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Abstract— Recent expansion in surveillance systems has mo-
tivated research in soft biometrics that enable the unconstrained
recognition of human faces. Comparative soft biometrics show
superior recognition performance than categorical soft bio-
metrics and have been the focus of several studies which
have highlighted their ability for recognition and retrieval in
constrained and unconstrained environments. These studies,
however, only addressed face recognition for retrieval using
human generated attributes, posing a question about the feasi-
bility of automatically generating comparative labels from facial
images. In this paper, we propose an approach for the automatic
comparative labelling of facial soft biometrics. Furthermore,
we investigate unconstrained human face recognition using
these comparative soft biometrics in a human labelled gallery
(and vice versa). Using a subset from the LFW dataset, our
experiments show the efficacy of the automatic generation of
comparative facial labels, highlighting the potential extensibility
of the approach to other face recognition scenarios and larger
ranges of attributes.

I. INTRODUCTION

The adverse visual conditions of surveillance environ-

ments (e.g. low resolution, unconstrained pose and variable

illumination), have increased the research interest in soft

biometrics, which are physical and behavioural attributes that

provide means of describing humans. The core idea is that

these attributes can be used to retrieve identities where the

acquisition of classical low level (hard) features (e.g. iris

and fingerprint) become impossible [1]. The aim of semantic

face recognition is to retrieve a suspect from a database of

subjects using a human description of the suspect’s facial

soft biometrics (e.g. an eyewitness statement) as illustrated

in Figure 1. Soft biometrics can be effective with regard

to human subjectivity, and provide invariance properties

for describing visual appearance [2]. Thus, soft biometrics

bridge the gap between machine and human vision [3].

Human face [10], body [17], and clothing [5], have been

studied as sources of soft biometrics. Nonetheless, human

faces have attracted the greatest interest as they are powerful

for recognition at distance [1].

Work related to facial soft biometrics can be classified

into two types: (1) categorical soft biometrics; in which each

attribute is assigned to a particular class (e.g. the eyebrow

is thick); and (2) comparative soft biometrics; in which a

attribute is assigned for a subject relative to another subject

(e.g. the eyebrow of subject A is more thick than that of

subject B).

Database of facial images

Subject Eye size Eyebrow length Nose width

2390419 0.84 0.62 0.37

2390420 0.78 0.84 0.87

2390421 0.73 0.28 0.77

2390422 0.51 0.96 0.52

Database of relative facial attributes

Facial attributes
from comparative
descriptions

Semantic probe
Subject A has larger 
eyes, wider mouth 
than, and wider
nose than subject B.

Automatic probe

Subject (A) Subject (B)

Eye size Eyebrow length Nose width

0.79 0.83 0.87

Search database

Probe for A

Fig. 1: Using comparative soft biometrics for people retrieval from a
database of images.

Categorical facial soft biometrics have been explored for

face verification [6], [7], [8] as well as recognition [9], [8].

All of these studies have proposed approaches for auto-

matically extracting the soft biometrics from facial images.

Comparative soft biometrics have shown a great impact on

recognition accuracy [1], [10]. Human face recognition via

comparative facial soft biometrics has been explored using

both small constrained databases [11], [10] as well as larger

unconstrained databases [2]. The studies on comparative

soft biometrics, however, were focused on human generated

comparative labels (e.g. through crowdsourcing) and did

not address the automatic estimation of comparative labels

from images or video footages, which is a key component

towards the automatic retrieval and recognition of humans

in surveillance scenarios. Moreover, the acquisition of com-

parative labels via crowdsourcing involves labour and time

costs, which could be diminished if automatic estimation of

comparative labels is possible.

