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Impact of mutational profiles on response of
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Tiandao Li3, Christopher A. Miller3, Charles Lu3, Elaine R. Mardis3, Alexa Gillman4, James Morden4,

Manuela Graf1, Kally Sidhu2, Abigail Evans5, Michael Shere6, Christopher Holcombe7, Stuart A. McIntosh8,

Nigel Bundred9, Anthony Skene10, William Maxwell11, John Robertson12, Judith M. Bliss4, Ian Smith2,

Mitch Dowsett1,2 & POETIC Trial Management Group and Trialistsw

Pre-surgical studies allow study of the relationship between mutations and response of

oestrogen receptor-positive (ERþ ) breast cancer to aromatase inhibitors (AIs) but have

been limited to small biopsies. Here in phase I of this study, we perform exome sequencing on

baseline, surgical core-cuts and blood from 60 patients (40 AI treated, 20 controls). In poor

responders (based on Ki67 change), we find significantly more somatic mutations than good

responders. Subclones exclusive to baseline or surgical cores occur in B30% of tumours.

In phase II, we combine targeted sequencing on another 28 treated patients with phase I.

We find six genes frequently mutated: PIK3CA, TP53, CDH1, MLL3, ABCA13 and FLG with

71% concordance between paired cores. TP53 mutations are associated with poor response.

We conclude that multiple biopsies are essential for confident mutational profiling of

ERþ breast cancer and TP53 mutations are associated with resistance to oestrogen

deprivation therapy.
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A
ssessment of somatic mutations is becoming increasingly
important for the management of cancer patients, but
molecular heterogeneity occurs across many tumours1.

This variability is of particular interest in relation to the clonal
evolution of individual malignancies, but it also poses a severe
analytical challenge in terms of the degree to which the whole
tumour mutational repertoire is represented by limited biopsy
material.

In breast cancer, there is major interest in the use of
pre-surgical studies for assessing the biological effect of
therapeutic agents2, including the impact that the agents
may have on the responsiveness of subpopulations and the
emergence of subclones resistant to therapy. However,
such studies inevitably depend on analyses of sequential, usually
core-cut biopsies that often sample o1% of the tumour mass and
may therefore provide limited representation of the tumour
genotype.

Breast cancer is the most common malignancy in females in
western countries and oestrogen receptor-positive (ERþ )
tumours contribute B75% of the disease3. Aromatase inhibitors
(AIs) are the most effective agents in post-menopausal
woman reducing recurrence rates in primary breast cancer
patients by B 50% (ref. 4). These agents inhibit aromatase
throughout the body by 497% and suppress plasma oestrogen
levels to undetectable levels5. However, these therapies are not
effective in every patient. Hence, identifying the role that
mutations play in de novo resistance to AIs is an important
clinical research goal.

One large pre-surgical study, Perioperative Endocrine
Therapy—Individualising Care (POETIC) trial, randomized
4,486 patients to receive 2-week non-steroidal AI or no treatment
before surgery2. Biopsies were collected at diagnosis and at
surgery to correlate molecular alterations in the tumours with
their antiproliferative response to an AI. This provides the
opportunity to identify DNA alterations that are of biological
interest in relation to oestrogen responsiveness and of potential
clinical importance in relation to AI use6. Like other pre-surgical
studies, POETIC is potentially affected by within-tumour
heterogeneity. The control group of POETIC (no pre-surgical
treatment) allows us to study discrepancies between repeat
biopsies from the same patients and to evaluate the molecular
heterogeneity within the tumours.

In phase I of the current study, we conduct whole-exome
analysis followed by capture-probe validation of baseline and
surgical core-cut biopsies and of whole blood DNA. We select
patients from the control group and treated patients at the
extreme ends of the Ki67 response spectrum to study. On the
exome-wide mutational profile, we find a significantly higher
mutational load in poor responding patients indicative for
multiple resistance mechanism. Over 2 weeks of treatment, we
only find minor effects on the mutational profile in terms of
mutational load and variant allele fractions (VAFs). In B30%
of the tumours, we detect intra-tumoural heterogeneity with
subclones exclusively to one of the core-cuts. In phase II,
we perform capture-probe sequencing of baseline and surgical
core-cut biopsies and whole blood DNA on additional patients.
We concentrate our analysis on mutations in 77 breast cancer
genes, for which the entire coding-sequence was added to the
capture-panel. Through integrating the data from phase I and II,
we find a reduced suppression of Ki67 within the poor responder
group for TP53-mutated tumours and therefore a potential
marker for poor response to oestrogen deprivation therapy. We
show concordant detection of the mutation status of frequently
mutated genes in 76% of the cases. Together with the subclonal
analysis, we conclude that limited tumour material from core-cuts
complicates mutational profiling of ERþ breast cancer. Multiple

biopsies are required for confident mutation calling, especially for
heterogeneous tumours.

Results
Clinical cohort. When phase I was initiated, 148 patients from
POETIC (CRUK/07/015) had paired baseline and surgical
(2 weeks) RNAlater-preserved samples available. To focus on a
comparison between particularly poor responders and good
responders, we excluded treated patients with Ki67 decrease
between 60 and 75% (n¼ 34, Methods). After quality assess-
ments, we found 60 eligible sample pairs. Our goal was to choose
equal numbers of good and poor responders, but in these pairs
only 15 poor responders were found. Therefore, all 25 available
good responders were included for a set of 40 treated patients.
Together with the 20 pairs from the POETIC untreated control
group, these constituted the 60 patient cohort of phase I (Fig. 1a;
Supplementary Fig. 1). The patient demographics of samples
from phase I are described in Supplementary Table 1.

