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Abstract

To calculate the impulse response of a bubble cloud in a compressible medium we

develop a methodology that incorporates multiple scattering effects between bubbles, and

coherent interactions of their individual scattered fields. This method is based on the pertur-

bation theory, and provides for an approximate solution formulated by adding a perturbation

to the mathematical description of a linear problem. The solution is defined as a power se-

ries, where the first term of the expansion corresponds to the solution of a linear uncoupled

equation. The convergence of the expansion is determined by the parameters of the phys-

ical bubbles, and the acoustic interactions. The model is successfully applied to describe

experimental measurements of a model bubble cloud response in a shallow fresh-water envi-

ronment.
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I Introduction

Sound propagation in the ocean has been a topic of great importance since the middle of

the last century. While light is typically absorbed within a few meters in the water column,

sound can propagate long distances with relatively little attenuation. Therefore, acoustic

methods have been widely used as a tool to investigate the ocean. Originally developed

for military purposes, ocean acoustics has expanded its scope and has been used for the

exploration and mapping of the seabed, the remote sensing of fish schools, and the study

of marine mammal communication, among others.1;2 A distinguishing feature of the oceanic

medium is its heterogeneity. Plankton patches, schools of fish, marine mammals, and bubble

clouds are only a few of the elements that can be found in the sea, which affect or may be

affected by acoustic signals.

Bubbles in the water column are generated by several processes, such as breaking waves,

cavitation from ship propellers, or even the biological action of microorganisms. Another

cause of “bubbles” might be the presence of swimbladder-bearing fish. A swim bladder is an

internal gas-filled organ that allows the fish to control its buoyancy and to stay at its current

water depth without using energy in swimming. Acoustically, a swim bladder behaves like a

damped gas bubble, and therefore the presence of large dense schools of fish can have an effect

on the propagation of sound similar to that of bubble clouds. It is now known that resonant
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back scattering by swim bladder-bearing fish is the major cause of volume reverberation

in the ocean at frequencies up to at least 10 kHz.3;4;5 The collective acoustic behavior of

multiple gas bubbles in water continues to be a topic of great interest. In seawater, the

presence of dense clouds of air bubbles can have a strong effect on the passage of sound,

which impacts propagation, attenuation, scattering, and reverberation phenomena.

Over the past decades, theories of multiple scattering from bubbles in water have pre-

dominantly used time-independent descriptions. A classic approach is to consider the bubble

cloud as a single scattering object, whose internal acoustic properties are described using a

modified propagation wavenumber. The acoustic field due to a wave propagating through

this medium can be determined by solving the corresponding Helmholtz equation. This is

known as the “effective medium” model, and is based on the theory of multiple scattering of

waves developed by Foldy and Carstensen.6;7 Later on, an important study by Commander

and Prosperetti8 showed that the effective medium model underestimates the scattering am-

plitude in the vicinity of the resonance frequency of the bubbles, especially in dense clusters

of bubbles. This can be explained by the fact that the model does not correctly represent

the phenomena of acoustic interaction among bubbles, and several corrections have been

subsequently proposed in order to include this effect.9;10;11;12 Another approach to multiple

scattering from bubbles is to solve a coupled differential equation system.13 At sufficiently

small amplitudes the behavior of an air-bubble in a liquid can be approximated as a simple
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harmonic oscillator, represented by a mass-spring differential equation. This method incor-

porates both multiple scattering effects between bubbles, and coherent interactions of their

individual scattered fields.14

In time domain modeling, the acoustic interaction between bubbles has classically been

considered as an instantaneous problem.15;16;17 For a compressible liquid, with a finite speed

of sound propagation, the acoustic response of any bubble to the incident field, and to the field

scattered by all the other bubbles, is a time-retarded response. Time delays directly affect

the constructive or destructive interference of all the scattered fields, and therefore can be a

factor of critical importance in the acoustic behavior of bubble clouds. During recent years,

substantial progress has been achieved in the development of time-delay acoustic coupling

in multibubble systems. The radiation forces between gas bubbles, which are also known as

secondary Bjerknes forces, have been investigated for two coupled oscillating bubbles in a

compressible medium,18;19;20 as well as the forced oscillations caused by an external acoustic

field.21;22 More recent works have analyzed the time delay effects on the free oscillation of a

linear bubble chain system.23;24

In the present work, we introduce a new method to find the impulse response of a bub-

ble cloud in a compressible medium, based on perturbation theory.25 This method provides

for an approximate solution to the problem, by starting from the exact solution of a related

linear uncoupled equation. The solution is formulated by adding interaction terms (or per-
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turbations) to the mathematical description of the exactly solvable problem, incorporating

the acoustic effects of the other bubbles.

The paper is organized as follows: Section II of this paper presents a general review of

time domain solutions to the bubble scattering problem. Section III briefly reviews the theory

and scattering models used in the proposed solution. Section IV describes the experiment

that was conducted to test the model, and also describes how the data is analyzed. Section

V presents the model implementation and comparison to the experimental data. A second

comparison with a numerical benchmark calculation is also offered. This is followed by a

summary of conclusions from our work.

II Review of time domain models

II.A Single bubble

At sufficiently small amplitudes the oscillating behavior of an air-bubble in a liquid can be

approximated as a simple harmonic oscillator, represented by a mass-spring differential equa-

tion.26;27 In his 1994 book The Acoustical Bubble, Leighton describes the different reference

frames for the equation of motion.15 In general, the displacement can be defined in terms of

the bubble volume ν or the radius displacement r, while the driving term is expressed by

either a force F or an acoustic pressure P . This leads to four different combinations that
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can be listed as follows:

The Radius-Pressure frame

mRP r̈i(t) + bRP ṙi(t) + κRP ri(t) = P (t), (1)

the Volume-Pressure frame

mV P ν̈i(t) + bV P ν̇i(t) + κV Pνi(t) = P (t), (2)

the Radius-Force frame

mRF r̈i(t) + bRF ṙi(t) + κRF ri(t) = F (t), (3)

and the Volume-Force frame

mV F ν̈i(t) + bV F ν̇i(t) + κV Fνi(t) = F (t), (4)

where the subscripts R, V , P , F refer to “Radius,” “Volume,” “Pressure” and “Force,”

respectively. Despite the different subscripts m, b and κ represent the same physical concepts

of mass, damping and stiffness in different frames. The exact values of these parameters will

depend on the way the system is defined.

