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Abstract 

This paper considers the analytical free time domain response and energy in an 

axially translating and laterally vibrating string. The domain of the string is either a 

constant or variable length, dependent upon the general initial conditions. The 

translating tensioned strings possess either fixed-fixed or fixed-free boundaries. A 

reflected wave superposition method is presented as an alternative analytical solution 

for a finite translating string. Firstly, the cycles of vibration for both constant and 

variable length strings are provided, which for the latter are dependent upon the 

variable string length. Each cycle is divided into three time intervals according to the 

magnitude and the direction of the translating string velocity. Applying d’Alembert’s 

method combined with the reflection properties, expressions for the reflected waves at 

the two boundaries are obtained. Subsequently, superposition of all of the incident and 

reflected waves provides results for the free vibration of the string over the three time 

intervals. The variation in the total mechanical energy of the string system is also 

shown. The accuracy and efficiency of the proposed method are confirmed 

numerically by comparison to simulations produced using a Newmark-Beta method 

solution and an existing state space function representation of the string dynamics.  
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1.  Introduction 

In the present paper, the lateral vibration of a uniform finite length string 

modelled with uniform density ρ, which travels over two smooth supports under 

constant speed v and under a constant tension T, is considered using the concept of 

wave propagation. This model can be used to study the lateral vibration of many 



manufacturing technologies and devices involving axially travelling materials, such as 

conveyor belts, elevator cables, power transmission belts and magnetic tapes. Wave 

propagation and reflection phenomena in one-dimensional wave bearing systems, 

such as strings, have been studied for many years; it is though still of great research 

interest due to their theoretical importance and application. For instance, the classical 

d’Alembert principle was used to study the reflection phenomenon in either an infinite 

or a semi-infinite stationary string with classical boundary conditions[1,2]. Recently, 

Akkaya, Gaiko and Van Horssen[3,4] applied the same method to obtain the exact 

free, linear, lateral vibration of both a stationary[3] and an axially travelling[4] 

semi-infinite string. Various alternative approaches have been applied to solve and 

obtain the response of axially moving materials. Yang and Tan[5] studied both a 

travelling string and beam using a transfer function method, which for the latter 

considered a damped, axially moving beam over a set of different boundary 

conditions. Based on the transfer function formulation and wave propagation, Tan and 

Ying[6] subsequently derived an exact solution for the response of a translating string 

with general boundary conditions. Van Horssen[7] used a Laplace transform method 

instead, constructing exact solutions of the lateral vibrations in travelling strings due 

to small lateral vibrations of the supports.  

Lee[8] analyzed free vibration of a string with time-varying length, by dealing 

with travelling waves and obtained an exact solution. Simple models which describe 

these vibrations can be expressed as initial-boundary value problems. 

Darmawijoyo[9,10] studied such an initial-boundary value problem with a 

non-classical boundary condition, constructing asymptotic approximations of the 

solution for an axially travelling string by a multiple-timescales perturbation method. 

Chen and Ferguson[11] more recently studied the lateral vibration and the energy 

dissipation of a travelling string attached to a viscous damper at one end, using a time 

varying state space function method and the Newmark-Beta method. In terms of 

dissipative boundaries, Gaiko and Van Horssen[12] also gave a complete and accurate 

description of the damping and the low frequency oscillatory behaviour of the 

travelling string with an attached spring–mass–dashpot system at one end. 

In contrast to previous work on a stationary string and a travelling string defined 

on an infinite or a semi-finite domain, which either has one or no wave reflections, the 

present work focuses on the analytical free lateral vibration of an axially translating 

string with either a constant or varying length. The main difference, as well as the 

difficulty, lies in the multiple reflections that will exist in a finite domain, which 

makes the problem more complicated than previous work. A reflected wave 

superposition method is proposed and completely developed in this study. At both 

ends of the axially travelling string the multiple reflections of the propagating waves 



are studied. The combined total superposition of the incident and reflected waves 

constitute the resulting free vibration. This work provides an analytical methodology 

to solve the translating media problem defined over a finite domain with different 

boundary conditions and the details of the process are given. This paper is organized 

as follows. Section 2 introduces the equation of motion describing the lateral vibration 

of an axially travelling finite string and the relevant boundary conditions. In Section 3, 

the reflected wave superposition method is used to obtain the response due to the 

initial conditions of a travelling string between two types of boundaries separated by a 

constant distance, i.e. the length of string between the boundaries is also constant. 

Next, Section 4 investigates the time varying cycle and gives an exact analytical 

response for the time varying length string, i.e. for boundaries that are at either 

increasing or decreasing distances apart. Section 5 analyzes the total mechanical 

energy and its time rate of change. Finally, Section 6 provides the main conclusions.     