To increase the statistical power to examine common events in
AI-treated patients, phase II was subsequently conducted
including sample pairs that had become available during
continual conduct of the POETIC trial. From 108 available pairs
of RNAlater-preserved samples, we excluded controls (n¼ 19)
and in keeping with phase I, we excluded samples not falling into
either the good or poor responder category (n¼ 19). All 18
available poor responding patients were retained even if one
sample of the pair did not meet our criteria (12 pairs, 6 singles)
together with 10 good responders paired samples selected based
on when they were received first in chronological order (Fig. 1b).

The demographics of all 86 patients in this study are described
in Table 1.

Mutation discovery in phase I of the study. Whole-exome
sequencing (WES) was performed on tissues at baseline and at
surgery and on blood from 60 patients (180 samples in total) for
initial mutation discovery. This achieved a median coverage of
38� (germline 39� , tumour 37� ; Supplementary Data 1);
11 tumour samples including both from one patient (P033) were
excluded due to low coverage. We identified a total of 6,910
somatic mutations in the remaining tumour samples from 59
patients.

Mutation validation in phase I of the study. To validate the
mutations from WES, we performed targeted re-sequencing at
higher depth on all 59 patients (excluding 11 tumour samples and
one blood from patient P033, 168 samples in total) from above
(Supplementary Fig. 2). Therefore, we designed a capture-probe
panel covering all potential somatic mutations discovered from
WES. In addition, the entire coding region of 77 previously
described breast cancer-related genes were added to the
panel (Supplementary Table 2). Seven samples attained low
coverage; however, six were sequenced successfully a second time
(with samples from phase II, P003 surgery had to be excluded,
mean coverage of 7� ). The remaining 167 samples had median
coverage 105� (germline 110� , tumour 100� ; Supplementary
Data 1). Of these, 52 were baseline and 56 were surgical samples
consisting of 49 pairs: 17 control, 11 poor and 21 good responder
pairs (Table 2).

The targeted re-sequencing validated 4,232 somatic mutations
across the 59 patients that were classified as tier 1 (variants
in the coding regions of annotated exons, canonical splice
sites and RNA genes). Without counting identical mutations in
paired samples, the number of validated mutations was 6,283
mutations across 108 tumour samples (Supplementary Fig. 3;
Supplementary Data 2). These affected 3,388 genes; the majority
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of mutations were missense (63%) or silent (23%) (Fig. 1c). The
mean number of mutations per patient with paired exome
sequencing was 79.5 (median 49, interquartile range, 33.0–91.5;
Fig. 1d).

Two patients were outliers based on their low mutation count
(r8 mutations in both baseline and surgical samples) in the
target area. There were two other pairs of samples with extreme
differences in their mutation counts between baseline and
surgery: 1 versus 407 (P035, control) and 86 versus 596 (P045,
good responder). To exclude sequencing bias, these samples were
sequenced a second time to over 200� median combined
coverage per sample. The plot of VAFs between the two runs
showed high correlations (r¼ 0.85–0.92, Pearson correlation)
between the replicates indicating high reproducibility
(Supplementary Fig. 4c–f). Despite the higher coverage, many
mutations were found in only one or other sample of these pairs
(Supplementary Fig. 4a–b), suggesting that these discordances
may have been due to normal tissue contamination. This is
supported by tumour purity estimation on WES data of these
samples (Supplementary Fig. 4).

Mutational load from phase I samples. For samples in phase I,
all potential somatic mutations discovered by WES were added to

the capture-panel for validation. This allowed an evaluation of
their exome-wide mutational load (that is their total number of
mutations). At baseline and at surgery, there was a significant
higher mutational load in samples from poor than good
responders (median 62.0 versus 33.5, P¼ 0.047; Fig. 2a and
median 56.5 versus 29.0, P¼ 0.022, Fig. 2b; Mann–Whitney test).
Controls showed similar mutation numbers to good responders.
There was no significant difference between baseline and surgical
samples in mutation counts within the good responders,
poor responders or control (Fig. 2d). However, considering all
32 treated pairs as a group there was a minor but statistically
lower median count after treatment (median baseline 43.5 versus
surgery 37.0, median of differences � 2, P¼ 0.019, Wilcoxon
signed-rank test). This significance was retained but weaker after
exclusion of the two patients with extreme differences (P035
and P045) from the analysis (P¼ 0.034). Given that the
treatment-related differences between baseline and surgery were
minor, we merged the mutations in each of the pairs of samples
and created a count of unique mutations per tumour giving a
value for 49 tumours. Similar to the comparisons described above
and shown in Fig. 2a,b, we found that poor responders had
significantly more mutations than good responders (median 104
versus 41, P¼ 0.021; Fig. 2c, Mann–Whitney test).
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Figure 1 | CONSORT diagram and mutational landscape. Samples were selected in two phases using the same quality criteria. Samples in phase I

