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ABSTRACT 24 

 25 

Droughts and heat waves have important impacts on multiple sectors including water 26 

resources, agriculture, electricity generation, and public health, so it is important to 27 

understand how they will be affected by climate change. However, there is large 28 

uncertainty in the projected changes of these extreme events from climate models. We 29 

compare historical biases in models against their future projections to understand and 30 

attempt to constrain these uncertainties. Historical biases in precipitation, near-surface air 31 

temperature, evapotranspiration, and a land-atmospheric coupling metric are calculated 32 

for 24 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) against 33 

the North American Land Data Assimilation System Phase 2 (NLDAS-2) as reference for 34 

1979-2005. Biases are highly correlated across variables, with some models being hotter 35 

and drier, and others wetter and cooler. Models that overestimate summer precipitation 36 

project larger increases in precipitation, evapotranspiration, and land-atmospheric 37 

coupling over important agricultural regions by the end of the 21st century (2070-2099) 38 

under RCP8.5, although the percentage variance explained is low. Changes in the 39 

characteristics of droughts and heat waves are calculated and linked to historical biases in 40 

precipitation and temperature. A method to constrain uncertainty by ranking models 41 

based on historical performance is discussed but the rankings differ widely depending on 42 

the variable considered. Despite the large uncertainty that remains in the magnitude of the 43 

changes, there is consensus amongst models that droughts and heat waves will increase in 44 

multiple regions in the US by the end of the 21st century unless climate mitigation actions 45 

are taken. 46 
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 47 

1. INTRODUCTION 48 

 49 

Droughts and heat waves are two of the most damaging natural hazards that affect water 50 

resources (Dawadi et al. 2012), agriculture (Lesk et al. 2016), electricity generation (Vliet 51 

et al. 2016), and public health (Anderson and Bell 2011). When these extreme events 52 

impact large expanses of cultivated areas, they can cause water and heat stress to plants 53 

and crops (Lobell et al. 2013; Hatfield and Prueger 2015), reducing yields and potentially 54 

leading to increases in food prices (World Bank 2012). Droughts and heat waves result 55 

from climate variability, but climate change may increase their frequency, severity, and 56 

other characteristics (IPCC 2013).  57 

 58 

Multiple studies have explored the potential future changes in extreme events (Orlowsky 59 

and Seneviratne 2013; Sillmann et al. 2013; Maloney et al. 2014; Wuebbles et al. 2014), 60 

including droughts (Sheffield and Wood 2008; Dai 2011; Trenberth et al. 2013; Jeong et 61 

al 2014; Cook et al. 2015; Touma et al. 2015) and heat waves (Abatzoglou and Barbero 62 

2014; Russo et al. 2014) over North America. These were based on climate model 63 

experiments from the Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et 64 

al. 2012) that informed the Intergovernmental Panel on Climate Change 5th Assessment 65 

Report (IPCC 2013). Past work has also looked at impacts of droughts and heat waves on 66 

agriculture (Mishra and Cherkauer 2010; Lobell et al. 2013; Lobell et al. 2014) and how 67 

this sector may be affected over North America under different climate change scenarios 68 

(Parry et al. 2004). While common trends have been identified, such as the drying of the 69 
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US Southwest and rising air temperatures throughout North America, there is still high 70 

uncertainty in the future projections (Allen et al. 2000; Knutti et al. 2008; Knutti and 71 

Sedláček 2013), especially regarding extreme events (Burke and Brown 2008; Sheffield 72 

and Wood 2008). 73 

 74 

This uncertainty results from a variety of sources, including internal variability of the 75 

climate system (Deser et al. 2014), the degree of future mitigation of anthropogenic 76 

greenhouse gases (Diffenbaugh and Giorgi 2012), and the climate models used (Knutti et 77 

al. 2010; Cheruy et al. 2014; Friedlingstein et al. 2014). The relative contribution of each 78 

of these uncertainty sources to the overall value depends on the time horizon of the 79 

projections. For example, internal variability dominates uncertainty in the present and can 80 

have important contributions even up to 50 years into the future (Thompson et al. 2015), 81 

while uncertainties regarding emissions and climate models play an increasing role 82 

through the end of the century (Hawkins and Sutton 2009). Internal variability is difficult 83 

to predict because it arises from complex interactions within the climate system. 84 

Similarly, it is challenging to predict greenhouse gas emissions because they depend on 85 

human development and mitigation efforts. Uncertainty from climate models occurs 86 

because they include different sets of physical processes, use different parameterizations, 87 

or have different spatial and vertical resolutions, even though they share significant 88 

components and seek to solve the same general physical equations (Knutti et al. 2013).  89 

 90 

The work presented here focuses on the uncertainty in future projections of droughts and 91 

heat waves derived from the diversity of climate models in CMIP5, and seeks to 92 
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constrain it by using information on the models’ historical biases. These biases are 93 

calculated using observationally constrained model output for key variables of the land 94 

surface, near-surface atmosphere, and their interactions, which are important in 95 

representing and controlling the occurrence of droughts, heat waves, and their feedbacks. 96 

Land-atmospheric (L-A) coupling is one of the main physical processes examined. This 97 

represents how much influence the land surface has on the lower part of the atmosphere 98 

and vice versa. The type of coupling determines whether a region is water-limited 99 

(evapotranspiration is positively correlated with soil moisture), energy-limited 100 

(evapotranspiration is negatively correlated with soil moisture), or in a transition zone 101 

(Seneviratne et al. 2010), with important implications for the occurrence of droughts and 102 

heat waves. L-A coupling can intensify droughts and increase their persistence (Wu and 103 

Kinter 2009; Roundy et al. 2013; Roundy et al., 2014), and generate and strengthen local 104 

heat waves (Fischer et al. 2007a,b; Lorenz et al. 2010; Berg et al. 2014; Miralles et al. 105 

2014). Compound events, where droughts and heat waves take place simultaneously, 106 

cause large damages to crops due to both water and heat stress (Lesk et al. 2016). It is 107 

expected that L-A coupling will become more important in the future under climate 108 

change, especially for regions under transitional and dry regimes (Dirmeyer et al. 109 

2013a,b). If this is the case, a stronger feedback between the land surface and the 110 

atmosphere may lead to increased drought persistence and intensity, and frequency of 111 

compound events.  112 

 113 

An accurate depiction of the historical climate is a necessary, albeit not sufficient, 114 

condition to have confidence in the projections of a given climate model (Tebaldi and 115 
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Knutti 2007). For example, models that have positive temperature biases in the historical 116 

period have been shown to project larger increases in temperatures (Cheruy et al. 2014) 117 

because they generally overestimate incoming shortwave radiation due to 118 

misrepresentation of cloudiness. Furthermore, biases in L-A coupling strength can have 119 

an important impact on models’ future projections. If a model displays stronger coupling, 120 

more incoming radiation will heat the lower atmosphere, especially during dry soil 121 

moisture periods (Seneviratne et al. 2010; Jaeger and Seneviratne 2011). This may then 122 

lead future increases in net radiation from increased CO2 to be exaggerated. Conversely, 123 

if a model is too wet and coupling too weak, potential trends in desertification, droughts, 124 

and heat waves will be underestimated due to dampening of these land-atmospheric 125 

feedbacks. 126 

 127 

The historical biases are used to develop model rankings based on the climate models’ 128 

historical performance. Many studies have analyzed historical biases in climate models 129 

(e.g. Reichler and Kim 2008; McCrary and Randall 2010; Sheffield et al. 2013a,b) but 130 

have generally not linked performance to uncertainty in future projections. Several 131 

studies have also sought to develop model rankings to inform ensemble means where the 132 

contribution of each model depends on its performance (Brekke et al. 2008; Gleckler et 133 

al. 2008; Santer et al. 2009) instead of the more common “one model, one vote” criterion. 134 

However, not much emphasis has been placed on constraining the uncertainty of droughts 135 

(Wehner et al. 2011) and heat waves in particular, nor do past studies examine how the 136 

choice of performance metrics affects the resulting uncertainty of future projections.  137 

 138 
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2. DATA AND METHODS 139 

 140 

2.1. Data 141 

 142 

Data from 24 CMIP5 models from 14 modeling centers were used and are listed in Table 143 

1 along with their general characteristics. The models were chosen based on the 144 

availability of variables needed for this study, in particular soil moisture at different 145 

layers, or with a total soil column under 2.5 meters. The historical (~1850-2005) 146 

experiment simulations were used to evaluate the models’ biases, and the Representative 147 