This paper explores the problem of automatic estimation of

comparative facial labels. We demonstrate our results using

400 images from the Labelled Faces in The Wild database

(LFW) [12], which reflects challenging face recognition

conditions such as variable pose, expression, position, illumi-

nation, and camera quality, in addition to occlusion of facial

features. Furthermore, the paper aims to assess the impact

of comparative labelling automation in different retrieval

scenarios. To the best of our knowledge, the automatic esti-

mation of comparative facial labels has never previously been

addressed. Therefore, this study makes a major contribution

to research on facial soft biometrics by demonstrating the978-1-5090-4023-0/17/$31.00 c©2017 IEEE



impact of automatically generated comparative labels in face

recognition performance.

The main contributions of this paper are as follows:

• We explore the automatic estimation of comparative

facial labels and assess their impact on unconstrained

face recognition performance;

• We propose a framework for the automatic estimation

of comparative facial labels from facial images which

can be a baseline for the automatic estimation of com-

parative labels in general; and

• We present an evaluation for the significance of the

automatically estimated labels and their correspondence

with the human generated labels.

Section II describes the comparative facial soft biometrics

used for this study and gives insights about the dataset

used for the experiments. Section III explains the automatic

estimation of labels with statistical views. Section IV illus-

trates the experimental design and presents the results with

discussions. Lastly, Section V draws the conclusions and

highlights the implications of the study.

II. COMPARATIVE FACIAL SOFT BIOMETRICS

The human face is considered as the most informative

source for identification due to the significant discriminative

power embedded within the facial components [1]. The

significance and discriminative power of several comparative

facial soft biometrics have been evaluated in [11], as well

as [2], where the eyebrow and nose traits have shown high

discriminative power. These findings agree to an extent with

the study conducted in [13], which revealed that eyebrow is

the most important component for human face recognition.

Some of these attributes have previously been used in

categorical and simile form [6], and in purely categorical

form [9] and the eyebrows have a finer description here.

One recent approach to attribute prediction [14] again

predicts attributes many of which are similar to those here

and also including face expression though the attributes

are again categorical and were not used for recognition.

One more recent study on relative attributes [15] concerned

just noticeable differences and can determine whether the

size of the eyes is distinguishable in two images, and that

could be extended for these attributes. Equally, unsupervised

learning could be used to analyse the features [16] and

that is for the future. Since our objective is to study the

automatic estimation of comparative labels for unconstrained

human face recognition, which is usually coupled with

adverse visual conditions of surveillance (e.g. variable

illumination, pose, expressions, and resolution), we use the

facial soft biometrics shown in Table I, in addition to the

comparative labels acquired by [2] as they are collected via

crowdsourcing for a subset of the LFW database, which

emphasizes the unconstrained conditions of surveillance.

Furthermore, the use of crowdsourcing for label acquisition,

emphasizes the diversity of humans perception to the facial

attributes, which better reflects the realistic conditions of

face recognition [17]. Each of the attributes in Table I is

associated with a binary (comparative) label that represents

TABLE I: Facial soft biometrics used in comparative labelling.

No. Attribute Comparative Labels
1 Chin height [More small, More large]
2 Eyebrow hair colour [More light, More dark]
3 Eyebrow length [More short, More long]
4 Eyebrow shape [More low, More raised]
5 Eyebrow thickness [More thin, More thick]
6 Eye-to-eyebrow distance [More small, More large]
7 Eye size [More small, More large]
8 Face height [More short, More long]
9 Face width [More narrow, More wide]
10 Facial hair [Less hair, More hair]
11 Forehead hair [Less hair, More hair]
12 Inter eyebrow distance [More small, More large]
13 Inter-pupil distance [More small, More large]
14 Lips thickness [More thin, More thick]
15 Mouth width [More narrow, More wide]
16 Nose length [More short, More long]
17 Nose septum [More short, More long]
18 Nose-mouth distance [More short, More long]
19 Nose width [More narrow, More wide]
20 Spectacles [Less covered, More covered]

TABLE II: Statistics on crowdsourcing of labels.

Available Possible Coverage
Attribute comparisons 1381833 1596000 0.87
Subject comparisons 55065 79800 0.69
Comparisons per subject 275.32 (average) 399 -

the difference in the trait between two subjects as Less or

More (e.g. Subject A has a More Short nose than Subject

B). A comparative label is assigned with the integer -1 if

it is of the class Less, the integer 1 if it is from the class More.