(a) underwent whole-exome sequencing (WES) at low coverage for mutation detection followed by capture-probe sequencing for validation. Our goal was

to select the same number of controls, good responders and poor responders, but due to the availability of samples and exclusion criteria, we were not able

to identify 20 poor responders, instead 15 poor and 25 good responders entered the analysis. In phase II (b), samples that failed WES (not shown, see

Supplementary Fig. 1) and samples from additional patients without prior WES were sequenced with the same capture-probe panel as in phase I. To balance

the number of patients in the responder groups, preferentially poor responders were added. When samples from phase I and II combined, a total of 86

patients entered the downstream analysis, of which 77 are paired samples (see also Table 2). CONSORT diagram is simplified; a more detailed version can

be found in Supplementary Fig. 1. (c) Mutation type of all validated mutations in the exome of 59 patients from phase I and (d) number of mutations in each

patient by responder groups. Identical mutations found in the baseline and surgery sample of the same patients appear once in this figure only.
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Table 1 | Clinical data summary of all 86 patients in this study.

Response group

Poor (n¼33) Good (n¼ 33) Control (n¼ 20)

n % n % n %

PgR status
Positive 20 60.6 26 78.8 16 80.0
Negative 7 21.2 5 15.2 3 15.0
Not known 6 18.2 2 6.1 1 5.0

Histological subtype
Ductal 27 81.8 24 72.7 17 85.0
Lobular 3 9.1 5 15.2 2 10.0
Mucinous 1 3.0 1 3.0 0 0.0
Mixed ductal and lobular 2 6.1 1 3.0 1 5.0
Not known 0 0.0 2 6.1 0 0.0

Pretreatment tumour grade
G1 2 6.1 0 0.0 3 15.0
G2 14 42.4 22 66.7 9 45.0
G3 10 30.3 4 12.1 5 25.0
Not known 7 21.2 7 21.2 3 15.0

No. of involved lymph nodes
N0 20 60.6 20 60.6 11 55.0
N1-3 7 21.2 11 33.3 6 30.0
N4þ 6 18.2 2 6.1 3 15.0

HER2 status
Negative 25 75.8 32 97.0 13 65.0
Positive 8 24.2 1 3.0 7 35.0

Pretreatment tumour size (cm)
o2 12 36.4 11 33.3 7 35.0
2–5 19 57.6 22 66.7 12 60.0
45 2 6.1 0 0.0 1 5.0

Surgery tumour size (cm)
o2 12 36.4 13 39.4 8 40.0
2–5 20 60.6 20 60.6 10 50.0
45 1 3.0 0 0.0 2 10.0

Median IQR Median IQR Median IQR

Age at randomization (years) 70 61–78 74 62–82 70 59–76
Time from randomization to surgery (days) 19 15–23 17 15–19 18.5 14–23.5

Patient’s demographics are separated by poor responder, good responder and control. All analysis based on somatic mutations within 77 breast cancer-related genes are conducted on this set of patients
combined from phase I and II (no analysis was conducted on phase II samples only). Analyses on the exome-wide mutational load were performed on samples from phase I with whole-exome
sequencing. The demographics of these patients only are shown in Supplementary Table 1.

Table 2 | Summary of available samples in this study.

Summary Total Good Poor Control

Phase I
Samples with mutations discovered by exome sequencing 108 45 26 36
Patients with paired exome sequencing 49 21 11 17
Patients with exome sequencing from either sample 59 24 15 20
Patients with exome sequencing in baseline 52 22 12 18
Patients with exome sequencing in surgery 56 23 14 19

Phase I and II
Samples with targeted sequencing 163 64 59 40
Patients with targeted sequencing from either sample 86 33 33 20
Patients with paired targeted sequencing 77 31 26 20
Patients with targeted sequencing in baseline 84 32 32 20
Patients with targeted sequencing in surgery 79 32 27 20

Analyses on the mutational load and the mutational clusters were performed on phase I samples with exome sequencing available. Analyses based on 77 breast cancer-related genes were performed on
the combined set of phase I and II samples. As indicated in the text, some analyses were performed on patients with paired baseline and surgery samples only.
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We compared the VAFs of mutations between the baseline and
surgical sample in all tumours and observed correlations up to
0.86 (Pearson correlation, Supplementary Fig. 5). The VAFs of
mutations found in both samples of a pair were significantly
lower in surgical than baseline samples for good (median baseline
29.2 versus surgery 26.3, Po0.001, Wilcoxon signed-rank test)
and poor responders (27.0 versus 24.7, Po0.001) but not control
pairs (27.0 versus 26.5, P¼ 0.573; Fig. 2e).

Mutational clusters from phase I of the study. We compared
the VAFs between baseline and surgical samples to identify
mutational clusters which may represent subclones using
SciClone7 (Methods). SciClone analysis was possible in 40 cases:
11 controls, 20 good and 9 poor responders (Supplementary
Figs 6–8). The median number of identified clusters was 3; the
maximum number was 6. Five examples are shown in Fig. 3
selected based on a relatively large number of clusters. We did not
perform statistical comparisons of the cluster number between
the responder groups because of the small sample size. Visual
inspection and comparison of SciClone plots did not reveal
differences in the degree of heterogeneity between good and poor
responders with both groups having patients showing low and
high heterogenic sample pairs. In most pairs, the clusters were
represented in both samples of the pair (for example, P007, P014
and P039; Fig. 3). In B30%, there was clear representation of one
or more clusters in only one sample of the pair (for example,

P002 and P046; Fig. 3). These exclusive clusters were found in
both baseline and surgical samples of all three groups. In these
cases, we still found that at least one cluster, usually the one with
mutations having the highest VAFs in both samples, which was
present in both samples of the pairs.

