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This article considers a modular approach to the design of integrated social surveys. The
approach consists of grouping variables into ‘modules’, each of which is then allocated to one
or more ‘instruments’. Each instrument is then administered to a random sample of population
units, and each sample unit responds to all modules of the instrument. This approach offers a
way of designing a system of integrated social surveys that balances the need to limit the cost
and the need to obtain sufficient information. The allocation of the modules to instruments
draws on the methodology of split questionnaire designs. The composition of the instruments,
that is, how the modules are allocated to instruments, and the corresponding sample sizes are
obtained as a solution to an optimisation problem. This optimisation involves minimisation of
respondent burden and data collection cost, while respecting certain design constraints usually
encountered in practice. These constraints may include, for example, the level of precision
required and dependencies between the variables. We propose using a random search
algorithm to find approximate optimal solutions to this problem. The algorithm is proved to
fulfil conditions that ensure convergence to the global optimum and can also produce an
efficient design for a split questionnaire.
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split questionnaire.

1. Introduction

In recent years, several national statistical agencies have explored the possibility of

integrating social surveys, as a means of meeting growing demand for new and improved
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statistics, while at the same time streamlining the survey operations in order to curb costs

and limit respondent burden. See, for example, the experience of the UK Office for

National Statistics (Smith 2009), the Australian Bureau of Statistics (2012), and the Dutch

Central Bureau of Statistics (Cuppen et al. 2013).

In this article, we consider a general approach to survey integration that includes all the

social surveys managed by a national statistical agency. This approach is designed to

provide a flexible framework that will be able to accommodate the needs of social statistics

as they change over time. The starting point for this research was the Eurostat project

Streamlining and Integration of the European Social Surveys (see Reis 2013). This project

was set up to support the implementation of the ESS Vision (European Commission 2009),

the strategy for modernising the European Statistical System (ESS), in particular the

European system of social statistics, in accordance with the commitments made in the

Wiesbaden memorandum (European Statistical System Committee 2011).

The approach presented in this article is based on a modular design. The basic features

are as follows. The existing ‘items’ (variables) in social surveys are restructured into a

number of mutually exclusive groups, called modules, each of which consists of a small

number of items. The modules are themselves distributed among an appropriate number of

‘instruments’, in such a way that each instrument consists of a fixed set of modules and

each module is present in one or more instruments. These instruments will together replace

the current set of survey questionnaires. Each instrument will be administered to a

probability sample of population units within a specified time period. All the units in a

sample will be asked to respond to all the items in the instrument assigned to them, except

where routing determines otherwise. The modular design is therefore mainly characterised

by: (i) the composition of the instruments; and (ii) their associated sample sizes.

The modularisation approach offers a number of potential advantages over the

traditional ‘stovepipe’ survey programmes. Both the cost of carrying out the survey and

the burden placed on respondents can be reduced, subject to precision requirements, for

example by putting modules with lower precision requirements in instruments that are

administered to fewer sample units, or by combining several instruments that all contain

the same module. The modularisation can enhance the analytical potential of survey data

by means of a suitable composition of the instruments, instead of by simply adding more

modules to existing surveys. Likewise, new modules can be introduced with a short lead

time and in a more cost-effective way, thus allowing emerging needs to be better met.

Designing and implementing a modular approach is by no means straightforward,

however. There are specific methodological and technical problems that need to be

addressed, and there are also a number of broader issues, some of which we will discuss

here. In this article we focus on two questions: (1) how to develop a modular design that is

sufficiently versatile to support an integrated social survey system; and (2) how to find a

solution to the dual design problem of instrument composition and sample size allocation.

We also refer to Karlberg et al. (2015) for a nontechnical description of this approach to

modular design, and to Reis (2013) for a discussion of related survey-management and

subject-matter issues.

The existing survey methodology of split questionnaire design (SQD) is most akin to the

modular design. For a single survey the SQD allows different sets of items to be collected

from different sample units; the full questionnaire consists of the union of all these split
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questionnaires. The SQD has attracted increasing attention in recent years. See, for

example, Raghunathan and Grizzle (1995) for a Bayesian approach, or Chipperfield and

Steel (2009) for a design-based approach. While the SQD is traditionally used to lessen the

high respondent burden caused by a long questionnaire, it also provides a possible design

for survey integration. For example, two existing separate and independent sample surveys

can be considered jointly as a single survey with a two subsample SQD. Issues relating to

efficient design and estimation for a single SQD have been studied recently in Chipperfield

and Steel (2009; 2011). Efficient estimation in a broadened context of SQD has been

studied more extensively in Merkouris (2010; 2015), building on earlier methods for

composite estimation that combined data from different sample surveys, in order to

increase precision and align estimates relating to the same item (see Renssen and

Nieuwenbroek 1997 and Merkouris 2004; 2013).

There are, nevertheless, a number of difficulties that make it impossible to fully endorse

an SQD model for the integration of social surveys. For example, it is not clear how to

accommodate the difference in the timing and frequency of different surveys, or how to

implement rotating panels overlapping over time. As we explain in Section 2, these

situations can be accommodated under the approach proposed in this article.

To formulate the modular design problem, denote the set of all, say m, modules by

{M1, : : : , Mm}, and let the variables in module Mi be {Xi, j, j ¼ 1, : : : ,ni}. Denote the set

of all, say k, instruments by {I1, : : : , Ik} and the associated samples of sizes n1, : : : , nk by

{S1, : : : , Sk}. Further, denote the number of modules in instrument Ij by mj and the set of

instruments containing module Ma by Qa # {I1; : : : ; Ik}. Then, for a given set of

modules and a predetermined number of instruments, the design problem is to determine

the composition of instruments I1, : : : , Ik and the corresponding sample sizes n1, : : : , nk,

in such a way as to minimise a given cost function while respecting multiple constraints. The

cost function is a generic loss function determined by the sample sizes and a number of other

features of the integrated survey. The constraints are primarily lower bounds on the precision

of the estimation for individual modules, and for groups of modules that have to be placed in

the same instrument. Such groups will be called ‘mandatory crossings’. Other constraints that

need to be taken into account relate to features of particular modules and to the choice of

which instrument to put them in. For example, modules that have to be administered with a

certain periodicity (e.g., quarterly or annually) should be put in instruments of the same

periodicity. These constraints mean that the solution to the optimisation problem (i.e.,

constrained minimisation of the cost function) can only be sought among certain instrument

compositions, which we will call ‘admissible’. It should be noted that we do not consider the

alternative setup of the optimisation problem –– in which the information collected is

maximised, subject to constraints on cost, precision and admissibility –– because it is unclear

how the objective function would need to be defined in this case.

Table 1 provides a generic illustration of the structure of instruments and modules.

Suppose, initially, that there are two usual sample surveys. Survey A is carried out

quarterly, with sample size of 1,000 per quarter, and contains modules M1, M2, and M3.

Survey B is conducted annually, with sample size of 10,000, and contains only module M4.

The precision requirements are given in terms of the required annual sample sizes for the

respective modules. Assuming for simplicity that all modules contribute equally to the cost

function, these two surveys together cost 4*3*1,000 þ 10,000 ¼ 22,000 person
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modules. Reorganising the modules into the four quarterly instruments I1.Q1, I1.Q2, I1.Q3,

I1.Q4 and the annual instrument I2, as illustrated in Table 1, reduces the cost to

(4þ2þ1þ2) * 1,000 þ 8,000 ¼ 17,000 person modules. Moreover, the reorganisation

can be used to accommodate additional information needs, illustrated here by the crossings

G1 ¼ {M2, M4} and G2 ¼ {M3, M4}, with the required respective sample sizes. Normally,

the required crossings could be obtained by including, for example M2 and M3 in Survey

B, or M4 in Survey A, thus further increasing the total cost of the survey.

In this article, we propose to perform the optimisation described for all admissible

instrument compositions using a random search algorithm known as simulated annealing

(see e.g., Kirkpatrick et al. 1983). We apply the simulated annealing algorithm in a manner

adapted to this problem, and show that certain conditions ensuring convergence with

probability 1 to the global optimum are satisfied. This means, in practice, that a sufficiently

large number of iterations of this algorithm should yield an acceptable approximate

solution to the optimisation problem. At each iteration of the search algorithm, we use the

simplex algorithm to determine the optimal sample sizes for each instrument, subject to

the given precision requirements. This allows us to evaluate the cost of each admissible

instrument composition.

