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Summary
A new approach to turbulence simulation, based on a combination of large eddy

simulation (LES) for the whole flow and an array of non–space-filling quasi-direct

numerical simulations (QDNS), which sample the response of near-wall turbulence

to large-scale forcing, is proposed and evaluated. The technique overcomes some

of the cost limitations of turbulence simulation, since the main flow is treated with

a coarse-grid LES, with the equivalent of wall functions supplied by the near-wall

sampled QDNS. Two cases are tested, at friction Reynolds number Re𝜏 = 4200 and

20000. The total grid point count for the first case is less than half a million and less

than 2 million for the second case, with the calculations only requiring a desktop

computer. A good agreement with published direct numerical simulation (DNS) is

found at Re𝜏 = 4200, both in the mean velocity profile and the streamwise velocity

fluctuation statistics, which correctly show a substantial increase in near-wall turbu-

lence levels due to a modulation of near-wall streaks by large-scale structures. The

trend continues at Re𝜏 = 20000, in agreement with experiment, which represents

one of the major achievements of the new approach. A number of detailed aspects of

the model, including numerical resolution, LES-QDNS coupling strategy and sub-

grid model are explored. A low level of grid sensitivity is demonstrated for both the

QDNS and LES aspects. Since the method does not assume a law of the wall, it can

in principle be applied to flows that are out of equilibrium.
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1 INTRODUCTION

Despite advances in hardware and in particular the use of massively parallel supercomputers, applications of direct numerical

simulation (DNS) are limited in terms of the Reynolds number (Re) that can be reached, owing to the cost of the simulations.

Measured in number of grid points, the cost scales strongly with Re. For example, the number of grid points required scales

as Re37∕14

L (where L is the distance from the leading edge) for boundary layer flow1 and smaller timesteps are also required as

the grid becomes finer. A cheaper approach is large eddy simulation (LES) where only the larger scales are simulated, while

smaller scales are modelled. However, near a wall the smaller scales play a predominant role and to obtain sufficient accuracy
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many LES in practice end up being “wall-resolved” LES, where grid point counts are significantly lower than DNS (typically

of the order of 1%), but a strong scaling with Re remains, meaning that LES is also too expensive for routine application, for

example, to flow over a commercial aircraft wing. The alternative of wall-modelled LES has much more attractive scaling

characteristics (fixed in terms of boundary layer thickness, for example) but relies very heavily on a wall treatment. Given that

there is no accurate reduced-order model for turbulence near a wall (which would require some kind of breakthrough solution

of the “turbulence problem”), a lot of reliance would be placed on the near-wall model, with little likelihood of significant

improvements over second-moment closure approaches based on the Reynolds-averaged equations. In this paper, we consider

an alternative approach whereby small-domain simulations are used to represent the near-wall turbulence, in a non–space-filling

manner, and linked to an LES away from the wall, where the subgrid models might be expected to work with reasonable accuracy.

To understand the new approach, an appreciation of recent progress in understanding the physics of near-wall turbulence is

useful. The inner region, consisting of the viscous sublayer and the buffer layer, out to a wall-normal distance of z+ ≈ 100 (where

z is the wall normal distance and the dimensionless form is z+ = zu𝜏∕𝜈, where 𝜈 is the kinematic viscosity and uτ =
√
τw∕ρ is

the friction velocity, with τw = μ(du∕dz)w the wall shear stress, 𝜇 = 𝜌𝜈 being the viscosity and 𝜌 the density) follows a known

regeneration cycle,2 whereby vortices develop streamwise streaks, which give rise to instabilities that create new vortices. The

streamwise scales are up to 1000 in wall units (𝜈∕u𝜏), while the spanwise scale is 100 (sufficient to sustain near-wall turbulent

cycles3), but one should note that the probability distributions are smooth over a range of scales, and the regeneration process

does not involve single Fourier modes with these wavelengths. The outer region of a turbulent flow follows a different known

scaling, where a defect velocity (relative to the centreline in internal flows, or the external velocity in boundary layers) scales

with u𝜏 and the geometry of the flow (for example boundary layer thickness). As the Reynolds number is increased an overlap

between these inner and outer layers is found and, at very high Re, recent pipe flow experiments4 provide good evidence for a

logarithmic region in the mean velocity profile.

Within the logarithmic region of turbulent boundary layers, pipes, and channels very large-scale motions (VLSMs) (some-

times referred to as “superstructures”) have been observed, for example by Monty et al.5 These structures are in addition to the

near-wall turbulence cycle and possible organised motions in the outer part of the flow. Interestingly, these VLSM structures

are longer than those of the outer layer.5-8 The presence of both outer-layer motions and VLSMs means that the near-wall flow

cannot be considered as a separate feature, but one that is modulated by larger-scale flow features. This leads to increases in the

near-wall fluctuations as Re is increased, as has been shown experimentally. For example, Hultmark et al4 show a small increase

in the near wall (z+ = 12) peak in streamwise fluctuation level and a much larger increase for z+ > 100, eventually leading to a

separate peak in the fluctuation profile.