2.  Equations of Vibration 

The equation of motion for the lateral vibration of a travelling string between two 

boundaries can be obtained by Hamilton Principle [12, 13] and is given by 
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where w is the lateral displacement, x is the axial coordinate along the length of the 

string, t is the time, v is the assumed constant translational speed of the string. 

/c T  is the free wave propagation speed, where T is the uniform tension and ρ is 

the uniform string mass per unit length. The derivation of Eq. (1) is given in Appendix 

A. The domain for the string x is 0 < x < l(t) and l(t) is the length of the string. Here, 

two cases concerning the string length are considered: one is the constant length case, 

i.e. l(t) = l0 and so v l ; the other is the linearly changing length case, i.e. l(t) = l0 +	ݒt, 

and so v l  , where l0 is the initial length of the string. To avoid the vibrational energy 

accumulating at one end and to allow any propagating wave in the string direction to 

be reflected at the other end, the string translational speed v is assumed less than the 

free wave propagation speed c, i.e. | v | < c.  

Various boundary conditions can exist in real situations, for example, free, fixed, 

spring-dashpot and mass-spring-dashpot, etc. Although only classical boundary 

conditions are analyzed in this paper, i.e. the free end and the fixed end, the proposed 

method can also be applied to the nonclassical boundary conditions.  

The general one-dimensional wave solution of Eq. (1) for the string displacement 

using the d'Alembert method is well known [2,14]. It is given by 

   , - ( )r lw x  t F x v t G x v t                       (2) 

Here, vl = c - v is the wave propagation speed according to the fixed coordinate 



system as a wave travels from right to left and vr = c + v is the wave speed in the 

opposite direction. F(x - vr t) is the right-propagating wave with speed of vr and  

G(x + vlt) is the left-propagating wave with speed of vl. In Appendix B, it is shown 

that the d'Alembert method can also be used in the case of Eq. (1). The initial 

vibration conditions for the string displacement and velocity are assumed as follows: 
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where wt is the first order partial derivation of w(x, t) with respect to time t. Then, the 

initial conditions are satisfied if one has  
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where K is a constant of integration.  

From Eq. (2), the general solution comprises two propagating waves travelling in 

opposite directions due to the initial condition shown in Fig.1.  

 

 Fig. 1. Initial displacement composed by two propagating waves 

Here, F is defined as the wave propagating from left to right and G the wave 

propagating from right to left. The two propagating waves are reflected at the two 

boundaries back and forth. So, the total response of the string at any point is the 

combination of the incident waves and the reflected waves for both the F and G 

waves. It is obvious that the initial general solution Eq. (2) is not complete, because it 

does not include the reflected waves. Next, the detailed expressions for the incident 

and reflected waves for both the F and G waves are given.  

3.  A travelling string with constant length 

In the constant length string case, i.e. l(t) = l0, the waves F and G will return to their 

initial states after two reflections at and travelling between the two opposite 

boundaries. The minimum cycle or time T0 required to return to the initial state for 

these waves F and G is given by [15]  
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where lv  and rv  are the wave propagation speeds to the left and to the right, 
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respectively, according to the fixed coordinate system. It is convenient to define tr as 

the time required for the point P1 on the left end of F to move from end A to B and tl 

as the time required for the point P2 on the right end of F to move from B to A, so one 

has tr = l0 / vr and tl = l0 / vl. If v > 0, one can define ta = tr and tb = tl, or if v < 0, i.e. the 

string travelling in the opposite direction, so define ta = tl and tb = tr, so that one can 

get 0 < ta < tb < T0. Based on this, T0 is divided into three time intervals: [0, ta], [ta, tb] 

and [tb, T0]. The detailed expressions for the propagating waves are given next for 

these three time intervals for the boundaries being either the fixed-fixed or fixed-free 

case. 

3.1.  Fixed-fixed case 

The fixed supports of the string at x = 0 and x = l0 are represented by the 

boundary conditions: 
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                          (7) 

3.1.1.  The first time interval: 0 ≤ t ≤ ta 

     

Fig. 2. String deflection comprising the sum of the propagating waves when 0 ≤ t ≤ ta 

In this time interval, the propagating waves are shown in Fig.2. G2 is the 

reflected wave of F1 at x = l0 and F2 is the reflected wave of G1 at x = 0. According to 

Eqs. (4) and (5), the expressions for F1 and G1 are as follows: 
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The reflected waves are G2(x + vlt) and F2(x - vrt). Using the boundary conditions in 

Eq. (7), one has 
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Defining α = l0 + vlt, β = - vrt and substituting α and β into Eq. (10), one has 
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Using Eqs. (8), (9) and (11), the detailed expressions for F2 and G2 are 
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Combining G1, G2 and F1, F2, one has the expressions for F and G, namely, 
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Finally, the string displacement w(x, t) in the interval 0 a t  t   is given by 
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3.1.2.  The second time interval: ta ≤ t ≤ tb  

 
(a)   

 
(b)  

Fig. 3. String deflection comprising the sum of the propagating waves when ta ≤ t ≤ tb. The 

travelling speed of the string is positive (v > 0) for (a) and negative (v < 0) for (b).  