Concentration Pathway 8.5 (RCP 8.5; Vuuren et al. 2011) simulations (~2006-2100) to 148 

explore the biases’ relationships with future projections. 149 

 150 

Observational data and observation driven land surface hydrological model output were 151 

taken from the North American Land Data Assimilation System Phase 2 (NLDAS-2; Xia 152 

et al. 2012a,b). The NLDAS-2 runs multiple land surface models over the continental US 153 

at 1/8th degree spatial and 1-hour temporal resolution for 1979 to present, in support of 154 

understanding the land surface hydrological cycle, drought monitoring and forecasting, 155 

and initialization of weather models (Xia et al. 2012a). The NLDAS-2 data have been 156 

evaluated against a range of observations, including streamflow (Xia et al. 2012b), soil 157 

moisture (Xia et al. 2014), soil temperature (Xia et al. 2013), and evapotranspiration 158 

(Peters-Lidard et al. 2011). It provides arguably the best estimate of land-surface 159 

hydrology at high resolution for the contiguous US, in particular for soil moisture and 160 

evapotranspiration, for which direct observations are lacking over large-scales and long 161 
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time periods (> 10 years) (Nearing et al. 2016). Data for two of the NLDAS-2 models 162 

were used to evaluate the CMIP5 historical run climatologies: the Variable Infiltration 163 

Capacity model (VIC; Liang et al. 1994) and the Noah model (Chen et al. 1996). These 164 

two models were chosen because they provided the best overall performance in the 165 

evaluation studies mentioned previously. Data from these two models were averaged to 166 

produce the NLDAS-2 estimates. 167 

 168 

The common time period of 1979-2005 was chosen for the comparisons between the 169 

NLDAS-2 and the CMIP5 historical data. The future changes were calculated between 170 

the end of the 21st century, 2070-2099 and this historical time period. Data from CMIP5 171 

and NLDAS-2 models were interpolated to the grid with the lowest resolution amongst 172 

the models (i.e. 2.8x2.8 degrees). 173 

 174 

2.2. Definition of droughts and heat waves 175 

 176 

There are multiple definitions of a drought (Wanders et al. 2010; Sheffield and Wood 177 

2011; Lloyd-Hughes 2013), and the decision of which to use depends on the application. 178 

We focus on summer agricultural drought calculated from monthly soil moisture (SM, 179 

kg/m2/month) for June, July, and August (JJA), for a standard depth of 2 meters. Some of 180 

the models only report soil moisture for a total soil column depth between 1.5 – 2.5 181 

meters, which was used directly. Other models reported data for multiple soil layers, so 182 

these were interpolated to a 2-meter level, assuming that soil moisture varied linearly 183 

between layers.  184 
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 185 

We carried out tests (not shown) using data from models that reported soil moisture at 186 

multiple layers to understand the impact of using values for slightly shallower (e.g. 1.5 187 

meters) or slightly deeper (e.g. 2.5 meters) columns. Projected changes in drought 188 

frequency, duration, and severity (defined in Table 2) were calculated over the Crop Area 189 

(defined in Figure 2) for twelve models at all their reported depths. All models projected 190 

increases in drought frequency overall. However, three models projected higher increases 191 

in the probability of a drought occurring as a function of depth at an average rate of 5% 192 

per meter. On the other hand, nine models showed decreased changes in drought 193 

frequency as a function of depth with an average rate of -8% per meter. Nine models 194 

projected more severe events as a function of depth, driven mainly by increased drought 195 

duration in deeper soil columns. This suggests that models with deeper soil columns will 196 

tend to underestimate changes in drought frequency and overestimate their severity 197 

compared to a 2-meter baseline. How much so depends greatly on the model.  198 

 199 

To quantify and understand the historic biases and future changes in soil moisture (and 200 

hence drought), three other variables were considered: monthly precipitation (Prcp, 201 

kg/m2/month), evapotranspiration (ET, kg/m2/month), and near-surface air temperature 202 

(Tas, K). JJA climatologies for the historic and future periods were calculated for all 203 

variables. The winter (December, January, February or DJF) and spring (March, April, 204 

May or MAM) climatologies were also calculated for precipitation because summer 205 

droughts are related to the previous seasons via snowpack and soil moisture persistence. 206 

Daily maximum near-surface air temperature (Tasmax, K) was used to identify heat 207 
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waves (Lau and Nath 2012). Since heat waves usually last on the order of days to weeks, 208 

daily data between June 1st and August 31st were used.  209 

 210 

Drought events were calculated from monthly soil moisture fields over a depth between 211 

1.5 and 2.5 meters, depending on the model. An empirical cumulative distribution 212 

function (ECDF) was calculated for each summer month (i.e. June, July, August) for the 213 

historical period for each grid cell, and was used to calculate a percentile value for each 214 

month throughout the record. A month was defined to be under drought if soil moisture 215 

was below the 20th percentile (Sheffield et al. 2009). For future projections, the ECDF of 216 

the historical period was used to calculate the equivalent percentile for the future soil 217 

moisture values, thus including any shifts in the climatology as well as changes in 218 

variability.  219 

 220 

There are also several definitions of heat waves (Robinson 2001; Della-Marta et al. 2007; 221 

Fischer et al. 2007a; Anderson and Bell 2011; Lau and Nath 2012). It is common to use a 222 

fixed value threshold for a given number of consecutive days (e.g. above 30 ºC for five 223 

days) (Della-Marta et al. 2007). This has the advantage of being easily translated to 224 

agricultural impacts where these thresholds have been linked to reduced yields (e.g. 225 

Lobell et al. 2013). Nevertheless, this type of definition poses a challenge when using 226 

CMIP5 data because models have temperature biases, leading to under or overestimation 227 

of heat waves relative to observations depending on the sign of the biases. Another 228 

definition of heat waves is based on percentiles (e.g. Anderson and Bell 2011), similar to 229 

our definition of soil moisture drought. This has the advantage of bypassing biases in 230 
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temperature by defining the extreme events relative to the climatology of each model. For 231 

this reason, the latter method was chosen. Heat waves were calculated based on Tasmax, 232 

when values were above the 80th percentile (for consistency with the drought analysis) for 233 

five consecutive days, based on the ECDF for each day in JJA. For future heat waves, the 234 

historical ECDF was used to calculate the percentile values.  235 

 236 

Yearly frequency, mean duration, mean intensity, and mean severity were calculated for 237 

both droughts and heat waves. The respective equations are defined in Table 2.  238 

 239 

2.3. Definition of land-atmosphere coupling strength 240 

 241 

Land-atmosphere processes depend largely on the type and strength of the dependence of 242 

evapotranspiration on soil moisture (Seneviratne et al. 2010), and whether it is water-243 

limited, radiation-limited, or transitional. The strength of the coupling is also modulated 244 

by the magnitude of evapotranspiration. For example, in dry regions, the correlation 245 

between soil moisture and evapotranspiration is large and positive. However, as 246 

evapotranspiration is generally low, there is little feedback with the atmosphere. 247 

Therefore, strong L-A interactions take place where there is a combination of strong 248 

positive correlation between soil moisture and evapotranspiration, and a relatively high 249 

evapotranspiration rate. 250 

 251 

Several metrics have been proposed to quantify the type and strength of L-A coupling 252 

and how they are represented in climate models (Koster et al. 2002; Dirmeyer 2006; 253 
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Dirmeyer et al. 2006). One metric commonly used in the literature (Dirmeyer et al. 254 

2013b) is the correlation of interannual evapotranspiration (or latent heat flux) and soil 255 

moisture ρ(SM,ET), multiplied by the interannual standard deviation of 256 

evapotranspiration σ(ET), shown in Equation 1:  257 

(ET) (SM,ET)                            (1)  

 

258 

The correlation identifies if a region is typically water or energy limited over a timespan 259 

of decades. The standard deviation multiplier adds information about the variability of 260 

the evaporative flux throughout the data record. Thus, the metric quantifies the variability 261 

of land-atmospheric coupling strength within a region from year to year. However, for 262 

this study, it is more important to use the evapotranspiration climatology (the average of 263 

the flux’s strength) instead, to capture the regions where, generally, the land surface has 264 

the capability of impacting the atmosphere within the summer season.  265 

 266 

Figure 1 plots the mean JJA evapotranspiration against the interannual standard deviation 267 

of JJA evapotranspiration for water-limited, radiation-limited, and transition regions in 268 

the domain of the two NLDAS-2 models. Grid-cells are defined as water-limited when 269 

the correlation between soil moisture and evapotranspiration is significant (p<0.05) and 270 

larger than 0.3, as radiation-limited when this correlation is significant and negative with 271 

a magnitude larger than 0.3, and as transition otherwise. While this threshold is arbitrary, 272 

the sensitivity of the grid-cell classification to it is low until high thresholds (R=0.5-0.8) 273 

are chosen. This shows that there are water-limited regions with high mean values and 274 

low standard deviations, as well as regions with low mean values and high standard 275 

deviations. Therefore, to better account for seasonal L-A feedbacks, we modify the 276 
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coupling metric by replacing the interannual standard deviation by the mean value μ(ET), 277 

and normalizing by the maximum evapotranspiration value throughout the domain 278 

max(ET), as shown in Equation 2:  279 

(ET)
(SM,ET)                       (2)

max(ET)