Further insight into the near-wall structure of turbulent flow has been obtained recently from a resolvent-mode analysis of the

mean flow.9 The resolvent modes are obtained from a singular value decomposition of the linearised Navier-Stokes equations

subject to forcing and shows the response of the flow. From this type of analysis, Moarref et al8 extracted near-wall, outer layer

and mixed scalings. In particular, at very high Reynolds number, 3 kinds of structures were shown to be present, including

a near-wall structure whose scaling was in good agreement with the regeneration cycle discussed above. In the outer region,

the spanwise width of structures was shown to scale with the channel half height, whereas in the logarithmic region the width

had a mixed scaling. Given these insights into the key structures in turbulent wall-bounded flow, it is interesting to consider a

simulation approach based on resolving these classes of structures.

There have been a small number of previous attempts to combine different simulations to resolve the various layers of flow

near a wall. A multiblock approach was developed by Pascarelli et al.10 This method includes a multilayer structure with a large

block covering the channel central region and smaller blocks near the wall that were periodically replicated. Simulations were

only performed at low Re, but it was observed that the flow adjusted very quickly to the imposition of periodic spanwise boundary

conditions at the block interfaces. The method envisioned more layers at high Re. The cost saving at the Re simulated was found

to be modest and the method would not capture the modulation of small scales by large scales, since the same near-wall box

was used everywhere. Another approach has been proposed recently11 in which a minimal flow unit for near-wall turbulence is

coupled to a coarse-grid LES for the whole domain, with a rescaling of both simulation at each timestep. It is not clear from the

description whether the minimal flow simulation feeds back the correct local shear stresses to the large structures, but results

from this approach are shown to reproduce experimental correlations for skin friction12 within 5% up to Re𝜏 = 10000.

In the present contribution, we consider an approach that uses multiple near-wall simulations that are able locally to respond

to changes in the outer-layer environment, provided by an LES. In return, the near-wall simulations provide the wall shear

stress required by the LES as a boundary condition. The general arrangement is sketched on Figure 1 for a simulation of

turbulent channel flow. In effect, the set of near-wall simulations (shown in red on the figure) are used as the near-wall model.

However these simulations are only sampled (not continuous) in space, hence a large saving in computational cost is possible.

As a shorthand notation we will refer to the near-wall simulations as quasi-DNS (QDNS) since no subgrid model is used, but

resolutions do not need to be fine enough for these to be fully-resolved DNS. The approach proposed here follows the style

of heterogeneous multiscale methods, a general framework in which different modelling techniques/algorithms are applied to
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FIGURE 1 Schematic of the computational arrangement for simulation of turbulent channel flow. The outer box is the large eddy simulation

domain, while the red-shaded boxes are the computational domains for the quasi-direct numerical simulations

different scales and/or areas of the computational grid.13-16 More specifically, the crux of heterogeneous multiscale methods is

the coupling of an overall macroscale model (ie, the LES in this case) with several microscale models (ie, the QDNS blocks);

it is these microscale models that can provide missing/more accurate data (ie, the shear stress boundary conditions) back to the

macroscale model.

A similar multiscale reduced-order approach was formulated independently by Grooms et al17 and applied to a quasi-

geostrophic model of the Antarctic Cirumpolar Current. The velocity field and potential vorticity gradient were advanced in time

using a coarse grid model; this model comprised small embedded subdomains at each “coarse” grid location (in contrast to the

use of blocks encompassing multiple coarse grid points in this work), within which smaller-scale eddies evolved on a separate

spatial and temporal scale. This is similar to the method proposed here in that the domain comprises smaller turbulence-resolving

simulations that are coupled with a coarser grid simulation. Furthermore, the components of the eddy potential vorticity flux

divergence were computed and averaged in the subdomains and fed back to the coarse grid model, much like the near-wall aver-

aged shear stresses computed in the approach described here. However, unlike the present work, the state of the eddy-resolving

embedded subdomains was not carried over between coarse grid timesteps and was reset each time to a given initial condition.

In this paper, we set out the method and present results from a proof-of-concept simulation of turbulent channel flow, also

showing the sensitivity of the method to various numerical parameters. Section 2 provides details of the numerical approach and

its implementation as a Fortran code. Section 3 presents the proof-of-concept results from the simulation of turbulent channel

flow. The potential for extension of the method to very high Reynolds number is then discussed in Section 4. The paper closes

with some conclusions in Section 5.