II.B Two bubbles

Mettin et al. investigated the effect of the secondary Bjerknes force in small cavitation

bubbles,17 starting from linear analysis of the equations of motion. A modified Keller-Miksis
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model was used to describe the radial motion Ri(t) of two spherical bubbles coupled by a

time delayed term.20 The delay τ is assumed to be equal for both mutual interactions and

independent of time, which implies that the bubble radii are much smaller than the bubble

separation distance L, and that the bubbles do not move significantly during the oscillation.

Linearizing around equilibrium radii Ri(t) = Ri0 + ri(t), the radial motion equation defined

in a Radius-Pressure frame, is given by:

r̈i(t) + ω2
i0ri(t) + fiṙi(t) +

R2
j0

LRi0

r̈j(t− τ) = −pa(t)
ρRi0

, (5)

where ρ is the water density, fi and ωi0 represent the damping and resonance frequency

of the i-th bubble, and pa is the driving pressure for both bubbles. Eq. (5) assumes small

amplitudes of the external sound field, i.e. pa << pamb, where pamb is the ambient pressure.

Using the harmonic approach ri(t) = Aie
iωt and pa = Pae

iωt, leads to the solution of a linear

system. It should be noted that even when Eq. (5) is originally defined in the time domain,

the proposed solution is time independent.

A different approach was presented by Feuillade, where the coupling effect between the

bubbles is included in the mass and damping terms.21 This work was addressed in a Volume-

Pressure frame, hence it is expected that the equations differs from Eq. (5). Considering two

identical bubbles pulsating in phase, the equations are:
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mν̈1 + bν̇1 + κν1 =− δ(t)− ρe−ikd

4πd
ν̈2,

mν̈2 + bν̇2 + κν2 =− δ(t)− ρe−ikd

4πd
ν̈1, (6)

where δ(t) represents the Dirac delta function, k is the wavenumber, and d is the distance

between the bubbles. Let us asume that the damping b and the coupling term ρe−ikd

4πd
are

frequency independent, so we can perform a Fourier transform on both sides of Eqs. (6):

(
−ω2m+ ibω + κ

)
ν1(ω) = −1 + ω2ρe

−ikd

4πd
ν2(ω),(

−ω2m+ ibω + κ
)
ν2(ω) = −1 + ω2ρe

−ikd

4πd
ν1(ω), (7)

where ω is the angular frequency. Solution of equations (7) yields ν1(ω) = ν2(ω) = ν(ω),

then:

ν(ω) =
−1(

−ω2m+ ibω + κ− ω2 ρe
−ikd

4πd

) . (8)

Using Euler’s identity in the coupling factor (i.e.,ρe
−ikd

4πd
), the damping and mass terms can

be re-expressed as : m+ = m+ ρ cos kd
4πd

, b+ = b+ ωρ sin kd
4πd

. According to Feuillade,21 both the

coupling factor and the damping deviate little over the central peak of the bubble resonance

spectrum, and may be assumed practically frequency independent. Therefore, replacing
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ω = ω0 in b+, m+ and k, expression (8) yields:

ν+(ω) =
−1

(−ω2m+ + iωb+ + κ)
. (9)

Performing the inverse Fourier transform of (9):

ν+(t) = − e−α+t

m+Ω+

sin Ω+t. (10)

Therefore, ν+(t) represents the impulse response of the coupled system, where α+ = b+
2m+

,

Ω+ =
√
ω2
0+ − α2

+ and ω0+ = ω0√
1+a

d
cos

ω0+d

c

.

II.C Bubble cloud

Classically, the small-amplitude free radial oscillation of N coupled bubbles in a compressible

medium is described by the following equations:15

r̈i(t) + ω0δṙi(t) + ω2
0ri(t) = −

N∑
m=1,m 6=n

Rj0

dnm
r̈j(t− dnm/c), (11)

where c is the sound speed in the water, dnm indicates the distance between the n-th and

m-th bubbles, and ω0δ now represents the damping term. It should be noted that Eq. (11)
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is essentially the same as Eq. (5) under the assumption Rj0 ≈ Ri0, for an N -bubble system.

In 2004, Doinikov et al.23 proposed the following approximation for the time delay:

r̈j(t− τ) = r̈j(t)− τ
...
rj(t). (12)

Introducing this approximation would increase the order of Eq. (11). However, it is desirable

to maintain the order of the original equation, reducing the order of Eq. (12). Let us note

that the amplitude of the coupling term is negligible in comparison to the natural radiation.

It is possible therefore to approximate Eq. (11) as:

r̈i(t) ≈ −ω0δṙi(t)− ω2
0ri(t). (13)

Differentiating Eq. (13) and substituting into Eq. (12):

r̈j(t− τ) = (1− τω0δ) r̈j(t)− τω2
0 ṙi(t). (14)

Substituting Eq. (14) into Eq. (11) leads to a non-delayed system. However, the approxima-

tion described in Eq. (12) may not be accurate enough for larger values of τ . According to

Ref. [23], it would be valid if τ � T0, where T0 = 2π/ω0 .

Later, Ooi and Manasseh published an extension of Doinikov’s work, in which they

analyzed the time delay effects on a linear bubble chain system,24 based on a method of

finding the eigenvalues for time delay systems developed by Hu et al.28 Once the eigenvalues



Impulse scattering from bubble clouds, p. 10

λt and eigenvectors At of the time delay system are obtained, the solution in time domain

can be constructed by a linear combination:

x(t) =
N∑
n=1

βnAn,te
λn,tt, (15)

where βn are constants to be determined from the initial conditions.

III Theory

In this section we describe briefly the perturbation theory, and its application to the solu-

tion of the impulse response of a bubble cloud, incorporating the interactions in a series of

equations that add the contributions of the other bubbles.