   280 

This normalization bounds the metric between -1 (strongly radiation-limited) and 1 281 

(strongly water-limited).  282 

 283 

The spatial patterns of interannual correlations between JJA soil moisture and 284 

evapotranspiration are very similar for both Noah and VIC (not shown), with the largest 285 

difference over the Southeast, where Noah shows higher mean evaporative fluxes 286 

compared to VIC. To account for the uncertainty of these estimates, we averaged the 287 

model values to a single NLDAS-2 ensemble mean. The percentage errors of the 288 

difference between the models’ estimates with respect to the ensemble mean were 289 

calculated for climatologies in JJA SM, JJA ET and JJA ρ(SM,ET) (both models have the 290 

same meteorological forcings). These were found to be 41%, 33%, and 43%, respectively 291 

when averaged over the entire NLDAS-2 domain. Figure 2 shows the NLDAS-2 292 

ensemble mean of the two coupling metrics given by Equations 1 and 2, i.e. γ and ϕ, 293 

respectively. Note that γ was normalized by the maximum standard deviation value in the 294 

domain to allow for comparison between the two. Here, γ shows a lower coupling in the 295 

US Southeast (a relatively wet region) than over the North of Mexico (a semi-arid 296 

region), in contrast to ϕ. Given that land-atmospheric coupling depends heavily on the 297 

strength of evaporative fluxes, which in turn depend on water availability, one would 298 

expect higher coupling over the US Southeast compared to the North of Mexico. For the 299 
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rest of the study, the domain is split into seven sub-regions based on the spatial patterns 300 

of L-A coupling shown by ϕ.  301 

 302 

L-A coupling is also a function of soil moisture depth, given that evapotranspiration takes 303 

place in the upper region of the soil column, depending on the distribution of the 304 

vegetation’s roots (Rodríguez-Iturbe and Porporato 2004). The 1.5-2.5 meters depth 305 

generally encompasses the root zone and is deep enough to capture longer-lasting soil 306 

moisture memory beyond the frequency of individual storm events. This is in contrast to 307 

the upper soil layer (e.g. 10 cm), which experiences fluctuations at a higher frequency 308 

and therefore does not represent L-A coupling accurately at monthly time scales. 309 

However, soil columns between 2 and 2.5 meters can be deep enough to dampen some of 310 

the coupling strength if the vegetation has shallower roots in a given region. As with the 311 

droughts statistics, we explored the sensitivity of ϕ to soil depth, and found different 312 

sensitivities across models. Nine models showed an expected decrease in coupling with 313 

an average change of 16% per meter relative to the 2-meter value, whilst three models 314 

surprisingly showed an average increase in coupling with soil depth of 2% per meter. 315 

 316 

2.4. Definition of sub-regions 317 

 318 

We define a set of sub-regions that captures the spatial variation in L-A coupling. Figure 319 

2 shows the coupling metric calculated from the average of the NLDAS-2 models. The 320 

Southeast shows the strongest coupling strength in the domain. The Northeast has 321 

negative coupling values as the region is wet and strongly radiation-limited. The 322 
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Northwest and Southwest have strong positive correlations between soil moisture and 323 

evapotranspiration since they are generally drier regions. However, L-A coupling is low 324 

since the seasonal evapotranspiration is also low. An important agricultural region “Crop 325 

Area”  (Bagley et al. 2012) is further split into “Crop Upper” and “Crop Lower” because 326 

the difference in their coupling may have different implications for future changes. 327 

 328 

2.5. Estimation of historical biases and relationship with future projections 329 

 330 

Historical biases in each variable are calculated relative to the NLDAS-2 data, by 331 

averaging the data over each sub-region and subtracting the NLDAS-2 estimates from the 332 

CMIP5 model estimates. In this study the focus is on relating the biases in JJA Prcp to 333 

future projected changes via linear regression across models for each sub-region. This 334 

assumes that there is a linear relationship between the projected changes and the 335 

predictor. However, the biases in different variables are not independent: for example, 336 

biases in Prcp are associated with biases in ET in water-limited regions. We quantify this 337 

dependency by calculating the correlation matrices between the biases for each region 338 

across models.  339 

 340 

3. RESULTS 341 

 342 

3.1. Historical biases in mean climate 343 

 344 
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Figure 3 (a)-(f) show boxplots of the historical biases of MAM and JJA Prcp, JJA ET, 345 

JJA Tas, JJA ρ(SM,ET), and JJA land-atmospheric coupling metric ϕ across the 24 346 

climate models averaged over each sub-region. Additionally, Table 3 lists the biases for 347 

each model for DJF, MAM and JJA Prcp, JJA ET, Tas, and ϕ for the Crop sub-regions. 348 

Of all regional biases, 61.3% were statistically significant (p<0.05) using a two-sample 349 

T-test. Over the Northeast, Northwest, Southwest, and Southeast the CMIP5 models 350 

show median positive biases for MAM Prcp amounting to a median percentage error of 351 

30%, 33%, 76%, and 13%, respectively. Median biases were also found to be positive for 352 

JJA Prcp in these regions, with respective median percentage errors of 18%, 49%, 24%, 353 

and 8%, respectively. All four regions show median positive biases in ET (median 354 

percentage errors of 35%, 37%, 47%, and 18%). These four sub-regions also have small 355 

negative biases in Tas (median percentage errors of 0.44%, 0.84%, 0.55%, and 0.51%, 356 

respectively). The Northeast shows a median positive bias in ϕ (median percentage errors 357 

of 532%), while the Northwest, Southwest, and Southeast show a median negative bias 358 

(median percentage errors of 24%, 32% and 29%). In the Northeast, both components of 359 

ϕ are generally overestimated such that 21 of the models do not represent this region as 360 

being radiation-limited, resulting in such a large percentage error. In the Northwest, 361 

Southwest and Southeast, ϕ is underestimated by the median of the CMIP5 models 362 

because ρ(SM,ET) is underestimated. Here there are probably two competing effects: 363 

models with positive biases in Prcp represent these regions as being less water-limited, 364 

decreasing ρ(SM,ET), while their positive biases in ET increase μ(ET). Biases in ϕ are 365 

then a result of these effects on each of its components over each sub-region. Except for 366 
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the case of Tas for which the climate models represent the climatologies quite well, the 367 

hydrological variables are relatively poorly represented by the median of the models. 368 

 369 

These biases are not independent from each other. The cross-correlations between biases 370 

in each variable across the 24 models are shown in Figure 3(g)-(n). Biases in DJF Prcp 371 

are not shown but were positively correlated with those in MAM Prcp everywhere except 372 

for the Southeast, and with those in JJA Prcp and JJA ET in the Northwest. They were 373 

also negatively correlated with biases in Tas over the Southwest. Models that have higher 374 

JJA Prcp also tend to have higher MAM Prcp (except in the Southeast and Crop areas), 375 

higher JJA ET, lower JJA Tas (except in the Northwest and Southwest), and lower 376 

correlations between SM and ET (except in the Southwest). The lower temperatures are 377 

consistent with a wet bias that induces more ET and more evaporative cooling. 378 

Conversely, models with less summer Prcp also tend to experience a drier spring, lower 379 

ET, higher Tas, and a stronger dependence of ET on SM. Interestingly, no region showed 380 

a significant correlation (p<0.05) between biases in JJA Prcp and biases in ϕ. This is 381 

probably because of the competing effects mentioned in the previous paragraph, whereby 382 

higher Prcp leads to higher ET rates but also lower ρ(SM,ET), thus having mixed effects 383 

on ϕ. Low correlations in other regions may also be related to how the models represent 384 

ET and SM dynamics, irrespective of the biases in Prcp. Overall, the correlations show 385 

that there are common climate regimes for the historical period across the models: 386 

models that are wetter (drier) during the summer, are also wetter (drier) in the spring, 387 

have higher (lower) ET, lower (higher) Tas, and weaker (stronger) relationships between 388 

ET and SM.  389 
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 390 

3.2. Relationship between historical biases and future projected changes in mean climate 391 

 392 

The ranges of projected changes in MAM and JJA Prcp, JJA ET, Tas, ρ(SM,ET), and ϕ 393 

from the 24 climate models are shown in Figure 4 (a)-(f). Furthermore, Table 4 lists the 394 

projected changes for each model for DJF, MAM, and JJA Prcp, JJA ET, Tas, and ϕ over 395 

the Crop sub-regions. The ranges are large and there is no absolute consensus on the sign 396 

of most of these changes across regions. The median of the models show an increase in 397 