Dataset and annotations. The dataset used in [2] represents

the training subset of View 1 in the LFW database, which

consists of facial images for 4038 subjects. The comparative

labels in [2] were collected via crowdsourcing resulting

in 10065 subjects’ comparisons that were used to infer

many more comparisons. For this study, we have randomly

selected 400 subjects from the View 1 subjects, and

extracted their pairwise comparisons from [2], where each

comparison represents a sample comparative label. Also, it is

important to mention that we have excluded the comparative

label Same, since our approach emphasizes on relative

rating based on differences among humans’ faces, not their

similarities. Table II shows statistics about that dataset that

is used in this paper. The term available in Table II refers

to comparisons that were acquired via crowdsourcing and

relation inference in [2], the term possible is defined as the

maximum number of attainable comparisons between the

subjects that is n(n − 1)/2 for a dataset of n items, and

the term coverage refers to the ratio between available and

possible comparisons that indicate the utilization achieved

from the comparisons space, thus, the objective of the

automatic estimation of comparative labels is to maximize

the coverage. The facial images included in the dataset are

all aligned using deep funnelling [18] and the inter-pupil

distance for all the subjects is normalized to 50 pixels to

ensure the consistency of comparisons between subjects.
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Fig. 2: Data distribution of the attributes.

Relative rating of attributes. Attribute rating is an essential

step towards the creation of an biometric signature that can

be used to uniquely identify a subject based on the relative

strength of the subject’s attributes. The Elo rating system,

which is a popular algorithm that is used for rating chess

players, has been used to generate relative rates for facial

soft biometrics based on the comparative labels in [10], [11],

[2]. Accordingly, we use the Elo rating system in this paper

for the same purpose. The main idea in the Elo rating system

is to compute a player’s rate based on the difference between

the player’s expected and actual game outcomes. Thus, for a

game between two players A and B, their expected scores,

EA and EB respectively, are calculated as follows:

EA =
[
1 + 10(RB−RA)/400

]−1

(1)

EB =
[
1 + 10(RA−RB)/400

]−1

(2)

where RA and RB are the current rates of players A and

B respectively. Depending on the game outcome, the score,

S, of a player is set as: 1, 0.5, or 0; for win, tie, or loss,

respectively. Consequently, the updated rates, R̄A and R̄B ,

for players A and B correspondingly, become:

R̄A = RA +K(SA − EA) (3)

R̄B = RB +K(SB − EB) (4)

where K is the score adjustment parameter, which

determines the sensitivity of rate update. In the context of

our paper, players are the subjects in the dataset, and games

are the comparisons between the subjects. For an attribute

X , a comparison outcome is mapped to a subject score,

S, as: 1, 0.5, or 0, for the labels More X, Same, or Less
X respectively. As explained earlier, the Same label is not

considered in this paper as our approach emphasizes on

differences between people. Thus, the tie situation in the

Elo rating system is not applicable for our approach.

Attribute analysis. The attribute analysis is carried out using

the relative rates generated for each attribute by the Elo rating

system explained earlier in this section. It can be inferred

from the boxplot shown in Figure 2 that the attributes

do not follow a normal distribution. In addition, most of

the attributes’ distributions are skewed and have outliers.

Altogether, the boxplot reveals that the dataset is challenging.

Also, it is important to mention that the outliers are not elim-

inated in the analysis and experiments performed throughout

this paper, as these data points represent attributes of subjects

in the dataset. Furthermore, the discriminative power of

the attributes is assessed using mutual information [19],

which reveals the amount of information contained in each

attribute about subjects [11], and the results are shown in

Figure 3, where some interesting findings emerge. Firstly,

eyebrow shape and the distance attributes of the eye-eyebrow

region (i.e. inter-pupil distance, inter-eyebrow distance, and

eye-to-eyebrow distance) have high discriminative power,

which support the emphasis on this region of the human

face [11]. Secondly, facial hair, has high discriminative

power that might be attributed to its binary nature and

association with gender. Thirdly, some eyebrow attributes

have, in general, lower discriminative potential, which can

be referred to the outliers resulted from the exposure of

eyebrows to beauty interventions. Fourthly, forehead hair
has the lowest discriminative power, probably due to its high

variance. Finally, the correlation analysis based on Pearson’s

r (as shown in Figure 4) reveals that the correlation between

the attributes are either small or insignificant, which indicate

the independence of the attributes used in this paper.

