

Allergenic proteases cleave the chemokine CX3CL1 directly from the surface of airway epithelium and augment the effect of Rhinovirus.

Matthew Loxham PhD^{*1,2}, David E. Smart PhD^{*1}, Nicole J. Bedke PhD^{*1}, Natalie P. Smithers PhD¹, Irene Filippi PhD^{1,3}, Cornelia Blume PhD¹, Emily J. Swindle PhD^{1,2}, Kamran Tariq MRCP^{1,4}, Peter H. Howarth DM^{1,4}, Stephen T. Holgate DSc¹, Donna E. Davies PhD^{1,2,4}.

¹ Academic Unit of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom, SO16 6YD

² Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom, SO17 1BJ

³ Cellular and Molecular Physiology Unit, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy

⁴ NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, United Kingdom, SO16 6YD

*Contributed equally to this manuscript

Corresponding Author

Dr Matthew Loxham

University of Southampton Faculty of Medicine

MP888, Level F

University Hospital Southampton

Southampton

United Kingdom

SO16 6YD

Email: m.loxham@soton.ac.uk

Tel: (+44) 2381 203308

Conflict of Interest

The authors declare no conflicts of interest

Acknowledgements

The authors would like to thank Graham Berreen and Dr Robert Ridley for assistance with cell culture, and Jon Ward (Histochemistry Research Unit, University of Southampton) for assistance with histochemistry. This work was funded by the Medical Research Council (UK) and the Southampton AAIR (Asthma, Allergy, and Inflammation Research) Charity.

Keywords

Airway epithelium, CX3CL1, Aeroallergen, Rhinovirus, Protease, Asthma

Abstract

CX3CL1 has been implicated in allergen-induced airway CD4⁺ T lymphocyte recruitment in asthma. Since epidemiological evidence supports a viral infection-allergen synergy in asthma exacerbations, we postulated that rhinovirus (RV) infection in the presence of allergen augments epithelial CX3CL1 release. Fully differentiated primary bronchial epithelial cultures were pretreated apically with house dust mite extract (HDM) and infected with RV16. CX3CL1 was measured by ELISA and western blotting, and shedding mechanisms assessed using inhibitors, PAR2 agonist, and recombinant CX3CL1-expressing HEK293 cells. Basolateral CX3CL1 release was unaffected by HDM but stimulated by RV16; inhibition by fluticasone or GM6001 implicated NF- κ B and ADAM sheddases. Conversely, apical CX3CL1 shedding was stimulated by HDM, augmented by RV16. Although fluticasone or GM6001 reduced RV16+HDM-induced apical CX3CL1 release, heat-inactivation or cysteine protease inhibition completely blocked CX3CL1 shedding. HDM effect was via enzymatic cleavage of CX3CL1, not PAR2 activation, yielding a product mitogenic for smooth muscle cells. Extracts of *Alternaria* fungus caused similar CX3CL1 shedding. We have identified a novel mechanism whereby allergenic proteases cleave CX3CL1 from the apical epithelial surface to yield an active product. RV16 infection augmented HDM-induced CX3CL1 shedding – this may contribute to synergy between allergen exposure and RV infection in triggering asthma exacerbations and airway remodelling.

Introduction

Asthma is an inflammatory disease of the lower airways exhibiting reversible airflow obstruction and airway remodelling¹. Asthma exacerbations are a major cause of hospitalisation, with the single factor most responsible for exacerbations widely recognised as being viral infection, particularly involving rhinovirus^{2,3}. Furthermore, early life wheezing with rhinovirus is strongly predictive of subsequent development of asthma, suggesting a link between symptomatic rhinovirus infection and disease pathogenesis⁴. There is also a synergistic interaction between viral infection and allergen inhalation in the worsening of asthma symptoms^{5,6}. Rhinovirus-16 (RV16), a major group rhinovirus, can increase airway hyperreactivity, which persists up to 4 weeks post-infection, suggesting RV16 may prime the airways to overreact to allergen⁷. Indeed, patients receiving hospital treatment have a greater sensitisation to, and exposure to, allergen⁶. However, the precise mechanisms of virus-allergen interactions in the development and exacerbation of asthma are yet to be fully elucidated.

CX3CL1 (fractalkine) is a membrane-bound 373 amino acid chemokine of approximately 42 kDa, with extensive glycosylation increasing its mass to approximately 95 kDa^{8,9}. The N-terminal chemokine domain (CKD) contains a highly unusual CX3C motif, supported on an extensively glycosylated mucin stalk, with an 18 amino acid transmembrane domain and an intracellular C-terminal tail with an apparent role in peptide recycling¹⁰. Almost uniquely for a chemokine, CX3CL1 exhibits different functions depending on its state. Membrane-bound CX3CL1 acts as an adhesion molecule, mediated by firm binding of the CKD to its receptor¹¹, CX3CR1, a 7-transmembrane G-protein-coupled receptor¹². CX3CR1 is found on a variety of cells, including monocytes, macrophages, mucosal dendritic cells, NK cells, CD8⁺ T lymphocytes, and a subset of CD4⁺ T lymphocytes (see reviews^{13,14}). CX3CL1 can also be cleaved constitutively by ADAM10, or inducibly by ADAM17 (TNF α converting enzyme; TACE)^{15,16}. Binding of CX3CL1 to CX3CR1 results in G α i-mediated intracellular signalling, independent of the adhesive

effect of cell surface CX3CL1¹⁷. Effects of CX3CR1 activation by cleaved soluble CX3CL1 include migration of dendritic cells¹⁸, macrophages¹⁹, mast cells²⁰, and NK cells²¹, promotion of cell survival^{22,23}, and proliferation of smooth muscle cells (SMCs)²⁴ and fibroblasts²⁵. CX3CL1 is predominantly expressed by epithelial cells²⁶, but its expression can be further induced in airway epithelial, smooth muscle, and endothelial cells in inflammatory conditions and by inflammatory cytokines such as interferon- γ and TNF α ²⁷⁻²⁹. Interestingly, levels of CX3CL1 have been noted to be elevated in plasma of patients with asthma or allergic rhinitis and in bronchoalveolar lavage fluid (BALF) after segmental allergen challenge³⁰. Although many studies of CX3CL1 release and function *in vitro* have studied endogenous mechanisms of cleavage, there is a paucity of work considering the possibility that CX3CL1 might be cleaved by exogenous proteases. Many aeroallergens linked to asthma exacerbations, including both house dust mite and *Alternaria alternata* fungus, possess proteolytic activity^{31,32}. We therefore hypothesised that the proteolytic activity of inhaled allergens might represent a novel mechanism for the cleavage of CX3CL1, which could potentiate the effect of RV16 infection of primary bronchial epithelial cells (PBECs).

Results

The Effect of RV16 and house dust mite extract (HDM) on Vectorial CX3CL1 Release from PBEC Air-Liquid Interface (ALI) Cultures

Differentiated PBEC ALI cultures were grown in Transwells® so that challenges could be applied to the apical surface to mimic in vivo exposure and vectorial release of CX3CL1 from the apical and basolateral surfaces measured. ALI cultures were exposed apically to 200 µg/ml HDM extract or medium alone for 24h, followed by RV16 or ultraviolet-treated virus controls (UVRV16) (each at MOI=5) for 6h, and then further HDM extract or medium added after washing away unbound virus particles. UVRV16 was used as a control for viral replication as ultraviolet-irradiated RV16 is unable to replicate; in pilot experiments, no difference was observed between the effects of HDM alone and HDM+UVRV16. Apical release of CX3CL1 was not increased by RV16 (Figure 1; $p=0.126$ vs. UVRV16), but was increased up to 72h by HDM in UVRV16- and RV16-exposed cultures ($p=0.008$ and $p<0.001$, respectively). Despite the lack of significant CX3CL1 release in response to RV16 replication alone, apical CX3CL1 was significantly higher in cultures supporting RV16 replication when also treated with HDM ($p<0.001$ vs. HDM+UVRV16). This augmentation of CX3CL1 release by HDM in RV16-infected cultures was abrogated when heat-treated HDM was used ($p<0.001$). Conversely, basolateral CX3CL1 concentration was increased by RV16 compared to UVRV16 in either the absence or presence of HDM ($p<0.001$ for both), while heat-treatment of HDM did not significantly reduce CX3CL1 release induced by RV16+HDM ($p=0.335$). These results suggest that HDM is the key driver of apical CX3CL1 release in this model, although this can be augmented by exposure to RV16. Basolateral release of CX3CL1 is driven primarily by RV16, albeit to a more modest extent than HDM-driven apical release.