MAM Prcp in every sub-region but the Southwest, while the median also shows slight 398 

decreases of JJA Prcp, albeit with several models showing no changes or a positive one. 399 

These two changes are positively correlated across models (Figure 4(g)-(n)) because 400 

those that project the largest decreases in JJA Prcp also project decreases in MAM Prcp, 401 

and those that project no or positive changes in JJA Prcp, project increases in MAM Prcp. 402 

Changes in ET are more uncertain in the Southeast and the Crop Area, though most 403 

models project increases in the Northeast and Northwest, and decrease in the Southwest. 404 

All models and sub-regions show an increase in Tas with a median of 5.0 °C across the 405 

domain. However, some models project an increase of up to 8.5 °C over the Crop Upper 406 

region. This large disparity in projected changes in temperature has been partially 407 

attributed to the models’ historical biases in incoming shortwave radiation due to 408 

misrepresentation of clouds. Models with the highest deficiencies in depicting cloudiness 409 

tend to project the largest temperature increases in midlatitude areas globally (Cheruy et 410 

al. 2014). The median of the models shows projected increases in the correlation between 411 
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SM and ET, and the coupling metric except for the Southwest, although there is large 412 

disagreement on the signs of these changes.  413 

 414 

To understand how the projected changes in each variable are related, their cross-415 

correlations were calculated across models for each sub-region (Figure 4(g)-(n)). 416 

Changes in DJF Prcp are not included as they were only positively correlated with 417 

changes in MAM Prcp over the Southwest, Southeast, and the Crop areas. There are 418 

several strong correlations for changes in temperature, which are negatively correlated 419 

with changes in JJA Prcp in the Northeast, Southwest, Southeast, and the Crop areas. 420 

This shows that by the end of the century, the models tend to fall into a range of climates 421 

over certain regions. On one hand, models with higher increases in JJA Prcp are likely to 422 

also have a wetter spring over the Southwest, Southeast, and Crop areas, higher JJA ET 423 

rates across regions, stronger ϕ (except in the Northeast and Northwest) and dampening 424 

the JJA Tas increase (except in the Northwest). Conversely, models that exhibit the 425 

highest increases in temperature also tend to experience the largest decreases in Prcp and 426 

ET, and a weakening of ϕ.  427 

 428 

A linear regression was fitted between the historical biases in JJA Prcp and the projected 429 

changes in MAM and JJA Prcp, JJA ET, Tas, ρ(SM,ET), and ϕ across climate models and 430 

for each sub-region. Figure 5 displays the regression slopes and R2 values (left panels), 431 

and intercepts (right panels). No significant relationships (p<0.05) were found with 432 

changes in DJF Prcp, so they are not shown.  433 

 434 
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Figure 5 shows that for the Northeast, Northwest, and the Crop Area, a positive bias in 435 

JJA Prcp is related to larger positive increases in MAM Prcp, amounting to 20%, 40%, 436 

and 18% of the variance in the model projections in each region, respectively. The same 437 

relationship is evident for changes in JJA Prcp over the Southeast and the Crop Area, 438 

though models with smaller bias (close to the regression intercept) project a decrease in 439 

Prcp in the Southeast (shown by the negative regression intercept) and no change over the 440 

Crop Area. The percentages of the variance explained by this relationship are 19% and 441 

22%, respectively. For example, the regression slope and intercept of the projected 442 

changes in JJA Prcp against bias in JJA Prcp over the Crop Area are 0.26 mm month-443 

1/mm month-1 and -1.7 mm month-1, respectively (p=0.036). This positive relationship 444 

between historical bias in JJA Prcp and its projected changes means that a wetter model 445 

during the historical period will tend to project a wetter US by the end of the 21st century 446 

if the bias is large, or little change in JJA Prcp if the bias is small.  447 

 448 

Projected future changes in ϕ in the Northwest, Southeast, and the Crop Area also show 449 

significant positive relationships with biases in JJA Prcp, with percentage variances 450 

explained of 23%, 36%, and 28%, respectively. These are related to greater increases in 451 

ET rates (slope = 0.24 mm month-1/mm month-1 increase over the Crop Area) and greater 452 

strengthening of ρ(SM,ET) (slope = 0.002 1/mm month-1 increase in the Crop Area) in 453 

historically wetter models. This last relationship is particularly interesting since wetter 454 

models during the historical period were found to be associated with weaker ρ(SM,ET) 455 

(Figure 3(g)-(n)). The relationships from Figures 4(g)-(n) show that these same wetter 456 

models project increases in ρ(SM,ET), albeit with a very shallow slope. Thus, wetter 457 
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models during the historical period project a strengthening of the coupling due to 458 

increases in both components of ϕ in the future within the Southeast and the Crop Area, 459 

though especially due to that in ET. A possible explanation for this is that higher future 460 

temperatures will drive increases in ET such that the regions become more water-limited 461 

despite increases in Prcp. In turn, drier models during the historical period project a 462 

weakening of ϕ likely due to the decreases in ET associated with decreases in JJA Prcp, 463 

since the small slope of the correlation component suggests that it has little impact on the 464 

overall changes of ϕ. In the Northwest, models with little bias in JJA Prcp tend to project 465 

a decrease in JJA ET. A drier model in this region would then tend to project an even 466 

larger decrease and a wetter model a very small decrease, or even an increase in JJA ET 467 

if the JJA Prcp bias was large.  468 

 469 

3.3. Implications for Extreme Events: Droughts and Heat Waves 470 

 471 

Figures 6 and 7 show the changes in yearly frequency plotted against changes in mean 472 

severity of drought and heat wave events, respectively. There are strong positive 473 

relationships between changes in drought frequency and severity throughout every sub-474 

region, with R-values ranging from 0.64 in the Northwest and Crop Area, to 0.82 in the 475 

Northeast. Therefore, models that show the highest increases in the number of droughts 476 

relative to the historical period also experience larger increases in drought severity, which 477 

is to be expected given the use of a fixed percentile based threshold.  478 

 479 
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For example, MIROC5, MIROC-ESM, and MIROC-ESM-CHEM project the largest 480 

increases in drought frequency over the Crop Area, together with soil moisture drying 481 

(not shown). This is likely driven by their projected reductions in JJA rainfall (-10.6, 482 

12.6, and 10.2 mm/month, respectively ) over this area relative to changes in ET (-0.2, -483 

1.6, -0.6 mm/month, respectively), as shown in Table 4. Additionally, Table 3 displays 484 

that two of them have large negative biases in JJA Prcp (-3.9, -18.8, -15.1 mm/month, 485 

respectively).  486 

 487 

Figure 7 shows that models exhibit a positive relationship between increases in heat wave 488 

frequency and severity throughout the domain, with the strongest correlation (R=0.58) 489 

over the Northeast.  Two models that project large increases in heat wave frequency and 490 

severity are MIROC-ESM and GFDL-CM3. Both these models project higher changes in 491 

daily maximum and monthly values of near-surface air temperature (not shown). Given 492 

the projected changes and biases in MIROC-ESM already discussed, its projected 493 

increases in heat waves are possibly due to the increased partitioning of incoming 494 

radiation into sensible heat flux. GFDL-CM3, on the other hand, has a small positive bias 495 

in JJA Prcp of 5.9 mm/month and projects an increase in Prcp (8.3 mm/month) and ET 496 

(21.5 mm/month). In this case, it could be that larger-scale factors are responsible for the 497 

higher increases in temperature (7.2 K compared to the 24 model ensemble increase of 498 

5.3 K). Another possible explanation is that there might be changes in the distribution of 499 

rainfall throughout the summer, which might leave longer drier periods that might 500 

encourage the formation of heat waves.  501 

 502 
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A Spearman rank correlation was calculated between the absolute projected changes in 503 

each of the characteristics of droughts and the historical biases in JJA Prcp. This was 504 

repeated for the changes in heat waves and biases in JJA Tas. The results are shown in 505 

Figure 8. Drought yearly frequency has significant (p<0.05) negative correlations with 506 

biases in JJA Prcp over the Northeast, Southeast, the Crop Area and Crop Upper. 507 

Drought mean intensity has similar negative correlations with biases in JJA Prcp over the 508 

Northeast and the Southeast. Drought mean duration is also correlated with biases in JJA 509 

Prcp over the Northeast, Southeast, Crop Area, and Crop Lower. Finally, drought mean 510 

severity is negatively correlated with biases in JJA Prcp over every region except for the 511 

