction at that site of interest. Compliance summaries, such as the number of days
exceeding a threshold level of any pollutant in a year can be estimated, along with the
associated uncertainties. For example, the EU regulations, see Commission (2008), state
that the 24-hour average PM;g, the modelled quantity here, should not exceed the upper
assessment threshold 35 1g/m? for more than 35 days in a year. For Os, the regulation
states that the modelled O3 metric should not exceed 120 11g/m? for more than 25 days per
calendar year averaged over 3 years. The Bayesian modelling framework developed here
can estimate the number of days any particular site, monitored or unmonitored, for which
such a threshold is exceeded and can also estimate maps of probability of non-compliance,
as has been demonstrated in Sahu et al. (2007). Such assessments for England and Wales
for all four pollutants and for all the five years require further investigation and will be
considered elsewhere.

This article only concerns with exposure to outdoor pollution. Assessing the true per-
sonal exposure, including indoor air pollution, is a much more demanding task since people
move between different environments, travel and relocate over a long study period of five
years. There are many articles discussing such issues, see e.g. Shaddick et al. (2008) and
Zidek et al. (2005).

Finally, the methodology presented in this paper can be improved in several ways.
For example, to account for correlation in the pollutants one can use multivariate spatio-
temporal models. However, multivariate modelling will only be required if it is desired
to study the correlations between the pollutants. Further methodological development is
also required to produce air pollution estimates, and their associated uncertainties, for user
defined geographies and temporal windows so that air pollution estimates are available on
demand for the spatial domain at the desired temporal resolution as required by the user.
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