Table 1. Illustration of the composition of instruments in terms of modules

Possible optimal reorganisation of a quarterly survey of size 1,000 per quarter with modules M1, M2, M3 and a further annual
survey of size 10,000 with a single module M4

In
st

ru
m

en
ts

(a
ft

er
 o

pt
im

is
at

io
n) Name

Sample

Sample
size

1. 1QI 1. 2QI 1. 3QI 1. 4QI 2I

1S 2S 3S 4S 5S

1,0001,0001,000 1,000 8,000

Instrument composition (modules)
(after optimisation)

Modules Module
variables

Required
periodicity

Required
Annual
sample

size

Annual sample
size before

optimisation

Annual
sample size

after
optimisation

1M 1 1 1 1 0 

2M 2,000

4,000

1 0 1 0 0

3M 1,000 0 1 0 0 0

4M

Quarterly 4,000

Annual 4,000

Annual 4,000

Annual 10,000

4,000

2,000

1,000

10,000 10,000 1 1 0 0 1

Instrument composition (modules)
(after optimisation)

Crossings Crossing
members

Required
periodicity

Annual sample
size before

optimisation

Annual
sample size

after
optimisation

1G {M2, M4}

{X4,1,...,X4,v4}

{X3,1,...,X3,v3}

{X2,1,...,X2,v2}

{X1,1,...,X1,v1}

{M3, M4}

Annual 1,000 0 1,000

Annual 1,000 0 1,000

1 0 0 0 0

2G 0 1 0 0 0
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The rest of the article is organised as follows. In Section 2, we consider the various

constraints that may be encountered in practice and describe how these are built into the

optimisation procedure. To simplify the exposition, we start by assuming simple random

sampling, and discuss the case of complex sampling designs later. In Section 3, we

describe the proposed random search algorithm, which can be used to find approximate

solutions to the optimisation problem in practice. The framework of Sections 2 and 3 is

extended in Section 4 to allow for complex sampling designs. In Section 5, we give an

illustration of the modular design approach using the EU Labour Force Survey as an

example. Section 6 contains some concluding remarks.

2. Constraints on Modules and Instruments

In this section, we discuss a number of constraints on modules and instruments. We

explain how they can be incorporated into the optimisation framework, so that the

algorithm only visits admissible solutions. The main set of constraints arises from the

requirement to achieve a given level of precision in estimating parameters (e.g., totals,

means and proportions) for the variables of each module. Other constraints relate to the

joint observation of modules and the periodicity of modules and instruments.

2.1. Precision Requirements for Modules

Precision requirements for a variable are often formulated in terms of the variance,

denoted by V(û), of an estimator û of some finite-population parameter u (total, mean or

proportion). The first step is to determine the sample size that is required to achieve a

specified level of precision. We start by assuming that the samples for all instruments are

selected using simple random sampling and independently from one another (in Section 4

we discuss departures from this assumption). Let us first consider the Horvitz-Thompson

(HT) estimator û of u based on the sample of a single instrument. Then the variance of û is

VðûÞ ¼ s2
u =n, assuming a negligible sampling fraction n=N. Here N is the population size

and s2
u ¼ S2, the finite-population variance, if u is a mean, and s2

u ¼ Nu ð1 2 uÞ=ðN 2 1Þ

if u is a proportion. Assuming that û is normally distributed, the precision requirement

defined as the attainment of a certain margin of error e ¼ û 2 u
�
�

�
�with probability 1 2 a is

satisfied if VðûÞ # e=z12a

� �2
, where z12a is the 1 2 a=2 standard normal quantile. Thus,

in the case of a single instrument, the precision requirement is satisfied by

n $ n*; where n* ¼ z2
12as

2
u=e2: ð1Þ

We could alternatively start with the coefficient of variation CVðûÞ ¼
ffiffiffiffiffiffiffiffiffi

VðûÞ
p

=u and

formulate the precision requirement as: CV(û) # c for some constant c. This then

translates into n $ n *, where n* ¼ s2
u =c2u2.

If a variable belongs to a module that is present in more than one instrument, then u

may be estimated, using the combined data from the associated samples, as the weighted

average û ¼
P

wiûi, where the summation extends over all instruments that contain the

variable of interest, wi ¼ ni=
P

nj, and ni is the size of the ith sample. It is easy to show

that if these simple random samples are independent, this composite estimator will have a

minimum variance given by VðûÞ ¼ s2
u =
P

ni, for negligible sampling fractions ni=N.
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Where a variable is present in a number of instruments, the precision requirement can

therefore be satisfied by
X

nj $ n*: ð2Þ

When considering all the variables in a module Ma, which is present in instruments

Ij [ Qa, this process could either be repeated for all variables in the module, with the

maximum of the required sample sizes being chosen, or one of the variables could be

considered as the ‘main variable’, and the sample size requirement of the module set in

accordance with the precision requirement for this variable. In both cases, the module’s

precision requirement would be satisfied by

X

Qa

nj $ n*
a; ð3Þ

for some appropriate n*
a, which is obtained as above. Here, the summation extends over

Qa, the set of all instruments containing module Ma. Thus, if, for example, Qa ¼ {I3}, then

we require n3 $ n*
a, while if Qa ¼ {I1, I3, I7}, then we require n1 þ n3 þ n7 $ n*

a.

These m linear constraints, one for each module, on the sample sizes n1, : : : , nk of the

various samples, can be represented in the m £ k ‘composition matrix’ A, with elements

ai,j, where ai,j ¼ 1 if the module in row i is present in the instrument in column j and

ai,j ¼ 0 otherwise. The precision requirements for all modules may thus be expressed as

the following set of constraints on the vector n ¼ (n1, : : : , nk)
0

of the sample sizes of all

instruments:

An $ n*; A is an m £ k matrix; ð4Þ

where the inequality is to be understood componentwise, and n* ¼ n*
1; : : : ; n

*
m

� � 0

is the

vector of the minimal sample size required for each module.

2.2. Mandatory Crossings

In the previous section we discussed sample size requirements determined by the need for

a certain level of precision in estimating the parameters of the marginal distribution of the

variables in a module. In this section, we consider the sample size requirements relating to

mandatory crossings, that is, the sample sizes needed to ensure that the requirement for

a group of modules to be simultaneously present in at least one instrument is met.

Mandatory crossings make it possible to carry out multivariate analyses as they ensure that

all the relevant information is collected from the same sample units. Multivariate analysis

can include, for example, estimating regression coefficients or estimating the average of a

variable conditionally on the value of another variable (e.g., unemployment given the level

of educational attainment). Clearly, for a mandatory crossing a suitable sample size

requirement must be specified, so as to ensure estimation of desired precision for the

parameters of the multivariate analysis.

Crossings are added as separate rows, i ¼ m þ 1, : : : , m0 in the A matrix. If the crossing

is, say, in the i0th row, then the corresponding sample size requirement is given by n*
i0

. The

idea is that row i0 will act as a ‘constraint’, forcing all modules that are members of the
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crossing in row i0 to be jointly present in some instruments, which have a total sample size

of at least n*
i0

. If the crossing is included in the instrument corresponding to column j0, we

set ai0;j0 ¼ 1, and ai,j0
¼ 1 for all rows i corresponding to modules that are members of the

crossing. This means that for a given column of the matrix A some rows will have to be set

jointly due to mandatory crossings. Note, however, that each member Mi may be included

in further instruments beyond the ones in which the crossing is included, for example, if

Mi has a sample size requirement n*
i greater than n*

i0
.

Thus, the extended sample size constraints in modules and crossings can be expressed as

An $ n*; A is an m 0 £ k matrix: ð5Þ

2.3. Periodicity and Concordance of Modules and Instruments

In addition to guaranteeing a certain sample size for individual modules and crossings, the

choice of instruments must also take into account the periodicity of the modules: for

example, certain modules may be administered on a quarterly basis, others on a yearly

basis. In order for each module to be administered to a population sample at the required

periodicity, the instruments will also be assigned a periodicity, at which they will be

administered to sample units. The resulting instruments, one for each wave of data

collection, belong together to a common ‘parent’ set of instruments. Thus, a quarterly

parent instrument is sprouted into four quarterly ‘sibling’ instruments and a monthly

parent instrument is sprouted into twelve monthly sibling instruments. We will label all

sibling instruments using two indices, the first of which will indicate the common parent,

and the second the siblings. Thus, for example, a parent set of instruments Ii with monthly

period will consist of sibling instruments {Ii.1, : : : , Ii.12}, one of which is to be

administered to a population sample each month. It should be noted that although our

approach does not require this, sibling instruments belonging to the same parent will

usually have a similar core of modules, as each parent instrument would typically have

been created to accommodate the repeated administration of a set of modules.

Furthermore, although Ii is actually a set of instruments, we will use the same notation as

for a single instrument when the context is clear. We will need twelve columns in the

composition matrix, one for each sibling instrument, to represent the parent set of

instruments Ii: ¼ {Ii.1, : : : , Ii.12} accurately.

In order to ensure that a module is administered with the appropriate periodicity and with

the correct sample sizes, we will assume that all instruments belonging to the parent Ii are

administered equally spaced in time and to samples of identical sizes. Moreover, a module

may only belong to members of Ii if the period of the module (e.g., twelve for an annual

module, three for a quarterly module) divided by the period of the parent instrument Ii is an

integer, say r. The module must thus participate in a ‘complete periodic subset’ of the parent

instrument, which is defined as a subset of the form {Ii.s, Ii.(sþr), Ii.(sþ2r), : : :} of Ii or as a

union of such subsets. For example, if a quarterly module is included in a monthly parent

instrument Ii, then it must be included either in {Ii.1, Ii.4, Ii.7, Ii.10}, or in {Ii.2, Ii.5, Ii.8, Ii.11},

or in {Ii.3, Ii.6, Ii.9, Ii.12}, or in a union of such subsets.