In this time interval, if v > 0, the waves are shown in Fig. 3(a). One can see that 

F1 disappears and G3 is the reflected wave of F2 at x = l0. Using the boundary 

condition (7), one has 
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so 
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If v < 0, the waves are shown in Fig. 3(b). One can see that wave G1 disappears 

and F3 is the reflected wave of G2 at x = 0. Using the boundary condition Eq.(7), one 

has 
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so 

   0

0

0
23 0

2 1
d , 0

2 2 r
l

l
l r

clr r rx v t
vl l

v cl v
F x v t x v t K    x  v t l

c v c v
   

 

   
           

   
    (19) 

Combining G1, G2, G3 and F1, F2, F3, one has the combined wave expressions for F 

and G,  
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Finally, the string displacement w(x, t) in the interval    a bt t t   is given by      
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3.1.3.  The third time interval: tb ≤ t ≤ T0  
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Fig. 4. String deflection comprising the sum of the propagating waves when tb ≤ t ≤ T0 

In this time interval, the propagating waves are shown in Fig.4. G3 is the reflected 

wave of F2 at the boundary x = l0 and F3 is the reflected wave of G2 at x = 0. 

Combining F2, F3 and G2, G3, one has the expressions for F and G, 
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So the string displacement w(x, t) in the time interval 0   bt t T   is given by  
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3.1.4  Continuity and smoothness 

  It is necessary to prove that the vibrational response w(x, t) exhibits both continuity 

and smoothness, since it is composed of piecewise functions. The procedure for 

establishing this check is given below.  

Take the first time interval (0 ≤ t ≤ ta) for example. Because G2 and F2 are the 

reflected waves of F1 and G1, respectively, if F1 and F2 at the piecewise point x = 0 as 

well as G1 and G2 at the piecewise point x = l0 meet the continuity and smoothness 

when t = 0, w(x, 0) is continuous and smooth. Thus w(x, t) is also continuous and 

smooth for it is just the superposition of the string deflections in the two wave 

components F(x) and G(x).  

From Eq. (2), the initial conditions Eq. (3) and the boundary conditions Eq. (7), one 

can obtain  
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Then from Eq. (10), one has 
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Using Eqs. (26) and (27), the following equation is obtained, that is, the continuity 

condition:  
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So the response w(x, 0) is continuous at the piecewise points x = 0 and x = l0. Hence, 

for the first time interval (0 ≤ t ≤ ta), w(x, t) is continuous also.  

  As for the smoothness, taking the n-order derivatives of F1(x), G1(x), F2(x) and G2(x) 

in Eqs. (8), (9) and (12) with respect to x, (n = 1, 2, 3, …), one has 
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where φ(n)(x) and ψ(n)(x) are the n-order derivatives of φ(x) and ψ(x) with respect to x. 

Substituting x = 0 into Eq. (29) as well as x = l0 into Eq. (30), then using the n-order 

smoothing condition at x = 0 as well as x = l0, one has 
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The relationships which φ(x) and ψ(x) need to satisfy are obtained 

 
( ) ( 1)

( ) ( 1)
0 0

( ) (0) ( ) (0)

( ) ( ) ( ) ( )

n n n n n n
l r r l r l

n n n n n n
r l l r r l

v v v v v v

v v v v l v v l

 

 





            

          
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Substituting n = 1 into Eq. (32), then 1-order smoothness is satisfied if 

0(0) ( ) 0l                                                 (33) 

Also, 2-order smoothness (n = 2) is satisfied if 
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                    (34) 

As for ta ≤ t ≤ tb and tb ≤ t ≤ T0, the same results for the continuity and smoothness  

as those shown in the initial time interval 0 ≤ t ≤ ta can also be obtained. 
 