Mutation detection in phase II. The capture-probe panel from
phase I was used on additional samples from 28 patients (Fig. 1b)
and 8 samples from phase I where WES was unsuccessful, but
enough DNA was available. Sequencing of one sample from phase
I was unsuccessful. In concordance with the analysis in phase I,
we excluded germline mutations based on their sequenced
matched blood. The median coverage for these samples was
91� (germline 103� , tumour 76� ; Supplementary Data 1).
One patient was excluded from further analysis because of a
different single-nucleotide polymorphism (SNP) profile (P085;
Supplementary Fig. 9). The mutation count for the remaining 27
patients without prior WES discovery was inevitably much lower
than for phase I samples (mean 6.4, median 5.0 mutations per
patient, interquartile range, 3.0–6.0, Supplementary Fig. 10) as
only few mutations in the phase II were found outside the 77
breast cancer-related genes. As for phase I, we only used tier 1
mutations for further analyses (Supplementary Data 3).

Frequently mutated genes. We combined the mutation data
from phase I and II to identify frequently mutated genes in the
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Figure 2 | Differences of mutation counts and treatment effects. Analysis on the mutation load of samples with exome-wide mutation profile from

phase I. (a–b) Poor responder showed significantly more mutations than good responder on baseline (B) and surgery (S). (c) Also the number of mutations

on a per-patient basis (mutations from B and S samples combined, counting identical mutations once only) was significantly higher in poor responders.

Median and interquartile ranges are shown as bars. (d) No significant difference between the B and S mutation counts within responder groups between

each of the 49 paired samples. (e) Good and poor responders showed a significant, but low reduction of the mean variant allele fractions (VAFs) of

single-nucleotide variants between B and S. Whiskers show 95% confidence interval. Significance was tested by Mann–Whitney test.
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samples of the 86 patients in our data set (Table 2). Six of the 77
breast cancer-related genes were mutated in 10% or more of the
patients. In decreasing frequency, these were PIK3CA (37%),
TP53 (26%), CDH1 (14%), MLL3 (14%), ABCA13 (12%) and
FLG (10%). The top three genes are also the most frequently
mutated genes in ERþ , post-menopausal breast cancers in
TCGA8 (Supplementary Table 3). The frequency of mutations in
PIK3CA and CDH1 was very similar to the TCGA cohort, but the
other four genes showed higher frequency in our data set,
especially ABCA13 with 12% compared with 4% in TCGA.
We assessed whether good or poor responders were significantly
associated with mutations in ABCA13 or other frequently
mutated genes, but we did not find such an association
(6/27 versus 2/31, P¼ 0.258, Fisher’s exact test, not shown for
other genes). Apart from the top three frequently mutated genes
(PIK3CA, TP53 and CDH1), only GATA3, RYR2 and MAP3K1
are mutated in 45% of patients in TCGA (9%, 6% and 9% of
tumours, respectively). For these, we found similar frequencies
in our set (7%, 6% and 5%, respectively). The most recurrent
amino-acid changes in our patients were H1047R (in 14 patients)
followed by E545K (5 patients) in PIK3CA. For the majority of
the frequently mutated genes, missense was the most common
amino-acid change. Exceptions were CDH1 with predominantly
frameshift mutations (12 frameshift, 1 missense and 1 nonsense)
and MLL3 with nonsense mutations (14 nonsense, 4 missense
and 1 frameshift).

There was at least one mutation in a frequently mutated gene
in 53 of the 77 pairs (Fig. 4). In all but 22 cases, the mutations in
frequently mutated genes were identical for both samples of the
pair giving a 54% concordance. In these pairs, 28 sites were
identified as discordant, although 14 of these showed a
measurable frequency (but not reaching statistical significance)

in the other sample of the pair. The other discordant sites showed
no frequency in the other samples of the pair, but all had a
coverage 450� . The mutation status per patient (identical
mutations or wild type (WT)) of the 6 frequently mutated genes
was concordant in 71% of the complete set of 77 pairs. For
individual genes, the concordance was higher for PIK3CA (3/27
discordant/concordant, 90%) and TP53 (7/15, 68%) compared
with the less frequently mutated genes ABCA13 (6/2, 25%)
and FLG (6/4, 40%). Also, the VAF of mutations in PIK3CA
(median baseline/surgery 30.3/28.8%) and TP53 (33.3/33.1%)
were generally higher than for ABCA13 (15.5/11.1%) and FLG
(12.3/13.5%), which were lower than the overall median of 25.7%.

Mutations in breast cancer-driver genes listed by DriverDB9

were found in 65 of the 77 sample pairs with a median of two
driver gene mutations per sample (Supplementary Table 4). In 25
pairs all driver mutations were identified in both samples. Twelve
pairs had none of their driver mutations shared, resulting in an
overall concordance of 54%.

