The University of Southampton
University of Southampton Institutional Repository

Lifestyle interventions for the treatment of women with gestational diabetes

Lifestyle interventions for the treatment of women with gestational diabetes
Lifestyle interventions for the treatment of women with gestational diabetes
Background: Gestational diabetes (GDM) is glucose intolerance, first recognised in pregnancy and usually resolving after birth. GDM is associated with both short- and long-term adverse effects for the mother and her infant. Lifestyle interventions are the primary therapeutic strategy for many women with GDM.

Objectives: To evaluate the effects of combined lifestyle interventions with or without pharmacotherapy in treating women with gestational diabetes.

Search methods: We searched the Pregnancy and Childbirth Group's Trials Register (14 May 2016), ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP) (14th May 2016) and reference lists of retrieved studies.

Selection criteria: We included only randomised controlled trials comparing a lifestyle intervention with usual care or another intervention for the treatment of pregnant women with GDM. Quasi-randomised trials were excluded. Cross-over trials were not eligible for inclusion. Women with pre-existing type 1 or type 2 diabetes were excluded.

Data collection and analysis: We used standard methodological procedures expected by the Cochrane Collaboration. All selection of studies, data extraction was conducted independently by two review authors.

Main results: Fifteen trials (in 45 reports) are included in this review (4501 women, 3768 infants). None of the trials were funded by a conditional grant from a pharmaceutical company. The lifestyle interventions included a wide variety of components such as education, diet, exercise and self-monitoring of blood glucose. The control group included usual antenatal care or diet alone. Using GRADE methodology, the quality of the evidence ranged from high to very low quality. The main reasons for downgrading evidence were inconsistency and risk of bias. We summarised the following data from the important outcomes of this review.

Lifestyle intervention versus control group
For the mother: There was no clear evidence of a difference between lifestyle intervention and control groups for the risk of hypertensive disorders of pregnancy (pre-eclampsia) (average risk ratio (RR) 0.70; 95% confidence interval (CI) 0.40 to 1.22; four trials, 2796 women; I2 = 79%, Tau2 = 0.23; low-quality evidence); caesarean section (average RR 0.90; 95% CI 0.78 to 1.05; 10 trials, 3545 women; I2 = 48%, Tau2 = 0.02; low-quality evidence); development of type 2 diabetes(up to a maximum of 10 years follow-up) (RR 0.98, 95% CI 0.54 to 1.76; two trials, 486 women; I2 = 16%; low-quality evidence); perineal trauma/tearing (RR 1.04, 95% CI 0.93 to 1.18; one trial, n = 1000 women; moderate-quality evidence) or induction of labour (average RR 1.20, 95% CI 0.99 to 1.46; four trials, n = 2699 women; I2 = 37%; high-quality evidence).

More women in the lifestyle intervention group had met postpartum weight goals one year after birth than in the control group (RR 1.75, 95% CI 1.05 to 2.90; 156 women; one trial, low-quality evidence). Lifestyle interventions were associated with a decrease in the risk of postnatal depression compared with the control group (RR 0.49, 95% CI 0.31 to 0.78; one trial, n = 573 women; low-quality evidence).

For the infant/child/adult: Lifestyle interventions were associated with a reduction in the risk of being born large-for-gestational age (LGA) (RR 0.60, 95% CI 0.50 to 0.71; six trials, 2994 infants; I2 = 4%; moderate-quality evidence). Birthweight and the incidence of macrosomia were lower in the lifestyle intervention group.

Exposure to the lifestyle intervention was associated with decreased neonatal fat mass compared with the control group (mean difference (MD) -37.30 g, 95% CI -63.97 to -10.63; one trial, 958 infants; low-quality evidence). In childhood, there was no clear evidence of a difference between groups for body mass index (BMI) >= 85th percentile (RR 0.91, 95% CI 0.75 to 1.11; three trials, 767 children; I2 = 4%; moderate-quality evidence).

There was no clear evidence of a difference between lifestyle intervention and control groups for the risk of perinatal death (RR 0.09, 95% CI 0.01 to 1.70; two trials, 1988 infants; low-quality evidence). Of 1988 infants, only five events were reported in total in the control group and there were no events in the lifestyle group. There was no clear evidence of a difference between lifestyle intervention and control groups for a composite of serious infant outcome/s (average RR 0.57, 95% CI 0.21 to 1.55; two trials, 1930 infants; I2 = 82%, Tau2 = 0.44; very low-quality evidence) or neonatal hypoglycaemia (average RR 0.99, 95% CI 0.65 to 1.52; six trials, 3000 infants; I2 = 48%, Tau2 = 0.12; moderate-quality evidence).

Diabetes and adiposity in adulthood and neurosensory disability in later childhoodwere not prespecified or reported as outcomes for any of the trials included in this review.