Northwest and Southwest. These results show that wetter models during the historical 512 

period tend to project less frequent, less intense, and shorter droughts, while drier models 513 

will produce more extreme projections of these drought characteristics in many of the 514 

sub-regions, particularly over those important for agriculture.  515 

 516 

Fewer significant Spearman rank correlations were found between biases in JJA Tas and 517 

changes in heat wave characteristics (and none with biases in JJA Prcp). These biases are 518 

correlated with changes in heat wave yearly frequency over the Northeast and Crop 519 

Upper. Changes in mean intensity are also correlated with these biases over Crop Upper 520 

and the Northwest. Significant relationships were found for the changes in heat wave 521 

mean duration and mean severity, but solely over the Northwest. While these 522 

relationships are fewer, given the correlation between biases in JJA Tas and JJA Prcp we 523 

can infer (albeit rather weakly) that drier and hotter models produce more extreme 524 
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projections for heat waves, mainly over the Northwest region, compared to those models 525 

that tend to be wetter and cooler over the historical period. 526 

 527 

4. DISCUSSION AND CONCLUSIONS 528 

 529 

4.1. Potential constraints on the uncertainty of future projections 530 

 531 

The question remains whether it is possible to use the information on the model biases to 532 

constrain the uncertainty of future projections. In this section we use the biases to rank 533 

the models, assuming that an accurate representation of the historical climate is necessary 534 

(albeit not sufficient) for trusting the projected changes in future hydroclimate and its 535 

extremes. There is an incentive to develop these model rankings because climate change 536 

impact studies often select a small subset of the climate models on which to base their 537 

analyses (e.g. Brekke et al. 2009; Schewe et al. 2014). Since small subsets of climate 538 

models are driving the community’s research on the potential impacts of climate change 539 

(e.g. Gerten et al., 2011; Hagemann et al., 2011; Warszawski et al., 2014; Frieler et al., 540 

2015), one would desire for the “best” models to be used, whilst encompassing a realistic 541 

range of uncertainty for the timeframe of interest (e.g. near-term, mid-century, end-of-542 

century). Constraining the uncertainty that arises from model diversity is important 543 

because it represents the largest contribution of the overall uncertainty of climate change 544 

by the end of the century for a given RCP scenario (Hawkins and Sutton 2009).  545 

 546 
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The 24 models were ranked according to the absolute values of their biases in JJA Prcp, 547 

JJA Tas, JJA ET, and JJA ϕ. These rankings were done separately for each variable. A 548 

Spearman correlation analysis between the rankings showed positive significant 549 

correlations (p<0.05) between those from JJA Prcp and JJA ET (R=0.53), and those from 550 

JJA Tas and JJA ET (R=0.45). A negative and significant correlation was found between 551 

the rankings derived from JJA ET and JJA ϕ (R=-0.57). More details can be obtained 552 

from Table 3. The lack of more correlated rankings is possibly because negative biases 553 

are treated the same as positive ones and because a discrete ranking may amplify the 554 

differences between models with statistically similar biases. 555 

 556 

To understand the error in the uncertainty range that derives from selecting a subset of 557 

the 24 models, we randomly sampled subsets of models and compared their ranges of 558 

projections to those when selecting the top performing models according to the rankings. 559 

This was done using bootstrap sampling whereby a subset of models was selected at 560 

random 1,000 different times from the ensemble of 24 climate models. The interquartile 561 

range of the projected changes in droughts and heat waves was calculated for each 562 

sample as a measure of uncertainty. This sampling was done for sample sizes from 5 to 563 

23 models to quantify how this uncertainty range changes as a function of the sample 564 

size. In parallel, subsets of models (from 5 to 23 models) were selected according to the 565 

four rankings over the Crop Area and the interquartile range of their projected changes 566 

calculated. This allowed us to compare the uncertainty derived when selecting the “better 567 

performing” models as opposed to selecting the same number of models at random. 568 

 569 
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The results of this uncertainty analysis are displayed in Figure 9. The median of the 570 

bootstrap analysis shows that selecting a small sample of models (e.g. 5) at random will 571 

likely underestimate the variance of the projected changes compared to that from the 24 572 

models. Selecting a small sample of models using the rankings based on JJA Prcp, Tas, 573 

and ϕ yields overall larger uncertainty ranges for the projected changes in drought yearly 574 

frequency than the median of the bootstrap analysis. Conversely, the ranking from JJA 575 

ET consistently produces a lower uncertainty range. For the changes in drought severity, 576 

all the rankings lead to lower uncertainty ranges for most of the model samples, although 577 

the rankings from JJA Prcp and ET approach the median value from the bootstrap for 578 

samples larger than 13 models. For the changes in heat wave frequency, all the rankings 579 

consistently yield higher uncertainty ranges than the bootstrap median. However, they all 580 

lie close to the bootstrap median when analyzing the projected changes in heat wave 581 

severity.  582 

 583 

This analysis suggests that selecting small subsets of the CMIP5 models will most likely 584 

artificially reduce the uncertainty range of the projections in question (Knutti et al. 2010) 585 

regardless of how the models are chosen. It also reiterates the challenge of developing 586 

consistent model rankings (e.g. Gleckler et al. 2008), even with a particular application in 587 

mind (in this case, to study droughts and heat waves). Here we show that even when 588 

historical biases in hydroclimatic variables account for some of the variability of 589 

projections across models, it is not enough to generate consistent model rankings that can 590 

constrain the projections’ uncertainty ranges.  591 

 592 
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Without being able to determine the “best” models in a logical and rigorous way, it might 593 

be more appropriate to span the full range of model uncertainty, as we know it. This 594 

would allow for a more accurate characterization of the potential impacts of climate 595 

change. As shown by Figure 9, it is possible in some cases to increase the likelihood of 596 

matching the full uncertainty range using a large enough subset (e.g. 10 models). 597 

However, the uncertainty may still be under- or overestimated depending on the subset. 598 

Studies that use a small number of climate models chosen arbitrarily should be cautious 599 

in their conclusions, since they are likely underestimating the range of possible outcomes 600 

resulting from climate change by artificially selecting a small subset. Model uncertainty 601 

is an important component of the overall uncertainty estimates of climate change both at 602 

short and long time scales, so it should not be neglected by arbitrarily choosing a small 603 

number of models.   604 

 605 

 4.2. Caveats  606 

 607 

While there are more models available in the CMIP5 archive than the 24 that were 608 

analyzed here, they were not selected because they did not report soil moisture content at 609 

different layers, had a total soil column deeper than 2.5 meters, or were not readily 610 

available from the CMIP5 data portal. The selection of 24 models may underestimate the 611 

full uncertainty range from the CMIP5 models, as indicated by the sub-sampling 612 

experiments. Nevertheless this is likely to be small since there are decreasing marginal 613 

returns in added uncertainty as more models are added after around 10-15 models (Knutti 614 

et al. 2010; Ferro et al. 2012). A key question is whether the full CMIP5 ensemble of 615 
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models represents the true uncertainty, or whether further diversity in the models is 616 

needed in terms of which processes are represented and how (Tebaldi and Knutti 2007; 617 

Knutti et al. 2010). 618 

 619 

Linear relationships were found between historical biases and future projections, though 620 

the percentage of variance explained was relatively low for most variables and regions. 621 

This shows that using the climatologies of hydroclimatic variables to generate model 622 

rankings is not effective enough to reduce the uncertainty ranges, since there are many 623 

other factors involved. Moreover, the historical biases considered here were calculated 624 

from the limited time period of 1979-2005 that spans 27 years, so decadal variability is 625 

not fully captured by these climatologies leading to uncertainty in the calculated biases.  626 

 627 

Nevertheless, the relationships of the historical biases on the models’ future projections 628 

also show that simply removing the historical bias from future projections data will not 629 

be enough to remove the effects that a model’s historical biases has on its resulting 630 

projections. More advanced statistical bias correction methodologies (e.g. Li et al. 2010; 631 

Hagemann et al. 2011) take into account the full distribution of the variables using 632 

quantile matching. However, future bias correction studies should also take into account 633 

the relationships between historical biases and projected changes that were explored here. 634 

 635 

4.3. The role of land-atmospheric coupling 636 

 637 
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We show that there are significant biases across models in our chosen coupling metric 638 

that manifest in misrepresentation of whether a region is water-limited or radiation-639 

limited as well as the magnitude of evapotranspiration. This study agrees with previous 640 

ones that have found that L-A coupling may intensify in the future over a large part of the 641 