3.1.5.  Numerical simulations for the fixed-fixed boundary case 

Taking into account the continuity and the first order smoothness, the initial 

conditions are chosen to be: 
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             (35) 

where Н is the Heaviside step function and A0 is the initial displacement of the 

midpoint of the string which is chosen to be A0 = 0.05 m. The constant length of the 

string is l0 = 5 m. In order to verify the validity and accuracy of the proposed method, 

the results obtained are compared with that of other numerical solutions of arbitrary 

choice, such as the Newmark-Beta method and the state space function method used 

in previous numerical simulations in [11], which are approximate numerical solution 

methods. The results presented are shown in dimensionless form, where the 

displacement is presented as a proportion of the amplitude of the initial maximum 

displacement A0, the axial coordinate as a proportion of the length of the string l0 and 

the dimensionless travelling speed of string V as a proportion of the critical velocity 

(namely, the free wave propagation speed c.), i.e. V = v / c.  
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(e)                                       (f)  

Fig. 5. Normalized string deflection shapes for an axially travelling string for the fixed-fixed 

boundary case with a constant distance between the boundaries. The non-dimensional string 

translational velocities V = v / c and the minimum cycle T0 required to return to the 

initial state are (a) V = 0, T0 = 3.478 s, (b) V = 0.2, T0 = 3.296 s, (c) V = 0.3, T0 = 3.478 s, (d) 

V = - 0.3, T0 = 3.478 s, (e) V = 0.5, T0 = 4.219 s, (f) V = 0.99, T0 = 159.023 s. Key: , the 

proposed method; + + +, the Newmark-Beta method; o o o the state space function method 

The results for the string displacement for the fixed-fixed case with constant 

length between the boundaries for six axial velocities are shown in Fig. 5. The seven 

curves from top to bottom in each plot are at the times corresponding to 0, T0/12, 

T0/6, T0/4, T0/3, 5 T0/12 and T0/2, respectively, where the minimum period T0 is a 

function of the axially travelling velocity v of the string (see Eq. (6)). The results 

obtained by the three methods are basically consistent at low translational velocities, 

i.e. V ≤ 0.5, in Fig. 5 (a) to (e). With the string translational velocity increasing 

towards to the critical value c, i.e. V = 0.99, as shown in Fig. 5 (f), the results of the 

Newmark-Beta method and the state space function method are increasingly more 

different than the analytical solution obtained by the proposed method as time 

increases. The results from the Newmark-Beta method and the state space function 

method are only approximate numerical solutions, which are affected by the ill 

conditioned matrix and cumulative errors etc., when the translational speed and the 

time increase. In contrast, the proposed method gives the exact analytical solutions 

so it is more stable than other two methods when the translational speed is close to 

the critical speed. One can see that Fig. 5(c) is the mirror image of Fig. 5(d) due to 

the equal and opposite travelling speeds (V = ± 0.3) of the string. 

As for the computational efficiency as shown in Table 1, the proposed method is 

superior to the other two methods which run on a ThinkPad (type x240s) computer 

with an i7 processor using the Matlab R2012a software. When the travelling speed 

increasing towards to the critical speed c, i.e. V = 0.99, the time taken by the 

Newmark-Beta method increases significantly, while the time taken by the proposed 
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method remains small. 

  

Table 1. Computational time comparison of the three methods (Unit: second) 

Methods V = 0 V = 0.2 V = 0.3 V = - 0.3 V = 0.5 V = 0.99 

Newmark-Beta 0.59 0.59 0.61 0.65 0.84 49.13 

State space function 1.15 1.16 1.19 1.19 2.34 7.31 

Proposed method 0.59 0.60 0.63 0.62 0.62 0.69 

3.2.  Fixed-free case 

In this case, the fixed support of the string at x = 0 and the free support at x = l0 

are represented by the boundary conditions:  

 
 0

0,  0

,  0x

w t

w l t

 
 

                       (36) 

where wx is the first order partial derivation of w(x, t) with respect to x. It is worth 

mentioning that the tension T of the string can be maintained via the forces acting at 

two ends of the string. It is obvious that the waves G2, G3 and F3 are different from 

the ones in section 3.1 for a free boundary condition at x = l0. The string displacement 

w(x, t) can be obtained by using the same method presented in section 3.1, just 

replacing the expressions for G2, G3 and F3 with the new ones. These new expressions 

for G2, G3 and F3 are considered in the follow sections. 

3.2.1.  Wave G2 

As shown in Fig. 2, G2 is the reflection of F1 at the free boundary, i.e. at x = l0. 

Using the boundary conditions (36), one has 

   ' '
2 0 1 0 0l rG l v t F l v t                      (37) 

where '
2G  is the first order derivative of 2 ( )G   versus  , and the rest are the same. 

