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Abstract—This paper presents a mechanotransduction model 
designed to convert the multi-axial mechanical loads at the 
fingertip-contact interface into neural-spike trains, the Multi-
Axial Stress Mechanotransduction (MASM) model. We believe 
this is a first attempt towards a comprehensive model, 
accounting for the conversion of measured multi-axial 
(pressure and shear) stresses at the fingertip-contact interface 
into spike trains with modelled slow adapting (SA) and rapidly 
adapting (RA) afferents type I (SAI, RAI) and II (SAII, RAII) 
based on the properties of those in human fingertips. To 
illustrate and assess how the MASM model works, artificial 
data mimicking typical stress stimuli used to evaluate the 
response of biological afferents were fed to the model and 
results examined. Subsequently, the suitability of the MASM 
model for real tactile applications was preliminary tested by 
inputting to the model real life, measured pressure and shear 
data in a fingertip ‘press-push-lift’ action. The response of the 
modelled SA and RA afferents was analysed and qualitatively 
compared to biological data reported in literature. Initial 
results show that it is possible to codify the mechanical contact 
tactile information measured by multi-axial sensor systems in a 
bio-inspired fashion, thus reproducing relevant features similar 
to those produced by biological mechanoreceptors. 

I. INTRODUCTION 

Human hand tactile dexterity [1, 2], such as in object 
manipulation and slipping detection [1, 3], relies on the tactile 
feedback provided by mechanoreceptors. In the glabrous skin 
at the fingertips, these mainly comprise slowly adapting type 
I (SAI)-Merkel cells, rapidly adapting type I (RAI)-Meissner 
corpuscles, rapidly adapting type II (RAII)-Pacinian 
corpuscles, and slow adapting type II (SAII)-Ruffini 
corpuscles [1, 2]. Mechanoreceptors produce trains of action 
potentials in response to the multi-axial (pressure and shear) 
stresses applied on the skin, with this feedback tactile 
information ultimately delivered to the brain. 

It is envisaged that the next generation of upper limb 
prostheses will provide a more natural control through 
enhanced sensory feedback, in a fashion similar to how 
mechanoreceptors produce neural-spike trains in response to 
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tactile stimuli [4-7]. Reviewing the literature, some works 
have been reported aiming to convert the tactile information 
into neural spike-trains [4-7]. Recent works have used the 
mechanical contact information, more specifically pressure 
values [5, 7], as key inputs to develop their models for tactile 
transduction, predominantly predicting neural-spike trains of 
SAI afferents. This has provided a valuable insight on means 
to translate external mechanical stimuli into spike trains.  

However, some limitations exist, with other types of 
afferents, namely SAII [4-7], and stresses –like shear [5, 7], 
to be also incorporated to the mechanotransduction models. 
In fact, studies performed on human subjects [1, 2] have 
demonstrated the ability of SA and RA mechanoreceptors at 
the fingertips to detect and encode multi-axial mechanical 
stimuli [1, 2], with the brain relying on this pressure and 
shear information for object manipulation and haptic 
identification [2]. Thus, the development of comprehensive 
models, with modelled SAI, RAI, RAII and SAII units 
accounting for the conversion of pressure and shear stresses, 
is crucial towards a more in-depth covering and 
understanding of tactile perception, also in order to ensure a 
more effective and direct tactile feedback. 

This paper presents a bio-inspired Multi-Axial Stress 
Mechanotransduction (MASM) model with potentials for 
tactile feedback applications. The model is designed to 
convert the multi-axial mechanical stresses at the fingertip-
contact interface into neural-spike trains by artificial SAI, 
RAI, RAII and SAII mechanoreceptive units. The latter have 
been modelled based on the characteristics of those existing 
in human glabrous skin, such as sensing capabilities and 
firing response. Such a comprehensive model could be 
potentially exploited in tactile feedback applications, such as 
in robotics and upper limb neural-based prostheses by 
converting multi-axial interface stresses at prosthetic hands 
into patterns of neural activity effected to the nervous system 
of the prosthesis user through electrical stimulation. 

II. MASM MODEL 

Fig. 1 shows the conceptual diagram of the MASM model. 
It is comprised of two main sub-models: the transduction and 
the neural sub-models.  

The transduction sub-models translate the measured multi-
axial stresses σi (i=1, 2, 3), i.e. shear X, shear Y and pressure 
respectively, into transmembrane currents Iα (α=SAI, RAI, RAII, 

SAII), which are fed into the neural sub-models.  
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Figure 1.  Overview of the Multi-Axial Mechanotransduction (MASM) 
model. The measured stresses σi (i=1,2,3) over the cross-sectional area A are 

fed to the transduction sub-models for the generation of the transmembrane 
currents Iα (α = SAI, RAI, RAII, SAII) of the artificial SAI, RAI, RAII and SAII 

afferents in the neural sub-models, which translate the Iα currents into the 
membrane potentials vα (α = SAI, RAI, RAII, SAII) and thus, neural-spike trains. 