Mechanism of Increased CX3CL1 Release

We next hypothesised that RV16 and HDM might increase mRNA expression of either CX3CL1 or the inducible sheddase ADAM17. At 24 h and 72 h neither CX3CL1 nor ADAM17 expression were significantly changed by any of the treatments used (Figure 2). However, there was a trend for RV16 to induce CX3CL1 expression at 24 h, and in a separate experiment we observed a significant increase in CX3CL1 expression induced by RV16 compared to UVRV and sham after 6 h ($p=0.030$ and 0.019, respectively), but without any effect on ADAM17 expression (Figure 3). HDM tended to suppress the effect of RV16 on CX3CL1 transcription, although this effect did not reach significance ($p=0.08$). Therefore, further experiments were performed in the presence of the glucocorticoid fluticasone propionate (FP) to test the involvement of NF- κ B-mediated transcription of CX3CL1, or the broad-spectrum metalloprotease inhibitor GM6001 to test the involvement of endogenous ADAM sheddases in the release of CX3CL1 (Figure 4A). FP treatment modestly reduced RV16+HDM-induced apical release of CX3CL1 by $26\pm17\%$ ($p=0.040$), while GM6001 caused a $41\pm32\%$ ($p=0.001$) reduction. In contrast, heat-treatment of HDM reduced apical CX3CL1 release by $82\pm10\%$ ($p<0.001$), suggesting a role for a heat-labile factor in the HDM. Conversely, FP and GM6001 reduced basolateral release of CX3CL1 by $64\pm22\%$ ($p<0.001$) and $47\pm38\%$ ($p=0.005$) respectively, while heat-treatment of the HDM had no significant reducing effect ($32\pm13\%$, $p=0.068$).

The relative potency of heat-inactivation of HDM on apical CX3CL1 release suggested a direct effect of a heat labile component in HDM such as an allergenic protease. However, this did not appear to be mediated by a protease-activated receptor (PAR), as replacement of HDM by a PAR-2 agonist was unable to replicate the CX3CL1-releasing effect of HDM in the presence of RV16 (data not shown). Therefore, we considered that CX3CL1 release into the apical compartment might be partly mediated by direct proteolysis of membrane-bound CX3CL1 by

HDM proteases. To test this, we pre-treated HDM with inhibitors of serine proteases (4-(2-aminoethyl)benzenesulphonyl fluoride hydrochloride; AEBSF) and cysteine proteases (*trans*-epoxysuccinyl-L-leucylamido-(4-guanido)butane; E-64) before applying to the cell cultures (Figure 4B). RV16+HDM induced release of CX3CL1 into the apical compartment was significantly reduced by $46\pm14\%$ ($p=0.003$) with AEBSF and by $80\pm5\%$ ($p<0.001$) with E-64. Conversely, neither AEBSF ($49\pm27\%$, $p=0.056$) nor E-64 (to $53\pm9\%$, $p=0.069$) were able to significantly inhibit the basolateral release of CX3CL1 elicited by RV16+HDM. Therefore, we postulated that a substantial amount of the apical release of CX3CL1 by HDM is mediated by a direct action of HDM proteases on membrane-bound CX3CL1.

Transfection of HEK293T to Express CX3CL1

To delineate the mechanism of HDM-induced CX3CL1 release more precisely, HEK293T cells, which in their wildtype do not express CX3CL1, were transiently transfected to express CX3CL1 (HEK293T/CX3CL1 $^+$) (Figure 5, inset). Monolayer cultures of the CX3CL1-expressing cells were incubated with HDM for 2 h in the absence or presence of protease inhibitors (Figure 5). As before, HDM exposure caused an increase in release of CX3CL1 ($p<0.001$). Crucially, this could be significantly inhibited only by E-64 ($p<0.001$) or prior heat treatment of the HDM ($p=0.010$). This observation, coupled with the lack of effect of PAR-1/2 agonist peptides on CX3CL1 release (data not shown) further supports the notion that the ability of HDM to cause release of CX3CL1 in this system is *via* direct action of HDM on CX3CL1, and implicates cysteine proteases as the critical mediators of this effect.

CX3CL1 Cleavage Products

CX3CL1 possesses a number of potential cysteine protease cleavage sites (Figure 6). To determine whether HDM proteases can directly cleave CX3CL1, we used a cell-free system in which the recombinant extracellular domain of human CX3CL1 was treated with HDM. SDS PAGE and western blotting of the untreated CX3CL1 protein yielded two bands, one at 90kDa and another at around 50kDa most likely representing glycosylated and non-glycosylated (or partially glycosylated) forms of CX3CL1 respectively. HDM treatment resulted in a decrease in the 90kDa full length protein and increases in immunoreactive bands at ~50 kDa and 40kDa; these bands were reduced when HDM was treated with E-64 or heat inactivated and the 90kDa band was retained (Figure 7), whereas GM6001, AEBSF and Pepstatin A had no effect. These data demonstrate direct cleavage of CX3CL1 by a cysteine protease contained in the HDM extract.

Assessment of the Ability of other Aeroallergens to elicit CX3CL1 Release

To determine whether the ability to mediate CX3CL1 shedding directly is unique to HDM, the transfected HEK293T/CX3CL1⁺ cells were incubated with extract of *Alternaria alternata* (Figure 8). *Alternaria* induced a significant increase in CX3CL1 release (20±18 ng/ml control vs. 125±21 ng/ml with Alternaria, p<0.001), diminished by AEBSF (p=0.015) or heat-treatment of the *Alternaria* extract (p<0.001). Timothy grass pollen extract (equivalent 10 mg pollen/ml), which lacks significant proteolytic activity ³³, did not induce CX3CL1 release.

Bioactivity of Cleaved CX3CL1 and Localization of CX3CL1 in vivo

Although our results demonstrate that HDM proteases can cleave CX3CL1, they do not give any information regarding the bioactivity of the resulting fragment(s), although such fragments do contain the CKD given that the detection antibodies used in the ELISA and western blotting

bind an epitope in the CKD. To confirm the bioactivity of the cleaved CX3CL1, its ability to stimulate proliferation of SMCs was assessed. The results indicated that supernatant from HDM-treatment of HEK293T/CX3CL1⁺ cells caused a 2.5±1.5-fold increase in SMC proliferation compared to supernatant from HDM-exposed HEK293T cells not expressing CX3CL1, which was significantly greater than the increase seen with conditioned medium from HDM-free HEK293T cells (p=0.036). Conversely, a significant increase in SMC proliferation was not seen with conditioned medium from HEK293T cells exposed to heat-treated HDM (Figure 9). Finally, to confirm the relevance of our findings to the *in vivo* setting, we performed IHC on glycol methacrylate (GMA)-embedded sections of bronchial biopsy tissue and confirmed apical epithelial expression of CX3CL1, as evidenced by immunostaining of the epithelial brush border (Figure 10).

Discussion

This study examined the effect of co-exposure to RV16 and HDM on the vectorial release of CX3CL1 from fully differentiated mucociliary cultures of PBECs. We observed increased basolateral release of CX3CL1 in response to RV16 in agreement with previous findings ³⁴, with no significant effect on basolateral CX3CL1 of HDM either alone or in the presence of RV16. In these experiments, we used cells from a number of different donors, giving us confidence that our data are representative. Although it was not always possible to test every condition with every donor, we addressed this through use of the appropriate repeated-measures statistical tests. We identified an effect of HDM on apical CX3CL1 release, which was only partially ascribable to the ADAM metalloproteases that represent the major endogenous sheddases involved in CX3CL1 release. We used either differentiated epithelial cells or HEK293T/CX3CL1⁺ cells to show that shedding involved direct contact of a cysteine protease in HDM extract with the membrane-bound CX3CL1, rather than acting with PARs, suggesting an enzyme-substrate interaction. We confirmed the direct nature of the cleavage mechanism in a cell-free system. We further demonstrated that *Alternaria* extract also caused shedding of CX3CL1, in a manner dependent on previously demonstrated serine proteases ³², suggesting that the ability of allergenic proteases to cause CX3CL1 shedding is not restricted to HDM.