2 NUMERICAL FORMULATION

2.1 Numerical method
The same numerical method is used for both the LES and the near-wall QDNS domains shown in Figure 1, all of which

have periodic boundary conditions applied in the wall-parallel directions x and y. Within these domains the incompressible

Navier-Stokes equations are solved on stretched (in z) grids, using staggered variables (with pressure p defined at the cell

centre and velocity components ui at the centres of the faces), by an Adams-Bashforth method. The governing equations are the

continuity equation:

𝜕ui

𝜕xi
= 0, (1)

and the momentum equations

𝜕ui

𝜕t
+

𝜕uiuj

𝜕xj
= δi1 −

𝜕p
𝜕xi

+ 1

Reτ
𝜕2ui

𝜕xj𝜕xj
, (2)

where all variables are dimensionless (normalised using the channel half height, friction velocity, density, and kinematic vis-

cosity) and the term 𝛿i1 provides the driving pressure gradient. Enforcing a constant pressure gradient or constant mass flow

rate are the two main approaches to ensuring that the flow field evolves with a near-constant wall shear velocity.18 In the present

work, the constant pressure gradient 𝛿i1 frequently used in similar channel flow simulation setups (eg, Kim et al,19 Orlandi and
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Leornardi,20 and Busse et al21) is used only in the LES, whereas for the QDNSs it is set to 0, and a constant mass flow rate is

used for consistency reasons so that there is conservation of mass between the LES and QDNS. It was found that using only the

LES stresses alone to drive the QDNS simulations resulted in too high a flow velocity. Any inaccuracies in the shear stresses

would increase over time since there was no mechanism in place to keep the wall shear velocity (and therefore Re𝜏) near the

desired constant value.

Grids are uniform in the wall-parallel directions x and y and stretched in the wall-normal (z) direction according to

z =
tanh(aζ)
tanh(a)

, (3)

where a is a stretching parameter and 𝜁 is uniformly spaced on an appropriate interval (−1 ⩽ ζ ⩽ 1 in the LES, for example).

The Adams-Bashforth method advances the solution in time using 2 steps. In the first step a provisional update of the velocity

field is made according to

u∗
i = un

i + Δt
[

3

2
Hn

i − 1

2
Hn−1

i + 1

2

𝜕pn−1

𝜕xi
+ δi1

]
, (4)

where

Hi = −
𝜕uiuj

𝜕xj
+ 1

Reτ
𝜕2ui

𝜕xj𝜕xj
. (5)

A final correction is then made to give

un+1
i = u∗

i −
3

2
Δt

𝜕pn

𝜕xi
, (6)

where the pressure is obtained by solution of

𝜕2p
𝜕xi𝜕xi

= 2

3Δt
𝜕u∗

i

𝜕xi
. (7)

Application of a fast Fourier transform in horizontal planes leads to a tridiagonal matrix that is solved directly.

2.2 Model implementation
The model code was written in Fortran 90, with conditional statements used to enable/disable the LES parameterisation depend-

ing on the flag set in the simulation setup/configuration file. Each iteration of the combined LES-QDNS approach entailed

first running each QDNS simulation individually with its own setup file (containing the number of timesteps to perform, for

example); the LES was then run immediately afterwards to complete the iteration (and thus a single LES timestep, as explained

in Section 2.3). The setup and execution of these simulations was performed using a Python script that ensured the simulations

were run in the correct order and also performed statistical averaging and postprocessing of the simulation results. Such postpro-

cessing includes the averaging of the shear stresses from all the QDNS and writing out these results to a file in a format that the

LES expects, as discussed in Section 2.3. Note that, while the model itself was written in Fortran and could only be executed in

serial, the Python script that handled the execution of the simulations was parallelised such that all of the QDNS were executed

at the same time, with the results then being combined/postprocessed via MPI send/receive operations. The mpi4py library22

was used for this purpose. For a setup involving N×N QDNS per wall, the LES-QDNS approach requires (N×N× 2) + 1 MPI

processes (N × N × 2 processes for the total number of QDNS and 1 process for the LES).

2.3 Interconnection between LES and QDNS
The basic arrangement for the simulations is as shown on Figure 1. To illustrate the details, we consider a baseline case at

Re𝜏 = 4200, corresponding to the highest current Re𝜏 for DNS of channel flow.23 The DNS used a domain of size 2𝜋 by 𝜋 by 2

with a 2048×2048×1081 grid. The smallest resolved length scale in a DNS needs to be O(𝜂), where 𝜂 is the Kolmogorov length

scale.24 The choice of O(𝜂) grid spacing in the DNS of Lozano-Duran and Jimenez23 therefore satisfied this requirement and is

consistent with known guidelines for the choice of wall units in turbulent channel flow simulations (see eg, Kim et al,19 Moser

et al,25 and Lee and Moser26). Here, we attempt the same configuration using an LES in a domain 6 × 3 × 2* on a 24 × 24 × 42

*Note that the domain size of 6 × 3 × 2 did not match exactly with the DNS domain size of 2𝜋 × 𝜋 × 2 because such round numbers were convenient for wall

unit measurements and choice of QDNS block size. The results were found not to be sensitive to this small inconsistency.
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grid (with stretching parameter a set to 1.577) with a 4 × 4 array of QDNS on each wall, each QDNS using a 243 grid (with

stretching parameter a set to 1.4) covering a domain in wall units of 1000 × 500 × 200. The total number of grid points is less

than half a million or 0.01% of the DNS. In this baseline case the QDNS grid spacing in wall units is Δx+ = 41.7, Δy+ = 20

with the first cell centre at z+ = 1.5.