This means that for a given row (i.e., a module) of the matrix A, its elements for the

columns corresponding to a complete subset of instruments for the given module will have
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to be set jointly. See the ‘proposal mechanism’ discussed in Subsection 3.2 for an

explanation of how the proposed random search algorithm deals with such constraints.

A module (or mandatory crossing) cannot be included in an instrument whose period is

greater than that of the module. Thus, a quarterly module may be present in quarterly or

monthly instruments, but not in annual instruments. If it is nevertheless desired to include

a module in an instrument of a lower frequency, for example in order to cross it with a

module appearing only in that instrument, then this module should be duplicated and

should appear in the list of modules once with the greater period and once with the lower

period. The same restriction holds for crossings, their period being defined as the lowest of

those of the member modules. Indeed, the period of each member module must be an

integer multiple of the period of the whole crossing.

The constraint for sibling instruments to be allocated equal sample sizes is represented

by a balancing matrix B, with k columns. Each set of sibling instruments with p siblings

corresponds to a set of p 2 1 rows of the matrix B. Each such row, say i0, will ensure that

nj ¼ nj0 for one of j0 ¼ j þ 1, : : : , j þ p. We therefore set bi0;j ¼ 1 and bi0;j 0 ¼ 21, and

bi0;j00 ¼ 0 for j00 � {j; j0}. We then require Bn ¼ 0. It should be noted that the balancing

matrix B is a constant in the optimisation process, unlike the composition matrix A.

2.4. Other Constraints on Modules and Instruments

In this section we describe some additional constraints that may arise in practice and

indicate how they could be expressed in terms of admissible instrument compositions.

2.4.1. Constraints on the Presence of Modules in Specific Instruments

There are certain modules that should be included either a) in all instruments or b) in

specific instruments only:

a. Modules containing variables used as auxiliaries in weight calibration. These are

usually categorical variables for which the population totals by category are known,

such as demographic variables. As calibration increases the precision of estimates of

correlated variables, and as we are interested in bringing together information from

different instruments, it is advisable to require a core set of such modules to be

included in all instruments. Similarly, it would be possible to include certain

modules related to rare population groups or low prevalence characteristics of interest

in all instruments, so as to gather information on these items from all units of the

integrated sample.

b. Modules for which longitudinal information is required. These modules should only be

included in appropriate instruments (e.g., where there is a specified sample overlap

between successive waves).

It should therefore be possible, within the process of optimisation, to specify whether

a certain module should be present in all instruments, or only in a specified group of

instruments. This is achieved by specifying which instrument compositions are

‘admissible’ (those satisfying all necessary specifications) and by allowing the algorithm

to visit only these compositions.

Journal of Official Statistics266



2.4.2. Constraints on the Joint Presence of Modules in Some Instruments

a. Dependencies between modules. It may only make sense for respondents to answer

questions from one module if they have responded in a particular way to another

module. For example, it only makes sense for an individual to answer a question on

hours worked if he/she has responded positively to the question as to whether he/she

works at all.

b. Many surveys currently being used may include groups of modules that relate to the

same thematic block and that are thus logically related to one another. Breaking up

such thematic blocks may be confusing for respondents, may make it difficult for the

questionnaire to focus on certain issues and may make training of interviewers more

difficult. It is therefore advisable to allow the grouping of modules into thematic

blocks, and to either include or exclude whole thematic blocks from any instrument.

In view of the above, the optimisation algorithm should exclude from the admissible

compositions any composition where an instrument includes a module, say M, but not all

the modules on which M depends. The requirement that certain modules only appear as

part of a specific thematic block could be imposed by building a mandatory crossing, the

sample size requirement of which would be equal to the maximum of the sample size

requirements of the modules contained in the block. Alternatively, if a group of modules

needs to appear together in all instruments, then such a group could be treated as a single

‘supermodule’ rather than as a mandatory crossing. This would reduce the computational

complexity of the optimisation. Finally, if a certain group of modules should not all appear

in the same instrument under any circumstances, then any composition where an

instrument contains all the modules from this group will be made inadmissible.

2.4.3. Putting Limits on the Questionnaire Size of An Instrument

There are two ways of ensuring that the questionnaire is of a reasonable size:

The first is the ‘hard’ or rule-based approach: instrument compositions are only

considered admissible if the sum of the burden of the modules belonging to the instrument

is below a certain upper bound.

The second is the ‘soft’, more flexible approach: the questionnaire size is incorporated

into the cost function. The cost function –– which we discuss in Subsection 3.1 below ––is

mainly determined by the sample size and the unit cost of a questionnaire, with the unit

cost depending on the size of the questionnaire. In Subsection 3.1, we model unit cost as

increasing linearly with the size of the questionnaire. Instead, it could be set to increase

linearly up to a certain threshold, and then to increase at an accelerated rate (e.g.,

quadratically) above the threshold. This creates a pressure for the questionnaire size to stay

below this threshold, while leaving some flexibility such that exceptions could be allowed,

the ‘price’ of going above this threshold being a higher unit cost.

3. Optimisation over Instrument Compositions and Sample Sizes

In this section, we describe an approach to optimisation over instrument composition and

sample size allocation that respects the constraints described above and yields an

approximately optimal modular design.
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3.1. The Cost Function

The cost function should ideally capture all the relevant contributing factors, including

both the cost of producing the survey and the respondents’ burden. In reality, this has

proven to be impossible in any strict sense, not least because a national statistical agency

will necessarily manage multiple surveys in parallel, and the methods and technical

systems for conducting surveys are constantly evolving. For the sake of simplicity, we will

follow the standard approach and use a linear cost function.

The overall cost, C, is assumed to be the sum of the cost of all instruments (samples)

considered:

C ¼
Xk

j¼1
Cj:

The cost Cj of sample j is assumed to be a linear function of the number of individuals in

the sample. This follows Groves (1989, 51) and Cochran (1977, 280). It is composed of a

survey-specific fixed cost C
ð f Þ
j –– the cost incurred regardless of the sample size chosen ––

and a variable cost, which is assumed (as an approximation) to increase linearly with the

sample size,

Cj ¼ C
ð f Þ
j þ ajnj:

The variable cost coefficient aj is the unit cost. Its dependence on j allows different unit

costs to be specified for different instruments, reflecting, for example, different modes of

data collection.

The linearity of C in the sample sizes nj, as expressed by the two preceding equations, is

an important assumption, and one which is necessary for the optimisation algorithm

(Subsection 3.2.2, Step ii). A realistic calculation of the cost of each instrument is, of

course, important to the design; see, for example UNSTATS (2005, 249–300) for an

extensive discussion on the assessment of survey costs. In what follows, we further

elaborate on a possible decomposition of the unit cost aj. The proposed optimisation

algorithm is, however, applicable regardless of the details of this decomposition.

Let aj have a household and individual component,

aj ¼ q21a
ðhhÞ
j þ a

ðind Þ
j ;

where a
ðhhÞ
j is the cost of including a household in the sample j, aðind Þ

j the cost of including

an individual in the sample and q the average number of individuals in the household. The

coefficients aðhhÞ
j and a

ðind Þ
j may consist of a fixed cost b0 (per person or household) and a

variable cost, which increases with the respondent burden of the respective questionnaire.

The burden of the questionnaire can be measured in such a way as to appropriately

reflect its cognitive and operational burden, taking into account, for example, whether the

respondent needs to look at specific personal records or use complex recall processes in

order to be able to answer the questions. The burden could, for example, be measured as

the average amount of the interviewer’s time required, as in Chipperfield et al. (2013).

Alternatively, it could be approximated as the number of questions in the modules

included in the instrument, if the burden created by each question is judged sufficiently

similar. The unit cost aj of a questionnaire may, in general, depend on the burden of the
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modules contained in the instrument. The form of this dependence may be arbitrary,

suggested by the specific application. A simple linear specification can be expressed as

a
ðhhÞ
j ¼ b

ðhhÞ
0 þ b

ðhhÞ
1

X

L
ðhhÞ
j

lg and a
ðind Þ
j ¼ b

ðind Þ
0 þ b

ðind Þ
1

X

L
ðind Þ
j

lg;

where lg is the respondent burden of module Mg. The first summation extends over LðhhÞ
j ,

the set of all modules concerning households contained in Ij, and the second extends over

L
ðind Þ
j , the set of modules concerning individuals contained in Ij. Finally, bðhhÞ

0 is the fixed

cost per household visited (independently of the number of individuals in the household),

b
ðhhÞ
1 is the cost per unit of response burden for the household, bðind Þ

0 is the additional fixed

cost per person in the sample (if any), and b
ðind Þ
1 is the cost per unit of response burden per

person in the sample. Thus, we obtain that the unit cost aj of instrument j has the form

aj ¼ q21b
ðhhÞ
0 þ q21b

ðhhÞ
1

X

L
ðhhÞ
j

lg þ b
ðind Þ
0 þ b

ðind Þ
1

X

L
ðind Þ
j

lg:

A similar idea for defining the unit cost is used in Chipperfield and Steel (2009; 2011),

where aj is defined as the fixed cost per unit plus the sum of the marginal data collection

cost across variables in pattern j.