III. APPROACH

The research in face recognition using comparative

soft biometrics has, to date, tended to focus on exploring

retrieval using human generated annotations in a human

annotated gallery [10], [11], [2]. One key question that

needs to be asked, however, is whether comparative facial

labels can be estimated automatically for a database of

facial images. In this paper. we address this question by

investigating retrieval using human labelled facial attributes

in a gallery of automatically labelled attributes. We present

a baseline approach for estimating comparative facial

Normalized mutual information
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Fig. 3: Discriminative power of attributes using mutual information.
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Fig. 4: Map of correlations between attributes.

Fig. 5: Facial landmarks detection with the DPM [20] and facial components
segmentation along with the corresponding attributes. Visual features for
each attribute are extracted using GIST [21] descriptor from the images of
facial components. The attributes are numbered as in Table I.

labels automatically and producing biometric signatures,

which consist of the relative rates of the attributes. Our

approach has two main stages: (1) facial feature detection

and extraction; and (2) estimation of comparative labels.

Facial features detection and extraction. The aim of this

stage is to segment the facial components that correspond to

the attributes list in Table I, and producing the corresponding

visual biometric signatures. To detect the facial landmarks,

we use a deformable part model (DPM) [20], which is

trained for face alignment in the wild, for locating 66

facial landmarks, then the major facial components are

segmented as shown in Figure 5. After segmenting the

major facial components, a visual descriptor vector that

corresponds to each facial component is generated using

GIST features [21]. The procedure of extracting GIST

features starts by performing intensity normalization for the

facial component image, then passing it through a series of

Gabor filters in 4 scales and 8 orientations per scale. The

resulted 32 orientation maps are divided into 4×4 grids, and

the mean intensity is calculated for each block in the grid

to form a feature. This results in a vector of 512 features

for each facial component. These visual features are used

to train a model to estimate comparative facial labels as

explained next in this section.

Estimation of comparative labels. We have mentioned in

Section II that each attribute is associated with a binary

comparative label that represents the difference between a

pair of subjects as Less or More, which are mapped to -

1 and 1 respectively. To automatically estimate comparative

labels from the images set in this paper, we train 20 multiple

linear regressors, in which the visual features are considered

as independent variables that are used to predict a depen-

dent variable (i.e. a comparative label). Linear regression

is chosen to estimate comparative labels as it explicitly

includes order. The objective of training the regressors is to

model a linear relationship between visual features, which

are extracted using the GIST descriptor, and comparative

label values (-1 or 1) for the 20 facial attributes (see Table I).

The dataset is randomly divided into 10 folds, from which

9 folds that have a total of m comparisons are used to train

the regressors, while the remaining fold (consisting of n
comparisons) is used for testing, such that the total number

of comparisons for an attribute is m + n. The relationship

between the visual features of an attribute 1 ≤ t ≤ 20 and

the associated comparative labels can be modelled as:

ytc = β0 + β1x
t
c1 + β2x

t
c2 + ...+ βpx

t
cp + εt (5)

where 1 ≤ c ≤ m is the comparison index, ytc is the value of

the comparative label y ∈ {−1, 1} of the comparison c for

the attribute t, xt
ck is the difference in the kth visual feature

between the two subjects forming the comparison c for the

trait t, while 1 ≤ k ≤ p is the visual feature index, and εt
is the error term. The objective of training is to estimate a

vector of weight coefficients β̂ = {β0, β1, ..., βp} such that

the sum of squared residuals is minimized:

minimize

(
1

m

m∑
c=1

(ytc − ŷtc)
2

)
(6)

where ytc is the value of the comparative label to be predicted,

while ŷtc is the predicted comparative label. After the weight

coefficients vector, β̂, is estimated, the predicted comparative

label b for an attribute t between subjects (i, j) forming a

comparison in the testing fold is derived as follows:

btd(i, j) =

{
−1 if ŷtd < 0

1 if ŷtd ≥ 0
(7)

where 1 ≤ d ≤ n is the index of the comparison in the

testing fold. The predicted comparative labels are used to

infer relative rates for the 20 attributes using Elo rating as

described in Section II. The relative rates of the 20 facial

soft biometrics are used to construct a biometric signature for

each subject, which consists of 20 relative rates representing

the facial soft biometrics, and it is consequently used for

subject retrieval as explained next in Section IV.
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Fig. 6: Correspondence between human generated and machine generated
labels averaged over 10 folds and measured with Spearman’s correlation
coefficient.

Figure 6 shows the correspondence between human gen-

erated and machine generated comparative facial soft bio-

metrics measured using Spearman’s correlation coefficient

between the relative rates derived from the human generated

labels and the relative rates derived from machine generated

labels averaged over 10 folds. From Figure 6, it can be seen

that there is a notable association between the discriminative

power analysis (Figure 3) and the correspondence analysis.

The binary-like attributes (i.e. spectacles and facial hair)

have the strongest correspondence, followed by the distance

attributes for the eye-eyebrow region. While eye size and

eyebrow hair colour have the lowest, yet significant, corre-

spondence. These results show that the automatic estimation

of comparative facial labels is significantly dependent on the

discriminative power of the facial attributes, which highlights

the importance of choosing soft biometrics that are clear and

self-descriptive for human annotators.

IV. FACE RECOGNITION FOR RETRIEVAL

The objective of semantic face recognition is to retrieve

a suspect from a database of subjects using a biometric

signature that is generated from the relative measurements

of the suspect’s facial soft biometrics. The experiments

conducted in this paper simulate an operational scenario

in which a database of facial images (gallery) is searched

using an eyewitness statement (i.e. semantic descriptions). As

explained in Section II, the dataset used in this paper consists

of facial images for 400 subjects from the LFW database that

were labelled comparatively using crowdsourcing. The per-

formance evaluation in this experiment is based on 10-fold

cross validation. The test runs through 10 iterations covering

each fold. In each test iteration, one of the folds is used as

a testing set, while the remaining 9 folds are used to train

a set of 20 multi-linear regressors to estimate comparative

labels for the 20 facial attributes. The experiment has two

steps: gallery construction and subject retrieval.

A. Gallery Construction

Two types of galleries are created and evaluated in our

experiments: human and automatically labelled. The human
gallery is constructed by removing (withholding) pairwise

comparisons between each probe and 10 randomly selected

subjects from the 9 training folds, and using the remaining

comparisons to generate a biometric signature for each

subject in the gallery. The 10 withheld subjects are used

to generate a probe biometric signature for each subject for

retrieval by comparing them relative to the probe (as will

come next in this section). The number of these counter-

part subjects is set to 10 as it is the average size of an

identity parade [22]. The automatic gallery is constructed

from automatically estimated comparative labels for each

subject in the testing fold from the visual features using the

trained regressors as described in Section III, and a biometric

signature is generated for each subject in the dataset. The

comparisons (i.e. facial image pairs) that are used to train

the regressors are different from those used for retrieval.

