The University of Southampton
University of Southampton Institutional Repository

Demise and survivability criteria for spacecraft design optimization

Demise and survivability criteria for spacecraft design optimization
Demise and survivability criteria for spacecraft design optimization
In a period where the evolution of the space environment is causing increasing concerns for the future of space exploitation and sustainability, the design-for-demise philosophy has gained an increased interest. However, satellites designed for demise still have to survive the space environment, polluted by space debris, for many years. Within this context, we are developing a framework to evaluate the effect of preliminary design choices on the survivability and on the demisability of a spacecraft configuration. Two models are presented to analyze the spacecraft against the demisability and the survivability, and two corresponding evaluation criteria for the requirements are introduced. Considering common spacecraft components such as tanks and batteries, a set of maps are presented, which shows the variation of the survivability and the demisability as function of the component geometry and material. Furthermore, a preliminary multi-objective optimization is performed to evaluate a simple spacecraft configuration and define an optimal design according to the demise and the survivability criteria.
design-for-demise, survivability, re-entry, space debris, optimisation
2468-8967
83–93
Trisolini, Mirko
5637d517-3e44-47d1-8575-9df804914449
Colombo, Camilla
595ced96-9494-40f2-9763-ad4a0f96bc86
Lewis, Hugh
e9048cd8-c188-49cb-8e2a-45f6b316336a
Trisolini, Mirko
5637d517-3e44-47d1-8575-9df804914449
Colombo, Camilla
595ced96-9494-40f2-9763-ad4a0f96bc86
Lewis, Hugh
e9048cd8-c188-49cb-8e2a-45f6b316336a

Trisolini, Mirko, Colombo, Camilla and Lewis, Hugh (2016) Demise and survivability criteria for spacecraft design optimization. Journal of Space Safety Engineering, 3 (2), 83–93. (doi:10.1016/S2468-8967(16)30023-4).

Record type: Article

Abstract

In a period where the evolution of the space environment is causing increasing concerns for the future of space exploitation and sustainability, the design-for-demise philosophy has gained an increased interest. However, satellites designed for demise still have to survive the space environment, polluted by space debris, for many years. Within this context, we are developing a framework to evaluate the effect of preliminary design choices on the survivability and on the demisability of a spacecraft configuration. Two models are presented to analyze the spacecraft against the demisability and the survivability, and two corresponding evaluation criteria for the requirements are introduced. Considering common spacecraft components such as tanks and batteries, a set of maps are presented, which shows the variation of the survivability and the demisability as function of the component geometry and material. Furthermore, a preliminary multi-objective optimization is performed to evaluate a simple spacecraft configuration and define an optimal design according to the demise and the survivability criteria.

This record has no associated files available for download.

More information

Accepted/In Press date: 1 April 2016
Published date: September 2016
Keywords: design-for-demise, survivability, re-entry, space debris, optimisation
Organisations: Aeronautics, Astronautics & Comp. Eng, Astronautics Group, Education Hub

Identifiers

Local EPrints ID: 410807
URI: http://eprints.soton.ac.uk/id/eprint/410807
ISSN: 2468-8967
PURE UUID: 87ecba95-e476-465a-9eb3-e423579eede4
ORCID for Mirko Trisolini: ORCID iD orcid.org/0000-0001-9552-3565
ORCID for Camilla Colombo: ORCID iD orcid.org/0000-0001-9636-9360
ORCID for Hugh Lewis: ORCID iD orcid.org/0000-0002-3946-8757

Catalogue record

Date deposited: 09 Jun 2017 09:41
Last modified: 16 Mar 2024 02:55

Export record

Altmetrics

Contributors

Author: Mirko Trisolini ORCID iD
Author: Camilla Colombo ORCID iD
Author: Hugh Lewis ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×