TP53 and HER2. Non-functional TP53 can lead to DNA damage
accumulation10. Therefore, we compared the mutational load of
samples from phase I by their TP53 mutation status and found a
significantly higher load for mutated samples (median WT 37
versus mutant 64.5, P¼ 0.017, Mann–Whitney test). For the
samples from phase I, the mutational load correlated weakly with
Ki67 level at baseline (r¼ 0.31, P¼ 0.02 Spearman correlation),
but a moderate correlation was found for the treated samples at
surgery (r¼ 0.40, P¼ 0.01; Fig. 5a). Poor responders and TP53
are both associated with higher mutational load: using the
combined set of patients (phase I and II), we hypothesized that
poor responders were more likely to have a TP53 mutation
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Figure 3 | Intra-tumour heterogeneity. Five examples with clear intra-tumour heterogeneity are shown (Supplementary Figs 6–8 for plots of all samples).

Some patients had clusters present in both samples (P007, P014 and P039), while others had several clusters that were found in either the baseline

or surgery sample (P002 and P046). The variant allele fractions of mutations are shown. Whole-exome sequencing was used for copy-number

assessment and only mutations in copy-number neutral regions were plotted. Colours indicate assigned clusters by SciClone (Methods).

Cancer-related genes listed in Supplementary Table 4 are labelled in the plots.
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compared with good responders, but this hypothesis was rejected
(10/23 versus 8/25, P¼ 0.8, Fisher’s exact test). However, we
found a significantly higher Ki67 baseline level for TP53-mutated
samples (Supplementary Fig. 11) for both good (median WT 16.9
versus mutated 36.7, P¼ 0.020, Mann–Whitney test) and poor

responders (median WT 15.9 versus mutated 32.3, P¼ 0.006).
This difference was lost after treatment for the good, but persisted
for poor responders (median WT 10.3 versus mutated 28.7,
P¼ 0.011, Fig. 5b).

In HER2þ and HER2� tumours, the median mutational load
was 64 and 42, respectively (P¼ 0.180, Mann–Whitney test).
There was a higher than expected HER2þ rate among the
control samples (35% in this data set, expected rate in an
ERþ population is B10% (ref. 11)).

A significant decrease in the cellularity between baseline and
surgery samples was found for good, but not poor responders or
controls (Supplementary Fig. 12) as reflected by the total number
of cells per high-powered field in the Ki67 analysis. The type
of biopsy taken at surgery (core-cut or resection) did not
differ statistically between any responder groups and did not
explain differences in cellularity for good and poor responders
(Supplementary Fig. 13).

Discussion
Our primary goal was to identify DNA changes that relate
significantly to the response of ERþ breast cancer to short-term
oestrogen deprivation using AIs. Although the pre-surgical
setting was ideal for this purpose, little is known about the true,
as opposed to theoretical, impact of tissue heterogeneity on
mutational profiling from the small tumour biopsies that are
available for mutation profiling studies of clinical material.
Our data on reproducibility are critical for a valid understanding
of the current study and the many other studies of this type.

Very few data have been published on the genomic
heterogeneity of multiple cores taken from the same breast
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tumour. The correlations of VAFs from two samples from five
breast tumours reported by Ellis et al.6 (r¼ 0.74–0.94) were
consistent with the majority of comparisons in the current
analysis but in our larger set the correlations were much lower for
some of our cases (Supplementary Fig. 5). Preliminary data were
recently reported on 13 patients with multiple (7–17) spatially
separated samples of primary breast cancer (ERþ and other
types)—heterogeneity was observed within the samples even of
cancer-driver mutations12. Yates et al.13 reported heterogeneity in
8 out of 12 treatment-naive breast cancers based on eight spatially
separated biopsies from each tumour.

Most pairs in our study showed several clusters (potential
subclones) present in both samples, but in B30% of the cases,
we also found sample pairs with several clusters being exclusive
to either sample and therefore spatially separated in the
same tumour. However, these pairs shared at least one cluster,
usually the one with the highest VAFs, indicative of a common
founding clone with driving cancer mutations14. Although
clusters exclusive to one sample were often present in a small
proportion of sequenced cells, each subclone potentially has
different adaptive properties and might become the dominant
clone due to selection from treatment15,16. Clusters disappearing
or becoming more prominent in the treatment group could be
indicative of such a selection. In our data, it is unlikely that the
exclusive clusters occur due to the selection from AI treatment,
since we found exclusive clusters in the control group as well and
AI treatment had a very modest effect on cellularity in the
2 weeks of this study.

Reduced heterogeneity was found after 6 months of AI
treatment17. In our data, after much shorter time, we found
that the number of mutations and the VAFs were slightly but
statistically significantly lower in the surgical samples of treated
compared with control patients, possibly indicating a modest
treatment effect. Such a small effect was consistent with the slow
rate of clinical response of tumours to endocrine therapy. This is
dependent on cytostasis and not on enhanced cell death such that
tumour shrinkage is rarely apparent over a 2-week time period. In
the good responder group, we noted that a minor loss of
cellularity occurred over the 2-week period based on field counts
of nuclei. Reduced cellularity could conceivably make the
microdissection we carried out for all tissue sections before
genomic analysis more difficult and thereby lead to greater
non-malignant cell contamination potentially reducing the
sensitivity to detect variants. These results are therefore
consistent with the slightly decreased number of mutations in
the surgical samples being at least in part an artefact of the lower
malignant cell purity in the dissected material from the surgical
samples. Given that the median loss between baseline and surgical
samples from AI-treated patients was only two mutations,
we rationalized that surgical samples even from these were
sufficiently unaffected by treatment to be acceptable as
representative of the untreated state. Merging mutation data
from baseline with surgical samples including those from treated
patients should provide more comprehensive information on the
mutational landscape of a tumour than single cores.