3.2. Dual Optimisation: Simulated Annealing and Simplex

3.2.1. The Optimisation Problem

Assuming a predetermined and fixed number k of instruments, our objective function

C will depend on the composition of these instruments and on the sample sizes n.

The composition of the instruments is determined by the m0 £ k matrix A, where

[A]i,j ¼ ai,j: the module i belongs to instrument j if and only if ai,j ¼ 1. Thus, we have

C ¼ C(A, n). Our aim is to find

min A;nCðA;nÞ; under the conditions : A admissible; ðAnÞi $ n*
i ;

i ¼ 1; : : : ;m 0 and Bn ¼ 0
ð6Þ

that is, over the dual-space of A and n. Now, for any given composition of instruments,

that is, for any given A, it is easy to optimise an objective function that is linear in n under

constraints that are also linear in n via the simplex algorithm. This yields an optimal

sample size allocation nopt ¼ nopt(A). In this way, our problem can be translated into a

minimisation problem in A alone, that is,

min ACðA; noptðAÞÞ under the conditions : A admissible; ðAnoptðAÞÞi $ n*
i ;

i ¼ 1; : : : ;m0 and Bn ¼ 0
ð7Þ

The space to which A may belong to is a subspace of {0,1}km0, the space of all sequences

of zeros (‘0’) and ones (‘1’) of length km0, the number of instruments multiplied by the

number of modules and crossings. The size of this space depends exponentially on km0. For

this reason, the space cannot be searched exhaustively to find the minimum. Heuristic and
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metaheuristic methods have been proposed as a way of solving combinatorial optimisation

problems, such as the one we are facing here. They yield approximate solutions while

being computationally feasible (see e.g., Blum and Roli 2003). Algorithms of this type

‘search’ the state space in such a way that there is a good chance of finding an

approximation to the minimum (even if the state space is not searched exhaustively). One

of the most prominent such algorithms is simulated annealing. It was inspired by a

physical process for growing crystals: a molten fluid is slowly cooled until crystals are

formed, the slow cooling rate being crucial for crystal formation. The theoretical

properties of simulated annealing have been studied extensively. In particular, the

conditions under which the algorithm will converge to the optimum with probability 1 are

given, for example in Mitra et al. (1986) and Hajek (1988). The main reason for favouring

this algorithm is that we could come up with an idea of implementing it in such a way as to

accommodate the complicated constraints of the problem (e.g., different periodicities of

modules and instruments and the presence of crossings), while respecting the theoretical

conditions known to guarantee convergence.

Simulated annealing is a probabilistic search method: it moves in the state space from

one element to the next by applying small random changes to the current state in the search

for the minimum of a certain cost function. If the new state has a lower value of the cost

function, it is accepted. If it has a higher cost, it can still be accepted with some small

probability. Allowing a higher cost to be accepted in this way allows the algorithm to

climb out of local minima of the cost function, so that it can converge towards the global

minimum. The probability of accepting a state with a higher cost than the previous one

depends on the difference in cost and on a ‘cooling schedule’, given by the ‘temperature’

Tt. This temperature decreases towards zero at a specified rate. Accepting a state with a

higher cost than the previous one becomes increasingly less likely as the temperature

decreases. This enforces convergence to the optimum as the system ‘cools down’. Mitra

et al. (1986) note that the condition Tt ! 0 is not sufficient for the resulting time-

inhomogeneous Markov process to converge to the optimum. They prove that for discrete

state spaces an assumption of Tt decreasing at a logarithmic rate, that is

Tt ¼ g= log ðt þ t0 þ 1Þ, with a suitable lower bound set for g, is sufficient for this

convergence. These results are in line with Hajek (1988), who gives a necessary and

sufficient condition on the cooling schedules for convergence, and also suggests a

logarithmic cooling schedule. For continuous state spaces, faster cooling rates may be

sufficient for an appropriately chosen distribution of random changes from the current

state, see, for example Tsallis and Stariollo (1996).

3.2.2. Implementing Simulated Annealing

Simulated annealing can be described as follows: starting with some arbitrary (but

admissible) matrix A0, the following steps are repeated until no further cost reductions are

achieved. Setting C(A) ¼ C(A,nopt(A)):

i. Proposal of a new state. In each step t from the current At, a new composition Atþ1

is proposed by randomly perturbing At. If Atþ1 is not admissible, it is rejected by

setting Atþ1 ¼ At
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ii. Sample size optimisation. For the new candidate state Atþ1, the simplex algorithm

determines nopt
tþ1 ¼ noptðAtþ1Þ, which allows calculation of CðAtþ1Þ ¼

CðAtþ1; n
optðAtþ1ÞÞ.

iii. Acceptance of the proposal. If the proposal does not increase the cost, that is

CðAtþ1Þ # CðAtÞ, it is accepted. If the cost increases, that is CðAtþ1Þ $ CðAtÞ,

then the step may still be accepted, with the probability of acceptance being given

by exp ð2½CðAtþ1Þ2 CðAtÞ�=TtÞ, where Tt ¼ g= log ðt þ t0 þ 1Þ.

iv. If accepted, Atþ1 becomes the new current state, and the new sample size allocation

is given by n
opt
tþ1 ¼ noptðAtþ1Þ.

A further assumption needed for convergence (with probability 1) to the optimum –– in

addition to the assumption of the logarithmic rate of the cooling schedule, concerns the

proposal of Atþ1 from the current state At (see point i above). This assumption ensures

that, were the temperature frozen at some fixed value, the resulting time-homogeneous

Markov process would have a limit distribution. Mitra et al. (1986) note that if,

additionally, Tt ! 0 and Ttþ1 , Tt are assumed, the limit distribution would be

concentrated on the optimum. This would, however, require that at each fixed value of the

temperature Tt a number of steps be undertaken large enough that this limit distribution

is reached (see e.g., Angelis et al. 2001).

‘Proposal-symmetry’ condition: the conditional probability of composition A0 being

proposed if the current state is A, P(A0jA)), equals the probability of composition

A being proposed if the current state is A0, P(AjA0)). Thus P(A0jA) ¼ P(AjA0).

(See e.g., Mitra et al. 1986)

We describe below a random perturbation mechanism that respects this symmetry

condition and the constraints from Subsections 2.1–2.3.

We use the notation introduced in Section 2: single modules correspond to rows

{1, : : : , m} of the matrix A, and crossings correspond to rows m þ 1, : : : , m0. We

also make use of the concept of a ‘complete periodic subset of instruments’. We

denote as Jj0
(i0) a subset of a parent instrument that is complete for the module in i0,

and to which the instrument in j0 belongs (see Subsection 2.3). (For example, if the

module in row i0 is of quarterly frequency and the instrument in column j0 belongs to

a monthly parent instrument, and if j0 corresponds, say, to the February sibling, then

Jj0
(i0) consists of the column indices of the siblings of the same parent instrument

corresponding to February, May, August and November.) Finally, we say that the

module in row i0 is ‘switched on’ in the instrument in column j if ai0
,j ¼ 1, while if

ai0
,j ¼ 0 we say that it is ‘switched off’. We also say that we ‘reverse a module’s

switch position’ if we set ai0,j
to 1 2 ai0

,j.

For admissibility we must respect the following properties:

a. If a mandatory crossing is switched on for some instrument, then it must also be

switched on for all modules that are members of the crossing for the same instrument.

b. For each row of the matrix A corresponding to a module (or a crossing) of a certain

periodicity, there is at least one complete periodic set of instruments for this module

(or crossing) that is switched on. This is necessary in order to be able to allocate some

sample size to this module.
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c. Possible further constraints, such as those discussed in Subsection 2.4, are satisfied.

From a practical point of view, the value of the parameter g of the cooling schedule should

be chosen in such a way as to strike a good balance between an in-depth local search, that

is exploring the area in the immediate vicinity of the current state space, and a global

search, that is exploring areas of the state space that have not yet been sufficiently

searched. For example, a value of g ¼ 0 would enforce quick convergence to the next

local minimum, but would leave other areas of the state space unexplored. A quick

apparent convergence is therefore not necessarily desirable. According to the exposition

in Cicirello (2007), Lam and Delosme (1988) proposed a so called “D-equilibrium” as a

trade-off between speed of convergence to an optimum and quality of this optimum in

simulated annealing. Their analysis suggested that this is achieved when the acceptance

rate, averaged across the previous 500 steps of the algorithm, is kept around 44 %. One

might set the parameter g in our algorithm so as to achieve this target. Reference is made

to other approaches to nonmonotonic cooling schedules (alternating cooling and

reheating) in Blum and Roli (2003).