III.A Simple perturbation theory

Consider an equation defined by an operator L such as:

Lφ(x) = f(x), (16)

where φ(x) is any function that satisfies Eq. (16). Typically, in multiple degrees-of-freedom

problems, the resulting equation (16) cannot be solved. However, let us consider the following
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equation with a direct solution:

L0φ0(x) = f(x). (17)

Suppose that the operator L can be written as follows:

L = L0 + εLI , (18)

where ε is a small quantity and the subscript I refers to “interaction.”25 Let us note that

Eq. (16) is not the same as Eq. (17), and thus φ 6= φ0. Now we assume that the exact

solution φ(x) can be expressed as follows:

φ(x) = φ0(x) + εφ1(x) + ε2φ2(x) + ..., (19)

where φ0, φ1, φ2 denote the coefficients of the ε-expansion. If ε is small, Eq. (19) can be

truncated at a low order. Substituting from (19) and (18) in (16):

f(x) =L0φ0(x) + L0εφ1(x) + L0ε
2φ2(x),

+ εLIφ0(x) + ε2LIφ1(x) +O(ε3), (20)

and then equate coefficients of each power of ε in (20):
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ε0 : L0φ0(x) = f(x), (21)

ε1 : L0φ1(x) = −L1φ0(x), (22)

ε2 : L0φ2(x) = −L1φ1(x). (23)

Now we have a set of equations for φ0, φ1, φ2, which form the solution φ in Eq. (19). The

coefficients are then calculated iteratively, beginning with φ0. Once we solve (21), φ0 is used

as an input of (22), and so on. In the previous derivation, ε is assumed to be small enough

to truncate expansion (19) at a low order. Let us now define the interaction operator by:

LI = L− L0, (24)

which is equivalent to L = L0 + εLI , where ε = 1. In this case, we can still follow the

methods of perturbation theory, as if for small ε, and calculate the coefficients iteratively,

but now there is no basis for truncating the expansion.

III.B Encapsulated bubbles

In a classic work published in 1989 by Commander and Prosperetti, a rigorous model for the

propagation of pressure waves in bubbly liquids was formulated.8 Combining Eqs. (27) and

(32) from Ref. [8] yields to a linearized expression for the resonance frequency of the radial
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motion of a non-encapsulated and isolated bubble:

ω2
0 =

P0

ρla2

(
3γ − 2σ

aP0

)
, (25)

where a indicates the bubble equilibrium radius, P0 is the undisturbed pressure in the bubble,

ρl is the liquid density, σ is the surface tension at the liquid-gas interface and γ represents

the ratio of specific heats in air.

Church derived a model for a collection of encapsulated bubbled, by considering an

elastic shell in the liquid-air interface. Since the resonance frequency and the damping are

affected by the shell, it was necessary to develop new expressions for those parameters:29

ω2
0 =

P0

αρsa21

{
3γ − 2

P0

(
σ1
a1

+
σ2
a2

a31
a32

)
+

4VsGs

a32P0

[
1 + Z

(
1 +

3a31
a32

)]}
, (26)

Z =

[
2σ1
a1

+
2σ2
a2

]
a32
Vs

1

4Gs

,

α =

[
1 +

(
ρl − ρs
ρs

)
a1
a2

]
,

where ρs, Gs represent the density and shear modules of the shell material; a1, a2 are the

internal and external bubble radius, Vs is defined as a32 − a31 and σ1, σ2 denote the surface

tension of the gas-shell and shell-liquid interfaces, respectively.
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The terms for the viscous damping in the liquid, the thermal damping, and acoustic

re-radiation damping also contain modifications due to the presence of the shell:

βvis,L =
2µl
ρsa21

a31
a32α

, βth =
2µth

ρsa21α
, βac =

ω

c

(ωa2
c

)[
1 +

(ωa2
c

)2]−1
, (27)

where µl is the liquid viscosity. An expression for the thermal viscosity µth may be found in

Eq. (14) from Ref. [30]. Substitution of µth into βth yields:

βth =
P0

2ρsωa21α
Im(Φ), (28)

where

Φ =
3γ

1− 3(γ − 1)iχ [(i/χ)1/2 coth(i/χ)1/2 − 1]
, (29)

and χ = D/ωa21 , where D is the gas thermal diffusivity . The expressions of Φ and χ

correspond to Eqs. (27) and (28) of Ref. [8], respectively.

The new damping term also incorporates an additional term for the viscous damping

due to the shell material of viscosity µs.

βvis,s =
2µs
ρsa21

Vs
a32α

. (30)
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III.C Time domain coupled differential equations (CDE) for a

bubble cloud

In 1996, Feuillade et al. developed a scattering model which includes all the multiple in-

teraction among the bubbles. If we consider an external field driving an ensemble of N

interacting bubbles, the total field incident on any bubble is the sum of the external field

and the fields scattered from all the other bubbles. The response of a whole group may be

represented by a set of coupled differential equations as follows:14

mnν̈n + bnν̇n + κnνn = −Pnei(ωt+φn) −
N∑
j 6=n

ρe−ikrjn

4πrjn
ν̈j, (31)

where the subscript n refers to the n-th bubble and ν is the differential volume (i.e., the

difference between the instantaneous and equilibrium bubble volumes). The coefficient m(=

ρ/4πa) is termed the inertial “mass” of the bubble, where a is the bubble radius, and κ(=

3γPA/4πa
3) is the “adiabatic stiffness”. Pn and φn are the amplitude and phase respectively

of the external field experienced by the n-th bubble, and rjn is the radial distance from the

center of the n-th bubble to the center of the j-th bubble. Harmonic “steady-state” solutions

of these coupled equations are found by substituting νn = ν̄eiωt in Eq. (31). This leads to a

matrix equation which can be solved by matrix inversion.