Allergens belong to protein families with diverse biological functions ³⁵. The cleavage of PARs by allergenic proteases or activation of Toll-like receptors (TLR2 and TLR4) by endotoxin contained in crude allergen extracts are potential mechanisms underlying allergen-mediated activation of epithelial cells leading to cytokine release. For example, PAR2 mediated signalling is involved in HDM-induced IL-25 expression and release ³⁶, while HDM-induced epithelial TLR4 signalling activates NF- κ B to induce GM-CSF release ³⁷. Furthermore, it has recently been shown that ADAM10 activity contributes to HDM-induced shedding of chemokines, including

CCL20, CCL2, CCL5, and CXCL8 from bronchial epithelial cells ^{38, 39}. However, CCL20 secretion is not protease or TLR2/4 dependent but relies on beta-glucan moieties within the HDM extract, as evidenced by the ability of other beta-glucans to competitively inhibit its secretion ³⁸. Thus, these protease-independent effects on CCL20 contrast with the cysteine protease-dependent effects of HDM extract on CX3CL1 shedding. In this study, PAR-activating peptides had no effect on CX3CL1 release, and E-64-inhibitable cleavage of recombinant CX3CL1 precursor in a cell-free system provides clear evidence of direct cysteine-protease mediated proteolysis of the chemokine.

Although the majority of apical CX3CL1 release by epithelial cells was inhibited by heat treatment of the HDM extract or E-64 treatment, there was some residual shedding. Since HDM extracts used in this study contain a wide range of known and putative allergens, there may be other mechanisms which might influence the residual shedding of CX3CL1 through intracellular pathways. The residual effect might be due to a non-cysteine protease component of HDM such as beta-glucans resulting in effects similar to those seen for CCL20 and mediated by ADAM10 ³⁹. This would be consistent with the ability of GM6001 to partially reduce apical CX3CL1 release, as well as RV-induced CX3CL1 release into the basolateral compartment.

CX3CL1 is not unique in being a cytokine which can be cleaved from the cell surface by endogenous proteases. For example, TNF α is also cleaved to yield a soluble product in a process mediated by ADAM17/TACE ⁴⁰, as for CX3CL1. However, we know of no work demonstrating direct cleavage of a cell surface-bound cytokine by exogenous allergenic proteases. Such an effect may not be totally unexpected, given that a range of cell surface molecules including CD23, CD25, CD40, DC-SIGN and DC-SIGNR have already been identified as major Der p 1 targets ⁴¹⁻⁴³. The ability of allergenic proteases to modify components of immune signalling pathways suggests multiple mechanisms by which allergenic proteases can modify

normal immune responses. The importance of HDM as a factor responsible for release of CX3CL1 in asthma is underscored by the observation that CX3CL1 concentrations are increased in BALF following segmental HDM allergen challenge, correlated with rapid recruitment of circulating CD4⁺ T lymphocytes ³⁰. Although the peak concentration of CX3CL1 in the present study is two orders of magnitude greater than seen after allergen challenge *in vivo* ³⁰, this difference may be explained by cytokine dilution during BAL, and differences in local concentrations of HDM. Studies in mice have shown that CX3CR1 signalling can promote either Th2 or Th1 cell survival in inflamed lungs, but not under homeostatic conditions ²². Thus, the CX3CL1/CX3CR1 axis appears to play an important role in inflammatory pathologies of the lung. Indeed, it would be of considerable interest to examine the effects on CX3CL1 shedding of proteolytic allergens from other sources, such as cockroach ⁴⁴ and cat ⁴⁵, and also of airway mast cell proteases.

Our experiments demonstrated that HDM has the ability to liberate membrane-bound CX3CL1 to yield an immunoreactive protein. However, owing to the presence of multiple potential cleavage sites, cleavage might simply reduce CX3CL1 adhesion without the chemotactic effects of soluble CX3CL1, either by cleavage of the CKD itself, or by non-CKD cleavage inducing conformational change of the CKD. Using rhCX3CL1 precursor in a cell-free system, western blotting of the intact protein yielded a band at ~90 kDa; the intensity of this band was greatly reduced by treatment with HDM, with an associated increase in bands at ~50 and 40 kDa, suggesting specific cleavage of CX3CL1 at defined sites. Furthermore, treatment of HDM with E-64 or heat yielded a band pattern similar to untreated CX3CL1. The 90 kDa band is most likely fully glycosylated CX3CL1, similar to the 85-90 kDa full length CX3CL1 observed by others ⁴⁶⁻⁴⁸. We postulate that the 40 kDa product might result from cleavage of CX3CL1 by the HDM cysteine protease at F162, resulting in a CKD-bearing peptide chain of 17.3 kDa with 11 O-glycosylation sites. Taking into account that there are 26 such sites in full length CX3CL1 ⁸,

and that complete de-glycosylation results in a loss of ~50-55 kDa^{8,46}, it could be calculated that each glycosylation adds ~2 kDa to the mass of the protein and so if fully glycosylated, this fragment would have a mass of 39.3 kDa, corresponding to that observed on the blot.

In addition to its role as a chemotactic molecule, CX3CL1 has also been seen to induce proliferation of SMCs²⁴. Our data show that SMC proliferation could be stimulated by supernatant from HDM-treated HEK293T/CX3CL1⁺ cells, but not when the HDM had been inhibited with E-64 or heat treated. This suggests that the CX3CL1 cleavage product induces a proliferative response. If HDM is able to cleave surface-bound CX3CL1, and this effect is increased in the presence of RV16 infection, there is the potential for allergen exposure during infection to induce proliferation of SMCs and smooth muscle, hallmarks of asthmatic airway remodelling. In addition, the activity of CX3CL1 in promoting survival of Th2 CD4⁺ cells, which are crucial to the development of allergic asthma²², suggests that there may be multiple pathways through which the HDM-RV16 synergy might affect asthma. Furthermore, since soluble CX3CL1 can promote the migration of dendritic cells¹⁸, macrophages¹⁹, mast cells²⁰, and NK cells²¹, its shedding has the potential to substantially affect immune cell recruitment, which may be important during asthma exacerbations. Indeed, it would be of interest to study the chemoattractant effect on these cells of the cleaved CX3CL1 fragment in our studies, to add even further weight to our findings.

Previous work has shown that properties of the airway epithelium in asthma may contribute to heightened responses during an asthma exacerbation. For example, increased susceptibility to rhinovirus infection of the epithelial cells from subjects with moderate-severe asthma has been linked to a defective interferon response⁴⁹, while basal cells, which are sometimes exposed in areas of epithelial damage in asthmatic airways, are more susceptible to rhinovirus infection^{50,51}. These effects may both heighten and prolong the infection of the airway epithelium, resulting in

greater release of CX3CL1 when HDM or other proteolytic allergens are present. Moreover, the integrity of the airway epithelium in asthma is known to be impaired ⁵², with epithelial cultures from severe asthmatics being more susceptible to the barrier-weakening effects of *Alternaria* ³². While the direct effect of HDM on CX3CL1 release was in the apical compartment, there is the potential for passage of shed CX3CL1 or HDM allergen to the underside of damaged epithelium, where further shedding may occur. In this regard, it would be of interest to extend the present study by examining the responses of PBECs from mild, moderate, and severe asthmatics, to determine how CX3CL1 responses vary by donor asthma status. It would also be of interest to evaluate whether this HDM-virus synergy also applies for other viruses. For example, H1N1 influenza virus is known to induce expression of CX3CL1 mRNA ⁵³. If this is translated to increased cell surface CX3CL1 protein expression, infection might feasibly lead to increased substrate for HDM protease activity and thus increased CX3CL1 release.

In summary, we have shown that cysteine protease activity in HDM is the key driver of apical CX3CL1 shedding and that this is augmented following RV16-infection of PBECs. This release is due, in large part, to direct cleavage of membrane-bound CX3CL1 to liberate a biologically active product which increases SMC proliferation. These effects may contribute to a synergistic interaction between allergen exposure and RV infection in triggering asthma exacerbations and driving airway remodelling.

Methods

PBEC Culture

PBECs were grown from bronchial brushings obtained from non-asthmatic volunteers (mean age 32.9 years, range 19-62 years, M:F 11:3) by fibre optic bronchoscopy⁵⁴. PBECs were expanded and differentiated at air liquid interface as previously described³². Briefly, PBECs were expanded in culture in Bronchial Epithelial Growth Medium (BEGM; Lonza, Slough, UK) and, at passage 2, seeded onto Transwell® culture inserts (Corning, Tewkesbury, MA, USA), pre-coated with collagen I (Pure-Col, Nutacon BV, Leimuiden, Netherlands) and taken to air-liquid interface (ALI) after 24h, and used at day 21 where transepithelial electrical resistance (TER) was >330 Ωcm².