A possible stopping rule for the algorithm would be one of the type: ‘exit when the

reduction in cost achieved during the last tcrit steps did not exceed epscrit’, for values

of tcrit and epscrit chosen by the user. The choice of the initial composition A0 may

affect the number of steps required to achieve the optimum. A possible approach is to

start with a composition in which each module participates in all siblings of all

instruments that have a period required by the module, provided the constraints of

Subsubsection 2.4.1 are also respected. If an admissible initial composition is found,

this guarantees the existence of a solution to the optimisation problem: since the set

of admissible compositions is nonempty and finite, the minimum will be attained. In

more sizeable problems, that is those with a large number of instruments, modules

and crossings, an alternative possible strategy would be to first find the optimum for a

reduced problem, and then to use this to obtain a starting value for the full problem.

3.2.3. The Proposal of a New State: Simple Cases

The first step (i) in the implementation of simulated annealing, as set out in the previous

section –– the proposal of Atþ1 from At at step t –– can be defined as consisting of three

phases:

1) Choose a row (module or crossing) i0 at random from the uniform distribution on

{1, : : : , m0} and a column (instrument) j0 from the uniform distribution on all

instruments that are of an appropriate periodicity for this module (i.e., have the

same period or a period that is an integer fraction thereof).

2) Modify ai0
,j0

and other related elements of A t (see below for details).

3) If A tþ1 is not admissible, discard it and set A tþ1 ¼ At.

Phase (2), the modification of ai0
,j0

and other related elements, must be done in such a way

that the ‘proposal-symmetry’ condition is satisfied.

To illustrate the idea, let us first consider the simple case where there is a unique

frequency and there are no crossings. In this case, there are no further ‘related elements’ to

be taken into account in Phase (2). It is only ai0
,j0

that is modified by having its switch
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position reversed, that is by being set to 1 2 ai0
,j0

. Then, starting at some state A, the

probability of proposing a neighbouring state (defined as those to which the probability of

moving from A is positive), say A0, is equal to 1=ðmkÞ. The same holds for the probability

of proposing A when starting at A0. Thus, the condition is fulfilled.

Let us now consider a slightly more complicated case, where there is one crossing. The

constraint created by the presence of the crossing is that when the crossing is switched on,

the modules belonging to that crossing must also all be switched on. This is not true the

other way around: modules have different constraints on their sample sizes and may,

moreover, be members of many crossings. They should therefore be given the freedom to

participate in an instrument, even if a crossing to which they belong is not in this

instrument. Crossings require the joint presence of modules, but do not set any constraints

on their joint absence.

Assuming there is a crossing, and that the row selected in Phase (1) corresponds to a

module, that is if i0 # m, Phase (2) may be defined in exactly the same way as in the case

considered above; the argument on symmetry still applies, as may be easily verified. We

now consider the case where in Phase (1) a crossing, rather than an individual module, is

selected (i.e., if i0 . m). To illustrate this situation, let us assume that M1 in Table 1 is also

of annual periodicity and that i0 ¼ 5, which means G1 was selected. Let us also assume

that an instrument is selected that is switched off, that is a5,j0
¼ 0, for example j0 ¼ 3. The

idea is to decide in a randomised way whether the crossing will be switched on: we will

switch it on (by setting a5,3 ¼ 1) with some probability p0, or leave everything unchanged

(the reason for doing so will become apparent at the end of this paragraph). If we switch it

on, then this obviously implies that the members of G1 should be switched on as well, that

is we would also set a2,3 ¼ a4.3 ¼ 1. Ignoring rows and columns that are not involved, we

denote this state by A0. Note, however, that, depending on which of the members (i ¼ 2

and i ¼ 4) are already switched on at the current step t, there are different states A that may

lead to the same state A0. In fact, if the crossing has L members, then there are 2L different

states A that could all lead to A0. In order to satisfy the symmetry condition, we need to be

able to get back to any state A that may have yielded A0. Assuming that each one of these

states is to be proposed from A0 with equal probability, this probability should be 1=2L.

This can be achieved by switching off each member of the crossing independently with

probability 1=2. This implies that, in order to satisfy the symmetry condition, we should

also choose p0 ¼ 1=2L in our initial randomised decision on whether to have the crossing

switched on or off.

Greater caution is required if there are two or more crossings: if at the step at which,

say, the first crossing will be switched off (in a column j0), some of its members are

also members of some other crossing that is currently switched on in j0, then these

modules cannot be switched off, as this would lead to an inadmissible composition.

Thus, they should not be counted in the different states A, from which A 0 may be

obtained. Such modules should therefore not be counted in L (which will thus be a

random variable).

If there are a number of different frequencies but no crossings, the situation is simple

again: for each selected module i0 and instrument j0, reverse the switch position of the

module in all instruments in a complete periodic set for module i0, the one to which j0
belongs, that is, change the setting ai0

,j to 1 2 ai0
,j for all j [ Jj0

(i0).
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3.2.4. The Proposal of a New State: The General Case

In the general case, where there are both different frequencies and crossings, the approach

follows the same principle but is significantly more complicated, due to the fact that a

crossing and its members may have different frequencies. Only Phase (2) from the

previous subsection needs to be modified to accommodate this situation.

Phase (2) of the first step (i) of the implementation of simulated annealing can be

defined by distinguishing between two separate cases:

I) If a single module was chosen (i.e., if i0 # m), then all instruments in the complete

subset to which the module belongs should have their switch position reversed, that

is, if ai0
,j0
¼ 0 then set ai0

,j ¼ 1 for all j [ Jj0
(i0). Similarly, if ai0; j0 ¼ 1 then set

ai0
,j ¼ 0 for all j [ Jj0ði0Þ.

II) If a crossing of period pi0
was chosen (i.e., if i0 . m), then for all its members Mi that

have a period pi, set ri i0j ¼ pi=pi0 . Then for each Mi there is a partition of Jj0
(i0) into

ri i0j subsets, each of which is complete for Mi. Let us call these subsets

Jj0 ði; 1Þ; : : : ; Jj0ði; ri i0j Þ. The number of these subsets equals ri i0j . Let ri i0j
be the

number of subsets excluding those subsets Jj0
(i,k) for which Mi is a member of some

further crossing Gi1
(i1 – i0) that is currently switched on, that is, ai1

,j ¼ 1 for

j [ Jj0
(i, k). Thus

riji0
¼ #{Jj0ði; kÞ; k ¼ 1; : : : ; riji0 jai1; j ¼ 0;;i1 . m; i1 – i0 : Mi [ Gi1 ; j [ Jj0 ði; kÞ};

where # denotes cardinality. Note that if the module in row i is a member of another

crossing that is currently switched on for all j [ Jj0 ði0Þ, then ri i0j
¼ 0.

i. If ai0
,j0
¼ 0, then let L ¼

P
ri i0j

, where the summation extends over all members of

the crossing. Then, with probability 1=2
� �L

, for all j [ Jj0
(i0), set ai0

,j ¼ 1 and

ai,j ¼ 1 for all rows i containing modules that are members of the crossing; else

(with probability 1 2 1=2
� �L

), set A tþ1 ¼ A t.

ii. If ai0
,j0
¼ 1, then set ai0

,j ¼ 0, for all j [ Jj0
(i0). Also, independently for all rows i

containing modules that are members of the crossing considered (in row i0), and

independently for each of the subsets Jj0
(i,k) of the partition Jj0ði; 1Þ; : : : ; Jj0ði; ri i0j Þ

of Jj0
(i0), for which the module in row i is not a member of another crossing (beyond

the one in i0), which (other crossing) is currently “switched on”, with probability

equal to 1=2 set ai,j ¼ 0 for all j [ Jj0
(i,k).

Note that the proposal mechanism is such that the constraints set out in Subsections 2.2

and 2.3 are already incorporated in Phase (2), while the constraints from Subsection 2.4 are

only checked a posteriori in Phase (3), once a new proposal has been made.

Different ways of updating the composition matrix A can of course affect the numerical

efficiency of the search algorithm. We do not have an optimal search algorithm at our

disposal.

On the basis of the above, it is possible to prove the following special case. We are not

currently able to provide a proof for cases where other constraints, such as dependencies

between modules, are taken into account.
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Proposition. The proposal mechanism described in Steps 1–3 above respects the

proposal-symmetry condition, subject to the constraints described in Subsections 2.1–2.3.

The proof of this proposition may be found in the Appendix.

3.3. Appropriateness of the Simulated Annealing Algorithm

The algorithm, consisting of simulated annealing and simplex, can also be used in the

design of an efficient SQD, thus resolving a problem to which feasible solutions exist in

the literature only for the case of a very limited number of variables (or modules).

For the single survey SQD, and under simple random sampling, Chipperfield and Steel

(2009; 2011) consider the optimal allocation of sample size to minimise cost, subject to

precision constraints. The most efficient design is determined on the basis of best linear

unbiased estimation (possible under simple random sampling and given correlations

between all variables), and therefore comprises all 2m 2 1 possible patterns (instruments).

For the case being studied here –– an integrated survey with a complex and modular

sampling design and a baseline estimation approach involving HT estimators for single

instruments (samples), and composite HT estimators combining data from different

instruments –– we are also aiming to minimise cost, under similar precision constraints.