However, this analysis has been carried out in the frequency domain, where the time

delays are represented as additional phase terms. In order to calculate the impulse response
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of the bubble cloud, a time domain version of the CDE method is proposed, equivalent to

the equations of Ooi and Manasseh:24

miν̈i + biν̇i + κiνi = −δ(t− ti)−
N∑
i 6=j

ρ

4πrij
ν̈j(t− tji), (32)

where δ(t− ti) represents an impulse arriving at t = ti to the i-th bubble, and the coupling

term
∑N

i 6=j
ρ

4πrij
ν̈j(t − tji) is the coherent summation of the pressure fields radiated by the

remaining N -1 bubbles within the cloud. Let us note that the coupling term ν̈j(t − tji)

includes the time delay tji between each pair of bubbles. The coupled system described in

Eq. (32) can be written in state space, such that:

ẋ−A0x = Bu + diag (AIẋR) , (33)

where
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x =



ν1

...

νN

ν̇1

...

ν̇N


2N×1

, A0 =

 0N×N IN×N

−M−1K −M−1C


2N×2N

, B =

 0N×N

−M−1


2N×N

E =



0 ρ
4πr12

· · · ρ
4πr1N

ρ
4πr21

. . . · · · ρ
4πr2N

...
...

. . .
...

ρ
4πrN1

ρ
4πrN2

· · · 0


N×N

, C =



b1 0 · · · 0

0 b2 · · · 0

...
...

. . .
...

0 0 · · · bN


N×N

,

AI =

0N×N 0N×N

0N×N M−1E


2N×2N

, ẋR =

0N×N 0N×N

0N×N ν̈R


2N×2N

,
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M =



m1 0 · · · 0

0
. . . · · · 0

...
...

. . .
...

0 0 · · · mN


N×N

, K =



κ1 0 · · · 0

0 κ2 · · · 0

...
...

. . .
...

0 0 · · · κN


N×N

,

u =



δ(t− t1)

δ(t− t2)

...

δ(t− tN)


N×1

and ν̈R =



0 ν̈1(t− t12) · · · ν̈1(t− t1N)

ν̈2(t− t21)
. . . · · · ν̈2(t− t2N)

...
...

. . .
...

ν̈N(t− tN1) ν̈N(t− tN2) · · · 0


N×N

If we leave the term diag (AI2N×2N ẋR2N×2N) out of Eq. (33), the remaining equation

takes the form of a linear system with input u(t), which can be solved by conventional

methods.31;32 Considering the term diag (AI2N×2N ẋR2N×2N) as an external perturbation,

the methodology described in Section III.A can be used to obtain the solution of Eq. (33):

L(x) = Bu, (34)
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where

L = L0 + εLI ,

L0 :
d

dt
−A0,

LI : −AI
d

dt
.

(35)

If ε = 1 , the operator L leads to the exact solution of Eq. (33). Following the methodology

described in Section III.A (Eqs. 19 to 23), the problem is re-expressed as:

ε0 : L0φ0 = f −→ φ̇0 −A0φ0 = Bu, (36)

ε1 : L0φ1 = −L1φ0 −→ φ̇1 −A0φ1 = −AIφ̇0, (37)

ε2 : L0φ2 = −L1φ1 −→ φ̇2 −A0φ2 = −AIφ̇1. (38)

III.D Solving the uncoupled problem

Since the input u of the uncoupled problem φ̇0−A0φ0 = Bu consists of a series of impulses,

an analytic solution can be found for φ0. Since the arrival time depends upon the distance

between the source and each bubble, a solution of the type RI = eAtB [1 1 1 . . . 1]T cannot

be applied in this case. It is possible to derive a concise analytic solution using a matrix

exponential, however the computational cost would be considerable for bigger clouds. The

computational cost will depend on the number of discrete time steps, and the size of matrix
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A0. For example, ifN = 500, and if a time step of 0.1 ms is used, solving for a 1s time segment

of φ0 would take approximately 3 hours using the direct matrix exponential approach, and

less than one minute using a modal solution (simulations were performed on a 1.6 GHz Intel

Core i5 processor). On the other hand, the largest size matrix that can be handled (N ∼

10, 000) will depend on the available system memory and the operating system. Therefore,

a modal coordinates solution is proposed:

σj(t) =

∫ t

0

eλj(t−τ)B̃(j, :)u(τ)dτ, (39)

φ0 = Ψσ σ :new coordinates , (40)

where λi are the eigenvalues of A0, Ψ is the matrix whose columns are the eigenvectors

of A0. B̃(j, :) corresponds to the j-th column of the product Ψ−1B. Let us note that the

product B̃(j, :)u is a scalar quantity. Assuming zero initial conditions for all the variables,

Eq. (39) may be re-expressed as:

σj(t) =

∫ t

0

eλj(t−τ)[B̃(j, 1)δ(τ − t1) + . . .+ B̃(j,N)δ(τ − tN)]dτ.

Using Dirac delta properties:

σj(t) = eλj(t−t1)B̃(j, 1) + . . .+ eλj(t−tN )B̃(j,N). (41)
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IV Data analysis

A series of experiments were performed at the Lake Travis Test Station, Applied Research

Laboratories (ARL, The University of Texas at Austin), to measure the attenuation of sound

through an artificial bubble cloud, consisting of 14 fixed air-filled latex balloons of 4.68 cm

radius at the surface.33;34 The balloons were attached by a nylon netting grid to a steel cage

of dimensions 1.22 m wide by 1.30 m deep by 1.30 m tall, as shown in Figure 1. Three

balloon configurations were used, but in the present work just one of them was analyzed.

The source was a Navy J-13, which is an approximately omnidirectional electromag-

netic loudspeaker designed to operate between 30 and 3000 Hz at depths up to 20 meters.

Linear chirps from 30 Hz to 2 kHz produced by the J-13 were recorded by nine HTI-90-U hy-

drophones, located at 2 meter intervals of depth from 2 meters to 18 meters, at a horizontal

distance of 11.7 meters from the center of the bubble cloud, as shown in Figure 2.

The source signal and all the hydrophone signals were digitized by a Data Translation

DT9837B data acquisition module. Transfer functions between each hydrophone signal and

the source signal were calculated using Data Translation’s VIBPoint Framework software.