Generation and Titration of Human RV16

RV16 (a gift from Professor Sebastian Johnson, Imperial College, London) was amplified as described previously⁵⁵. RV16 was prepared for use as described previously⁵⁶. Infectivity of RV16 stocks was determined using a HeLa titration assay and 50% tissue culture infective dose assay (TCID₅₀)/ml. Ultraviolet-treated virus controls (UVRV16) were prepared by irradiation of virus stocks at 1200 mJ/cm² on ice for 50 min. Subsequently, virus stocks were diluted in infection medium for use in cell exposure experiments. Infection medium comprised Minimum Essential Medium (MEM) supplemented with (final concentrations) fetal bovine serum (FBS; 4%; Life Technologies, Paisley, UK), non-essential amino acid solution (1x; Life Technologies), penicillin/streptomycin solution (50 units/ml penicillin, 50 µg/ml streptomycin; Life Technologies), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES; 16 mM; Sigma-

Aldrich, Gillingham, UK), NaHCO₃ (0.12%; Sigma-Aldrich), tryptose (0.118% w/v; Sigma-Aldrich), MgCl₂ (0.3 mM; Sigma-Aldrich).

Challenge of cells with HDM/RV16

Cells were made quiescent by replacing basolateral medium with bronchial epithelial basal medium (BEBM) supplemented with 1% insulin/transferrin/selenium solution (ITS; Sigma-Aldrich) and 1.5 µg/ml bovine serum albumin (BSA; Sigma-Aldrich) for 24h. Cells were treated apically with *Dermatophagoides pteronyssinus* (house dust mite; HDM) extract (200 µg protein/ml; Greer Laboratories, Lenoir, NC, USA) before and after 6 h infection with RV16 at MOI=5 or an equivalent UV-irradiated control (UVRV) at 33 °C. Treatments were performed in the absence or presence of GM6001 (10 µM), 4-(2-aminoethyl)benzenesulphonyl fluoride hydrochloride (AEBSF; 500 µM), or *trans*-epoxysuccinyl-L-leucylamido-(4-guanido)butane (E-64; 100 µM).

Cells were washed with Hanks' Balanced Salt Solution (HBSS; Life Technologies) between HDM and virus steps, and basolateral culture medium was replenished after initial HDM exposure.

Heat-treated HDM was prepared at 65 °C for 30 min. In some experiments, the PAR-2 agonist peptide SLIGKV (100 µM) was used instead of HDM. At a set time from the start of virus exposure, apical and basolateral supernatants were harvested, centrifuged (300 x g, 5 min), and stored (-80 °C). Cells lysed with Trizol lysis reagent were stored similarly.

HEK293T/CX3CL1⁺ Cell Culture and Challenge with HDM

HEK293T cells were cultured to 50% confluence in Dulbecco's Modified Eagle's Medium (DMEM; Life Technologies) supplemented with FBS (10%), penicillin (50 units/ml),

streptomycin (50 µg/ml), NEAA (1x), sodium pyruvate (1 mM), and L-glutamine (2 mM) (complete DMEM). A CX3CL1 overexpression plasmid was produced in-house using pcDNA3.1 (Invitrogen, Paisley, UK). HEK293T cells were transiently transfected using TransIT 2020 transfection reagent (Mirus Bio, Madison, WI, USA) according to the manufacturer's instructions. 24 h after transfection, cells were resuspended, seeded into 24-well plates, and cultured for a further 24 h.

HEK293T/CX3CL1⁺ cells were washed with HBSS. HDM extract (200 µg protein/ml) was prepared in DMEM/0.5% BSA. Some wells were pre-treated for 15 min with GM6001 (1 µM), AEBSF (100 µM), E-64 (10 µM), or Pepstatin A (10 µM). Further wells were treated with either the PAR-1 agonist TFLLR (1 µM) or the PAR-2 agonist SLIGKV (1 µM). After 2 h, supernatants were collected and processed as above. Further experiments replaced HDM with either *Alternaria alternata* extract (100 µg extract/ml; Greer Laboratories), or *Phleum pratense* (Timothy Grass) pollen extract³³ (equivalent 10 mg pollen/ml; Greer Laboratories) with cultures exposed for 30 min.

RNA Extraction and RT-qPCR

RNA was extracted from lysates using a standard phenol-chloroform extraction protocol, and reverse transcribed to cDNA using a Precision Reverse Transcription kit (PrimerDesign, Southampton, UK) according to the manufacturer's instructions. Expression of ADAM10/ADAM17/CX3CL1 was determined using SYBR green-based qPCR assays (PrimerDesign, Southampton, UK). Primer sequences (sense and antisense, respectively) were 5'-TTGACCATTCTCCACCTTCCA-3' and 5'-TAACCAGCCAGCAGCAGAG-3' (CX3CL1), 5'-AAGGCTATGGAATACAGATAGAGC-3' and 5'ATCTTCACATCCCAAGCATCC-3' (ADAM17), and 5'-GGACACATGAGAGCAGCTAACTG-3' and 5'-

TGAGATGACTTAATAGGTTTC-3' (ADAM10). Cycling conditions were as per manufacturer's instructions (95 °C 10 min, then 50 cycles of 95 °C 15 s, 60 °C 1 min). Expression of the housekeeping genes ubiquitin C and glyceraldehyde 3-phosphate dehydrogenase were determined using a probe-based duplex primer mix (PrimerDesign). Data were normalised to the geometric mean of the housekeeping genes and fold change in gene expression relative to controls was determined using the $\Delta\Delta Ct$ method.

Quantification of CX3CL1 Concentration in Culture Supernatants

CX3CL1 was quantified using a human CX3CL1 DuoSet ELISA kit (R&D Systems, Abingdon, UK) according to the manufacturer's instructions.

Western Blotting

Recombinant human CX3CL1 (10ng) comprising the full extracellular domain Gln25-Arg339 (R&D Systems, Abingdon, UK) was incubated with HDM extract (200 μ g protein/ml) in PBS at 37°C for 2 hours alone or with GM6001 (1 μ M), AEBSF (100 μ M), E-64 (10 μ M), Pepstatin A (10 μ M). SDS PAGE was performed under reducing conditions prior to western blotting, and immune localisation with monoclonal mouse anti-human CX3CL1 (#81506, R&D Systems, Abingdon, UK) and goat anti-mouse peroxidase conjugated secondary antibody (Sigma, Poole, UK).

SMC Proliferation Assay

Primary human bronchial SMCs were cultured in complete DMEM⁵⁷ in 48-well plates at 10,000 cells/well until confluent, prior to washing and replacement with DMEM (Lonza, Slough, UK)

supplemented with 0.5% FCS, penicillin (50 units/ml), streptomycin (50 µg/ml) and L-glutamine (2 mM) for 24 h. Subsequently, cells were exposed for 36 h to culture supernatants from HEK293T/CX3CL1⁺ cells exposed to HDM and inhibitors (as above), or empty vector control cells similarly exposed. Conditioned media were diluted 1 in 3 in DMEM/0.5% FCS. Proliferation was assessed using a Click-iT® ethynyl-2-deoxyuridine (EDU) assay (Molecular Probes, Paisley, UK) as per the manufacturer's instructions.

Staining of Bronchial Tissue for CX3CL1

Bronchial biopsy tissue taken from a non-asthmatic donor was fixed and embedded in glycol methacrylate (GMA)⁵⁸, and stained using rabbit anti-human CX3CL1 polyclonal antibody (Atlas, Stockholm, Sweden) and peroxidase-conjugated swine anti-rabbit secondary antibody (Vector Laboratories, Peterborough, UK), visualised with 3,3'-diaminobenzidine.

Statistical Analysis

Statistical analysis, using GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA) and SigmaPlot 13 (SyStat Software, San Jose, CA, USA), was by one-way repeated measures ANOVA/Bonferroni correction (parametric) or Friedman's test/Tukey's correction (non-parametric). Significance threshold was p<0.05.

Acknowledgements

The authors would like to thank Graham Berreen and Dr Robert Ridley for assistance with cell culture, and Jon Ward (Histochemistry Research Unit, University of Southampton) for assistance with histochemistry. This work was funded by the Medical Research Council (UK) and the Southampton AAIR (Asthma, Allergy, and Inflammation Research) Charity.

Author Contributions

ML, DES, NJB, CB, EJS, STH, and DED designed the study. KT and PHH performed bronchoscopy to provide primary cells for the study. ML, DES, NJB, NPS, and IF performed experiments. ML, DED, NJB, and DED analysed the data. ML and DED wrote the manuscript.

Disclosure

The authors have no relevant conflicts of interest to declare.