However, our minimisation is over all possible ck ¼
�

2m 2 1
k

�

combinations of k

instruments, and over the associated sample size allocations. Noting that the use of 2m 2 1

samples is not practical even for moderate m, Chipperfield and Steel (2009) also propose

the choice of a limited number of k best patterns according to a ranking of all patterns

based on their relative estimation efficiency. They thus circumvent the more difficult

question of optimisation over all ck combinations, but at the expense of a loss of efficiency.

Our specification of a fixed number of instruments, and the optimisation over all ck

combinations, coincides with the approach adopted by Adiguzel and Wedel (2008). They,

however, consider the distinct problem of finding the single survey SQD that minimises

the Kullback-Leibler distance (see Kullback and Leibler 1951) to the full questionnaire,

while assuming equal sample sizes for all k instruments. Without the assumption of equal

sample sizes, the minimum is attained by the full questionnaire. Thus, their approach does

not include optimal sample size allocation. A random search algorithm, a modification of

the Fedorov algorithm (see e.g., Cook and Nachtsheim 1980), is then used to find the

optimal instrument composition.

Applying this algorithm to our problem, including the simultaneous optimisation over

sample sizes, would mean that a single full step of the algorithm should examine each of

the (2m 2 1) possible compositions for each of the k instruments. It would thus require the

same computation time as k(2m 2 1) steps of the annealing algorithm. For example, with

30 modules and three instruments, this figure is around three billion. The number of

modules in an integrated social survey system could range from 50 to 200, making it

impractical to apply this algorithm.

There are alternative ways of implementing simulated annealing. In particular, future

research may draw on the extensive literature on the application of simulated annealing

in the optimisation of experimental designs (see Meyer and Nachtsheim 1988). Two

examples of work in this area are the discussions on sequential and nonsequential

exchange methods in Lejeune (2003) and on exchange and interchange steps in Jansen
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et al. (1992), which may lead to improvements to the current proposal mechanism.

Cooling rates declining faster to zero, as discussed in Tsallis and Stariollo (1996), and the

analysis of the impact of the values of the parameters involved (see e.g., Angelis et al.

2001), are also interesting topics for further research.

Finally, the use of other heuristic and metaheuristic algorithms, such as genetic

algorithms and other population-based methods (see e.g., Blum and Roli 2003 for a brief

discussion of and further references to work on these types of algorithms) could be

explored.

4. Modular Design with Complex Sampling

In Section 2, we assumed the use of simple random sampling. In this section, we extend the

approach to include complex sampling designs. We first set out how the precision

requirements for estimating u are translated into constraints on the sample sizes, and then

explain how the optimisation framework can be modified accordingly.

4.1. Adjusting Sample Size Requirements

4.1.1. Complex Sampling Design for Independent Samples

Estimating u from a single sample under some complex design, which, for example,

involves stratification and/or multistage sampling, leads to a different variance V0(û).

Assuming normality for û, the precision constraint V 0ðûÞ # e=z12a

� �2
is then satisfied

by the constraint n=d $ n*, where d is the customary design effect (defined as

d ¼ V 0ðûÞ=VðûÞ, with V(û) being the variance of the same estimator under simple random

sampling), and n * is as in (1).

When u is estimated by a weighted average of estimates from different instruments, as

in Subsection 2.1, then the weights should be modified to wi ¼ ni=di

� �

=
P

nj=dj

� �

, where

di is the design effect for the ith sample. It can be shown that for independent simple

random samples and for this choice of weights, the composite estimator û ¼
P

wiûi has

minimum variance V 0ðûÞ ¼ s2
u=
P

ni=di

� �

, provided that sampling fractions ni=N are

negligible. The precision requirement V 0ðûÞ # e=z12a

� �2
is then satisfied if

X

nj=dj

� �

$ n*:

In the case where the design effects for the different samples are identical, the weights

of the composite estimator are wi ¼ ni=
P

nj, and the precision requirement is satisfied by
P

ni

� �

=d $ n*, where d is the common design effect.

4.1.2. Complex Sampling Design for Coordinated Samples

If the samples of the various instruments are negatively coordinated, for example by

splitting a sample into subsamples, one for each instrument, then V 0ðûÞ # s2
u=
P

ni=di

� �

,

due to the negative covariance term between the estimates ûi. The precision requirement
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is, therefore, again satisfied if
X

nj=dj

� �

$ n*:

Let us finally consider an example where there is positive coordination between the

samples and show how this case may also be embedded in the current framework. We

assume that there is some overlap between L samples S1, : : : , SL, of sizes n1, : : : , nL, as is

the case in surveys with rotating samples. Let us denote by ni>j the number of sample units

in Si > Sj, let ni>j ¼ tijni for some appropriate tij, and assume that all subsets reflecting

common and noncommon parts of these samples are drawn independently from each other

by simple random sampling. It is then logical to pool estimates over time, as is done for

example when estimating a yearly average from four quarterly estimates. Putting

û ¼
P

wiûi, where wi ¼ ni=nþ, nþ ¼
P

ni, tiþ ¼
P

j tij and tavg ¼
P

i tiþwi, we obtain

VðûÞ #
s2
u

nþ
n21
þ

X

i; j

ni>j

 !

¼
s2
u

nþ

X

i

ni

nþ
tiþ

 !

¼
s2
u

nþ
tavg:

In the specific case of a longitudinal survey with L wave, for which the sample sizes

n1, : : : , nL are restricted to be equal to each other, we have tavg ¼ L21
P

tiþ. It is then

possible to adopt a ‘design’ effect dj ¼ tavg, such that the precision requirement is satisfied

if
P

nj=dj

� �

$ n*.

4.2. Adapting the Optimisation Framework

In all the cases described in Subsection 4.1, the precision requirements for a module Ma are

satisfied by
X

Qa

nj=da; j

� �

$ n*
a; ð8Þ

where da, j is the module’s design effect for instrument j, n*
a is obtained as in (3), and the

summation extends over Qa, the set of all instruments containing the module Ma.

A way of representing these m0 linear constraints (one for each module and each

crossing), on the sample sizes n1, : : : , nk of the various samples, is by introducing the

m0 £ k ‘design-composition matrix’ R, with elements ½R�i; j ¼ ai; jd
21
i; j , where ai, j are the

elements of the composition matrix A and di, j those of the design-effect matrix [D]i, j. For a

crossing in row i0, we set di0j0 ¼ max i{dij0
}, where the maximum is over all members of

the crossing. In the special case where all samples are independent and drawn using simple

random sampling, and a weighted average of HT estimators is used, all di, j ¼ 1, and we

obtain R ¼ A.

Generally, the constraints in (8) may now be expressed as

Rn $ n*; R is an m 0 £ k matrix; ð9Þ

where the inequality is to be understood componentwise, n ¼ (n1, : : : , nk)
0

is the vector of

the actual sizes of the samples associated with the k instruments, and n* ¼ ðn*
1; : : : ; n

*
m 0 Þ

0

is the vector of the minimum sample sizes for the m0 modules and crossings required under

simple random sampling, that is, those given in (1). This relation now replaces (5).
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Furthermore, (7) is now replaced by

min ACðA; noptðA;DÞÞ under the conditions : A admissible; ðRnoptðA;DÞÞi

$ n*
i ; i ¼ 1; : : : ;m 0 and Bn ¼ 0 ð10Þ

where nopt(A, D) is the admissible vector of optimal instrument sample sizes and

noptðA;DÞ – noptðAÞ.

In other words, the algorithm is defined exactly as previously on the space of all

composition matrices A, with the only modification being that the sample size constraints

are now formulated using the design-composition matrix R instead of the composition

matrix A.

5. An Illustrative Example

As an illustrative example of how the approach presented above could be used, we consider

a hypothetical reorganisation of the Labour Force Survey (LFS) using three quarterly

instruments, in place of the current single questionnaire, which is administered quarterly.

The blocking of the LFS variables into 30 modules was prepared by Eurostat (see

Table 2). The first six of these modules represent demographic and household

characteristics, and will be present in all available instruments. A further group of ten

modules contains the structural variables, that is, those on which information must be

collected on an annual basis (in accordance with EU regulations). Of the modules

containing quarterly variables, five are needed for the definition of “ILO-Unemployment”

(unemployment as defined by the International Labour Organization). We therefore group

these into a single crossing. For the purposes of this illustration, we split the remaining

nine quarterly modules into two crossings: ‘Employment conditions 1’ (‘Empl_cond1’),

containing six modules, and ‘Employment conditions 2’ (‘Empl_cond2’) with three

modules, as indicated in Table 2.

For each module, Eurostat defined the dependencies on other modules and calculated,

based on historically observed proportions of respondents, the average respondent burden

lg as the sum (across individuals in the sample) of the number of questions in Mg answered

by each individual, divided by the total number of individuals in the sample. For the purposes

of this illustration, we assume the fix costs C
ð f Þ
j , bðhhÞ

0 and b
ðind Þ
0 to be 0, and the coefficients

b
ðhhÞ
1 and b

ðind Þ
1 to be equal to 1. The calculations are based on the data for Portugal. The

reason for choosing Portugal was that it has a population size close to the EU median.