These transfer functions represent the acoustic pressure recorded at each hydrophone nor-

malized by the source signal voltage. Transfer functions were measured with and without

the bubble cloud. A measurement technique that had been previously used to study small
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Figure 1: The location of each of the 14 balloons is shown along with a local coordinate

system associated with the steel frame that held the balloons. The balloon locations appear

in Table G.3 of Ref. [33]. The source is depicted with the diamond-shape symbol.

bubbles was used here to isolate the acoustic effect of the bubble cloud scattering.35 Ac-

cording to this technique, the received signal at the measurement hydrophone y(t), can be

considered as the superposition of two components, i.e.,

y(t) = yd(t) + ys(t), (42)
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Figure 2: Experimental apparatus. The water depth at the source position was 19.6 m and

the depth at the receiver position was 19.1 m. The bubble frame and the source are shown

on the right. The source is depicted by the diamond symbol. The air-filled balloons are

depicted by the solid black dots. On the left, the hydrophones are depicted using asterisks.

The source was located at a depth of 0.93 m from the surface.

where yd(t) is the signal due to the direct field (in the absence of bubbles), and ys(t) is

the signal arising from the acoustic field generated by scattering from the bubble cloud.

It is possible then to estimate the field scattered from the bubbles by subtracting the two

measurable quantities yd(t) and ys(t). The difference between those quantities shows the

impact of adding bubbles to the system.
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Transfer functions are generally defined in the frequency domain, and represented as

a complex function of the frequency. The corresponding impulse response (i.e. the time

domain representation of the transfer function) can be obtained by performing an inverse

Fourier transform (IFFT). Since the Fourier transform is a linear operator, the superposition

defined in Eq. (42) is valid in both the frequency and time domains. After the subtraction,

nine different curves were found, corresponding to the nine hydrophone locations. Each

curve represents the transfer function for the bubble group, measured at a given depth.

According to the classic wave theory, the phase relation between the driving oscilla-

tion and the oscillation of the bubble depends upon the frequency: they are in phase with

each other below resonance, they are in quadrature at resonance, and in anti-phase above

resonance.36 Figure 3 shows the phase as a function of frequency, for the measured transfer

function (solid line). The dash-dot line represent the predicted phase response of the bubble

group, calculated with a frequency dependent model developed by Feuillade et al. in 1996.14

Both the modeled and measured phase response show the reversal of phase for frequencies

above the resonance.

It has been reported in the literature that shallow water measurements exhibit a strongly

nonlinear phase, especially at low frequency. This behavior suggests that the sub-bottom

structure plays an important role in sound reflection. By contrast, a linear cross-spectral

phase would imply that the source-receiver propagation is dominated by a single path.37
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Figure 3: Phase response of the bubble cloud for the receiver located at 6 m depth. Solid line:

phase of the measured transfer function, after the subtraction. Dash-dot line: theoretical

phase response, calculated using a frequency dependent scattering model.14 The dashed line

represents the slope of the measured phase in the linear zone below resonance. For the

phase adjustment, the measured curve was transposed until the dashed line coincided with

the dash-dot line. In other words, the measured phase was adjusted to match the predicted

phase below the resonance frequency.

Measurements performed in Lake Travis also exhibit the nonlinear phase behavior (solid line

in Figure 3), which confound the comparison with theoretical predictions. Since scattering
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models are usually developed in the free field and subsequently included as an input in full

propagation models, it is not intended to incorporate reflections from layered boundaries

in the present work. A phase adjustment of the measured data was performed, which is

depicted in Figure 3.

V Results

V.A Model Implementation

A time-domain model was implemented to calculate the impulse response of a cloud of

bubbles, based on the perturbation theory solution explained in Section III.C. The model

was tested against the transfer functions measured in Lake Travis for the group of fixed

balloons. This technique was also compared with a numerical benchmark, which includes all

the multiple interactions and time delays.

It is first necessary to determine a number of input parameters, to provide a starting

point to run the bubble scattering model. The model requires information about the bubble

size, damping, and individual resonance frequency. It is also required to know the relative

positions among the source, bubbles and receiver, which strongly affect the individual phase

response, and therefore, the total interference pattern. In the present experiment, all the

relative positions of the balloons are known, as well as their individual radii at the water

surface. For each balloon, the radius during deployment is corrected for hydrostatic pressure
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at the corresponding depth.

Table I: Input parameters to the encapsu-

lated bubble model.

Parameter Symbol Value Units

Shell material density ρs 933 a kg/m3

Shear modulus of shell Gs 0.75 b MPa

Liquid density ρl 998 kg/m3

Liquid viscosity µl 0.001 MPa

Internal radius a1 4.68 cm

Shell wall thickness rs 0.254 mm

Ratio of specific heats (air) γ 1.4

Thermal conductivity for air D 2× 10−5 m2/s

Surface tension in gas-shell interface σ1 25 c N/m

Surface tension in shell-liquid interface σ2 5 N/m

Hydrostatic pressure at mean bubble depth P0 1.12× 105 Pa

a Measured for the specific shell material used in the experiment (unpublished).

b Mean value over the range 10-2000 Hz.

c Following Lee et al.,38 σ1 and σ2 were selected such that their sum was equal to

30. The value of each tension is less important that the sum of both, due to the

very small difference between the internal and external radii.
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The physical parameters input to the modified resonance frequency model and damping

given by Eqs. (26) to (30) are summarized in Table I. The shear modulus and viscosity were

not measured for the specific shell material used in the experiment. Following Lee et al.,38

these parameters were estimated using viscoelastic master curves that were obtained for

natural rubber. In this work, an AA 165-5 formulation for natural rubber was used. The

coefficients for generating these master curves were extracted from p. 147 of Ref. [39], and

are summarized on Table II.