References

1. Holgate ST. Innate and adaptive immune responses in asthma. *Nat Med* 2012; **18**(5): 673-683.
2. Nicholson KG, Kent J, Ireland DC. Respiratory Viruses and Exacerbations of Asthma in Adults. *Br Med J* 1993; **307**(6910): 982-986.
3. Busse WW, Lemanske RF, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. *Lancet* 2010; **376**(9743): 826-834.
4. Jackson DJ *et al.* Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. *Am J Respir Crit Care Med* 2008; **178**(7): 667-672.
5. Green RM, Custovic A, Sanderson G, Hunter J, Johnston SL, Woodcock A. Synergism between allergens and viruses and risk of hospital admission with asthma: case-control study. *Br Med J* 2002; **324**(7340): 763-766A.
6. Murray CS *et al.* Study of modifiable risk factors for asthma exacerbations: virus infection and allergen exposure increase the risk of asthma hospital admissions in children. *Thorax* 2006; **61**(5): 376-382.
7. Lemanske RF, Dick EC, Swenson CA, Vrtis RF, Busse WW. Rhinovirus Upper Respiratory-Infection Increases Airway Hyperreactivity and Late Asthmatic Reactions. *J Clin Invest* 1989; **83**(1): 1-10.
8. Bazan JF *et al.* A new class of membrane-bound chemokine with a CX(3)C motif. *Nature* 1997; **385**(6617): 640-644.
9. Pan Y *et al.* Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. *Nature* 1997; **387**(6633): 611-617.
10. Andrzejewski MG, Koelsch A, Kogel T, Dreymueller D, Schwarz N, Ludwig A. Distinct role of the intracellular C-terminus for subcellular expression, shedding and function of the murine transmembrane chemokine CX3CL1. *Biochem Biophys Res Commun* 2010; **395**(2): 178-184.
11. Fong AM *et al.* Fractalkine and CX(3)CR1 mediate a novel mechanism of leukocyte capture, firm adhesion, and activation under physiologic flow. *J Exp Med* 1998; **188**(8): 1413-1419.
12. Imai T *et al.* Identification and molecular characterization of fractalkine receptor CX(3)CR1, which mediates both leukocyte migration and adhesion. *Cell* 1997; **91**(4): 521-530.

13. Jones BA, Beamer M, Ahmed S. Fractalkine/CX3CL1: A Potential New Target for Inflammatory Diseases. *Mol Interv* 2010; **10**(5): 263-270.
14. White GE, Greaves DR. Fractalkine: A Survivor's Guide Chemokines as Antiapoptotic Mediators. *Arterioscl Thromb Vas* 2012; **32**(3): 589-594.
15. Hundhausen C *et al.* The disintegrin-like metalloproteinase ADAM 10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. *Blood* 2003; **102**(4): 1186-1195.
16. Garton KJ *et al.* Tumor necrosis factor-alpha-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). *J Biol Chem* 2001; **276**(41): 37993-38001.
17. Haskell CA, Cleary MD, Charo IF. Molecular uncoupling of fractalkine-mediated cell adhesion and signal transduction - Rapid flow arrest of CX(3)CR1-expressing cells is independent of G-protein activation. *J Biol Chem* 1999; **274**(15): 10053-10058.
18. Johnson LA, Jackson DG. The chemokine CX3CL1 promotes trafficking of dendritic cells through inflamed lymphatics. *J Cell Sci* 2013; **126**(22): 5259-5270.
19. Truman LA *et al.* CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. *Blood* 2008; **112**(13): 5026-5036.
20. El-Shazly A *et al.* Fractalkine produced by airway smooth muscle cells contributes to mast cell recruitment in asthma. *J Immunol* 2006; **176**(3): 1860-1868.
21. El-Shazly AE, Doloriert HC, Bisig B, Lefebvre PP, Delvenne P, Jacobs N. Novel cooperation between CX3CL1 and CCL26 inducing NK cell chemotaxis via CX3CR1: a possible mechanism for NK cell infiltration of the allergic nasal tissue. *Clin Exp Allergy* 2013; **43**(3): 322-331.
22. Mionnet C *et al.* CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. *Nat Med* 2010; **16**(11): 1305-U1160.
23. White GE, McNeill E, Channon KM, Greaves DR. Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress. *Arterioscl Thromb Vas* 2014; **34**(12): 2554-2562.
24. Perros F *et al.* Fractalkine-induced smooth muscle cell proliferation in pulmonary hypertension. *Eur Respir J* 2007; **29**(5): 937-943.
25. Sawai H, Park YW, He XW, Goronzy JJ, Weyand CM. Fractalkine mediates T cell-dependent proliferation of synovial fibroblasts in rheumatoid arthritis. *Arthritis Rheum* 2007; **56**(10): 3215-3225.

26. Lucas AD *et al.* The transmembrane form of the CX3CL1 chemokine fractalkine is expressed predominantly by epithelial cells in vivo. *Am J Pathol* 2001; **158**(3): 855-866.
27. Fujimoto K, Imaizumi T, Yoshida H, Takanashi S, Okumura K, Satoh K. Interferon-gamma stimulates fractalkine expression in human bronchial epithelial cells and regulates mononuclear cell adherence. *Am J Respir Cell Mol Biol* 2001; **25**(2): 233-238.
28. Sukkar MB, Issa R, Xie SP, Oltmanns U, Newton R, Chung KF. Fractalkine/CX(3)CL1 production by human airway smooth muscle cells: induction by IFN-gamma and TNF-alpha and regulation by TGF-beta and corticosteroids. *American Journal of Physiology-Lung Cellular and Molecular Physiology* 2004; **287**(6): L1230-L1240.
29. Muehlhoefer A *et al.* Fractalkine is an epithelial and endothelial cell-derived chemoattractant for intraepithelial lymphocytes in the small intestinal mucosa. *J Immunol* 2000; **164**(6): 3368-3376.
30. Rimaniol AC *et al.* The CX3C chemokine fractalkine in allergic asthma and rhinitis. *J Allergy Clin Immunol* 2003; **112**(6): 1139-1146.
31. Calderon MA *et al.* Respiratory allergy caused by house dust mites: What do we really know? *J Allergy Clin Immunol* 2015; **136**(1): 38-48.
32. Leino MS *et al.* Barrier disrupting effects of alternaria alternata extract on bronchial epithelium from asthmatic donors. *PLoS One* 2013; **8**(8): e71278.
33. Blume C *et al.* Barrier responses of human bronchial epithelial cells to grass pollen exposure. *Eur Respir J* 2013; **42**(1): 87-97.
34. Bai JW *et al.* Phenotypic Responses of Differentiated Asthmatic Human Airway Epithelial Cultures to Rhinovirus. *PLoS One* 2015; **10**(2).
35. Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. *Trends Immunol* 2011; **32**(9): 402-411.
36. Kouzaki H, Tojima I, Kita H, Shimizu T. Transcription of Interleukin-25 and Extracellular Release of the Protein Is Regulated by Allergen Proteases in Airway Epithelial Cells. *Am J Respir Cell Mol Biol* 2013; **49**(5): 741-750.
37. Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. *Nat Med* 2009; **15**(4): 410-416.

38. Nathan AT, Peterson EA, Chakir J, Wills-Karp M. Innate immune responses of airway epithelium to house dust mite are mediated through beta-glucan-dependent pathways. *J Allergy Clin Immunol* 2009; **123**(3): 612-618.

39. Post S, Rozeveld D, Jonker MR, Bischoff R, van Oosterhout AJ, Heijink IH. ADAM10 mediates the house dust mite-induced release of chemokine ligand CCL20 by airway epithelium. *Allergy* 2015; **70**(12): 1545-1552.

40. Black RA *et al.* A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. *Nature* 1997; **385**(6618): 729-733.

41. Schulz O *et al.* Cleavage of the low-affinity receptor for human IgE (CD23) by a mite cysteine protease: Nature of the cleaved fragment in relation to the structure and function of CD23. *Eur J Immunol* 1997; **27**(3): 584-588.

42. Schulz O, Sewell HF, Shakib F. Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. *J Exp Med* 1998; **187**(2): 271-275.

43. Furmonaviciene R *et al.* The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses. *Clin Exp Allergy* 2007; **37**(2): 231-242.

44. Bhat RK, Page K, Tan A, Hershenson MB. German cockroach extract increases bronchial epithelial cell interleukin-8 expression. *Clin Exp Allergy* 2003; **33**(1): 35-42.