The neural sub-models contain the neural dynamics models 
for the generation of the neural spike-trains. They translate 
the currents Iα (α=SAI, RAI, RAII, SAII) from the transduction sub-
models into the corresponding membrane potentials of the 
artificial mechanoreceptive units SAI, RAI, RAII and SAII vα 

(α=SAI, RAI, RAII, SAII).  

Next, the transduction and neural sub-models are explained 
in more detail. 

A. Transduction Sub-Models 

The transduction sub-models translate the measured 
stresses into currents, analogously to how stresses applied at 
the SA and RA afferents are transformed into receptors 
currents across their membranes. 

Here, shear X (σ1), shear Y (σ2) and pressure (σ3) stresses 
are defined as the ratio of the corresponding force Fi (i=1, 2, 3) to 
the cross-sectional area A (Fig. 1): 
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Note that Fi (i=1, 2, 3) correspond to the components of the 
multi-axial force F applied over A, whose magnitude ||F|| can 
be expressed as (Eq. (1a)): 
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Tactile perception involves the sensing and transduction of 
assorted tactile information [1, 2]. Each mechanoreceptor is 
specialized to convey certain stimuli, with transmembrane 
currents that can be modelled by Iα (α = SAI, RAI, RAII, SAII) 
functions dependent on specific combinations of σi (i=1, 2, 3) and 
their time derivatives. Namely, 

 SAI-Merkel cells are mostly sensitive to static force, 
responding to indentation and depth [1]. In first 

order approximation, this can be linked to the 
magnitude of the normal component of the applied 
force F3 [1], and thus, pressure σ3 [5, 7]. From Eq. 
(1a): 

  tII SAISAI 3  

 RAI-Meissner corpuscles are mainly insensitive to 
static force, responding to dynamic skin deformation 
[1] (velocity). In first order approximation, their 
response can be modelled as dependent on the first 
time derivative of the magnitude of the tri-axial 
applied force F. From Eq. (1b), we can write: 
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 RAII-Pacinian corpuscles, like RAI afferents are also 
largely insensitive to static force, and respond to 
mechanical transients [1] (acceleration). In first 
order approximation, we can model IRAII as 
dependent on the second time derivative of F. From 
Eq. (1b): 
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 SAII-Ruffini corpuscles are sensitive to static force, 
responding to lateral stretching of the skin [1]. In 
first order approximation, this can be linked to the 
magnitude of tangential component of F (i.e., 
projection over the X, Y plane). From Eq. (1b): 
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Reviewing the literature, several versions of linear, 
power, logarithmic, exponential, hyperbolic log tangent, and 
non-linear I functions have been proposed [8, 9]. In this 
paper, linear Iα functions have been implemented due to their 
biological plausibility as well as minimising the complexity 
of both model and computational engine [5]. In this way, Eqs. 
(2), (3), (4) and (5) can be rearranged y as: 
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where kα (α = SAI, RAI, RAI, SAII) is the gain and I0
α are offset 

currents to account for varying thresholds. 

B. Neural Sub-Models 

The neural sub-models implement Izhikevich neurons 
[10] to transform transmembrane currents into spike times.  

Izhikevich neurons are an efficient model of the spiking 
dynamics of neural systems, capable to reproduce spiking and 
bursting behavior of cortical neurons. They combine the 
biological plausibility of Hodgkin-Huxley dynamics and the 
computational efficiency of integrate-and-fire neurons. 
Dynamics are determined by [11]: 
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Where α = SAI, RAI, RAI, RAII and with auxiliary after-
spike resetting 
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Here, vα and uα represent the voltage potential and 
membrane recovery, respectively. By modifying parameters 
aα, bα, cα, dα it is possible to model tonic and phasic 
responses, as SA and RA mechanoreceptors, respectively, 
exhibit [12]. Table I shows the values of the parameters used 
in this model. 

III. MASM MODEL PERFORMANCE 

To illustrate and assess how the model works, data 
mimicking typical stress stimuli used to evaluate the response 
of biological afferents [1, 2] were generated here as artificial 
inputs and fed to the MASM model. The response of the 
modelled SA and RA afferents was analysed so as to check 
the capability of the model to quantitatively reproduce 
relevant features of the corresponding biological units.  

Figs. 2(a) and 2(b) show two example stress stimuli for 
the evaluation of the afferents’ response. In each case, three 
main phases can be distinguished:  

 (i) Ramp-up phase (from t=0.1s to t=0.4s). During 
this phase, the contact between the finger(s) and the 
probe/external object(s) is established, with stresses 
steadily increasing to a certain peak value. 