Table II: Master curves for AA 165-5

Coefficient Young storage Loss factor
modulus (E ′) (tan δ)

c0 6.1183 -0.81459

c1 -0.07094 -0.54046

c2 0.11964 0.35967

c3 -0.043413 -0.044629

c4 0.0067797 –

log10(E
′or tan δ) =

∑
cn[log10 freq.(Hz)]n

Figure 4 shows the damping components calculated for the 10 Hz to 2000 Hz frequency

range. The total damping was calculated as βtotal = βac + βth + βvis,L + βvis,s. Since the IR

model implemented is a time-domain method, a frequency dependent damping parameter
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Figure 4: Dimensional linear damping constants versus frequency for a bubble radius of

4.68 cm. The components βac, βth, βvis,L, βvis,s were calculated using the expressions given by

Eqs. (26) to (30) and the physical parameters indicated in Table I. An AA 165-5 formulation

for natural rubber was used. The coefficients for generating these master curves are given

on p. 147 of Ref. [39].

cannot be included. Therefore, a constant value was used in the model implementation,

corresponding to the total damping at the resonance frequency βtotal ≈ 10. Future work

should include a time dependent damping parameter, which responds in a different way to

transient and stationary states.
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The individual bubble resonance frequency is also affected by the elastic shell. Using

Church’s model from Eq. (26) with the physical parameters indicated in Table I, a resonance

frequency of 77 Hz was predicted for the bubble size used in the present experiment. However,

a discrepancy between measurements and the Church model prediction has recently been

reported. According to Lee et al.,38 for balloon radii ranging from 1.6 cm to 3.5 cm, the

measured resonance frequencies of the natural latex balloons deviated from Church’s model

by 11% or less. Subsequent adjustments indicate a better match for a resonance frequency of

83 Hz, which is similar to the deviation reported by Lee et al.,38 under similar circumstances.

Once the Eqs. (32) are solved, the total scattered pressure field for the whole group is

given by the coherent summation:40

ps(r) =
ρl

4πr

N∑
i=1

ν̈i(t− tri), (43)

where ρl is the liquid density, and tri is the time delay between the receiver and the i-th

bubble. The scattered pressure field ps(r) represents the impulse response of the bubble

group in the free field, i.e. in the absence of boundary reflections.

V.B Perturbation Theory Solution

The inputs previously determined were used to formulate the operators L0 and LI , defined in

Eq. (35). As it was previously formulated, the solution of the coupled system (32) is defined

as the expansion in ε: φ(t) = φ0(t) + εφ1(t) + ε2φ2(t) + .... The first term of the expansion
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corresponds to the solution of equation (36), which can be analytically solved using expression

(41). The functions φn were iteratively calculated as the solution of φ̇n−A0φn = −AIφ̇n−1,

using a fourth order Runge-Kutta algorithm. According to Eq. (35), a value of ε = 1 was

used in this work.

According to Ref. [25], even when ε is small, the perturbation expansion is not con-

vergent. However, in practice one may still obtain a good approximation to φ(t) by taking

a finite number of terms and neglecting the remainder (asymptotic convergence). In order

to truncate the expansion, a criterion must be introduced. Let us say that convergence is

reached when the relative error between φn and φn+1 is less than a tolerance value. The

convergence of the ε-expansion will be determined by the interaction operator LI . In our

case, LI depends upon the matrix AI , which consist of all the acoustic interactions between

bubbles. Since all φn functions are related to φ0, the operator LI will also depend upon

the physical parameters included in A0. Figure 5 shows the number N of terms required

for convergence, for selected values of individual resonance frequency and distance among

the scatters. Since φN incorporates the differential volume and its first derivative for all the

fourteen bubbles, the convergence analysis was performed just over one bubble, i.e., the first

element of φN . A tolerance value of 10−6 was used as a convergence criterion. The simulated

time was 0.3 seconds, with a time step of 10−4 seconds.

As the operators LI and L0 are defined for this case, the amplitude for φn grows expo-
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Figure 5: Simulations were performed for individual resonance frequencies of 50 Hz, 100

Hz, 200 Hz and 400 Hz, at the actual distances between the fourteen bubbles (D=1), and

modifying the inter-bubble distance by a factor of two (D=2) and five (D=5). N is the

number of terms for which the expansion converges in each case (C). Different resonance

frequencies may correspond to different bubble sizes or depths, and are included in A0. The

distance between the scatterers are incorporated in the interaction matrix AI .

nentially with n. For higher orders of n the solutions will require extended precision, which

would imply significantly higher computational cost. Therefore, an alternative methodology

was implemented, based on the decay of the impulse response. It can be noticed from Figure
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6, that higher orders of φn affect later times. In other words, a longer simulation window

will require more functions φn to converge to the solution φ. Since the amplitude of φ decays

with time, the later time points will not depend strongly on the first ones. Therefore, it is

possible to stop the computations at a certain time t = τ , and restart it again as an initial

value problem for the next time window. In this way, all the φn functions will be calculated

up to t = τ , and added together to obtain the solution φ. For the next time window, a

new φ0 is obtained as the solution of the initial value problem φ̇0 − A0φ0 = 0, where the

initial condition φ0(τ) corresponds to φ(t = τ), i.e. the last value of the solution φ for the

first window. For the second time window, all the φn functions must be calculated using the

new φ0. The simulation can be rebooted as many times as needed. In this way, a long time

window can be split into shorter windows of length τ , reducing the order of the φn functions

needed, and therefore, the computing time.

However, the solution cannot be restarted time to time, since the input term in φ̇n −

A0φn = −AIφ̇n−1 consists of past values of φn−1. Consequently, each reboot will lose some

information about the first time steps, when no past values are available. Accordingly, the

time interval τ should be long enough so that the missing values are negligible compared to

the interval. The value of τ can be chosen as the mean lifetime of φ0, i.e. τ = 1
λ
, where λ

denotes the average eigenvalue of A0. Since the interaction between bubbles adds damping

to the system, the decay of φ0 will be the minimum decay of the total system.
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Figure 6: (a) φ5 , (b) φ10 , (c) φ15. Only the envelope of the functions are shown in the

figure. Note the variation of the maximum amplitude in each case.
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V.C Perturbation - Benchmark comparison.

A numerical benchmark was also implemented to solve Eqs. (32), using a fourth order Runge-

Kutta algorithm. Looking at Eq. (33), the input consists of two terms: the impulse signal

coming from the source (Bu) and the multiple scattering among the bubbles (AIẋR). The

input u consists of a series of delayed impulses δ(t−tn), where the arrival time tn will depend

upon the distance between the source and the n-th bubble. Since both the impulse and the

acoustic interactions are delayed, for each time step the input will depend on past values of

x, which were already calculated. For the first time steps, there will be some cases when

the interaction delays lead to negative values. This implies that the scattered field from one

bubble has not yet reached the other bubbles. In which cases, there is no interaction between

the two bubbles and the corresponding term is zero.