Modest coverage for WES might have missed mutations with
low VAF, especially mutations present at very low frequency in
both samples of a pair. These mutations therefore could not be
integrated in the panel and subsequently are missing in the final
set of mutations and subclones. To maximize the number of
mutations in the capture-panel, we used the union of several
variant callers on the WES data to detect potential somatic
mutations. Further, we included the entire coding sequencing of
77 breast cancer-related genes in the panel to be able to detect
mutations in these independent of the discovery step. We used
the same capture-probe panel for additional samples in phase II

of this study. Unlike phase I, the panel was not specifically
designed to validate mutations found in the discovery stage.
Therefore, in phase II, far fewer mutations per sample were found
outside the 77 breast cancer-related genes, emphasizing the
individuality of the mutational profile of each breast cancer
tumour18. For the combined set of samples from phase I and II,
we therefore exclusively concentrated on the 77 breast cancer
genes present on the targeted-panel and did not perform analyses
based on mutation count or subclonality with these.

As expected, the most frequently mutated genes across the 86
patients were the breast cancer-driver genes PIK3CA and TP53
(ref. 6). CDH1 (ref. 19) and MLL3 (ref. 20) are also frequently
mutated genes known to be linked to breast cancer. The genes
FLG and ABCA13 are less studied, but FLG was shown to be
amplified in a subset of breast cancers21. The frequency of
patients with mutations in ABCA13 was about threefold higher
compared with post-menopausal ERþ breast cancer tumours
from TCGA8. A reason for this could be the selection of patients
based on good and poor response; however, we did not find
significant differences between good and poor responders in
terms of the mutation frequency of ABCA13 or other frequently
mutated genes. GATA3 was not in the top list of frequently
mutated genes, but its frequency was similar to that in TCGA.
It was suggested that GATA3 mutations might be a positive
prediction marker for AI response based on Ki67 decline6. Our
data cannot support this finding, but the statistical power with six
mutated patients is low.

We saw low correlations for some samples based on the VAF
values of all mutations in a sample pair. However, the mutation
status of frequently mutated genes in the present data was found
to be consistent within pairs in 76% of cases. Thus, in a majority
of cases, the profile of mutations in the genes would be
represented by one core. However, in about one in four patients
this would not be the case and a single core-cut would have
missed a potentially important gene mutation. We noted higher
discordance and lower VAFs for mutations in less frequently
mutated genes (ABCA13 and FLG). This suggests that these
mutations are subclonal, but might have important functions
upon selective pressure. However, mutations at lower VAF are
also more difficult to detect, which might in part explain the
lower concordance for these mutations. We also analysed the
concordance for the more numerous driver genes listed in
DriverDB and we found a lower concordance of 54% between
all pairs.

To study the impact of mutational profile on response to AI
treatment, patients at the extreme ends of the Ki67 response
spectrum were chosen as poor or good responders from the
available patient sample set. Change in Ki67 after 2 weeks is a
validated end point for benefit from adjuvant endocrine therapy,
while the value of Ki67 after 2 weeks is prognostic for recurrence-
free survival22. Ellis et al.6 related the mutational profile to
resistance to AI in 77 patients using Ki67, defining resistance as
on treatment Ki67410% irrespective of starting level. According
to this definition, four patients in our data set would have been
categorized as good responders despite exhibiting a minimal Ki67
decrease. Nonetheless, there is generally good concordance
between these two definitions and the major conclusions on AI
resistance from the current study and the Ellis study are similar.

We excluded 7% of patients who were categorized as poor
responders according to Ki67 decrease due to a lack of E2
suppression. It is not known whether this was due to poor
compliance or poor pharmacologic response, but whichever
is the case this highlights the importance of measuring
primary pharmacological response to avoid intensive molecular
investigation of tumours for mechanisms of resistance when the
expected pharmacological perturbation is absent.
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The relatively low frequency of mutations in most genes in
primary breast cancer means that large studies are required to
define reliable associations with response/resistance to therapy
even in pre-surgical studies such as POETIC where biological
response is measurable in all treated patients (in contrast to
adjuvant therapy). Nonetheless, we found a reduced suppression
of Ki67 for TP53-mutated tumours within the poor responder
group, which supports the finding by Ellis et al.6 who reported
a greater suppression of Ki67 by letrozole in WT than
TP53-mutated tumours. This indicates at least in part that
TP53 mutations are a marker for poor response to AI in addition
to being a marker for poorer outcome for ERþ breast cancer.
We also found a significant association of mutated TP53 with
increased mutational load. For TP53, this is consistent with it
being an important DNA repair gene, malfunction of which may
lead to general genomic instability and an increase in mutations.
The association of these factors with high mutational load was
recently reported by Haricharan et al.23

It could be expected that poor responders to endocrine therapy
might exhibit greater genomic heterogeneity given its potential to
provide multiple pathways of resistance, a hypothesis supported
by the larger number of mutations found in poor responders in
this study. The clear presence of subclonality and multiple driver
mutations in some of these early breast tumours does indicate the
potential for some subclones to be selected preferentially during
hormonal treatment and to drive the clinical regrowth of a
partially responsive tumour. Identification of such subclones or
mutations requires further studies on a later time point when the
effect of treatment would be greater than that at 2 weeks.