The required sample sizes are calculated so as to satisfy EU regulations that apply to

Portugal, and on the assumption that all instruments are administered to independent

samples, drawn using simple random sampling. According to Commission Regulation

(EC) No 377/2008, for structural variables, the relative standard error (assuming simple

random sampling) of any yearly estimate representing one percent or more of the working-

age population must not exceed nine percent for countries with a population of between

one million and 20 million inhabitants. Note that, if simple random sampling is assumed,

the sample sizes required to satisfy these precision requirements may be derived from the

variance of estimating proportions of a specified magnitude, and, therefore, do not need to

be estimated by means of pilot samples or other similar single surveys. This implies a
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required total sample size of 12,205. For the variables in the ILO-Unemployment crossing,

according to Council Regulation (EC) No 577/98, the relative standard error when

estimating the change in subpopulations representing five percent of the working-age

population between two successive quarters must not exceed three percent for countries

with a population of between one million and 20 million inhabitants. This implies a

required yearly sample size of 168,005 (i.e., 42,001 per quarter). This regulation

dominates the others, which require smaller sample sizes. For the other two crossings

containing quarterly variables, and in order to introduce some further precision

differentiation, we assume sample sizes corresponding to the same level of precision in

estimating the change between quarters (3 %) but for subpopulations of seven percent and

ten percent of the working-age population respectively. This implies annual sample sizes

of 117,665 and 79,805.

The benchmark composition used as the standard against which to compare the cost

reduction achieved by the reorganisation is the composition where all modules (including

structural modules) are present in all instruments. This is equivalent to the traditional approach

of administering a single questionnaire to all sample units. As there is no differentiation between

instruments, the total yearly sample size equals the maximum of the required sample sizes,

that is, 168,005, and the total yearly data collection cost (taking into account the modules’

respondent burden) is around 8.70 million person-questions. This benchmark composition

was also used as the initial composition A0 for the annealing algorithm.

The optimisation algorithm is programmed in R (R Core Team 2013) and used

R-package lpSolve for the simplex optimisation (Berkelaar et al. 2013). In this example, it

was run for 50,000 steps, using the benchmark composition as the initial state. The cost

reduction achieved by the optimisation is illustrated in Figure 1 below. It can be seen that

most of the reduction has already been achieved after around 4,000 steps. The minimum is

5.5
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Fig. 1. Cost evolution (first 30,000 out of 50,000 steps) for compositions visited by the simulated annealing

algorithm when searching for the optimal composition for the illustrative example described in Section 5.
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reached after approximately 28,000 steps, with a cost of 5.97 million person-questions, a

reduction of around 31 % from the cost of using the benchmark composition. Had we

included a component representing the fixed cost for each instrument, increasing the

number of instruments would, of course, have cancelled out some of this cost reduction.

The purpose of this article is, however, to illustrate the modular approach rather than to

propose a definitive alternative design.

At this ‘approximate optimum’, the ‘ILO-Unemployment’ modules are included in all

three instruments, and allocated a total sample size (168,008) that is almost identical to the

required one. The ‘Empl_cond1’ crossing participates in the first two instruments, and the

‘Empl_cond2’ crossing in the last two. For both crossings, the total sample sizes achieved

in the optimum (117,668 and 79,808, respectively) are almost identical to the sample sizes

required for these modules. The annual modules are distributed across the quarters of the

instrument which has the sample size (12,585 per quarter) closest to what is required for

these modules (12,205), in such a way as to respect module dependencies. These modules

are therefore slightly ‘oversampled’. This oversampling would, of course, have been

avoided, resulting in a further cost reduction, had one more annual instrument been

introduced. Note that with the distribution of modules to instruments described in Table 2,

the annual modules and the modules in Empl_cond1 are not jointly administered to any

sample units, implying that there is no information on the interaction between them. This

could have been avoided by introducing a further crossing comprising the modules in

Empl_cond1 and some or all of the annual modules, with a required sample size chosen

accordingly. Satisfying this additional constraint would inevitably have meant giving up

some of the cost reduction achieved by the design shown in Table 2.

6. Conclusion

In this article, we have formulated a modular design and have proposed an algorithm that

could be used to restructure the questionnaires currently used for social surveys into

instruments. A better balance could thus be achieved between precision requirements on

the one hand, and the need to reduce the cost and burden of the survey on the other. In view

of the extremely large number of possible instrument compositions, a random search

algorithm has been developed to help find the optimal composition.

There are several methodological issues that should be acknowledged in relation to the

modular design. It should be noted that these are all perennial difficulties associated with

survey sampling, which apply to any design approach, and a more detailed investigation of

these issues is beyond the scope of this study. Nevertheless, it is helpful to be clear about

the tacit assumptions that we necessarily have to make as a result, for which we have

generally adopted the standard practice.

When determining required sample sizes, the requisite design parameters s2
u for all u

(means and proportions) and all modules involved and the required design effects are

likely to be unknown, and would need to be estimated. This is typically done by means of

pilot samples or similar single surveys. For the estimation of design effects under complex

survey designs, see, in particular, Gambino (2009) and Park and Lee (2004).

Practical discussions of the modular approach often note that certain features of the

modular design may have an effect on various nonsampling errors. The typical
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errors include those related to the cognitive aspects of the instrument composition, the

mode effects and the nonresponse. The cognitive effects relate to the respondents as

well as to the data collection personnel. The possible consequences include confusion,

increased training costs, measurement errors, and potential nonresponse. Mode effects

exist if the obtained measurements differ according to the mode of data collection, with

possible modes being, for example, face-to-face interview, computer-assisted telephone

interview, and self-administered postal questionnaire. The nonresponse rate, both for

unit and partial nonresponse, may vary depending on the items or the combination of

the modules.

We do not explicitly account for nonsampling errors while addressing the two design

questions (1) and (2) that we posed in Section 1, due to the lack of carefully studied

empirical evidence. For example, suppose the nonresponse rate in a forthcoming survey is

expected to be around 50% based on past experience. What is then the difference in cost

and precision for example between (a) planning a sample that is twice as large as the

required net sample, and (b) planning a sample that is three times as large and aiming at a

33% response rate in fieldwork? Meanwhile, we do implicitly assume that the modular

design is based on the best current knowledge as to how to structure the items in the

different modules. We assume that the constraints on instrument composition reflect

choices made as to whether some modules should or should not be present simultaneously

in the same instrument, or whether a module should only be assigned to a certain mode of

collection. As was demonstrated in Section 2, the modular design approach can

incorporate all such constraints.

We would like to emphasise that, in practice, a potentially large error in approximating

the optimal design is unlikely to be the most critical concern, not least because the

optimum is only such with respect to a certain design parameterisation, which can itself be

challenged and certainly will be revised over time. Moreover, attention should be given to

addressing and reducing the potential nonsampling errors that may come with the new

system in future. In this respect, it is important to use a suitable benchmark in order to

ensure a fair assessment under which potential shortcomings are balanced against gains.

It is unrealistic to require the new system to meet certain unattainable ideals which today’s

standalone surveys also fail to achieve.

Moreover, a number of considerable changes would have to take place at national

statistical institutes for it to become possible to implement the modular approach. These

involve considerable investment in resources, and the complexity and cost of these

organisational changes should not be underestimated. The changes fall into three main

areas: (i) Information structure and production systems: data collection and processing

require a greater degree of conceptual harmonisation and operational standardisation in

order to make them comparable, shareable and reusable. Standardised database and

warehouse solutions and metadata systems will need to replace end-to-end statistics-

specific processes and management, in order to make the data and metadata accessible

across the different statistical domains. (ii) Fieldwork management systems: these are

needed both as a way of managing the numerous modules and instruments required in

fieldwork and so as to be able to update or replace existing modules and instruments over

time. (iii) Staff: staff need to adapt to a new situation where the data are collected in

multiple instruments and stored, managed and shared using standard system solutions.
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Finally, we would like to draw attention to the fact that while the approach presented

here could allow efficiency gains to be made compared to the system currently in use (as

illustrated in Section 5), and while it is reasonable to explore this (since today’s system of

social surveys would be the point of departure from which a gradual phasing in of a

modular system would take place), a main strength of the modular design lies in its

flexibility to meet new information requirements. The system could easily incorporate new

modules (or eliminate redundant ones), scale up (or reduce) the precision requirements for

individual modules or cross certain modules with each other. Thus, the potential of the

new system is not limited to meeting today’s information needs. One of its main attractions

is that it can accommodate new information requests from policymakers in a much more

flexible way, without the constraints of the present survey system.

Appendix

Proof of the Proposition on the Fulfilment of the Proposal-Symmetry Condition

Let us denote by p(i0, j0) the probability of selecting an i0 and a j0 in one of the available

complete sets of instruments. In the case that A0 was generated from A in the case

described in Subsubsection 3.2.4, Point I) above (i.e., the switch position of a module in

row i0 # m was reversed), we have PðA 0jAÞ ¼ PðAjA 0Þ ¼ pði0; j0Þ, and the proposal

mechanism respects the symmetry condition.