Substituting α = l0 + vlt into Eq. (37) yields 
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                    (38) 

Integrating Eq. (38) with respect to α, one has 
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then 
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          (40) 

In order to have a continuous solution, an extra continuity condition has to be 

introduced, namely 

   1 0 2 0,  0 ,  0G l G l                        (41) 

Substituting Eqs. (8), (9) and (41) into Eq. (40), an expression for G2 is obtained 
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3.2.2.  Waves G3 and F3  

As shown in Fig. 3(a), G3 is the reflection of F2 at x = l0. Using the free boundary 

condition in Eq. (36), one has  

   ' '
3 0 2 0l rG l v t F l v t                          (43) 

Integrating Eq. (43) with respect to α given in section 3.1.1, one has 
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Considering the continuity condition, i.e. 

   3 0 2 0,  ,  a aG l t G l t                        (45) 

and substituting Eqs. (12), (42) and (45) into Eq. (44) , an expression for G3 is 

obtained 
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   (46) 

As shown in Fig. 3(b), F3 is the reflection of G2 at x = 0. Using the fixed boundary 

condition at x = 0 and Eq. (42), one has  
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3.2.3  Continuity and smoothness 

  As obtained from Eqs. (2), (40) and (41), a continuous solution for w(x, t) is 

produced when the following additional condition for φ at the free end x = l0 is 

satisfied 
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The n-order smoothness is satisfied if 
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When n = 1, the additional condition required for smoothness is 

'
0( ) 0l                                                           (50) 

and when n = 2, the additional condition is   

'
0( ) 0l                                                             (51) 

3.2.4.  Numerical simulations for the fixed-free case 

The initial conditions are identical to as before and are also given by Eq. (35). 

The plot of the results are presented in Fig. 6. 

    
(a)                                       (b)  

    

 (c)                                       (d)  

   Fig. 6. Deflection shapes for an axially travelling string for the fixed-free boundary case 

with constant length and translational velocities for (a) V = 0.3 in the first cycle, (b) V = 0.3 in the 

second cycle, (c) V = - 0.3 in the first cycle and (d) V = - 0.3 in the second cycle.  

The plots in Fig. 6 show the deflection shapes for an axially travelling string for 
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the fixed-free boundary case with constant length over two cycles. The curves in Fig.6 

(a) and Fig.6 (c) are in the first cycle, i.e. from top to bottom, and the ones in Fig.6 (b) 

and Fig.6 (d) are in the second cycle, i.e. from bottom to top. The time interval of 

adjacent curve is T0 / 6 in each plot. One can see that after one cycle the vibrational 

displacement of midpoint of the string has decreased when V > 0, while increased 

when V < 0. 

4.  Travelling string with time-varying length 

In the time-varying length case, the length is assumed to change with time 

linearly, i.e. l(t) = l0 + vt. Defining tn as the time for the string to return to its original 

phase for the nth time, so the nth cycle is 

1n n nT t t                            (52) 

In Eq. (52), define or choose t0 = 0 when n = 1. When l(t) is a constant l0, the nth cycle 
Tn (n = 1, 2, 3, …) is also a constant value. When l(t) is changing with time linearly, 
i.e. l(t) = l0 + vt, the nth cycle Tn will change with n, as well as with time. The time 
varying cycle is calculated as follows. 

4.1.  Time varying cycle Tn  

Defining ln as the length of string at the time of tn, one can calculate ln as follows:  

0n nl l vt                            (53) 

The time varying cycle Tn is actually equal to the time for the point P2 in the right 

propagating wave F, shown in Fig.1, to pass through the string upstream and 

downstream in the nth cycle. For the upstream interval, the distance is ln-1 and the 

propagating wave phase speed is c - v; while for the downstream interval, the distance 

is ln-1 + vTn and the propagating wave phase is c + v. Calculating the intervals 

corresponding to the upstream and downstream propagation yields  

 1 1n n n
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                     (54) 

Solving Eq. (54) yields the time varying cycle 
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l
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c v
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                          (55) 

Substitution of Eqs. (55) and (53) into Eq. (52) gives an iterative equation for tn as 

follows,  
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,              (56) 

Now, substituting the results of Eq. (56) into Eq. (52), one can finally obtain the time 

varying cycle Tn, (n = 1,2,3, …) for the vibration of time varying length string. 