 (ii) Plateau phase (from t=0.4s to t=0.9s). In this 
phase, stresses reach their peak value and stabilise. 

 (iii) Ramp-down phase (from t=0.9s to t=1.2s). 
Contact is released, and stresses decrease until 
specific offset values. 

 

 

TABLE I.  NEURAL SUB-MODELS’ KEY PARAMETERS 

α 
Izhikevich Neuron Parameters 

a b c d 

SAI 0.02 0.2 -65 6 

RAI 0.02 0.25 -65 6 

RAII 0.02 0.25 -65 6 

SAII 0.02 0.2 -65 6 

 

As shown, stress profiles in Figs. 2(a) and 2(b) are defined 
by specific combinations of the rate of change of stress 
during the ramp-up and ramp-down phase, as well as the 
magnitude of stress during the plateau phase. The membrane 
potentials vα (α = SAI, RAI, RAII, SAII) for the stress profiles of Fig. 
2(a) and Fig. 2(b), are displayed in Fig. 2(c) and Fig. 2(d), 
respectively. Fig. 2(e) and Fig. 2(f) show their corresponding 
peristimulus spike histograms (PSTH). 

As it can be seen in Fig. 2(c) and Fig. 2(d), SA afferents 
adapt slowly [1, 4, 5], showing an ongoing response related 
to the strength of maintained stresses [1, 4, 5], i.e., pressure 
(SAI) and shear (SAII). This can be more clearly appreciated 
during the plateau phase. From the comparison between cases 
#1 and #2 in Fig. 2(e) and Fig. 2(f), we can see that SA 
afferents fire a larger number of spikes as the magnitude of 
corresponding stresses increase. Thus, SA afferents convey 
information about the magnitude of the stresses [1, 4, 5].  

Conversely, no spikes are elicited by steady, constant 
stresses (plateau phase) in RA afferents [1, 4] (Fig. 2(e) and 
Fig. 2(f)), which mainly respond to stress changes (ramp-up 
and ramp-down phases) [1, 4]. From Fig. 2(c) and Fig. 2(d), 
we see that RA afferents show a fast adapting response [1, 4], 
providing key information about the time at which the 
mechanical stimulus starts and ends [4]. As shown in Fig. 
2(e) and Fig. 2(f), at the onset and the end of the stimulus, the 
number of spikes elicited from RA afferents is higher than 
those from their SA counterparts. From Fig. 2(c) and Fig. 
2(d), we see that RAI afferents respond during dynamical 
changes [1, 4], i.e., RAI afferents show an ongoing response 
during all the ramp-up and ramp down phases. On the other 
hand, RAII are especially responsive to stress transients [1, 
4], i.e., transitions between the different phases, as well as at 
the beginning and end of these. 

IV. TEST RESULTS AND DISCUSSION 

A real life sensor based test was conducted in order to 
study the potential applicability of the MASM model in real 
tactile applications.  

A sensor system comprising interface sensors of 10mm x 
10mm in area was used to measure the multi-directional 
pressure and shear stresses at the fingertip-contact interface. 
Details of the sensor system and its calibration are described 
elsewhere [3]. Its decoupled measurement of pressure and 
shear stresses is particularly advantageous for the evaluation 
of the proposed model. 
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Figure 2.  MASM model’s response to example, typical stress stimuli used to evaluate the response of biological afferents. (a) Case #1 defined by (i) ramp-
up phase: 50kPa/s pressure and 20kPa/s shear ramp rates (ii) plateau phase: 15kPa pressure and 6kPa shear peaks (iii) ramp-down phase: 50kPa/s pressure 
and 20kPa/s shear ramp rates, (b) Case #2 defined by (i) ramp-up phase: 100kPa/s pressure and 50kPa/s shear ramp rates (ii) plateau phase: 30kPa pressure 
and 15kPa shear peaks (iii) ramp-down phase: 100kPa/s pressure and 50kPa/s shear ramp rates, (c) Predicted membrane potentials v of the artificial SA and 

RA afferents for the stress profiles of Fig. 2(a), (d) Predicted membrane potentials of the artificial SA and RA afferents for the stress profiles of Fig. 2(b), (e) 
Peristimulus spike histogram (PSTH) for Fig. 2(c), (f) PSTH for Fig. 2(d). 