Authors' conclusions: Lifestyle interventions are the primary therapeutic strategy for women with GDM. Women receiving lifestyle interventions were less likely to have postnatal depression and were more likely to achieve postpartum weight goals. Exposure to lifestyle interventions was associated with a decreased risk of the baby being born LGA and decreased neonatal adiposity. Long-term maternal and childhood/adulthood outcomes were poorly reported.

The value of lifestyle interventions in low-and middle-income countries or for different ethnicities remains unclear. The longer-term benefits or harms of lifestyle interventions remains unclear due to limited reporting.

The contribution of individual components of lifestyle interventions could not be assessed. Ten per cent of participants also received some form of pharmacological therapy. Lifestyle interventions are useful as the primary therapeutic strategy and most commonly include healthy eating, physical activity and self-monitoring of blood glucose concentrations.

Future research could focus on which specific interventions are most useful (as the sole intervention without pharmacological treatment), which health professionals should give them and the optimal format for providing the information. Evaluation of long-term outcomes for the mother and her child should be a priority when planning future trials. There has been no in-depth exploration of the costs 'saved' from reduction in risk of LGA/macrosomia and potential longer-term risks for the infants.
1469-493X
Brown, Julie
6e4bb55a-a280-4d41-8452-11599566c94b
Alwan, Nisreen A.
0d37b320-f325-4ed3-ba51-0fe2866d5382
West, Jane
f6167eb2-7e11-49db-80f0-57e611b20a1f
Brown, Stephen
fcb992ca-e075-463f-83ee-cb7fbdd0207f
McKinlay, Christopher J.D.
8d3448b3-0697-4ed8-9f7a-4a01d12b733b
Farrar, Diane
6092cb6b-9bde-4fb4-9f27-1fa8c41f675b
Crowther, Caroline A.
2a9b187e-73dd-4a43-a5af-c7dd6be1cd8a
Brown, Julie
6e4bb55a-a280-4d41-8452-11599566c94b
Alwan, Nisreen A.
0d37b320-f325-4ed3-ba51-0fe2866d5382
West, Jane
f6167eb2-7e11-49db-80f0-57e611b20a1f
Brown, Stephen
fcb992ca-e075-463f-83ee-cb7fbdd0207f
McKinlay, Christopher J.D.
8d3448b3-0697-4ed8-9f7a-4a01d12b733b
Farrar, Diane
6092cb6b-9bde-4fb4-9f27-1fa8c41f675b
Crowther, Caroline A.
2a9b187e-73dd-4a43-a5af-c7dd6be1cd8a

Brown, Julie, Alwan, Nisreen A., West, Jane, Brown, Stephen, McKinlay, Christopher J.D., Farrar, Diane and Crowther, Caroline A. (2017) Lifestyle interventions for the treatment of women with gestational diabetes. Cochrane Database of Systematic Reviews, 2017 (5), [CD011970]. (doi:10.1002/14651858.CD011970.pub2).

Record type: Article

Abstract

Background: Gestational diabetes (GDM) is glucose intolerance, first recognised in pregnancy and usually resolving after birth. GDM is associated with both short- and long-term adverse effects for the mother and her infant. Lifestyle interventions are the primary therapeutic strategy for many women with GDM.

Objectives: To evaluate the effects of combined lifestyle interventions with or without pharmacotherapy in treating women with gestational diabetes.

Search methods: We searched the Pregnancy and Childbirth Group's Trials Register (14 May 2016), ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP) (14th May 2016) and reference lists of retrieved studies.

Selection criteria: We included only randomised controlled trials comparing a lifestyle intervention with usual care or another intervention for the treatment of pregnant women with GDM. Quasi-randomised trials were excluded. Cross-over trials were not eligible for inclusion. Women with pre-existing type 1 or type 2 diabetes were excluded.

Data collection and analysis: We used standard methodological procedures expected by the Cochrane Collaboration. All selection of studies, data extraction was conducted independently by two review authors.

Main results: Fifteen trials (in 45 reports) are included in this review (4501 women, 3768 infants). None of the trials were funded by a conditional grant from a pharmaceutical company. The lifestyle interventions included a wide variety of components such as education, diet, exercise and self-monitoring of blood glucose. The control group included usual antenatal care or diet alone. Using GRADE methodology, the quality of the evidence ranged from high to very low quality. The main reasons for downgrading evidence were inconsistency and risk of bias. We summarised the following data from the important outcomes of this review.

Lifestyle intervention versus control group
For the mother: There was no clear evidence of a difference between lifestyle intervention and control groups for the risk of hypertensive disorders of pregnancy (pre-eclampsia) (average risk ratio (RR) 0.70; 95% confidence interval (CI) 0.40 to 1.22; four trials, 2796 women; I2 = 79%, Tau2 = 0.23; low-quality evidence); caesarean section (average RR 0.90; 95% CI 0.78 to 1.05; 10 trials, 3545 women; I2 = 48%, Tau2 = 0.02; low-quality evidence); development of type 2 diabetes(up to a maximum of 10 years follow-up) (RR 0.98, 95% CI 0.54 to 1.76; two trials, 486 women; I2 = 16%; low-quality evidence); perineal trauma/tearing (RR 1.04, 95% CI 0.93 to 1.18; one trial, n = 1000 women; moderate-quality evidence) or induction of labour (average RR 1.20, 95% CI 0.99 to 1.46; four trials, n = 2699 women; I2 = 37%; high-quality evidence).