The choice of QDNS resolution follows guideline values in the literature (eg, Δx+ typically less than 50 in the spanwise

direction compared to 20 for DNS27) such that the cost of the QDNS is approximately an order of magnitude less than a full DNS

near the wall.28 It was found that refining this further had little impact on the accuracy of the results, as discussed in Section

3. Seen in plan view the entire QDNS occupies one LES cell, ie, Lx,QDNS = ΔxLES and Ly,QDNS = ΔyLES. In the wall-normal

direction the QDNS overlaps the LES, in this case by 3 cells, to avoid using the immediate near-wall points that are most

susceptible to errors in the accuracy of the subgrid modelling. These 3 cells cover the region out to z+ = 200 with the centre of

the first LES cell at z+ = 30. The LES grid was deliberately kept very coarse to highlight the potential savings of the proposed

method and how it takes advantage of the separation of scales, although it was found a posteriori that it needed refining to a

96 × 96 × 56 grid to yield a much better mean flow prediction (see Section 3).

The required resolution for DNS and QDNS scales strongly with Reynolds number,27 with the number of DNS grid points29

being proportional to Re9/4 (or Re37∕14

L in the more recent calculations of Choi and Moin1). The resolution requirements for

QDNS are likely to be similar to that of wall-resolving LES, which scales1,30,31 proportional to ∼Re2, while wall-modelled LES

scales weakly with Reynolds number1,30 (Re2/5). In terms of resolving the turbulence structures, small-scale eddies and streaks

near the wall scale with wall units while the LSMs scale with domain size.8

The timestep for the QDNS is set to Δt = 0.0001 and 25 QDNS steps are run before one LES update (ie, the LES operates on

a timestep of 0.0025). The respective Courant number criteria need to be respected for both the LES and QDNS simulations,

which determines the number of QDNS steps per LES step.

The QDNS are driven by the LES. The QDNS are run in constant mass-flux mode with the mass fluxes in x and y provided

by the LES. At the upper boundary conditions, the QDNS use w = 0 and apply a viscous stress corresponding to the shear

stresses from the LES. This effectively sets du∕dz and dv∕dz at the upper boundary of the QDNS and, together with the enforced

mass flux, drives the QDNS to match the LES in these aspects. Each QDNS is thus driven by the local LES conditions and

simulates the response of wall turbulence to large scales present in the LES. Figure 2 shows a snapshot of the results from a

simulation. The streamwise velocity is shown in a plan view. Figure 2A shows the whole LES domain at z+ = 335, with QDNS

subdomains visible as the dark areas. Figure 2B zooms in on one of the QDNS domains, showing streamwise velocity contours

FIGURE 2 Plan view showing A, streamwise velocity contour lines at z+ = 335 from the large eddy simulation (LES) at Re𝜏 = 4200 with the

dark areas showing the locations of the quasi-direct numerical simulation (QDNS) domains; B, expanded view of filled contours of streamwise

velocity at z+ = 13 in one of the QDNS domains [Colour figure can be viewed at wileyonlinelibrary.com]

http://onlinelibrary.wiley.com/
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near the wall (z+ = 13). In this arrangement, it can be seen how the 4 × 4 array of QDNS samples the large-scale structures

from the LES. At the end of the 25 QDNS timesteps, the shear stresses (du∕dz)w and (dv∕dz)w are averaged over each QDNS

and linearly interpolated back to the LES to provide the lower boundary condition. Such a boundary condition is considered a

good first approximation, despite the QDNS blocks not resolving turbulence structures down to the Kolmagorov length scale,

because the QDNSs are capable of resolving the near-wall streaks to reduce the empiricism required at the wall.27,32 It may be

more desirable to use more information from the QDNS (eg, transferring all components of the Reynolds stress tensor back to

the LES and computing a contribution to the eddy viscosity for use in the LES) to obtain a more accurate result. Nevertheless,

the current sampling technique and the interpolation back to the full LES domain is advantageous since it exploits the emerging

spectral gap that exists between the large and small scales at large Reynolds number.8

Larger domains are handled by increasing the size of the LES domain and increasing the number of QDNS blocks. It should

be noted that there is only a very small amount of communication between the LES and QDNS calculations (4 floating point

numbers into each QDNS and 2 returned per 25 steps of computational effort). Thus, the introduction of the QDNS subdomains

brings with it an additional level of parallelism, with parallel treatment also possible within the LES and QDNS blocks using

conventional strategies.