B. Subject Retrieval

The probes used for retrieval in our experiments are classi-

fied into: (1) human probe, for which a biometric signature

that is composed of relative rates for the 20 attributes is

generated using the Elo rating from human comparisons

(i.e. crowdsourced) between the probe and the 10 subjects

that were withheld during gallery construction, and this

probe can be considered as an eyewitness statement; and (2)

automatic probe, for which biometric signature is formed

from automatically estimated comparative labels generated

from the probe’s facial image and the facial images of the

same 10 subjects who were randomly selected to construct

the human probe. The similarity between the probe and

each subject in the gallery is measured using the Pearson’s

distance, dP , as follows:

dP = 1−
∑20

t=1(X(t)−X)(Y (t)− Y )√∑20
t=1(X(t)−X)2

√∑20
t=1(Y (t)− Y )2

(8)

where X is the biometric signature of the probe, Y is the bio-

metric signature of the subject in the gallery being compared

with the probe, and 1 ≤ t ≤ 20 is the trait index. The subject

in the gallery that results in the minimum distance with the

probe (i.e. the nearest neighbour) is considered as a match.

This procedure is iterated over all the subjects of the test fold,

running over the 10 folds, and the experiment is repeated 30

times. The harmonic mean of returned ranks for the 30 trials

is used to calculate the retrieval accuracies for each of the 10

folds, and the arithmetic mean of the 10 folds is considered as

the experiment outcome. We explore three different retrieval

scenarios based on this experimental procedure: human probe
with automatic gallery; human probe with human gallery;

and automatic probe with human gallery. The results of

retrieval using these scenarios are reported using Cumulative

Match Curve (CMC) as shown in Figure 7

As can be seen from Figure 7, retrieval using human probe
in the automatic gallery slightly outperforms retrieval in the

human gallery at rank-1 achieving an accuracy of 83.75%.

Starting from rank-2, retrieval using human probe in the

human gallery shows better accuracy as compared to the
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Fig. 7: Retrieval accuracy using 10 subject comparisons.

automatic gallery. Yet, retrieval using human probe in the

automatic gallery achieves a rank-10 accuracy of 97.25%,

and reaches 100% accuracy at rank-80, which implies that a

match will be always found in the top 20% results returned

from the retrieval. Also, retrieval using automatic probe
in the human gallery yields an almost similar accuracy to

retrieval using human probe in the human gallery, which

reveals the effectiveness of our approach for automatically

estimating a biometric signature from suspect and subjects

facial images. In [9], 46 categorical facial attributes were

defined, and identification was explored with 1196 subjects

from the FERET database achieving rank-1 retrieval rate of

19% using human probe in automatic gallery, and 22.5%

using human probe in human gallery. In [6], 65 binary

attributes, which recognize the presence or absence of a

visual trait, are used with the LFW database for verification,

and they achieved an accuracy of 83.62% with the entire

LFW dataset (13233 images for 5749 subjects). Comparing

our work with [6], it is important to emphasize that our ob-

jective is to explore the automatic estimation of comparative

labels, and evaluate retrieval using semantic descriptors in

an automatically labelled database. Therefore, we use only

a subset of the LFW database. Moreover, we use fewer

attributes (i.e. the 20 facial attributes proposed by [2]), as it

will be more practical for eyewitnesses to recall 20 attributes,

compared to 65 attributes proposed in [6].

Overall, the results of our experiments indicate that the

automatic estimation of comparative facial labels can result

in significant improvements with respect to retrieval accu-

racy. Furthermore, the results show that the incorporation

of machine learning with computer vision techniques can

provide efficient approaches for the comparative labelling of

facial attributes, and hence, can reduce the involvement of

human annotators for labelling facial images in a database.

V. CONCLUSIONS

This paper explores the automation of face recognition

using comparative soft biometrics in addition to assessing

the impact of automatic estimations of comparative labels on

face retrieval performance. We have proposed an approach

that incorporates computer vision with machine learning

for automatically estimating comparative facial labels. In

addition, we have examined a scenario in which a database of

facial images is automatically labelled, then searched using

a semantic description for the subject to be retrieved. Using

a subset of the LFW database, we have shown that automatic

labelling of comparative facial soft biometrics can result in

significant retrieval accuracy while reducing dependency on

human annotators. These findings extend the horizons of

bridging the semantic gap between humans and machines, in

addition to serving as a base for future studies on automatic

labelling of comparative soft biometrics.
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