An additional difficulty is the impulse implementation. The Dirac delta function can

be numerically represented as the limit of a Gaussian function, such as41

δ(x− x′) = lim
ξ→0

1√
ξπ
e−

(x−x′)2
ξ . (44)

In the limit ξ → 0, the amplitude of this function goes to infinity, while its width goes to
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zero. For any ξ 6= 0,

∫ ∞
−∞

1√
ξπ
e−

(x−x′)2
ξ dx = 1. (45)

This relation holds for any ξ. For the input implementation, the value of ξ was calibrated by

matching the general amplitude and shape of the numerical benchmark and the perturbation-

based solution. Figure 7(a) shows the impulse response for the differential volume of one

bubble, when ξ = 0.0077. A reasonable agreement between the numerical benchmark and

the perturbation-based solution is observed from Figure 7(a). The similarity of two signals X

and Y can also be determined using a mathematical tool called magnitude squared coherence

(MSC). The coherence spectrum is defined by the squared cross spectrum divided by the

product of the two autospectra:42

CXY (ω) =
|GXY (ω)|2

GXX(ω) ·GY Y (ω)
, (46)

where ω indicates the frequency domain, GXY is the cross spectral density, and GXX , GY Y are

the autospectra of signals X and Y , respectively. Figure 7(b) shows the MSC estimator when

X denotes the perturbation-based solution and Y is the numerical benchmark. The MSC was

calculated using Welch’s overlapped averaged periodogram method,43 which is implemented

in the MATLAB Signal Processing Toolbox (mscohere). The coherence is nearly always very

close to unity, except for a region around the individual bubble resonance, where it has a
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Figure 7: (a) Theoretical comparison between numerical benchmark (gray line) and the

perturbation-based solution (black line). (b) Coherence estimator between both curves.
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minimum value of 0.75, which indicates a relatively high degree of similarity between the

two signals.

The stability of coupled delay differential equations has received substantial attention

from researchers since the early 1970s. This problem can be addressed by using a Lyapunov-

Krasovskii functional, a time domain methodology to investigate the stability properties of

linear time-delay systems.44 While a comprehensive stability analysis is not performed in this

work, an observation may be made. For our study, the perturbation-based solution behaves

in more stable way than the numerical benchmark. The latter did not work for time steps

longer than 0.1 ms., while the former ran for time steps as long as 2 ms. An extension of

this work should include a comprehensive analysis of the model stability, as a function of

the time resolution, the physical parameters and the time delays.

V.D Perturbation - Data comparison

The perturbation-based solution was also tested again the data described in Section IV. The

experimental impulse response, obtained by performing an inverse Fourier transform on the

measured transfer function, was compared with the pressure impulse response calculated

using Eq. (43). The differential volume ν(t) for each bubble was calculated as the solution

of the coupled system (32) for ε = 1, i.e. ν(t) = φ(t) = φ0(t) + φ1(t) + φ2(t) + ..., where

ν(t) is a 2N × 1 vector, and N is the number of bubbles. The total simulated time was
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0.4 s, corresponding to two blocks of 0.2 s. For each block, it was necessary to calculate 200

functions to reach convergence. The physical bubble parameters used in the simulation were

previously described in Section V.A, and are summarized in Table III.

Table III: Input parameters for Figure 10

Parameter Symbol Value

Surface bubble radius a0 0.0468 m

Damping constant β 10 1/s

Average bubble depth z 1.1 m

Theoretical resonance frequency f0 83 Hz

Number of bubbles in the cage N 14

The acoustic field described by Eqs. (32) assumes a free field, i.e. the acoustic field

in the receiver position is only due to the direct propagation from the bubbles and the in-

cident field, and not from boundary reflections. Scattering models are usually developed

for free field conditions, and subsequently incorporated as an input in propagation models.

A comprehensive sound propagation analysis would include sea surface and layered bottom

reflections, refraction effects and internal waves, among others. Even when it is not intended

to implement a full propagation model, it is necessary to include certain reflections to rep-

resent the variation in the peak amplitude registered by the different hydrophones. Figure
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8 shows the frequency variation of the transfer function, for the hydrophones located at 8

m, 12 m and 16 m depth. This figure illustrates how the amplitude of the transfer func-

tion changes at different points in the water column. An interesting feature to note from

Figure 8 is the downshift in the peak frequency by multiple scattering effects. According

to Eq. (26), the individual resonance frequency should be around 80 Hz, while this figure

shows the peak at 63 Hz. The peak frequency of the collective resonance of the bubble cloud

typically shifts down to a lower frequency than that of an individual bubble, due to radiative

coupling between the bubbles. The magnitude of this shift effect increases as the number

of bubbles is increased, and the separation among them is reduced. This behavior has been

well documented in literature for various systems of interacting resonators.14;45;46

In order to represent the peak amplitude variation shown in Figure 8, first and sec-

ond order reflections from sea surface and ocean bottom were incorporated in the impulse

response solution. The reflected signal is estimated by delaying the free-field response in

time, according to the total propagation path for each case. For example, the path for the

first-order sea surface reflection, will be equal to the average distance between the bubbles

and the sea surface point G, plus the distance between this point and the receiver. G is the

point at which the incident wave strikes the reflecting surface, considering specular reflection.

This is just a first approximation to include propagation effects in the hydrohone position,

since reflections in sea surface are usually diffusive, and bottom reflections depend upon the
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Figure 8: Variation of transfer function with frequency, for receivers located at 8 m, 12 m,

and 16 m. depth.

seabed composition. Once the free-field impulse response is calculated, the total impulse

response is estimated as:

IRtotal(r, t) =IRfree(r, t) + RBIRfree(r, t− tB) + RSIRfree(r, t− tS),

+RBRSIRfree(r, t− tBS) + RSRBIRfree(r, t− tSB), (47)

where IRfree is the impulse response in free-field, and RB, RS denote the reflection coefficient

for the ocean bottom and sea surface (top boundary), respectively. Similarly, the subscripts
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B and S in the time delays, stand for “bottom” and “surface” reflections. In expression

(47), each reflection is represented by a retarded function multiplied by a constant factor.