Once fully developed, the turbulent dynamics are homogeneous in the spanwise and streamwise directions,19 and thus, the use

of a regular grid on each wall is a justifiable initial choice. However, instead of keeping the QDNS blocks stationary, it may be

more appropriate to move the blocks downstream with the flow speed in an attempt to track smaller-scale turbulent structures. It

is possible that the effects of these turbulent small-scale structures are being dissipated by the averaging procedure or simply by

the region of lower resolution outside the QDNS block, with downstream blocks becoming increasingly inaccurate as a result.

It is unclear how many QDNS blocks will be required in general, but the number is likely to scale with Re𝜏 to obtain adequate

sampling near the wall.

3 PROOF OF CONCEPT AND SENSITIVITY TO NUMERICAL PARAMETERS

The mean streamwise velocity u+
and root mean square (RMS) of the streamwise velocity fluctuations u+RMS were used as

performance measures. These are defined, for each point k in the z-direction, by

u+ = 1

SNxNy

S∑
s=1

Nx∑
i=1

Ny∑
j=1

u+
i,j,k, (8)

and

u+RMS =

√√√√√⎛⎜⎜⎝
1

SNxNy

S∑
s=1

Nx∑
i=1

Ny∑
j=1

u+ 2

i,j,k

⎞⎟⎟⎠ − u+2

. (9)

where u+
i,j,k is the dimensionless velocity at grid point (i, j, k). The quantities Nx and Ny are the number of grid points in the x and

y directions. The quantities were not accumulated over all timesteps, but were instead accumulated over S averaging points,

where S was chosen to be sufficiently large to ensure a steady average. In addition, the mean velocity relative to the friction

velocity was also considered. This quantity is defined as

ũ+ = 1

2 ∫
1

−1

u+
dz. (10)

The mean streamwise velocity for the baseline case is shown in Figure 3 in linear and semi-logarithmic co-ordinates in parts (a)

and (b) respectively, showing a composite of the LES results (with squares, omitting the first 3 cells) and the near-wall QDNS

(shown with triangles). Overall a reasonable match to the reference DNS is observed despite the very low grid point count.

The QDNS simulations correctly capture the viscous sublayer and buffer layer, while the LES captures the outer layer. Both the

QDNS and LES undershoot the reference DNS by about 5% at the LES/QDNS interface and the LES gives noticeably too low

a centreline velocity (by 3%). The mean velocity relative to the friction velocity is 23.3 which is ∼0.9% lower than the DNS

and 2.9% lower than Dean’s correlation,12 which together provide a useful measure of the overall accuracy of this approach.

With all the data available from the QDNS, it would in principle be possible to improve the near-wall sub-grid modelling in the

LES to address the undershoot at the interface (for example the eddy viscosity can be computed from the QDNS and used in

the LES), however in the present contribution we use the same (Smagorinsky) sub-grid model for all cases.
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FIGURE 3 Comparison of the combined LES-QDNS simulation results (LES, large eddy simulation; QDNS, quasi-direct numerical simulation)

for mean streamwise velocity with direct numerical simulation (DNS)23 (solid line) at Re𝜏 = 4200 A, in linear scale; and B, in semilogarithmic

coordinates. Open triangles show the QDNS (performed on 243 grids), squares the LES (on a 24 × 24 × 42 grid)

FIGURE 4 Root mean square streamwise velocity in the near-wall region at Re𝜏 = 4200, comparing the quasi-direct numerical simulation

(QDNS) component (triangles) of the combined LES-QDNS simulation (LES, large eddy simulation), with direct numerical simulation (DNS)23

(solid line), and with a separate QDNS in which the near-wall region is not modulated by structures from the outer region

An interesting feature emerges when one considers the RMS of streamwise velocity fluctuations from the QDNS simulations,

shown on Figure 4. To assemble this figure, as with the QDNS shown in Figure 3, all 16 QDNS on one wall were averaged

in horizontal planes and over time. The result is generally in good agreement with the DNS. There is an overshoot in the peak

at z+ = 12, which is likely due to under-resolution within the QDNS blocks; similar over-shoots have been observed in the