US (Dirmeyer et al. 2013a,b). Depending on the main control of evapotranspiration in a 642 

region, the effect of strengthening L-A coupling would be different. For example, the 643 

projected increase in coupling strength in the Southeast and the Crop Area, which are 644 

already water-limited, could help drive the increase in drought persistence and severity. It 645 

could also lead to higher local increases in near-surface air temperature, leading to more 646 

frequent and intense heat waves and compound events. These potential increases in 647 

extreme events pose high dangers to future agriculture in the region.   648 

 649 

4.4. Conclusions 650 

 651 

This study quantified the biases of 24 CMIP5 models for precipitation, 652 

evapotranspiration, near-surface air temperature, and land-atmospheric coupling over the 653 

US. The ensemble of models tends to be biased wet and cool in most of the country and 654 

dry and warm in the Southeast for 1979-2005. These biases were linked to projected 655 

changes in the climatologies of hydrometeorological variables and extreme events under 656 

the RCP 8.5 scenario by the end of the 21st century. The wetter the models are during the 657 

historic period, the wetter they tend to project the end of the century to be due to larger 658 

increases in precipitation, and vice versa. This study finds stronger relationships between 659 

historical biases over the US, compared to the results of Knutti et al. (2010), carried out 660 
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at a global scale. However, in most cases the relationships found in this work only 661 

accounted for a small fraction of the observed variance across models. 662 

 663 

Most models agree on a general drying trend in soil moisture by the end of the 20th 664 

century, and therefore more frequent and severe droughts are expected in the future. 665 

There is a wide range of projected changes that were often inversely correlated with 666 

historical biases in precipitation, such that wetter (drier) models projected smaller (larger) 667 

changes in drought characteristics. However, changes in DJF Prcp were significantly 668 

correlated with changes in droughts (not shown), but few relationships were found 669 

between this and other changes or with the historical biases, showing that there are other 670 

factors involved in the projected changes in droughts.  All models show a positive shift in 671 

near-surface air temperature towards higher temperatures by the end of the century. 672 

Given these changes, all models project increases in heat wave frequency and severity, 673 

with large uncertainty across models. To a lesser degree, this range of projected changes 674 

in heat wave characteristics was also related to historical biases in near-surface air 675 

temperature.  676 

 677 

This work has reiterated the challenge of constraining the uncertainty of future 678 

projections of droughts and heat waves. Here the focus was on the US, though it is likely 679 

that similar results would be obtained for other regions. There are, however, some 680 

changes with which most of the models in this study agree: there will be more frequent 681 

and severe droughts in the Southwest and the Southeast, and heat waves throughout the 682 

US by the end of the century if we follow the path given by the RCP8.5. The uncertainty 683 
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lies mainly in the magnitude of these changes, rather than on their direction. Further 684 

attempts to constrain model uncertainty may focus instead on model performance at the 685 

process level, providing more insights on the origins of biases in climatologies used here. 686 

In the meantime, until a robust methodology to rank climate models is developed, 687 

researchers should aim to include more climate models in their impacts studies to 688 

characterize the possible range of projections more accurately.  689 

 690 
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TABLES  1004 
 1005 

Model Center Type 

Atmospheric 

Horizontal Resolution 

(lon.  x lat.) 

Number 

of model 

levels 

Reference 

ACCESS1-0/3 Commonwealth Scientific and Industrial 

Research Organization/Bureau of 

Meteorology, Australia 

AO  1.875 x 1.25 38 Bi et al. (2012) 

BCC-CSM1.1 Beijing Climate Center, China 

Meteorological Administration, China 

ESM 2.8 x 2.8 26 Xin et al. (2012) 

BCC-CSM1.1-M Beijing Climate Center, China 

Meteorological Administration, China 

ESM 1.125 x 1.125 26 Xin et al. (2012) 

CanESM2 Canadian Center for Climate Modeling and 

Analysis, Canada 

ESM 2.8 x 2.8 35 Arora et al. (2011) 

CMCC-CM Centro Euro-Mediterraneo sui Cambiamenti 

Climatici Climate Model, Italy 

AO 0.75 x 0.75 31 Scoccimarro et al. 

(2011) 

CNRM-CM5.1 National Centre for Meteorological 

Research, France 

AO 1.4 x 1.4 31 Voldoire et al. (2013) 

FGOALS-S2.0 LASG, Institute of Atmospheric Physics, 

Chinese Academy of Sciences 

AO 2.8 x 1.6 26 Bao et al. (2012) 

GFDL-CM3 NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

AO 2.5 x 2.0 48 Donner et al. (2011) 

GFDL-ESM2G/M NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

ESM 2.5 x 2.0 48 Donner et al. (2011) 

HADGEM2-CC Met Office Hadley Centre, UK ESM 1.875 x 1.25 60 Jones et al. (2011) 

INMCM4 Institute for Numerical Mathematics, Russia AO 2.0 x 1.5 21 Volodin et al. (2010) 

 1006 
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IPSL-CM5A-LR Institut Pierre Simon Laplace, France ChemESM 3.75 x 1.9  39 Dufresne et al. (2012) 

IPSL-CM5A-MR Institut Pierre Simon Laplace, France ChemESM 2.5 x 1.25 39 Dufresne et al. (2012) 

IPSL-CM5B-LR Institut Pierre Simon Laplace, France ChemESM 3.75 x 1.9 39 Dufresne et al. (2012) 

MIROC5 Atmosphere and Ocean Research Institute 

(The University of Tokyo), National 

Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science and 

Technology, Japan 

AO 1.4 x 1.4 40 Watanabe et al. (2010) 

MIROC-ESM Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean 

Research Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies 

ESM 2.8 x 2.8 80 Watanabe et al. (2010) 

MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean 

Research Institute (The University of 

Tokyo), and National Institute for 

Environmental Studies 

ChemESM 2.8 x 2.8 80 Watanabe et al. (2010) 

MPI-ESM-LR Max Planck Institute for Meteorology, 

Germany 

ESM 1.9 x 1.9 47 Giorgetta et al. (2013) 

MPI-ESM-MR Max Planck Institute for Meteorology, 

Germany 

ESM 1.9 x 1.9 47 Giorgetta et al. (2013) 

MRI-CGCM3 Meteorological Research Institute, Japan AO 1.125 x 1.121 48 Yukimoto et al. (2011) 

MRI-ESM1 Meteorological Research Institute, Japan ESM 1.125 x 1.121 48 Yukimoto et al. (2011) 

NorESM1-M Norwegian Climate Center, Norway ESM 2.5 x 1.9 26 Zhang et al. (2012)  

Table 1. CMIP5 models evaluated in this study and their attributes. Model types are: Atmosphere-Ocean coupled (AO), Earth System 1007 

Model (ESM), and Earth System Model Chemistry coupled (ChemESM)1008 
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Statistic Definition 
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Table 2. Definitions of the statistics used to characterize droughts and heat waves. Here, 1010 

nextremes is the number of years with at least one drought or heat wave, nyears is the number 1011 

of years in the historical or future period, nevents is the number of events per season, di,j is 1012 

the duration of event j in year i, nmonths and ndays are the number of months and days a 1013 

drought and a heat wave lasted, respectively, and pi,j,k is the percentile during month/day k 1014 

in event j in year i. Note that for droughts the intensity is defined as 1-pi,j,k,, such that drier 1015 

conditions with lower percentiles translate to a higher intensity value. This definition of 1016 

severity combines the duration of each event as well as the deviations from the threshold.1017 



 48 

Table 3. Biases in DJF Prcp (mm/month), MAM Prcp (mm/month), JJA Prcp (mm/month), JJA ET (mm/month), JJA Tas (K), JJA ϕ 1018 

(unitless) for the Crop sub-regions. 1019 
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ACCESS1-0 22.3 16.3 -0.9 27.6 1.4 0.11 20.5 24.2 2.9 40.0 1.9 0.31 25.3 11.7 -4.9 14.7 0.9 -0.07 

ACCESS1-3 26.8 19.0 -1.5 34.9 2.3 0.14 26.2 37.0 -9.1 43.7 3.0 0.35 28.2 6.1 0.7 24.3 1.8 -0.01 

bcc-csm1-1 -1.9 -16.5 -26.2 -12.6 2.0 0.06 16.9 1.4 -13.3 8.7 0.8 0.22 -16.6 -31.4 -37.9 -35.9 2.7 -0.07 

bcc-csm1-1-m 6.8 -3.7 -51.6 -23.3 3.9 -0.01 19.0 17.4 -45.2 -2.1 2.9 0.22 -3.4 -20.5 -60.0 -48.8 4.7 -0.23 

CanESM2 4.7 0.0 -41.3 -15.7 6.0 0.13 13.8 12.3 -46.1 -12.1 7.6 0.25 -4.5 -9.0 -39.5 -20.6 4.6 0.02 