In conclusion, this study demonstrates that multiple subclones
are present even in early ERþ breast cancer. In most cases, the
subclones and their constituent mutations are represented in
different core-cuts from the same tumour but in B30% of the
tumours mutations are exclusive to one of the core-cuts.
Increased mutational load is associated with poorer antipro-
liferative response to AI possibly driven by mutations in TP53.

Methods
Patients and tissues. The design and goals of the POETIC trial (CRUK/07/015)
have been published2. In brief, post-menopausal patients with primary ER and/or
PgR-positive (according to local testing) breast cancer in over 120 centres across
the United Kingdom were randomized 2:1 to receive or not receive an AI
(anastrozole 1 mg per day or letrozole 2.5 mg per day) for a 4-week period starting
2 weeks before surgery.

Core-cut biopsies (14 G) and either core-cuts or part of the excision sample
were collected at baseline and surgery, respectively, and fixed in formalin.
Additional core-cuts were collected into RNAlater (Qiagen) at both time points.
Whole blood was collected for germline DNA analysis, baseline and surgical
plasma for estradiol analysis.

The trial was approved by the NRES Committee London—South East.
All patients gave informed consent for DNA sequencing.

Biomarker analyses. Ki67% staining (MIB-1 clone code n. M7240, DAKO
UK Ltd; working dilution 1:40) was the primary biomarker end point for the
POETIC trial and was centrally analysed on all formalin-fixed samples using a
single protocol (either core-cut in formalin-fixed, paraffin-embedded or excision
specimens in formalin-fixed, paraffin-embedded) as previously described22. All
staining was performed on a Dako autostainer using strict adherence to a single
staining protocol. Haematoxylin and eosin staining was used to exclude samples
with low tumour purity (o40%).

HER2 status was measured locally using immunohistochemistry and/or in situ
hybridization24. Biomarker results are shown in Supplementary Table 5.

ER expression of baseline specimens was measured by immunohistochemistry
(6F11 clone code n. NCL-L-ER-6F11, Leica Biosystems Ltd; working dilution 1:50)
on formalin-fixed samples25. Patients were excluded from this substudy if they
were described as ER negative (o1% positive staining of tumour nuclei).

Cellularity was measured by 10� 10 mm eye-piece graticule with � 40 objective
graticule. Nuclei were counted within the grid of at least five fields and the mean
values from these measurements were used.

Patients with unsuppressed estradiol upon treatment were excluded.

Sample selection. In phase I, samples were selected with the aim of having equal
numbers of control patients, definite poor responders defined as having a Ki67
decrease of o60% between baseline and surgery and good responders with 475%
Ki67 decrease. The definition of good responders was selected as being above the
mean Ki67 reduction to anastrozole after 2 weeks26. Patients with Ki67 decrease
between 60 and 75% were excluded to create an efficient design that focused on the
extremes of the range of Ki67 responses. Treated patients not showing suppressed
post-menopausal levels of plasma estradiol and those with central ER o1% were
excluded. For phase II, only treated samples were selected.

DNA extraction. DNA was extracted from RNAlater-preserved diagnostic
(baseline) and surgical (surgery) 14-G core-cut samples and peripheral blood.

At least eight unstained 8-mm sections were taken from core-cuts embedded in
OCT (Cryo-M-Bed, Bright Instruments, UK). Sections were stained with Nuclear
Fast Red (0.1% (w/v)) and when necessary needle microdissection was used
to achieve 460% pure tumour cells using an adjacent haematoxylin- and
eosin-stained section as a guide. DNA was extracted from the sections using the
DNeasy Tissue and Blood kit (Qiagen) and from blood using the EZ1 system
(LifeTechnologies).

Exome sequencing for discovery. Cavitation (adaptive focused acoustics,
Covaris) was used to fragment the samples. The automated libraries were generated
with in-house Illumina kits at Washington University, MO, with reagents supplied
by NEB and indexed via PCR. LucigenDNATerminator kit (end repair), NEB
Klenow (adenylation), NEB Quick Ligase (ligation, Illumina’s Multiplexing
Adapters) and NEB Phusion (PCR enrichment, libraries were indexed via PCR
(PCR1.0, PCR2.0 and index primers), AMPure beads were used for enzymatic
purification and size selection). Manual libraries were generated with KAPA
Library Preparation with standard PCR library amplification (KK8201) and
libraries were indexed during ligation with TruSeq LT adaptors. LabChip GX was
used for library quantitation as well as quality control. Size selection was conducted
using AMPure beads. Ten libraries were pooled pre-capture. Each library pool was
captured using NimblegenSeqCap EZ Human Exome Library v3 (with requisite
SeqCap EZ hybridization and wash kits) and sequenced on two lanes of the
IlluminaHiSeq 2000 with v3 chemistry (2� 100bp).

Sequence data were aligned to reference sequence build GRCh37-lite-build37
using bwa version 0.5.9 (ref. 27; params: -t 4 -q 5) then merged using picard
version 1.46 (http://picard.sourceforge.net), then deduplicated using picard
version 1.46.