For example, RBIRfree(r, t − tB) designates the first order bottom reflection, where tB =

dB/c and dB is the propagation distance for the first bottom reflection. Similarly, the term

RSRBIRfree(r, t − tSB) denotes a second order reflection, where tSB = dSB/c and dSB is the

propagation distance for an incident wave hitting the sea surface and then the ocean bottom,

before reaching the receiver location.

The reflection on the ocean bottom depends upon the geoacoustic properties for the

seafloor and the grazing angle, i.e. the angle between the beam and the surface. The bottom

structure of Lake Travis consists of layers of unconsolidated mud, chalk/limestone and a very

hard layered limestone.47 Using tabulated values of density and sound speed,48 the reflection

coefficient was calculated using Rayleigh’s expression for each receiver.48 The estimated

average value of RB is 0.62 for chalk, and 0.76 for limestone. Since Rayleigh’s expression is

valid for a single interface, it is not possible to determine an effective reflection coefficient.

Also, the sea floor is covered by layers of sediments, which affects the amplitude and phase of

the reflected beam. However, it is expected that the average value of RB is near 0.62 - 0.76.

On the other hand, the reflection from the sea surface is even harder to determine, since it

is also frequency dependent and sensitive to the surface roughness.48 What we do know is

that the water/air interface, approached from the water side, is called a “pressure-release”
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surface for underwater sound, and the reflected pressure is phase-reversed.49
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Figure 9: Transfer function peak amplitudes for all the nine receivers in the water column.

RB = 0.7 and RT = −0.1. Note that RT is phase-reversed. Model:(2), Data:(�).

The coefficients RB and RS were found by matching the peak amplitudes for the exper-

imental and modeled transfer function. The latter was estimated by performing the Fourier

transform of the calculated impulse response, including the reflections (Eq. 47). Although

RB and RS depend upon the grazing angle, a single value was chosen for all the nine re-

ceivers. Future work may include angular and frequency dependent coefficients. Figure 9

shows the best match for the peak amplitudes, when RB = 0.7 and RS = −0.1. According
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to the literature, the reflection coefficient for a flat pressure-release surface should be close

to RS = −1.0. However, the barge from which the experiment was conducted was floating

on the surface on the water, therefore part of the reflection is coming from the bottom of

the barge, which consist of metal containers filled with foam to provide flotation. The value

of RS = −0.1 found by matching the peak amplitudes indicated that the average reflection

coefficient under the barge is still negative, but with absolute value less than unity.
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Figure 10: Pressure impulse response due to the bubbles, for the receivers located at

(a)2 m, (b)6 m and (c)12 m depth. Black line: IFFT of transfer function data. Gray

line: perturbation-based solution.
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Figure 10 shows the pressure impulse response of the bubble system, for the receivers

located at 2 m, 6 m and 12 m depth. The results for the remaining receivers are similar to

the cases shown here, and therefore will be omitted. Each experimental curve was obtained

by performing an inverse Fourier transform on the corresponding measured transfer function,

after the phase adjustment described in Section IV. For all the three cases, the measured data

shows a fundamental frequency that is very similar to the modeled fundamental frequency,

as well as other transient features that match between measurements and model. Figure 10

also shows a good agreement for the general amplitude, as it is expected from Figure 9. In

addition, the measured data shows some other higher frequency components, superimposed

with the fundamental frequency, that are not present in the model and may be caused by

boundary reflections.

VI Summary and Conclusions

This work presented a new method to calculate the impulse response of a near surface bubble

cloud in a compressible medium and in the presence of a reflective bottom, based on the

perturbation theory. The solution φ for the differential volume of each bubble is formulated

as an expansion in a parameter ε, where the first term of the expansion (φ0) corresponds to

the solution of an exactly solvable problem. The remaining terms are iteratively calculated
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and incorporate multiple scattering effects between bubbles. As the operators are defined,

a value of (ε = 1) is used in this work. Therefore, there is no reason to truncate the

expansion, and a convergence criterion is needed. For this work, convergence was reached

when the relative error between φn and φn+1 was less than a tolerance value. In general, the

convergence of the expansion will be determined by the physical bubble parameters and the

interaction between them. It is important to note that the convergence is very sensitive to

the interaction force, which depends upon the distance among scatterers. For a dense bubble

cloud, the expansion will require more terms to converge.

The perturbation-based model was tested against experimental measurements of an

artificial bubble cloud located near the surface of a shallow fresh water lake environment.

The artificial bubble cloud consisted of 14 fixed latex balloons of 4.68 cm radius at the

surface. Transfer functions (hydrophone voltage normalized by drive signal voltage) were

measured from 30 Hz to 2 kHz by nine hydrophones, located at 2 meter intervals of depth

from 2 meters to 18 meters, at a horizontal distance of 11.7 meters from the center of the

bubble cloud. A measurement technique was used to isolate the acoustic effect of the bubble

cloud scattering, by subtracting the signal due to the direct field (in the absence of a bubbles)

from the signal arising from the bubble cloud. After the subtraction, nine different responses

were found, corresponding to the nine receivers. The model shows good agreement with the

experimentally measured transfer function data, both in amplitude and frequency. First and
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second order boundary reflections were successfully incorporated to represent the variation

in the peak amplitude registered by the different hydrophones.

A numerical benchmark was also implemented, using a fourth order Runge-Kutta algo-

rithm. The input consisted in the impulse signal coming from the source and the multiple

scattering among the bubbles. Two issues arise with the benchmark solution. The first one

is the impulse implementation, which depends upon the impulsive function chosen. In the

perturbation-based solution, the impulsive input is applied just to the soluble case (i.e., the

first term of the expansion φ0), which can be solved analytically. Therefore, in this case

there is no need to create an impulse function to solve the equation. The second issue is

related to the stability. For the tested case, the numerical benchmark was less stable than

the perturbation-based solution. Future work will explore the model stability as a function

of the time resolution, system parameters, and time delays.
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