45. Ring PC, Wan H, Schou C, Kristensen AK, Roepstorff P, Robinson C. The 18-kDa form of cat allergen *Felis domesticus* 1 (Fel d 1) is associated with gelatin- and fibronectin-degrading activity. *Clin Exp Allergy* 2000; **30**(8): 1085-1096.

46. Schulte A *et al.* Sequential processing of the transmembrane chemokines CX3CL1 and CXCL16 by alpha- and gamma-secretases. *Biochem Biophys Res Commun* 2007; **358**(1): 233-240.

47. Hundhausen C *et al.* Regulated shedding of transmembrane chemokines by the disintegrin and metalloproteinase 10 facilitates detachment of adherent leukocytes. *J Immunol* 2007; **178**(12): 8064-8072.

48. Ostuni MA *et al.* CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain. *Biol Open* 2014; **3**(12): 1173-1182.

49. Wark PAB *et al.* Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. *J Exp Med* 2005; **201**(6): 937-947.

50. Lopez-Souza N *et al*. Resistance of differentiated human airway epithelium to infection by rhinovirus. *American Journal of Physiology-Lung Cellular and Molecular Physiology* 2004; **286**(2): L373-L381.
51. Jakielo B, Brockman-Schneider R, Amineva S, Lee WM, Gern JE. Basal cells of differentiated bronchial epithelium are more susceptible to rhinovirus infection. *Am J Respir Cell Mol Biol* 2008; **38**(5): 517-523.
52. Loxham M, Davies DE, Blume C. Epithelial function and dysfunction in asthma. *Clin Exp Allergy* 2014; **44**(11): 1299-1313.
53. You HL, Chen CJ, Eng HL, Liao PL, Huang ST. The Effectiveness and Mechanism of *Toona sinensis* Extract Inhibit Attachment of Pandemic Influenza A (H1N1) Virus. *Evid Based Complement Alternat Med* 2013; **2013**: 479718.
54. Buccieri F *et al*. Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. *Am J Respir Cell Mol Biol* 2002; **27**(2): 179-185.
55. Papi A, Johnston SL. Rhinovirus infection induces expression of its own receptor intercellular adhesion molecule 1 (ICAM-1) via increased NF-kappa B-mediated transcription. *J Biol Chem* 1999; **274**(14): 9707-9720.
56. Cakebread JA, Haitchi HM, Xu YH, Holgate ST, Roberts G, Davies DE. Rhinovirus-16 Induced Release of IP-10 and IL-8 Is Augmented by Th2 Cytokines in a Pediatric Bronchial Epithelial Cell Model. *PLoS One* 2014; **9**(4).
57. Richter A *et al*. The contribution of interleukin (IL)-4 and IL-13 to the epithelial-mesenchymal trophic unit in asthma. *Am J Respir Cell Mol Biol* 2001; **25**(3): 385-391.
58. Britten KM, Howarth PH, Roche WR. Immunohistochemistry on Resin Sections - a Comparison of Resin Embedding Techniques for Small Mucosal Biopsies. *Biotech Histochem* 1993; **68**(5): 271-280.

Figures

Figure 1. Effect of RV16 and HDM extract on CX3CL1 release from primary bronchial epithelial cells.

Air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were pre-treated overnight with HDM extract (200 µg protein/ml) or culture medium, then infected with RV16 or UVRV-16 (MOI=5) for 6 h and then re-exposed to HDM or medium. HDMHT indicates that the HDM was heat treated (65 °C, 30 min) prior to use. Supernatants were harvested after 72 h, and CX3CL1 release into the apical and basolateral supernatants was analysed by ELISA. Bars represent mean±SD, n=11 (Sham, RV16, and RV16+HDM), 7 (UVRV), 5 (UVRV+HDM), or 3 (RV16+HDMHT) independent experiments with different donors. Data were analysed by one-way repeated measures ANOVA with Bonferroni correction for pairwise comparisons, ** p<0.01, *** p<0.001.

Figure 2. Effect of RV-16 and HDM extract on CX3CL1 and ADAM17 gene expression.

PBEC ALI cultures were treated as described in Fig 1. Cells were lysed after 24 h or 72h. RNA was extracted from cell lysates, reverse transcribed to cDNA, and expression of CX3CL1 and ADAM17 genes was determined by RT-qPCR. Relative changes in gene expression were calculated using the $\Delta\Delta Ct$ method. Boxes represent median with 25th and 75th percentiles, whiskers represent 10th and 90th percentiles, n=9 (sham, RV, RV+HDM), 6 (UV) or 4 (UV+HDM) independent experiments with different donors. Data were analysed by Friedman's test with Tukey's correction for pairwise comparisons.

Figure 3. Effect of RV-16 and HDM extract on CX3CL1 and ADAM17 gene expression at 6 h post-infection.

PBEC ALI cultures were treated as described in Fig 1. Cells were lysed after 6 h. RNA was extracted from cell lysates, reverse transcribed to cDNA, and expression of CX3CL1 and ADAM17 genes was determined by RT-qPCR. Relative changes in gene expression were calculated using the $\Delta\Delta Ct$ method. Bars represent mean \pm SD, n=4 independent experiments using cells from one donor. Data were analysed by one-way repeated measures ANOVA with Bonferroni correction for pairwise comparisons * p<0.05

Figure 4. Use of inhibitors to study the mechanism of HDM-induced CX3CL1 release.

(A) PBEC ALI cultures were treated as described in Fig 1, in the absence or presence of fluticasone propionate (5 nM) or GM6001 (10 μ M) to inhibit potential endogenous mechanisms for increased CX3CL1 release. Data were normalized by expressing as a percentage of CX3CL1 release with RV16+HDM after correction for CX3CL1 released in the absence of HDM. Bars represent mean \pm SD, n=7 (except RV16+HDMHT, where n=3) independent experiments with different donors. CX3CL1 release with RV16+HDM was 40 \pm 19 ng/ml (apical) and 17 \pm 11 ng/ml (basolateral). (B) Cells were identically treated, in the absence or presence of AEBSF (500 μ M) or E-64 (100 μ M), to study the protease species responsible for HDM effect. Bars represent mean \pm SD, n=3 independent experiments with different donors) CX3CL1 release with RV16+HDM was 59 \pm 11 ng/ml (apical) and 28 \pm 1 ng/ml (basolateral). Data were analysed by one-way repeated measures ANOVA with Bonferroni correction for pairwise comparisons, *p<0.05, ** p<0.01, *** p<0.001 vs. RV16+HDM.

Figure 5. HDM-induced release of CX3CL1 from HEK293T/CX3CL1⁺ cells.

HEK293T cells were transiently transfected to overexpress CX3CL1, with the specificity of this transfection being confirmed by western blot of lysates of sham-transfected and CX3CL1⁺ HEK293T cells (inset) β -actin immunoreactivity was used as a protein loading control. Cells were then treated with HDM (200 μ g protein/ml) alone or in the presence or absence of

GM6001 (100 nM), AEBSF (100 μ M), E-64 (10 μ M), or Pepstatin A (10 μ M). Supernatants were harvested after 2 h, and CX3CL1 concentration was analysed by ELISA. Data were normalized by expressing as a percentage of CX3CL1 release with HDM alone and were corrected for CX3CL1 releases in the presence of medium or inhibitors alone. Mean (\pm SD, n=3 independent experiments) corrected concentration with HDM = 123 \pm 96 ng/ml. Data were analysed by one-way repeated measures ANOVA with Bonferroni correction for pairwise comparisons, ** p<0.01, *** p<0.001 vs. HDM.

Figure 6. The amino acid sequence of full-length CX3CL1 and potential cysteine protease cleavage sites.

The amino acid sequence of full length CX3CL1, with putative cleavage sites for cysteine proteases. Note that such cleavage sites are computationally determined on the basis of amino acid sequence, and do not take into account steric considerations arising as a result of protein tertiary structure.

Figure 7. Products of cleavage of recombinant human CX3CL1 precursor by HDM.

Recombinant human CX3CL1 (10ng) was incubated with HDM extract (200 μ g protein/ml) in PBS at 37°C for 2 hours alone or in the presence of GM6001 (1 μ M), AEBSF (100 μ M), E-64 (10 μ M), or Pepstatin A (10 μ M). Blot representative of 3 independent experiments.

Figure 8. *Alternaria*-induced release of CX3CL1 from HEK293T/CX3CL1⁺ cells.