 

A sensor unit was attached to the index finger of a healthy 
human subject with no impaired hand function (Fig. 3(a)). 
The subject was then asked to perform a “press-push-lift” 
action over a solid surface in the shear Y direction. This 
action consisted on the following: after establishing contact, 
the subject is to exert a compressive force (press action) with 
the index finger of their dominant hand, pushing in direction 
away from the subject, as shown in Fig. 3(a), and finally 
releasing the contact by lifting the finger. The subject was 
asked to perform this task at a comfortable pace as if they 
were to perform the activity on a daily basis, such as when 
scrolling over a screen of a smart phone. This study was 
approved by University of Southampton Ethics and Research 
Governance Committee (ID: 20847).  

The measured pressure and shear stresses are shown in 
Fig. 3(a), whereas the corresponding sequences of action 
potentials generated by the artificial SA and RA afferents are 
shown in Fig. 3(b). 

A. Measured multi-axial stresses 

As indicated in Fig. 3(a), the contact was established and 
the press-push action started approx. t=0.1 s, with pressure 
and shear Y stresses increasing sharply during ramp-up phase 
(approximately from t=0.1s to t=0.5s) as a result of the press 
and push action mainly focused along the Y direction. The 
smaller magnitude shear X values point out the existence of a 
small lateral component of the finger’s movement, indicating 
that the trajectory was not aligned with the shear Y direction.  

After pressure, shear Y and shear X reaching their peak 
values in the plateau phase (approximately t=0.5s to 0.8s). 
Here, but for a slight decay, stresses remain more stable.  

At approximately t=0.8s, pressure, shear X and shear Y 
stresses begin to decrease as contact begins to release until 
approximately t=0.1s, where the finger lifts and stress values 
return to baseline values. 

B. Neural spike-trains 

As it can be seen in Fig 3(b), at the onset of contact 
(approximately t=0.1s), RA afferents fire the highest number 
of spikes. In particular, RAI afferents show the highest levels 
of activity during the ramp-up phase (approximately from 
t=0.1s to t=0.5s), with increasing pressure and shear stresses 
as a result of the pressing and pushing actions. This aligns 
well with biological data, with RAI afferents showing an 
ongoing response during the ramp-up phase [1, 4] and RAII 
afferents exhibiting a less steady response, mainly firing 
spikes during pressure and/or shear transients [1, 4]. 

During the plateau phase (approx. from t=0.5s to t=0.8s) 
the maximum number of spikes are elicited from SA afferents 
(Fig 3(b)). Compared to RA units, SA afferents adapt slowly 
[1, 4], with more uniform discharge patterns, like commonly 
observed in biological counterparts [1]. On the other hand, 
RA afferents reduce significantly their activity, as observed in 
biological units [1, 4]. 
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Figure 3.  (a) Measured pressure and shear stresses in a “press-push-lift” 
activity carried out by a healthy human subject, where three main phases 

can be distinguished: ramp-up phase, plateau phase, and ramp-down phase 
(b) spike times where the membrane potential exceed threshold for the 

artificial SA and RA afferents. 

From Fig. 3(b), we can see that the abovementioned 
situation is reversed during the ramp-down phase 
(approximately from t=0.8s to t=1s), with the number of 
spikes elicited from SA and RA afferents decreasing and 
increasing, respectively. Like their biological counterparts, 
RAI afferents show a sustained discharge during most of the 
ramp-down phase [1, 4], with RAII afferents firing bursts of 
spikes at the beginning (around t=0.8s) and the end of this 
phase (around t=1s) [1, 4]. 

Thus, the qualitative aspects of these results align well 
with the observed activity of biological afferents [1, 4, 5]. 
These preliminary results are promising for the further 
development of the model, namely with fine tuning of the 
model’s parameters and response for specific RA and SA 
sample populations [4, 5], which could be obtained from 
biological recorded data. 



 

V. CONCLUSION 

A Multi-Axial Stress Mechanotransduction model has 
been presented in this paper. The MASM model has been 
designed to convert the mechanical multi-axial (pressure and 
shear) stresses at the fingertip-contact interface into spike 
trains with modelled SAI, RAI, RAII and SAII units, based 
on how mechanoreceptors in human glabrous skin at the 
fingertips produce trains of action potentials in response to 
tactile stimuli. 

Preliminary results from fingertip data, such as in a 
“press-push-lift” activity, show that is possible to codify the 
measured mechanical contact tactile information into neural-
spike trains in a bio-inspired fashion, qualitatively 
reproducing relevant features similar to those produced by 
biological mechanoreceptors.  

Predicted responses align well in qualitative terms with 
the observed activity of biological afferents, suggesting that 
the MASM model could be potentially exploited in tactile 
feedback applications such as in robotics and upper limb 
neural-based prostheses. Namely, the MASM model could be 
used to convert multi-axial interface stresses at prosthetic 
hands into patterns of neural activity, and then effected to the 
nervous system of the prosthesis user through electrical 
stimulation. Future works will include further development of 
the model, with fine tuning of model’s response and 
parameters from biological data. 
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