More women in the lifestyle intervention group had met postpartum weight goals one year after birth than in the control group (RR 1.75, 95% CI 1.05 to 2.90; 156 women; one trial, low-quality evidence). Lifestyle interventions were associated with a decrease in the risk of postnatal depression compared with the control group (RR 0.49, 95% CI 0.31 to 0.78; one trial, n = 573 women; low-quality evidence).

For the infant/child/adult: Lifestyle interventions were associated with a reduction in the risk of being born large-for-gestational age (LGA) (RR 0.60, 95% CI 0.50 to 0.71; six trials, 2994 infants; I2 = 4%; moderate-quality evidence). Birthweight and the incidence of macrosomia were lower in the lifestyle intervention group.

Exposure to the lifestyle intervention was associated with decreased neonatal fat mass compared with the control group (mean difference (MD) -37.30 g, 95% CI -63.97 to -10.63; one trial, 958 infants; low-quality evidence). In childhood, there was no clear evidence of a difference between groups for body mass index (BMI) >= 85th percentile (RR 0.91, 95% CI 0.75 to 1.11; three trials, 767 children; I2 = 4%; moderate-quality evidence).

There was no clear evidence of a difference between lifestyle intervention and control groups for the risk of perinatal death (RR 0.09, 95% CI 0.01 to 1.70; two trials, 1988 infants; low-quality evidence). Of 1988 infants, only five events were reported in total in the control group and there were no events in the lifestyle group. There was no clear evidence of a difference between lifestyle intervention and control groups for a composite of serious infant outcome/s (average RR 0.57, 95% CI 0.21 to 1.55; two trials, 1930 infants; I2 = 82%, Tau2 = 0.44; very low-quality evidence) or neonatal hypoglycaemia (average RR 0.99, 95% CI 0.65 to 1.52; six trials, 3000 infants; I2 = 48%, Tau2 = 0.12; moderate-quality evidence).

Diabetes and adiposity in adulthood and neurosensory disability in later childhoodwere not prespecified or reported as outcomes for any of the trials included in this review.

Authors' conclusions: Lifestyle interventions are the primary therapeutic strategy for women with GDM. Women receiving lifestyle interventions were less likely to have postnatal depression and were more likely to achieve postpartum weight goals. Exposure to lifestyle interventions was associated with a decreased risk of the baby being born LGA and decreased neonatal adiposity. Long-term maternal and childhood/adulthood outcomes were poorly reported.

The value of lifestyle interventions in low-and middle-income countries or for different ethnicities remains unclear. The longer-term benefits or harms of lifestyle interventions remains unclear due to limited reporting.

The contribution of individual components of lifestyle interventions could not be assessed. Ten per cent of participants also received some form of pharmacological therapy. Lifestyle interventions are useful as the primary therapeutic strategy and most commonly include healthy eating, physical activity and self-monitoring of blood glucose concentrations.

Future research could focus on which specific interventions are most useful (as the sole intervention without pharmacological treatment), which health professionals should give them and the optimal format for providing the information. Evaluation of long-term outcomes for the mother and her child should be a priority when planning future trials. There has been no in-depth exploration of the costs 'saved' from reduction in risk of LGA/macrosomia and potential longer-term risks for the infants.

Text
Lifestyle interventions for the treatment of women with gestational diabetes - Accepted Manuscript
Download (1MB)
Text
2017_Cochrane review GDM lifestyle
Restricted to Repository staff only
Request a copy
Text
2017_Lifestyle Interventions GDM_The_Cochrane_Library
Restricted to Repository staff only
Request a copy

More information

Accepted/In Press date: 27 April 2017
e-pub ahead of print date: 4 May 2017
Published date: 4 May 2017
Organisations: Primary Care & Population Sciences

Identifiers

Local EPrints ID: 410721
URI: http://eprints.soton.ac.uk/id/eprint/410721
ISSN: 1469-493X
PURE UUID: f2afc02d-9847-4992-8f1b-3281d2a2b5cf
ORCID for Nisreen A. Alwan: ORCID iD orcid.org/0000-0002-4134-8463

Catalogue record

Date deposited: 09 Jun 2017 09:27
Last modified: 16 Mar 2024 05:16

Export record

Altmetrics

Contributors

Author: Julie Brown
Author: Jane West
Author: Stephen Brown
Author: Christopher J.D. McKinlay
Author: Diane Farrar
Author: Caroline A. Crowther

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×