HEK293T cells were transiently transfected to overexpress CX3CL1, before treatment with *Alternaria* extract (100 μ g/ml) (*Alt*) or heat-treated (65 °C, 30 min) *Alternaria* extract (*AltHT*) alone or in the presence or absence of AEBSF (100 μ M), E-64 (10 μ M), or Pepstatin A (10 μ M). Supernatants were harvested after 30 min, and CX3CL1 concentration was analysed by ELISA. Data were normalized by expressing as a percentage of CX3CL1 release with *Alternaria* alone

after correction for the concentration of CX3CL1 in the presence of medium or inhibitors alone.

Mean (\pm SD, n=3 independent experiments) corrected concentration with *Alternaria* was 104 \pm 5 ng/ml. Data were analysed by one-way repeated measures ANOVA with Bonferroni correction for pairwise comparisons, * p<0.05, *** p<0.001 vs. *Alt.*

Figure 9. Effect of HEK293T/CX3CL1⁺ conditioned medium on SMC proliferation.

Primary human bronchial SMCs were exposed to conditioned media samples from HEK293T/CX3CL1⁺ experiments (see Fig 5). After 36 h culture, SMC proliferation was calculated as the percentage of Hoechst-stained nuclei also stained with EdU, as a marker of proliferation. Data were calculated as the fold increase in percentage of EdU⁺ nuclei in SMCs exposed to HEK293T/CX3CL1⁺ conditioned medium over those exposed to HEK293T plasmid control conditioned medium. Mean (\pm SD, n=4 independent experiments, 3 fields of view per condition). Data were analysed by one-way repeated measures ANOVA with Bonferroni correction for pairwise comparisons, * p<0.05 vs. medium control.

Figure 10. Expression of CX3CL1 in human bronchial biopsy tissue.

Bronchial biopsy tissue was fixed and embedded in glycol methacrylate (GMA), and stained using rabbit anti-human CX3CL1 polyclonal antibody and peroxidase-conjugated swine anti-rabbit secondary, visualised with 3,3'-diaminobenzidine. Arrows indicates CX3CL1 immunostaining along the brush border. Scale bar length = 50 μ m