CMCC-CM 12.8 14.2 20.6 33.7 -1.7 0.03 16.3 22.9 31.8 34.4 -2.0 0.13 10.6 7.7 10.1 30.6 -1.4 -0.09 

CNRM-CM5 -4.3 10.1 -17.8 3.5 0.7 0.35 4.5 5.9 -24.3 -1.4 1.2 0.47 -10.5 15.7 -14.0 5.5 0.5 0.24 

FGOALS-g2 0.7 -9.2 -15.3 -6.9 -1.6 0.05 11.5 1.5 -17.6 5.9 -2.4 0.15 -8.2 -18.4 -16.1 -22.7 -1.3 -0.04 

GFDL-CM3 9.2 11.6 5.9 21.1 -1.6 0.09 20.8 18.2 7.7 24.9 -1.7 0.21 -0.2 6.6 2.4 17.5 -2.0 -0.07 

GFDL-ESM2G -2.3 -1.9 4.3 25.7 -0.4 0.08 17.1 12.1 9.3 33.7 -0.8 0.23 -16.7 -11.9 1.2 18.3 -0.7 -0.06 

GFDL-ESM2M 2.2 8.5 -2.2 20.1 0.2 0.10 19.6 17.3 9.8 30.6 0.0 0.20 -10.8 2.1 -10.3 12.6 -0.2 0.01 

HadGEM2-CC 9.8 15.0 -13.9 21.2 1.1 0.20 6.8 16.1 -17.6 27.3 2.1 0.33 12.6 13.4 -13.3 11.4 0.3 0.08 

inmcm4 6.6 23.6 -8.2 25.3 -1.3 0.08 20.9 29.1 -3.3 41.9 -0.9 0.16 -3.9 21.7 -16.2 6.3 -1.8 0.04 

IPSL-CM5A-LR 1.6 -19.9 0.2 10.7 0.3 0.15 23.7 5.0 -10.3 11.2 0.3 0.20 -15.4 -39.0 5.4 6.5 -0.2 0.14 

IPSL-CM5A-MR 11.1 -22.4 -18.8 6.1 1.7 0.10 31.9 5.4 -23.6 8.2 1.8 0.22 -5.3 -45.7 -18.9 -0.6 1.4 0.01 

IPSL-CM5B-LR 8.6 -6.8 13.0 6.0 -1.4 0.02 22.3 -4.6 -10.4 -0.7 -1.6 0.18 -3.0 -11.4 26.3 6.8 -1.6 -0.09 

MIROC5 3.1 -0.4 -3.9 16.6 2.6 0.07 16.7 0.3 -1.9 14.9 3.3 0.27 -8.1 -0.2 -5.2 20.2 2.0 -0.09 

MIROC-ESM -13.6 -3.8 -18.8 10.0 3.2 -0.03 10.4 3.5 -11.9 20.7 4.2 0.21 -30.8 -7.3 -26.2 2.2 2.5 -0.25 

MIROC-ESM-CHEM -12.4 -6.4 -15.1 9.4 3.1 -0.02 9.1 1.6 -8.6 19.5 4.1 0.16 -28.3 -10.6 -20.0 3.0 2.3 -0.15 

MPI-ESM-LR 10.2 22.2 21.0 32.8 -0.5 0.13 27.3 34.3 25.0 34.0 -0.9 0.31 0.2 15.1 19.3 29.1 0.0 -0.03 

MPI-ESM-MR 3.0 18.2 17.1 32.4 -0.1 0.19 27.7 33.0 22.0 36.4 -0.5 0.35 -14.4 8.5 13.4 26.0 0.3 0.05 

MRI-CGCM3 11.7 17.5 5.2 25.5 -0.7 -0.32 15.8 21.2 11.9 27.9 -0.6 -0.04 7.9 13.5 -1.6 18.6 -1.0 -0.55 

MRI-ESM1 13.4 14.1 4.7 25.1 -0.6 -0.35 21.0 17.2 9.7 27.4 -0.5 -0.12 6.6 12.2 -0.6 18.4 -0.9 -0.58 

NorESM1-M -17.4 -8.3 10.9 37.6 -0.7 -0.12 3.1 0.3 10.7 45.2 -0.3 0.08 -33.9 -15.4 12.7 30.4 -1.3 -0.30 
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Table 4. Projected changes in DJF Prcp (mm/month), MAM Prcp (mm/month), JJA Prcp (mm/month), JJA ET (mm/month), JJA Tas 1021 

(K), JJA ϕ (unitless) for the Crop sub-regions under RCP 8.5 between 1979-2005 and 2070-2099.1022 
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ACCESS1-0 10.5 5.6 -25.9 -22.1 6.8 -0.15 13.2 13.

7 
-30.4 -19.6 7.2 -0.19 8.2 -1.5 -23.2 -27.4 6.6 -0.14 

ACCESS1-3 20.7 20.5 1.8 6.1 4.8 0.10 18.2 24.

6 
0.7 5.4 5.2 0.11 23.3 18.6 3.9 6.5 4.5 0.07 

bcc-csm1-1 0.9 1.9 -8.4 -0.1 4.8 -0.05 5.8 12.

7 
2.6 6.4 4.7 0.03 -3.0 -3.9 -14.2 -5.3 5.0 -0.11 

bcc-csm1-1-m 4.1 5.4 -6.2 -0.6 4.7 -0.02 8.8 10.

9 
-6.9 1.2 4.8 -0.02 1.4 1.2 -5.5 -3.4 4.7 -0.03 

CanESM2 9.2 3.3 0.4 -0.5 5.9 -0.03 13.1 14.

5 
0.0 1.0 6.4 -0.01 7.3 -3.2 2.6 -0.5 5.5 -0.07 

CMCC-CM 4.1 9.5 16.3 11.4 5.2 0.18 10.7 19.

1 
28.3 18.0 4.7 0.07 -0.4 3.0 6.8 8.1 5.6 0.24 

CNRM-CM5 3.0 11.7 0.8 6.0 4.4 -0.02 7.2 18.

2 
-0.9 8.4 4.8 0.00 0.4 6.9 2.1 3.8 4.1 -0.04 

FGOALS-g2 1.3 -3.4 -7.7 0.8 4.8 0.01 12.5 5.5 2.8 8.3 5.1 0.08 -5.4 -9.4 -15.0 -5.2 4.8 -0.05 

GFDL-CM3 18.6 24.1 8.3 21.5 7.2 0.07 18.6 32.

6 
7.3 25.8 8.2 0.13 20.6 20.4 8.8 18.1 6.4 0.06 

GFDL-ESM2G 2.9 9.8 0.7 9.6 3.9 0.00 7.7 22.

1 
11.6 19.7 3.6 -0.02 -0.4 2.0 -7.9 2.3 4.2 0.03 

GFDL-ESM2M 3.4 5.5 -1.1 4.9 3.9 0.03 10.5 16.

3 
3.9 13.1 3.6 0.02 -0.9 -0.5 -5.9 -1.2 4.2 0.05 

HadGEM2-CC 23.1 5.9 -26.7 -17.2 8.1 -0.16 17.7 13.

0 
-20.9 -8.3 8.5 -0.11 27.4 2.3 -32.6 -28.3 7.8 -0.23 

inmcm4 7.6 17.0 -2.5 -0.9 3.2 -0.02 11.9 24.

5 
-4.2 2.1 2.9 -0.05 5.4 11.5 -1.6 -4.1 3.5 -0.01 

IPSL-CM5A-LR -9.4 -3.2 -5.7 -0.2 5.8 0.04 0.0 2.4 -8.7 1.5 6.1 0.09 -16.2 -6.9 -3.7 -1.3 5.6 -0.02 

IPSL-CM5A-MR -21.2 -0.8 -14.5 -9.6 6.5 -0.02 -10.1 6.8 -13.1 -4.4 6.7 0.04 -29.6 -4.8 -16.5 -14.0 6.5 -0.09 

IPSL-CM5B-LR 11.7 8.0 -1.9 8.6 4.3 0.07 10.1 6.2 -0.9 8.1 4.9 -0.04 12.8 10.9 -0.1 9.8 4.0 0.13 

MIROC5 3.2 6.9 -10.6 -0.2 5.4 0.18 6.6 13.

4 
-15.9 2.2 5.9 0.14 0.9 1.0 -7.6 -2.4 5.1 0.23 

MIROC-ESM 6.6 16.0 -12.6 -1.6 7.2 0.04 8.1 23.

9 
-13.6 3.9 7.4 0.00 4.7 10.9 -12.4 -7.8 7.2 0.11 

MIROC-ESM-CHEM 5.1 16.1 -10.2 -0.6 7.2 0.03 9.0 23.