4.2.  Free vibration calculation 

For each cycle, the three time intervals [0, ta], [ta, tb] and [tb, T0] defined in 

section 3 are changing in this time varying string length case. Defining tan as the first 

piecewise point and tbn as the second piecewise point in the nth cycle, then the three 

time intervals in cycle Tn are [tn-1, tan], [tan, tbn] and [tbn, tn]. The values of tan, tbn and tn 

are given as follows 
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         (57) 

Using Eqs. (56) and (57) one can calculate the values of tan, tbn and tn by the iterative 

method. However, for the case of v < 0, i.e. the length of the string is shortened, the 

values of tan and tbn exchange with each other, i.e. the three time intervals in cycle Tn 

are [tn-1, tbn], [tbn, tan] and [tan, tn] when v < 0. Finally, the response of the string with 

time varying length can be obtained using the expressions similar to those in Eqs. (15), 

(22) and (25), only needing to replace the three time intervals [0, ta], [ta, tb], [tb, T0] 

with the three new time intervals [tn-1, tbn], [tbn, tan] and [tan, tn] as well as the value l0 

with l(t). 

4.3.  Numerical simulations for a string with time-varying length 

   In this case, the speed of the string is constant, yet the length is time-varying, i.e. 

the support of the string is fixed at x = 0 while the opposite end moves with the same 

speed as the string at x = l(t). The initial conditions are again given by Eq. (35). Fig. 

7(a) is the case of increasing length with V = 0.3 and Fig. 7(b) is the case of decreasing 

length with V = - 0.3.  

   

(a)                                   (b)  

Fig. 7. Deflection shapes of an axially travelling string for the fixed-fixed case with 
time-varying length at axial velocities (a) V = 0.3, (b) V = - 0.3. Key: , the proposed 
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method; + + +, the Newmark-Beta method; o o o and the state space function method 

The seven curves in each plot are at the corresponding times of 0, T1/6, T1/3, T1/2, 

2T1/3, 5T1/6 and T1, respectively. T1 is the time for first cycle, i.e. Tn for n = 1. One 

can see that the results of the analytical method proposed in this paper are in good 

agreement with those of the other two methods in the earliest time intervals. As time 

increases, the error of the approximate methods, i.e. the Newmark-Beta method and the 

state space function method, increase gradually and the results of the approximate 

methods are not in so good an agreement with that of the proposed method.  

5. Vibration energy analysis 

In this section, the total mechanical energy in the axially travelling string is 

analyzed based on the proposed reflected wave superposition method for the different 

types of boundary conditions and working conditions, as presented in sections 3 and 4. 

The total mechanical energy E(t) of the axially travelling string comprises the kinetic 

and potential energy in the following way [6]: 

    2 2 2
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( ) d

2

l t

t x xE t w vw c w x
                           (58) 

5.1. Vibrational energy for a constant string length between the fixed-fixed 

boundaries  

5.1.1.  The first time interval: 0 ≤ t ≤ ta 

As shown in Fig.2, the response of the string comprises four propagating waves F1, 

F2, G1 and G2, so the total energy of the string is the combination of the energy of 

these four propagating waves. The total energy expression can be written: 
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1 2 1 2F F G GE t E t E t E t E t                                        (59) 

where  
1FE t ,  

2FE t ,  
1GE t  and  

2GE t  are the energy of waves F1, F2, G1 and 

G2. According to Eq. (58), one can obtain energy expression of travelling waves F1: 
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(60) 

Similarly, the expressions of  
2FE t ,  

1GE t  and  
2GE t  are as follows. 
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(61) 

Substituting the expressions for the traveling waves F1, F2, G1 and G2, i.e. Eqs. (8), (9) 

and (12), into Eqs. (60) and (61) correspondingly, one can has the wave energies in 



the interval 0 ≤ t ≤ ta shown as follows. 
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5.1.2.  The second time interval: ta ≤ t ≤ tb 

In this time interval, different expressions exist depending upon the direction in 

which the string is translating, i.e. for v > 0 and v < 0. When v > 0, the energy is due 

to the waves G1, G2, G3, and F2, 
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When v < 0, the energy is due to the waves F1, F2, F3, and G2, 
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5.1.3.  The third time interval: tb ≤ t ≤ T0 

In this interval, the energy is due to the waves F2, F3, G2, and G3.  
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So the total mechanical energy of the axially travelling string can be calculated 

using Eqs. (62) - (65) and the initial conditions. The total energy of an axially 

travelling string with fixed-fixed boundary conditions and with V = - 0.5, V = 0, and  

V = 0.5 for one cycle is shown in Fig. 8. In this case, the boundary conditions are 

symmetric, so the energy variations are the same when their velocities are equal in 

magnitude but in opposite directions. When V = 0, the energy of the string is 

unchanged during one cycle T0 and the corresponding string deflection shape is shown in 

Fig. 5(a), which is the standing wave. When V = ± 0.5, the total energy of the string at the 

beginning and end of one cycle T0 are equal. It shows that the total energy of the 

system varies with time due to energy transfer at both boundaries, so the string 

deflection shapes is not standing wave which are shown in Fig. 5(c) and (d). The 

string segment passing through a downstream fixed boundary gains energy, and it 

loses energy at an upstream one [15], while in a cycle T0, the loss of energy is equal to 

the energy that is obtained for a constant length string with symmetric boundaries. 

