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Abstract—Previous studies have demonstrated that added-mass
variation can play a significant role on thrust generation. In this
respect, a simplified mechanical system such as an aquatic shape-
changing linear oscillator lends itself to this study because it
allows to segregate the contribution of added-mass variation from
other terms. We present the design of an experimental apparatus
which highlights the capability of a deformable oscillator to drive
sustained resonance by exploiting the thrust produced by shape-
change alone. These results will have significant implications in
aquatic propulsion and in the design of deformable, self-propelled
underwater vehicles.

I. INTRODUCTION

Recent studies on waterborne bodies subject to abrupt
shape-change show that the associated added-mass variation
can significantly participate in the generation of thrust, [1], [2].
This phenomenon is distinctive of the locomotion strategy of
certain aquatic organisms such as octopi and squids, [3]. These
organisms propel themselves by performing discontinuous
expulsion of water jets via a routine of inflation and deflation
of an elastic chamber. While the interest towards pulsed-jet
propulsion has been mainly centred around the nature of the
expelled vortex [4], lately the contribution to thrust from the
external shape variation has earned recognition, [5].

The capability to exploit added-mass variation as a potential
source of thrust has significant implications in the design [6]
and modelling [7], [8] of new kinds of underwater vehicles. To
study this phenomenon experimentally we focus on a simple
mechanical apparatus, i.e. a submerged harmonic oscillator,
where the role of shape-variation on the dynamics of the
system can be segregated from other terms.

II. ADDED-MASS AS A SOURCE OF THRUST

An harmonic oscillator immersed in a dense, viscous fluid
is described by the Morison force [9]. In the case of a 1 dof
oscillator such as that schematically depicted in Fig. 1, the
dynamics reads:
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where the effective mass is m* = m + m,, with m and m,,
being the actual and added-mass, while x(¢) and k define the
position and the elastic constant of the oscillator. In eq. (1)
the differential sign in front of the inertial term is retained in
order to account for added-mass variation effects.
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In the assumption where the mass of the body varies
negligibly, i = 0, while its shape, and hence its added-mass,
is altered, 1, # 0, differentiation of eq. (1) yields,

1
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Here, m,(t), represents the time-dependent added-mass, while
e is the added-mass variation whose form is resemblant of
a thrust term.

In the case of an harmonic oscillator, the fact that added-
mass variation may act as a propelling force can be tested by
rearranging eq. (2) such that:
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which proves that a function of 77, must exist based on which
the viscous term can be annihilated, i.e.
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When the condition prescribed in eq. (4) is verified, the
oscillator is driven into resonance, effectively behaving like
an undamped system.

III. SHAPE-CHANGING OSCILLATOR

In order to validate the hypothesis postulated in section II,
we devise an experimental apparatus capable of replicating the
dynamics described in eq. (3) based on the shape-changing
routine of eq. (4). While the result reported in eq. (4) stands
valid regardless of the shape of the oscillator, experimental
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Fig. 1. Scheme of the shape-changing spring-mass oscillator. Here r repre-
sents the radius of the oscillator at time ¢, while r¢ refers to the mean radius
of the oscillator. The distance of the frame of reference centred in O from
the relaxation point of the spring is z. Taken from [10] with permission of
Springer.
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Fig. 2. Design of the experimental apparatus for testing the shape-changing
harmonic oscillator: (1) slider unit with coupled frictionless bushings, (2)
shaft support with spring mounts, (3) tension springs, (4) cylindrical shafts,
(5) water level at free surface, (6) shape-changing spherical bob, (7) plexiglass
tank.

verification of such formulation requires adequate simplifica-
tion. To do so, we focus our experiments on a spherical body
oscillating horizontally in water.

The experimental apparatus, Fig. 2, consists of two fric-
tionless linear bushings sliding along two cylindrical shafts.
The slider system is fitted above a tank filled with water. The
tank is 200.0 cm long, 100.0 cm wide and 80.0 cm deep. The
slider also mounts a slender cylindrical rod, the bottom end of
which is immersed in water. A hollow spherical bob composed
of rubber-like material is sealed to the cylindrical rod and is
kept pre-stretched by inflating it with air. The air supply is
provided via the cylindrical rod, which is hollow and allows
to be fitted with an external oscillating pump. The actuation
of the pump is responsible for regulating the shape-changing
routine of the elastic spherical bob. The oscillatory behaviour
of the system is granted by tension springs which connect the
slider to a series of fixed points at the end walls of the tank.

By inflating the spherical bob with air the conditions which
we have employed to derive eq. (2), where the oscillator varies
its own added-mass while maintaining its inertia negligible, is
verified. In addition, thanks to this design the forces along the
vertical direction due to buoyancy and those in the horizontal
direction remain fully decoupled.

In the case of a spherical bob, the shape-change routine
capable of cancelling viscous drag can be determined by
simply recalling that

2
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with r(t) being the time-dependent radius of the sphere, and
hence

e = 27127 (6)

Thus, substitution of eq.(6) into eq.(4) shows that the condition
for drag cancellation is met when,

1
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As in standard parametric oscillators, [11], persistent res-
onance occurs as long as the routine of shape change is
L

The inflation/deflation routine prescribed by eq. (7) requires
the spherical bob of the oscillator to shrink as long as the
body is in motion and then abruptly inflate as it reaches the
end of the stroke, i.e. when its velocity is instantaneously
zero. This routine has been studied numerically in [5] with
a fully coupled fluid-solid interaction solver. However, more
smoothly varying shape-change routine would better suite
experimental analysis. To this end it can be shown, [5], that
any inflation/deflation routine capable of zeroing the power
loss due to fluid forces will suffice to drive the oscillator into
resonance. Hence we will employ a prescribed routine of the
form:

performed at twice the natural frequency w,, =

r(t) = ro + asin(2w,t) (8)

with 7y being the mean radius and a > 0.1 the coefficient of
shape-change amplitude.