Single-nucleotide variants were detected using the union of three callers:
(1) samtools version r963 (ref. 28; params: -A -B) intersected with Somatic
Sniper version 1.0.2 (ref. 29; params: -F vcf -q 1 -Q 15) and processed through
false-positive filter v1 (params: --bam-readcount-version 0.4 --bam-readcount-
min-base-quality 15 --min-mapping-quality 40 --min-somatic-score 40),
(2) VarScan version 2.2.6 (ref. 30) filtered by varscan-high-confidence filter
version v1 and processed through false-positive filter v1 (params: --bam-
readcount-version 0.4 --bam-readcount-min-base-quality 15 --min-mapping-
quality 40 --min-somatic-score 40) and (3) Strelka version 0.4.6.2 (ref. 31)
(params: isSkipDepthFilters¼ 1).

InDels were detected using the union of four callers: (1) GATK somatic-indel
version 5,336 (ref. 32) filtered by false-indel version v1 (params: --bam-readcount-
version 0.4 --bam-readcount-min-base-quality 15), (2) pindel version 0.5 (ref. 33)
filtered with pindel false-positive and vaf filters (params: --variant-freq-
cutoff¼ 0.2), (3) VarScan version 2.2.6 (ref. 30) filtered by varscan-high-
confidence-indel version v1 then false-indel version v1 (params: --bam-readcount-
version 0.4 --bam-readcount-min-base-quality 15), and (4) Strelka version 0.4.6.2
(ref. 31; params: isSkipDepthFilters¼ 1).

Targeted sequencing for validation. All of the variants (n¼ 6,910) identified
in the discovery set excluding those in low-coverage samples were chosen for
validation at greater depth as well as exons of a set of 77 breast cancer-related genes
of interest (Supplementary Table 2). Probes were designed to target the variants
within 13,372 regions of 6,737 genes covering a total of 2,645,703 bp.

Reads were aligned as described above for exome sequencing. Single-nucleotide
variants were detected using VarScan version 2.2.6 (with parameters --min-var-
freq 0.08 --P-value 0.10 --somatic-P-value 0.01 --validation) and filtered by
Varscan-high-confidence version v1, then false-positive version v1 (with
parameters: --bam-readcount-version 0.4 --bam-readcount-min-base-quality 15).

InDels were detected using the union of three callers: GATK somatic-indel
version 5,336, pindel version 0.5 (filtered by pindel-somatic-calls version v1,
then pindel-read-support version v1) and VarScan version 2.2.6 (filtered by
varscan-high-confidence-indel version v1, then false-indel version, with
parameters: --bam-readcount-version 0.4 --bam-readcount-min-base-quality 15).

In addition to using matched normal for germline detection, sites that were
present in at least 0.1% of the general population according to the 1000 Genomes
Project34 or NHLBI GO Exome Sequencing Project were removed from further
analysis.

All somatic events from re-sequencing were manually reviewed using IGV35.
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SNP profile. Samples were confirmed as being derived from the same patient by
correlation of SNPs (Supplementary Fig. 9) based on the sequencing data.
Therefore, all samples have been profiled based on over 500 SNPs from dbSNP
version 138 within the area of the capture-panel. The genotypes at genomic
position were derived using samtools28. SNPRelate36 was used to cluster the
samples and generate the dendrogram using default parameters.

Subclonal analysis. Clonal architecture was inferred using SciClone version 1.0.4
(ref. 7; params: minimumDepth¼ 50) using copy number and loss of hetero-
zygosity (LOH) calls derived from Varscan (params: loh-cutoff¼ 0.95, min-loh-
probes¼ 10, min-mapping-quality¼ 10, min-coverage¼ 20, min-segment-
size¼ 25, max-segment-size¼ 100, undo s.d.¼ 4). Samples with low mutation
count failed clustering and were excluded from the analysis. SciClone plots were
annotated with frequently mutated genes from Supplementary Table 6.

Comparison with known driver genes. Validated mutations in the baseline and
surgery samples were compared with known driver genes in the DriverDB9

database. Therefore, ‘breast’ tissue was selected as cancer type and all genes
identified by at least two tools were downloaded from the website.

Estimating tumour purity based on WES. For estimating cellularity based on
whole-exome sequencing data Sequenza v2.1.1 (ref. 37) was used. The algorithm
was applied for each tumour sample and its matched blood sample. In brief, it first
detects germline mutations in the normal sample and then calculates the VAF at
the same position in the tumour sample. In the second step, the tumour versus
normal depth ratio is calculated with GC content normalization and allele-specific
segmentation is performed. Based on a probabilistic model applied to the
segmented data, Sequenza calculates possible solutions for cellularity and ploidy of
the tumour. The default settings were used for all steps, the cellularity with the
highest probability was reported.

Statistical analysis. Unpaired and nonparametric Mann–Whitney test was
used to test the differences of mutation counts between groups. The Wilcoxon
signed-rank test was used to test for differences in the mutation counts of paired
samples between baseline and surgery and to compare the VAFs between baseline
and surgery samples. The associations of TP53 mutation status and HER2 status
between the groups were analysed using Fisher’s exact test. Reported P values are
two-sided and unadjusted; P valueo0.05 is considered to be significant in this
study. The statistical analyses were conducted in GraphPad Prism 6 (Graphpad
Software Inc.) and R38.

Data availability. The sequencing data that support this study have been
deposited in the European Genome-phenome Archive (EGA) database under
accession code EGAS00001001940. The remaining data are available in the
article or its Supplementary Files or available from the authors on request.
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