One can easily speculate that the curve for the change in the energy in other cycles is 

the same as in the first cycle shown in Fig.8.    

 

Fig. 8.  Energy variation of the lateral vibration in an axially travelling string. The interval of free 

motion is T0 = 2.667 s and the string is fixed at its two ends with constant length. 

Key: o o o, V = 0.5,  ̵̵̵  ̵  ̵ , V = 0, , V = 0.5.  

5.2. Vibrational energy for a constant string length between asymmetric boundary 
configurations  
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The energy in two cycles will be studied for the case of asymmetric boundary 
configurations, i.e. the fixed-free case and the free-fixed case. The calculation process 
for the energy expression for the waves in the second cycle is similar to the one in the 
first cycle. It is obvious that the energy expression for the waves G2, G3 and F3 are 
different from the ones in section 5.1 for a free boundary condition at x = l0. The 
energy can be obtained using the same method presented in section 5.1, just replacing 
the energy expressions for G2, G3 and F3 with the new ones. Take the third time 
interval (tb ≤ t ≤ T0) for example. Replacing F1 in Eq. (60) with G2, G3, F2 and F3, 
which are expressed in Eqs. (42), (46), (12) and (47), respectively, one can has the 
new energy expressions for G2, G3, F2 and F3 in this time interval. 
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(a)                                     (b)  

Fig. 9. Energy variation of the lateral vibration in an axially travelling string with asymmetric 

boundary conditions, which are (a) fixed-free case with V = 0.5 and (b) equivalent to 

free-fixed case with V = - 0.5.  

Fig. 9 shows the change in the total vibrational energy curves over the first two 

cycles, i.e. 0 < t < 2T0. In Fig. 9 (a), the energy is decreasing with time because 

energy flux is always transferred out of the system at the left end, i.e. the fixed 

boundaries, with the string travelling with a positive speed. The rate for the decrease 

in the energy reduces with time and the total energy is close to zero after two periods 

but never equal to zero. No energy exchange at the free end because there is no work 

done there. Fig. 9 (b) gives the contrary phenomenon, i.e. the energy is increasing 

with time because energy flux is always transferred into the system at the left fixed 
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end. Asymmetric boundary configurations lead to dissipated (V = 0.5, fixed-free) or 

self-excited motions (V = - 0.5, free-fixed) for the free vibration of the axially 

travelling string, similar to what has been observed in a tensioned pipe[15]. 

5.3. Vibrational energy for a varying length string between fixed–fixed boundaries  

In this case, the length is assumed to be changing with time linearly and the 

string is fixed at its two ends. As previously, the energy expression for the waves G2, 

G3 and F3 are different from the ones in section 5.1 for a moving boundary condition 

at x = l (t). Only the energy of first cycle will be studied, it means we take n = 1 in Eq. 

(44). The energy expression for the waves G2, G3 and F3 will be calculated in three 

time durations respectively and the calculation process is similar to the fixed-fixed 

case. Taking the third time interval (tb1 ≤ t ≤ T1) for example, one has the 

corresponding energy expressions for the waves F2, F3, G2 and G3 
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(a)                                     (b)  

Fig. 10. Energy variation of the lateral vibration in an axially travelling string with time varying 

length. The dimensionless travelling speeds of string are (a) V = 0.5 for increasing length 
case and (b) V = - 0.5 for decreasing length case. 

In Fig. 10, the energy variation with time is given for the travelling varying 

length string which is fixed in the transverse direction at the two ends. The energy 

decays in the case of an increasing string length in Fig. 10 (a) and grows in case of a 

decreasing length in Fig. 10 (b) over one period. Similar to Section 5.1, the string 
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segment passing through a downstream fixed boundary gains energy, and it loses 

energy at an upstream fixed one. However, the moving end does no work to the string 

because it moves synchronously with the string, which is different from the 

fixed-fixed constant length case in Section 5.1. So the energy variation curves in Fig. 

10 are similar to the ones in Fig. 9. When the string length increases, the static end 

support does negative work, consuming part of the vibrational energy of the system; 

while when the string length decreases, the static end support does positive work, 

increasing the total vibrational energy in the string system, which is called the 

spaghetti problem. Usually, a proper damper is placed at the static end of a decreasing 

length string to depress the vibration. The energy analytical calculation and analysis 

provide theoretical basis for vibration control of a string by damping.  