©

Fig. 3. The routine of shape change during one oscillation.
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Fig. 4. Radius change profile and translational velocity (with U being the
maximum velocity measured) of the oscillator in the case of w, = 2.0 Hz.

IV. EXPERIMENTAL ANALYSIS

The experiments consist in displacing the spherical bob
from its equilibrium position, thus pre-tensioning the springs,
inflating the bob to the desired radius and then abruptly
releasing it. The bob oscillates in water like a typical non-
linearly damped spring-damper system. The displacement of
the bob and its radius-change routine are recorded via an
image-tracking system. We performed tests at two different
natural frequencies w, ~ 1.0 Hz and w,, ~ 2.0 Hz, the former
of which is achieved by increasing m. For each of these we
test three shape configurations: a fixed-radius small bob (i.e.
partly inflated) with 79 ~ 4.0 cm, a fixed-radius large bob
(i.e. fully inflated) with ry ~ 5.8 cm, and a pulsating bob (i.e.
inflating and deflating in the range 0.7r¢ < r(t) < r1).

Activation of the pulsating routine of the bob is enabled
via a manually actuated syringe which pulls and push air out
and into the elastic oscillator. During all tests where the bob is
pulsated, the attempt is made to maintain an inflation/deflation
frequency wy as close as possible to wy ~ 2w,, which
guarantees onset of resonance based on [5]. An example of
such a routine is presented in Fig. 3, while Fig. 4 reports the
profile of radius-change variation along with the translational
speed of the bob throughout one entire experiment.

The results from these first series of tests are reported in
Fig. 5 and 6 respectively for the case of w,, ~ 1.0 and 2.0 Hz,
where the displacement of the larger, smaller and pulsated
bob are compared. Despite the appearance of certain localized
effects which can be ascribed to the added-mass variation
(see for instance the larger amplitude of the first oscillation
observed in Fig. 5 in the case of the pulsated actuation), the
pulsating routine is not found to trigger parametric resonance.

V. DISCUSSION

The experiments fall within the range of Stokes number
49 < € < 63. Also, based on the definition of Reynolds
number Re = 4 (X/rq) €2 (with X being the initial amplitude

of oscillation), our tests lie in between 28800 < Re <
63500. This confirms that the index of added-mass recovery
o = wi—'}\/ﬁ consistently ranges within 948 < o* < 1056.
Based on [12], these results confirm that, for the conditions
tested, added-mass recovery should indeed take place, thus
demonstrating that the reason for not observing the onset of
parametric resonance is to be looked into experimental error.

The linear damping factor due to mechanical friction can be
estimated by calculating the logarithmic decrement when the
oscillator has slowed down enough to neglect the contribution
from fluid drag. This provides an estimate for the damping
factor due to non-fluid terms of the order of 0.01, which
ensures that viscous losses from the experimental apparatus
are indeed negligible.

Hence, the major issue with the experiments lies in the
difficulty of actuating the inflation/deflation routine in a con-
sistent fashion and, more importantly, in ensuring that m,
occurs somewhat in phase with . The manual activation of
this parametric oscillator qualitatively resembles the capability
of setting a swing into resonance by modifying its moment of
inertia. This problem can either be resolved by automating
the pulsation routine and implementing a control based on the
velocity of translation of the bob, or enforcing lower frequency
of oscillation. The attempt to perform experiments at a lower
frequency was pursued here by increasing the mass m of the
system. This approach, however, affects the time-scale of the
response of the oscillator, thus requiring the activation to be
performed longer before a visible effect is felt. Indeed, the
tests performed at a higher frequency (where a lower m is
used), Fig. 6, manifest an extended amplitude of oscillation
during the first two oscillations of the pulsated bob, which
suggest a possible contribution from added-mass variation.
Once the oscillations of the bob fall below a certain amplitude,
the values of € and o* become too low in order for added-
mass to practically produce any thrust. This suggests that
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Fig. 5. Displacement of the submerged oscillator for the case of w, ~ 1.0
Hz. The profiles small, large and pulsated respectively refer to the case of the
partly inflated sphere, the fully inflated sphere and the case where the sphere
is cyclically inflated and deflated.
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Fig. 6. Displacement of the submerged oscillator for the case of wy, ~ 2.0
Hz. The profiles small, large and pulsated respectively refer to the case of the
partly inflated sphere, the fully inflated sphere and the case where the sphere
is cyclically inflated and deflated.

effective activation of the pulsated routine must occur before
the systems is damped beyond a critical threshold.

VI. CONCLUSION

The results presented in this article constitute the first
attempt to demonstrate the role of added-mass variation on
the production of thrust of submerged shape-changing bodies.
Despite inconclusive, the outcome from these experiments
highlight the limitation of the existing mechanical system and
underscore the critical elements which require to be improved
in order for added-mass recovery to become measurable.
Having demonstrated that these tests fall within the range of
Stokes number and ¢* values which are known to support the
generation of added-mass recovery, we associate the cause for
the non-occurrence of resonance to the misalignment of added-
mass variation and translational velocity of the oscillator. This
ensures that a revision of the actuation routine capable of
ensuring the correct frequency of pulsation and correct phasing
with the translation of the oscillator will yield the onset of
parametric resonance.
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