Figure 1

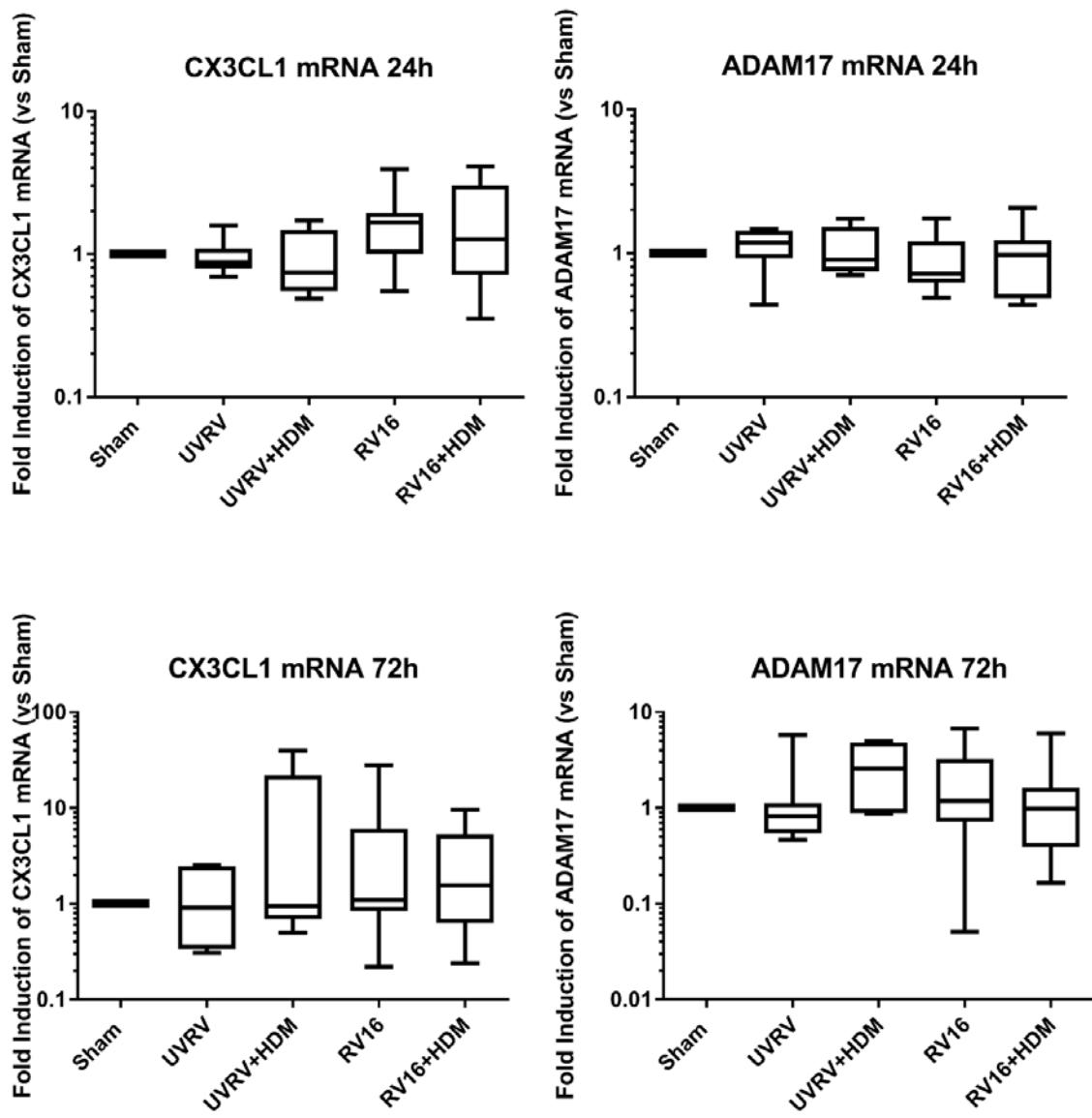


Figure 2



Figure 3

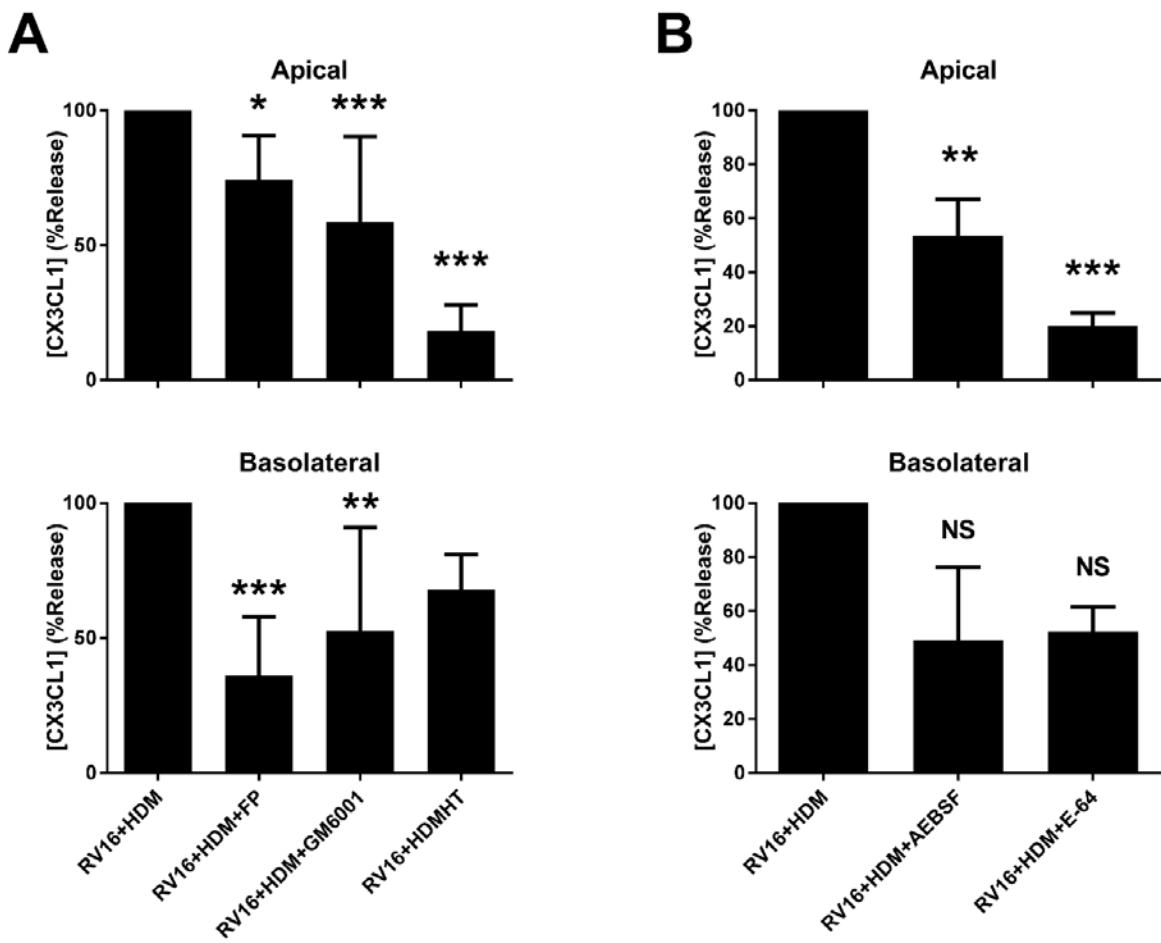


Figure 4

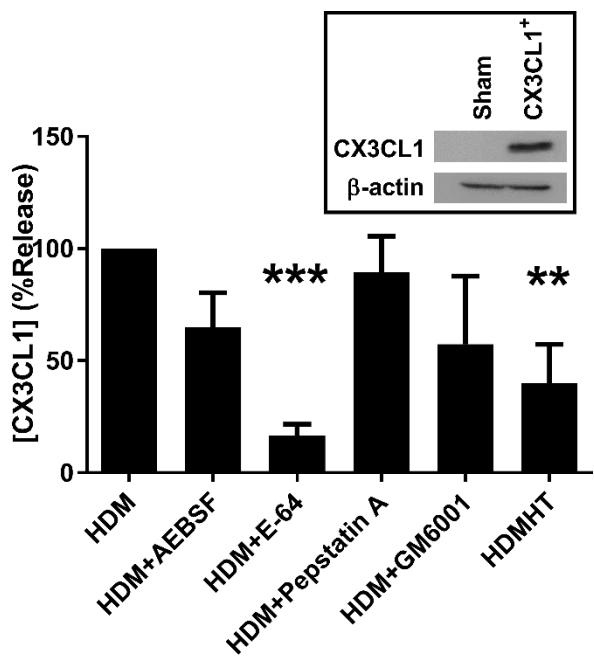
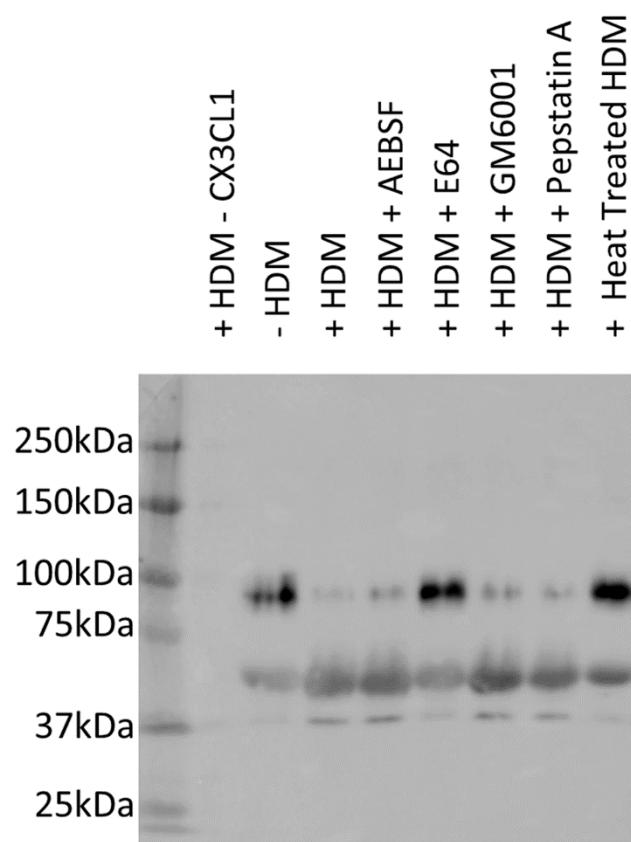


Figure 5

SIGNAL PEPTIDE
 M A P I S L S W L L R L A T F C H L T V L L A G Q H H G V T K C N I T C S K M T
S K I P V A L L I H Y Q Q N Q A S C G K R A I I L E T R Q H R L F C A D P K E Q
W V K D A M Q H L D R Q A A A L T R N G G T F E K Q I G E V K P R T T P A A G G
 M D E S V V L E P E A T G E S S L E P T P S S Q E A Q R A L G T S P E L P T G
 V T G S S G T R L P P T P K A Q D G G P V G T E I F R V P P V S T A A T W Q S S
 A P H Q P G P S I **W** M A E A K T S E A P S T Q D P S T Q A S T A S S P A P E E N A
 P S E G Q R V W G Q G Q S P R P E N S L E R E E M G P V P A H T D A F **Q** D W G P
 G S M A H V S V V P V S S E G T P S R E P V A S G S W T P K A E E P I H A T M D
 P Q R L G V L I T P V P D A Q A A T R R Q A V G I **I** A F L G L L F C L G V A M F
T Y Q S L Q G C P R K M A G E M A E G L R Y I P R S C G S N S Y V L V P V


Chemokine domain

Predicted Cys protease cleavage site

Transmembrane domain

C-terminal intracellular domain

Figure 6

Figure 7

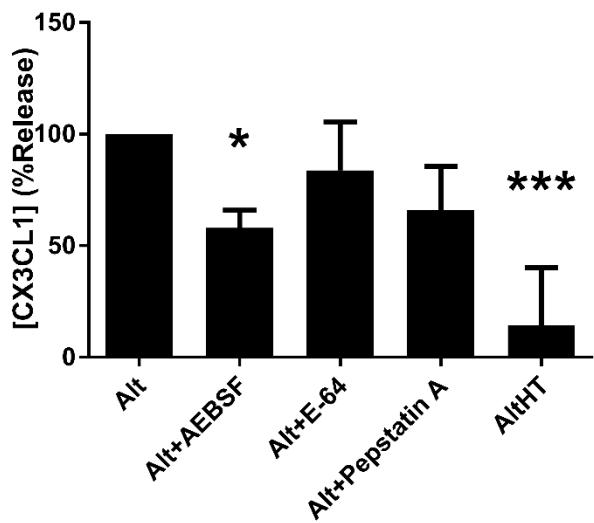


Figure 8

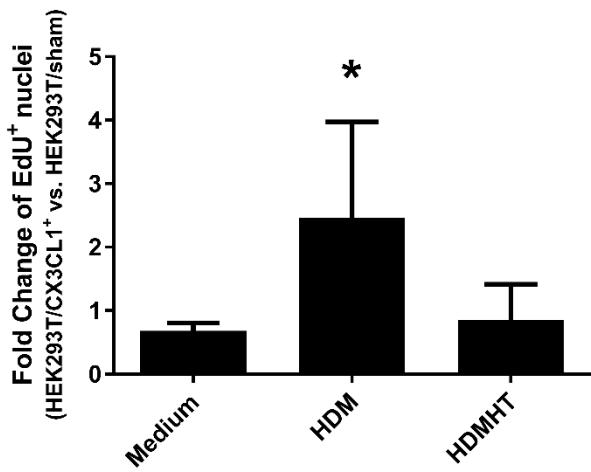


Figure 9

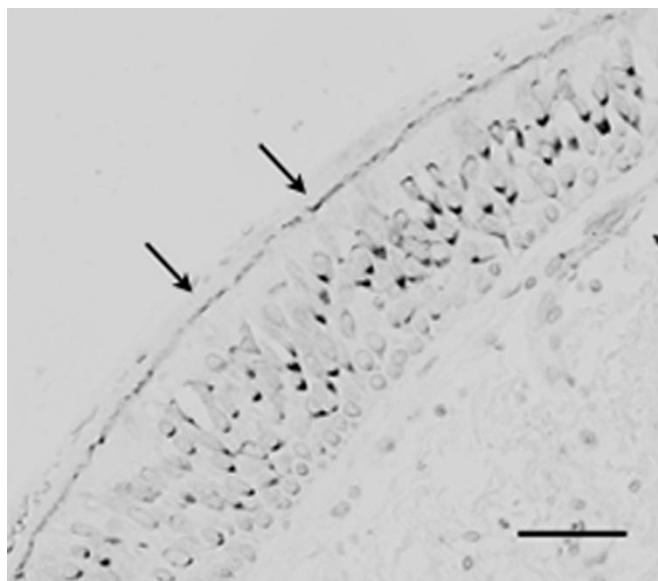


Figure 10