RMS streamwise velocity for LESs of turbulent channel flow (at lower Re𝜏 values of 180, 395 and 640) where the near-wall

zone is not adequately resolved by the grid.33,34 The RMS levels agree well with DNS further away from the wall, showing

that the current methodology has correctly captured the modulation of near-wall turbulence by outer-layer motions that is seen

experimentally.35 For comparison, a separate QDNS was run with only the mean mass flow and velocity gradients imposed,

giving an unmodulated result (shown on Figure 4 with the chain dotted line) for comparison. It can be seen that the effect of

modulation of near-wall turbulence by outer-layer structures is to increase the RMS levels by a factor of ∼ 2.5 at this Reynolds

number. The effect of increasing RMS with Reynolds number would only be properly obtained in conventional LES using the

wall-resolved approach, which would however be significantly more expensive than the current method. A wall-resolved LES

grid to do the same calculation as shown here (allowing for a factor of four under-resolution in all directions compared to

the reference DNS) would need 71 million grid points, compared to less than half a million employed here. The nested LES

approach of Tang and Akhavan11 also gives the modulation effect, but not the multi-block model of Pascarelli et al,10 which

uses the same replicated near-wall block everywhere on the wall.
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FIGURE 5 Root mean square turbulence statistics from the large eddy simulation (LES) part of the combined LES-QDNS simulation (QDNS,

quasi-direct numerical simulation), compared to direct numerical simulation (DNS)23 at Re𝜏 = 4200

FIGURE 6 Sensitivity of the mean streamwise velocity and near-wall root mean square streamwise velocity at Re𝜏 = 4200 to grid resolution of

the quasi-direct numerical simulations (QDNSs), comparing the baseline case (243) with a refined case (323). DNS, direct numerical simulation

The extremely coarse-grid LES shows significant errors in the structure of the turbulence as the wall is approached. Figure 5

shows RMS values of all velocity components compared to DNS. Here, only the resolved part of the LES is shown, but never-

theless, there is a significant overshoot relative to the DNS. In particular, the streamwise velocity fluctuations are significantly

higher, and the wall-normal velocity fluctuations are significantly lower than the DNS. In both cases, the effect of the wall

extends to much higher values of z than it should, due no doubt to the severe underresolution of turbulence near the wall, with

only larger structures resolved on the LES grid. It should be noted that the subgrid model used here is the classical Smagorin-

sky model and no effort has been made to optimise the model formulation in the near-wall region. Other formulations such as

dynamic Smagorinsky or WALE would be expected to do better, but the grid is so coarse in these cases that good agreement

is not to be expected. A more limited expectation is that the LES resolve sufficient features of the turbulence to provide a rea-

sonable model of the outer flow, with the shear stress at the wall provided by the QDNS and not so dependent on the subgrid

modelling (since only the local flow derivatives are passed to the QDNS as boundary conditions).

Any simulation-based model of turbulence is only useful if it provides a suitable degree of grid independency. In the current

case the resolution required for the QDNS is reasonably well known, based on previous DNS. Figure 6A shows a negligible

effect on the mean flow of increasing the near-wall QDNS from 243 to 323, which is still well below the levels required for

a resolved DNS (643 would give a resolution of Δx+ = 15.6, Δy+ = 7.8, and a first grid point at z+ < 1). One effect of the

increased resolution is the reduced near-wall peak of the RMS streamwise velocity, shown on Figure 6B, with the correct trend

to agree with the DNS in the limit of very fine resolution. Additionally there is a slight improvement (<4%) in the RMS from

around z+ = 80 onwards.
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FIGURE 7 Sensitivity of the mean streamwise velocity and near-wall root mean square streamwise velocity at Re𝜏 = 4200 to grid resolution of

the large eddy simulation (LES), comparing the baseline case (242 × 42) with a refined case (962 × 56). DNS, direct numerical simulation

FIGURE 8 Comparison of the combined LES-QDNS simulation results (LES, large eddy simulation; QDNS, quasi-direct numerical simulation)

for mean streamwise velocity with direct numerical simulation (DNS)23 (solid line) at Re𝜏 = 4200 A, in linear scale; and B, in semilogarithmic

coordinates. Open triangles show the QDNS (performed on 243 grids), squares the refined LES (on a 96 × 96 × 56 grid)

The effect of the grid resolution of the LES in all directions is tested in Figure 7A and Figure 8, where the LES grid is changed

from 24×24×42 to 96×96×56 and the stretching parameter a is decreased from 1.577 to 1.28 (in order for the LES to overlap

the QDNS blocks by 3 cells as before). This increases the LES grid point count by a factor of 21 and the timestep is reduced

by a factor of 4 because of Courant number restrictions, but relatively little change is seen in the mean flow. The main effect is

for the centreline velocity prediction to change from a 3% undershoot to a <1% undershoot. Similarly, the disagreement at the

interface between the LES and QDNS blocks is reduced from about 5% to 2%. While the agreement at the near-wall peak in

the streamwise velocity RMS results, shown in Figure 7B, is better when a refined LES grid is used, the same cannot be said

for the results for z+ >∼25, which deviate away from the DNS data. Both RMS velocity curves from our simulations followed a

trend similar to that of the DNS results (namely, the initial peak in the near-wall region followed by a relatively gradual decrease

further away from the wall). These RMS curves were found to be sensitive to the method of averaging the bulk velocity and

velocity derivatives from the LES to enforce the mass flow rate in the QDNSs. For each block, a number of LES grid points were