5 
-12.1 5.5 7.4 0.08 2.8 11.2 -10.7 -8.2 7.2 -0.01 

MPI-ESM-LR 8.9 16.2 6.1 9.2 5.3 0.07 9.6 24.

9 
7.8 11.4 5.8 0.05 8.5 10.4 3.2 7.0 5.0 0.06 

MPI-ESM-MR 17.4 23.2 7.0 10.7 4.9 0.10 10.4 19.

3 
4.7 7.8 5.3 0.08 25.1 27.3 9.3 13.3 4.6 0.11 

MRI-CGCM3 13.6 14.7 9.1 14.5 3.4 0.04 18.2 13.

7 
10.9 18.1 3.6 -0.08 11.1 17.2 8.7 10.9 3.3 0.11 

MRI-ESM1 12.9 17.2 16.0 16.4 3.5 0.06 11.2 22.

7 
18.5 20.4 3.7 0.01 15.1 12.2 13.6 12.2 3.3 0.07 

NorESM1-M 5.8 9.8 -7.6 0.3 5.0 0.12 9.4 11.

0 
-6.4 1.9 5.7 0.08 3.6 8.6 -7.9 -1.2 4.5 0.17 
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FIGURE CAPTIONS 1023 
 1024 

Figure 1. Scatter plots of JJA mean ET versus JJA interannual standard deviation of ET 1025 

for two land-surface models in NLDAS-2: a) VIC and b) Noah. Each point represents a 1026 

grid cell. Grid-cells are labeled as water-limited if they have a significant (p<0.05) 1027 

correlation between SM and ET larger than 0.3, as radiation-limited if they have a 1028 

significant negative correlation with magnitude larger than 0.3, and as transitional 1029 

otherwise. This shows that water-limited regions can have low variability and high mean, 1030 

as well as low mean and high variability.  1031 

 1032 

Figure 2. Maps of two coupling metrics calculated for JJA (1979-2005) from NLDAS-2 1033 

ensemble means (i.e. VIC and Noah). Metric γ in panel (a) is a normalized version of 1034 

Dirmeyer et al. (2013b) from Equation 1. Metric ϕ in panel (b) results from Equation 2 1035 

and it is the one used in the rest of this study. The sub-regions used in this study are 1036 

defined based on patterns in ϕ. 1037 

 1038 

Figure 3. Distributions (a-f) and cross-correlations across 24 CMIP5 models (g-n) of 1039 

historical biases in climatologies of MAM and JJA Prcp, JJA ET, JJA Tas, JJA ϕ, and 1040 

JJA correlation between SM and ET compared to the climatologies from NLDAS-2 1041 

during 1979-2005. Black diamonds in (a-f) represent the NLDAS-2 ensemble means. 1042 

Hatches in (g-n) represent statistically significant (p<0.05) correlations. 1043 

 1044 

Figure 4. Distributions (a-f) and cross-correlations across 24 CMIP5 models (g-n) of 1045 

future projections normalized by mean global change in JJA near-surface air temperature 1046 



 51 

for the same variables as in Figure 3. Hatches in (g-n) represent statistically significant 1047 

(p<0.05) correlations. 1048 

 1049 

Figure 5. Relationship between historic biases in JJA precipitation and future hydro-1050 

climatic changes. Slopes (left panels) and y-intercepts (right panels) of the linear 1051 

regressions fitted between historical biases in JJA Prcp and normalized future changes in 1052 

MAM and JJA Prcp, JJA ET, JJA Tas, JJA ρ(SM, ET), and JJA ϕ for each sub-region. 1053 

Error bars represent the standard errors and the hatch represents statistical significant 1054 

values (p<0.05). The numbers above each bar in the left panels represent the proportion 1055 

of the variance explained by each relationship. 1056 

 1057 

Figure 6. Projected percentage changes in drought yearly frequency and severity for each 1058 

climate model and sub-region, under RCP8.5. 1059 

 1060 

Figure 7. Projected percentage changes in heat wave yearly frequency and severity for 1061 

each climate model and sub-region, under RCP8.5. 1062 

 1063 

Figure 8.  Spearman rank correlations between historical biases in JJA Prcp and the 1064 

absolute projected changes in drought characteristics (a-d), and biases in JJA Tas and 1065 

heat wave characteristics (e-h) across models for each region. Hatched bars represent 1066 

statistically significant results (p<0.05). 1067 

 1068 



 52 

Figure 9. Interquartile ranges of future changes for characteristics of droughts and heat 1069 

waves over the Crop Area. The blue line represent the median range when randomly 1070 

sampling a subset of models, and the envelope corresponds to the 10th and 90th 1071 

percentiles (derived from 1,000 repetitions for each subset). Colored lines represents the 1072 

range of uncertainty when using the models along the order of the rankings based on JJA 1073 

precipitation (red), JJA evapotranspiration (orange), JJA near-surface air temperature 1074 

(teal), and JJA land-atmospheric coupling (indigo). 1075 

  1076 
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FIGURES 1077 

 1078 

 1079 

 1080 

Figure 1. Scatter plots of JJA mean ET versus JJA interannual standard deviation of ET 1081 

for two land-surface models in NLDAS-2: (a) VIC and (b) Noah. Each point represents a 1082 

grid-cell. Grid-cells are labeled as water-limited if they have a significant (p<0.05) 1083 

correlation between SM and ET larger than 0.3, as radiation-limited if they have a 1084 

significant negative correlation with magnitude larger than 0.3, and as transitional 1085 

otherwise. This shows that water-limited regions can have low variability and high mean, 1086 

as well as low mean and high variability.  1087 

 1088 
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1089 
Figure 2. Maps of two coupling metrics calculated for JJA (1979-2005) from NLDAS-2 1090 

ensemble means (i.e. VIC and Noah). Metric γ in panel (a) is a normalized version of 1091 

Dirmeyer et al. (2013b) from Equation 1. Metric ϕ in panel (b) results from Equation 2 1092 

and it is the one used in the rest of this study. The sub-regions used in this study are 1093 

defined based on patterns in ϕ.  1094 

 1095 

 1096 
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 1097 

Figure 3. Distributions (a-f) and cross-correlations across 24 CMIP5 models (g-n) of 1098 

historical biases in climatologies of MAM and JJA Prcp, JJA ET, JJA Tas, JJA ϕ, and 1099 

JJA correlation between SM and ET compared to the climatologies from NLDAS-2 1100 

during 1979-2005. Orange diamonds in (a-f) represent the NLDAS-2 ensemble means. 1101 

Hatches in (g-n) represent statistically significant (p<0.05) correlations. 1102 

 1103 
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 1104 

Figure 4. Distributions (a-f) and cross-correlations across 24 CMIP5 models (g-n) of 1105 

future projections normalized by mean global change in JJA near-surface air temperature 1106 

for the same variables as in Figure 3. Hatches in (g-n) represent statistically significant 1107 

(p<0.05) correlations. 1108 

 1109 
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 1110 

Figure 5. Relationship between historic biases in JJA precipitation and future hydro-1111 

climatic changes. Slopes (left panels) and y-intercepts (right panels) of the linear 1112 

regressions fitted between historical biases in JJA Prcp and normalized future changes in 1113 

MAM and JJA Prcp, JJA ET, JJA Tas, JJA ρ(SM, ET), and JJA ϕ for each sub-region. 1114 

Error bars represent the standard errors and the hatch represents statistical significant 1115 

values (p<0.05). The numbers above each bar in the left panels represent the proportion 1116 

of the variance explained by each relationship. 1117 

 1118 

 1119 
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1120 
Figure 6. Projected percentage changes in drought yearly frequency and severity for each 1121 

climate model and sub-region, under RCP8.5. 1122 

 1123 

 1124 
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 1125 

1126 
Figure 7. Projected percentage changes in heat wave yearly frequency and severity for 1127 

each climate model and sub-region, under RCP8.5. 1128 

 1129 
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 1130 

Figure 8.  Spearman rank correlations between historical biases in JJA Prcp and the 1131 

absolute projected changes in drought characteristics (a-d), and biases in JJA Tas and 1132 

heat wave characteristics (e-h) across models for each region. Hatched bars represent 1133 

statistically significant results (p<0.05). 1134 
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 1135 

Figure 9. Interquartile ranges of future changes for characteristics of droughts and heat 1136 

waves over the Crop Area. The blue line represent the median range when randomly 1137 

sampling a subset of models, and the envelope corresponds to the 10th and 90th 1138 

percentiles (derived from 1,000 repetitions for each subset). Colored lines represents the 1139 

range of uncertainty when using the models along the order of the rankings based on JJA 1140 

precipitation (red), JJA evapotranspiration (orange), JJA near-surface air temperature 1141 

(teal), and JJA land-atmospheric coupling (indigo). 1142 

 1143 