6. Conclusions 

A propagating and reflected wave superposition method is proposed in this paper 

to obtain the analytical solutions for the free vibration of an axially translating string.  

The string can be either of constant or time varying length and is subject to some 

initial string displacement conditions. From application of this method, one can 

consider and examine the physical nature of the string vibration based on the concept 

of wave propagation. For reasons of simplicity, only two types of classical boundary 

conditions are studied in this paper; while other nonclassical boundary conditions are 

also suitable for analysis using the same method. Compared with the Newmark-Beta 

method and the state space function method, the proposed method is very consistent 

with these two methods at low translational speeds, whilst being more stable and 

efficient than the other two methods at speeds close to the critical value. The total 

mechanical energy of a string has been calculated analytically based on the analytic 

vibration response via the proposed method for the different types of boundary 

conditions and working conditions, from which one can understand the mechanism of 

energy variation due to these boundaries. For the fixed-free and free-fixed boundary 

conditions, results show that the asymmetric boundary conditions have opposite 

contributions and effects on the total energy. For the time varying length string, the 

energy variation has similar characteristics and mechanism to the constant length 

fixed-free case. As a result, this analysis provides a basis for the vibration control of 

axially travelling string system by placing a passive vibration control mechanism at an 

optimum location.  
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Appendix A  Derivation of the motion equation  

The motion equation of a travelling string will be obtained by applying the 
Hamilton’s principle in the following form: 

1

2

d 0
t

t
L t                          

(A1) 

where δ is a variation in a function, L=K-U is the Lagrangian function which requires 
the kinetic energy K given by 

) 2(
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(A2) 

and the potential energy U given by 
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Substituting Eqs. (A2) and (A3) into Eq. (A1), one can obtain 

1

2

2 2 2)

0

2(1
d d 0

2
( 2 )

t l t

t tt x x xw vw w v w Tw x t                (A4) 

Taking the variation with respect to wt and wx in Eq. (A4), the expression becomes 
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Applying integration by parts to the two terms in the integral in the Eq. (A5), one can 
obtain 
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According to the Hamilton’s principle, the time end conditions are satisfied, i.e. 

1 2,  0;  ,  0t t w t t w                      (A8) 

Substituting Eqs. (A6), (A7) and (A8) into Eq. (A5) and collecting the terms, one can 
obtain 
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(A9) 

Since the variation δw over the interval 0 < x < l(t) is arbitrary, Eq. (A9) can be 
satisfied only when the individual terms of Eq. (A9) are equal to zero. 

  2 ( )
0( ) | 0x l t

t x x xvw v w Tw w  
                   (A10) 

2( 2 ) 0tt xt xx xxw vw v w Tw                    (A11) 

 



Eq. (A10) represents the boundary condition while Eq. (A11) denotes the equation of 

motion. Substituting /c T   into Eq. (A11), one can obtain 

2 22 ( ) 0tt xt xxw vw v c w                    (A12) 

 

Appendix B Applicability of d'Alembert method in the travelling string equation 

The general solution of Eq. (1) in the form of moving wave is  

 1( , )w x t f x c t 
  

                     (B1) 

After partial derivatives of w(x, t) with respect to x and t, one obtains 

  2 ''
1 1ttw c f x c t                          (B2) 

 ''
1 1txw c f x c t                           (B3) 

 ''
1 xxw f x c t                          (B4) 

Substituting Eqs. (B2), (B3) and (B4) into Eq. (1), one has 

2 2 2
1 12 0c vc v c                           (B5) 

Then c1 is obtained as follow 

1c v c   or 1c v c                        (B6) 

Substituting c1 = v + c into Eq. (B1), the solution of Eq. (1) is  

w(x, t) = f (x - (c + v)t)                   (B7) 

We define  

F(x - vr t) = f (x - (c + v)t)                 (B8) 

and so  

vr = c + v                         (B9) 

which is the wave speed downstream in the direction of the string translation. 

Likewise, substituting c1 = v - c into Eq. (B1), the solution of Eq. (1) is  

w(x, t) = f (x - (v - c)t)                  (B10) 

We define  

G(x + vl t) = f (x - (v – c)t) = f (x + (c – v)t)         (B11) 

and so  

vl = c – v                       (B12) 



which is the wave speed upstream to the direction of the string translation. 

So equation (1) has the general one-dimensional wave solution 

   , - ( )r lw x  t F x v t G x v t                (B13) 
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