used for the averaging. It was observed that too small an averaging window caused the RMS velocity curve to be significantly

higher than the DNS results, which was likely caused by small grid-to-grid point oscillations (in turn caused by underresolution

of the turbulence) being picked up near the wall. On the other hand, too large an averaging window can introduce turbulence

smoothing, reducing the turbulent kinetic energy levels in the QDNS and therefore causing the curve to be lower than that of

the DNS. The latter may have had an effect here since the number of grid points used in each averaging window (Nx∕4×Ny∕4)

was obviously greater in the refined case (with the length and width of the averaging window remaining the same). Note that

the choice of averaging size did not significantly alter the mean streamwise velocity results which were consistently better than

the results from the coarser LES grid. The ultimate convergence of the LES back to the DNS would require much finer grids
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FIGURE 9 Sensitivity of the mean streamwise velocity and near-wall root mean square streamwise velocity at Re𝜏 = 4200 to the quasi-direct

numerical simulation (QDNS) arrangement, comparing the baseline case (42 on each wall) with 2 coarser cases (22 and 12 on each wall) and 1 finer

case (62 on each wall). DNS, direct numerical simulation [Colour figure can be viewed at wileyonlinelibrary.com]

and large parallel simulations, which is beyond the scope of the current investigation. Nevertheless, the limited sensitivity to

the grid at these very low resolutions is promising.

Finally in this section, we consider the effect of the basic arrangement of the QDNS blocks. The baseline configuration has

4× 4 blocks, as sketched in Figure 1. This configuration seems to be capable of resolving near-wall flow features, as illustrated

by the velocity contours that were shown on Figure 2. Figure 9 shows the effect of reducing the number of near-wall blocks

to 2 × 2 and 1 × 1, which clearly undersamples the flow features. The mean flow on Figure 9A shows that the principal effect

of reducing the near-wall block count is to slightly diminish the accuracy of the near-wall turbulence. This is possibly due to

aliasing effects when trying to sample the very high-frequency turbulent structures. While this result is not catastrophic, it does

lead to the conclusion that 4 × 4 blocks is probably a minimum number of blocks for a reasonable prediction of the mean flow

for the current domain size. On the other hand, increasing the number of near-wall blocks to 6 × 6 yields an improved mean

flow prediction particularly near the LES-QDNS interface. While the RMS curve for the 6 × 6 case displays the correct shape,

the values continue to overshoot the DNS data near the wall. As already noted, these RMS values are sensitive to the averaging

procedure used to enforce the mass flow rate in the QDNS blocks.

4 EXTENSION TO HIGHER REYNOLDS NUMBER

Since the method has been proposed here as a way of simulating high Reynolds number flows, it is of interest to test the approach

at even higher Reynolds numbers. In this section, we consider a simulation at Re𝜏 = 20000, which is a factor of nearly 5 higher

than that used in the previous section. If we keep the same near-wall QDNS configuration, with 4×4 blocks, each of 323 points

on the same domains in wall units, we end up with subdomains that are 0.05 long, 0.025 in the spanwise direction, with z+ = 200

reached at z = 0.01. Maintaining the same link between the LES and QDNS (ie, one ΔxLES matching to the entire QDNS

subdomain) as in the previous section, and retaining approximately the same stretching property of the grid (ie, maximum to

minimum Δz), we end up with an LES grid of 120 × 120 × 90 points. Courant number considerations again lead to a choice

of 25 iterations of the QDNS per LES step, with ΔtLES = 0.00035. Even at the higher Re𝜏 most of the cost (>90%) resides in

the QDNS simulations and most of the additional cost is due to the increased number of timesteps required at the higher Re𝜏 ,

which (if it works) represents a linear scaling of the total simulation cost with Re𝜏 in the channel flow example here.

Figure 10 shows a plan view of the simulation at Re𝜏 = 20000, for comparison with Figure 2, which showed the equiva-

lent figure at Re𝜏 = 4200. Figure 10A shows the streamwise velocity field from the LES at z+ = 322, with the QDNS blocks

superimposed, although these are too small to be clearly visible. Figure 10B shows the flow in one of the QDNS blocks at

z+ = 13, showing qualitatively the same near-wall streak structure as was seen in the lower Reynolds number case. Com-

pared with Figure 2A, Figure 10A shows a much wider range of scales. The imprint of very large structures can be seen in

Figure 10A as streamwise-elongated zones of higher or lower than average streamwise velocity. Superimposed on this are

smaller-scale structures down to the grid scale. On the one hand, this increase in the range of scales is a more accurate pic-

ture of a turbulent flow than the picture shown in Figure 2A, since a wider range of the turbulent energy cascade is captured.

On the other hand, this picture also illustrates a possible weakness of the current approach, since the linear interpolation

http://onlinelibrary.wiley.com/
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FIGURE 10 Plan view showing A, streamwise velocity contour lines at z+ = 322 from the large eddy simulation at Re𝜏 = 20000 with the dark

areas showing the locations of the quasi-direct numerical simulation domains (QDNS); B, expanded view of filled contours of streamwise velocity

at z+ = 13 in one of the QDNS domains [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Comparison of A, the mean and B, the near-wall root mean square streamwise velocities for cases at Re𝜏 = 4200 and at

Re𝜏 = 20000. LES, large eddy simulation

method used to feedback the shear stress from the QDNS to the LES will clearly not be accurate, apart from very close to the

QDNS locations.

Statistical results for the simulation at Re𝜏 = 20000 are shown on Figure 11, comparing the results with the logarithmic

law of the wall u+ = 1∕κlogz+ + b with 𝜅 = 0.39 and b = 4.5 (where these values have been chosen to agree with the DNS

data from Lozano-Duran and Jimenez23). The solution overshoots the log law by about 6% near the LES-QDNS interface. It

seems unlikely that subgrid models can be blamed for the overshoot, although this is something that could be tested. Compared

to Dean,12 the mean flow prediction is approximately 9% too low, although we should note that the Reynolds number in this

simulation is well above the highest Reynolds number used by Dean to make his correlations. In general, the RMS streamwise

velocity fluctuations shown on Figure 11B follow the expected trend, with the RMS increasing as Re𝜏 increases. The near-wall

peak clearly increases with the fivefold increase in Re𝜏 , although the RMS at z+ = 100 decreases by 20% before once again

rising slightly above the Re𝜏 = 4200 line. Therefore, the method proposed here clearly has limitations dependent on Re𝜏 , which

http://onlinelibrary.wiley.com/
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could be mitigated through the use of finer LES resolution or more QDNS blocks, which have been shown to improve the results

in the Re𝜏 = 4200 case.

In summary, the effect of increasing Reynolds number is partly captured by the method presented in this paper, which is based

on a computational cost (including the number of timesteps) that scales approximately proportional to Re𝜏 . However the results

at Re𝜏 = 20000 deviate from the logarithmic law, suggesting that the quality of the results will decrease with further increases

in Re𝜏 . To improve on this probably requires more computational resource and in this respect, it is interesting that the trend to

overpredict the logarithmic law of the wall was also seen when the number of QDNS blocks was reduced to 2 × 2 and 1 × 1,

as shown in Figure 9. This suggests that one method to increase the accuracy of the simulations is to increase the number of

QDNS blocks, for example, to 32 × 32 at Re𝜏 = 20000. Although this parallelises trivially, it formally represents a scaling of

the computational grid with Re2
τ for channel flow, albeit with a much lower constant of proportionality than wall-resolved LES.

Another method of increasing the accuracy at higher Re𝜏 would be to increase the domain size of the QDNS, also resulting

in a higher scaling exponent. These estimates may be reduced if the resolution of structures associated with the mixed scaling

of Moarref et al8 is the limiting factor. Otherwise, for very high Re𝜏 , one may need to apply the method recursively, with

successively smaller domains as the wall is approached.

5 CONCLUSIONS

A new approach to simulating near wall flows at high Reynolds number has been presented and tested. The method relies on

LES for the whole domain but with the skin friction supplied from a set of QDNS of the near-wall region (out to a wall normal

distance of z+ = 200). These near-wall simulations use periodic boundary conditions and are not space-filling but provide

an estimate of the 2 components of skin friction, given the instantaneous near-wall velocity gradients. The method has an

extremely small communication overhead between the LES and QDNS and is thus suitable for scaling to large core counts. The

accuracy of the method was demonstrated for a turbulent channel flow at Re𝜏 = 4200, for which less than half a million points

were used, compared to the reference DNS that used over 4 billion points. Besides the low cost, a particular feature of the new

simulation approach is that it is able to predict the effect of modulation of small-scale near-wall features by large structures,

residing either in the logarithmic or outer regions of the flow. This makes it possible, for example, to study the effects of

wall-based flow control schemes in a high Reynolds number external environment. The method is found to be robust to changes

in grid resolution. An O(Re𝜏) total cost extrapolation to Re𝜏 = 20000 demonstrated some limitations, suggesting that accurate

simulations at higher Re𝜏 probably have a higher total cost scaling (including an increase in grid points and in the number of

timesteps), however, at much lower cost relative to wall-resolved LES. For the particular case considered here, that of turbulent

channel flow, wall functions for LES based on the logarithmic law of the wall would be expected to work well. The advantage

of the current approach is that the log law is not assumed, and it would be expected that the effects of a range of nonequilibrium

flow conditions could be captured, so long as the surface sampling is sufficient relative to the dominant large-scale structure in

the flow. Overall, the new method offers the potential for engineering calculations at high Reynolds number at a substantially

lower computational cost compared to current LES techniques.
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