Similarly, let us now consider the case where A0 was generated from A in the case

described in Subsubsection 3.2.4 Point II) (i.e., a crossing in row i0 . m was selected).

First, assume that all the modules contained in the crossing have the same periodicity,

implying ri i0j ¼ 1 for all its members. Moreover, for illustration purposes, assume the

crossing has only L ¼ 2 members, which are assumed not to be members of any other

crossings that are currently switched on. Then, in the state, say A0, in which the crossing is

switched on, all members are also switched on, while, if the crossing is switched off, there

are four possible states in relation to its two members, say A1, : : : , A4, corresponding to

the situations where none, both, or one of the two members are switched on (for all

j [ Jj0 ði0Þ). Then, in the case presented in Subsubsection 3.2.4 Point II.i), we get

PðA0jAiÞ ¼ 1=22
� �

p ði0; j0Þ, while in the case presented in point II.ii), we get

PðAijA
0Þ ¼ 1=2

� �

1=2
� �

p ði0; j0Þ, and the proposal mechanism respects the symmetry

condition. The argument is similar for L . 2: the number of states from which it is

possible to generate A0 equals 2L, and the transition probabilities to and from A0 are all

equal to 1=2L. Note that modules that are currently members of other crossings that are

switched on are fixed in their current switch position during the transitions considered.

In the case where a crossing may contain modules of different periodicities, again, the

number of states from which it is possible to generate A0 equals 2L, and the transition

probabilities to and from S0 are all equal to 1=2L, which concludes the proof.

7. References

Adiguzel, F. and M. Wedel. 2008. “Split Questionnaire Design for Massive Surveys.”

Journal of Marketing Research 45: 608–617. Doi: http://dx.doi.org/10.1509/jmkr.45.5.608.

Ioannidis et al.: A Modular Approach to Survey Integration 283

http://dx.doi.org/10.1509/jmkr.45.5.608


Angelis, L., E. Bora-Senta, and C. Moyssiadis. 2001. “Optimal Exact Experimental

Designs with Correlated Errors Through a Simulated Annealing Algorithm.”

Computational Statistics & Data Analysis 37: 275–296. Doi: http://dx.doi.org/doi:10.

1016/S0167-9473(01)00011-1.

Australian Bureau of Statistics. 2012. Household Expenditure Survey and Survey of

Income and Housing, User Guide. Australia, 2009-10 (cat. no. 6503.0). Available at:

http://www.abs.gov.au/ausstats/abs@.nsf/mf/6503.0 (accessed April 2016).

Berkelaar, M., et al. 2013. lpSolve: Interface to Lp_solve v. 5.5 to solve linear/integer

programs. R package version 5.6.10. Available at: http://CRAN.R-project.org/

package¼ lpSolve (accessed August 2013).

Blum, C. and A. Roli. 2003. “Metaheuristics in Combinatorial Optimization: Overview

and Conceptual Comparison.” ACM Computing Surveys 35: 268–308. Doi:http://dx.

doi.org/10.1145/937503.937505.

Chipperfield, J.O. and D.G. Steel. 2009. “Design and Estimation for Split Questionnaire

Designs.” Journal of Official Statistics 25: 227–244.

Chipperfield, J.O. and D.G. Steel. 2011. “Efficiency of Split Questionnaire Surveys.”

Journal of Statistical Planning and Inference 141: 1925–1925. Doi: http://dx.doi.org/

10.1016/j.jspi.2010.12.003.

Chipperfield, J.O., M. Barr, and D.G. Steel. 2013. “Split Questionnaire Designs: Are They

an Efficient Design Choice?” In Proceedings of the 59th ISI World Statistics Congress,

25–30 August 2013, Hong Kong. 311–316. Available at: http://2013.isiproceedings.

org/Files/IPS033-P1-S.pdf (accessed June 2015).

Cicirello, V.A. 2007. “On the Design of an Adaptive Simulated Annealing Algorithm.” In

First Workshop on Autonomous Search, in conjunction with CP’2007, Providence,

Rhode Island, USA.

Cochran, W.G. 1977. Sampling Techniques. New York: Wiley.

Cook, R.D. and C.J. Nachtsheim. 1980. “A Comparison of Algorithms for Constructing

Exact D-optimal Designs.” Technometrics 22: 315–324. Doi: http://dx.doi.org/10.

1080/00401706.1980.10486162.

Cuppen, M.D.J., P. van der Laan, and W. van Nunspeet. 2013. “Reengineering Dutch

Social Surveys: From Single-Purpose Surveys to an Integrated Design.” Statistical

Journal of the International Association for Official Statistics 29: 21–29. Doi: http://dx.

doi.org/10.3233/SJI-130762.

European Commission. 2009. Communication on the Production Method of EU Statistics:

A Vision for the Next Decade. Brussels: European Commission (COM(2009)/404).

Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri¼COM:2009:

0404:FIN:EN:PDF (accessed January 2015).

European Statistical System Committee (ESSC). 2011. New Conceptual Design

for Household and Social Statistics. Wiesbaden, Germany. Available at:

https://www.destatis.de/EN/AboutUs/Events/DGINS/Document_Memorandum.pdf

(accessed January 2015).

Gambino, J.G. 2009. “Design Effects Caveats.” The American Statistician 63: 141–146.

Groves, R.M. 1989. Survey Errors and Survey Costs. New York: Wiley.

Hajek, B. 1988. “Cooling Schedules for Optimal Annealing.” Mathematics of Operations

Research 13: 311–329. Doi: http://dx.doi.org/10.1287/moor.13.2.311.

Journal of Official Statistics284

http://dx.doi.org/doi:10.1016/S0167-9473(01)00011-1
http://dx.doi.org/doi:10.1016/S0167-9473(01)00011-1
http://www.abs.gov.au/ausstats/abs@.nsf/mf/6503.0
http://CRAN.R-project.org/package&equals;lpSolve
http://CRAN.R-project.org/package&equals;lpSolve
http://CRAN.R-project.org/package&equals;lpSolve
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/j.jspi.2010.12.003
http://dx.doi.org/10.1016/j.jspi.2010.12.003
http://2013.isiproceedings.org/Files/IPS033-P1-S.pdf
http://2013.isiproceedings.org/Files/IPS033-P1-S.pdf
http://dx.doi.org/10.1080/00401706.1980.10486162
http://dx.doi.org/10.1080/00401706.1980.10486162
http://dx.doi.org/10.3233/SJI-130762
http://dx.doi.org/10.3233/SJI-130762
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri&equals;COM:2009:0404:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri&equals;COM:2009:0404:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri&equals;COM:2009:0404:FIN:EN:PDF
https://www.destatis.de/EN/AboutUs/Events/DGINS/Document_Memorandum.pdf
http://dx.doi.org/10.1287/moor.13.2.311


Jansen, J., R.C.M.H. Douven, and E.E.M. van Berkum. 1992. “An Annealing Algorithm

for Searching Optimal Block Designs.” Biometrical Journal 34: 529–538. Doi: http://

dx.doi.org/10.1002/bimj.4710340503.

Karlberg, M., F. Reis, C. Calizzani, and F. Gras. 2015. “A Toolbox for a Modular Design

and Pooled Analysis of Sample Survey Programmes.” Statistical Journal of the

International Association for Official Statistics 31: 447–462. Doi: http://dx.doi.org/10.

3233/SJI-150913.

Kirkpatrick, S., C.D. Gelatt, Jr., and M.P. Vecchi. 1983. “Optimization by Simulated

Annealing.” Science 220: 671–680.

Kullback, S. and L.A. Leibler. 1951. “On Information and Sufficiency.” Annals of

Mathematical Statistics 22: 79–86. Available at: http://www.jstor.org/stable/2236703.

Lam, J. and J. Delosme. 1988. “Performance of a New Annealing Schedule.” In

Proceedings of the 25th ACM/IEEE Design Automation Conference. 12–15 June 1988,

Anaheim, CA, U.S.A. 306–311.

Lejeune, M.A. 2003. “Heuristic Optimization of Experimental Designs.” European

Journal of Operational Research 147: 484–498. Doi: http://dx.doi.org/10.1016/

S0377-2217(02)00292-8.

Merkouris, T. 2004. “Combining Independent Regression Estimators from Multiple

Surveys.” Journal of the American Statistical Association 99: 1131–1139. Doi: http://

dx.doi.org/10.1198/016214504000000601.

Merkouris, T. 2010. “An Estimation Method for Matrix Survey Sampling.” In Proceedings

of the Section on Survey Research Methods: American Statistical Association, July 31

to August 5, 2010, Vancouver, Canada. 4880–4886. Available at: https://www.am-

stat.org/Sections/Srms/Proceedings/y2010/ Files/308769_61580.pdf (accessed March

2016).

Merkouris, T. 2013. “Composite Calibration Estimation Integrating Data from Different

Surveys.” In Proceedings of the 59th ISI World Statistics Congress, 25–30 August

2013, Hong Kong. 205–210. Available at: http://2013.isiproceedings.org/Files/

IPS020-P3-S.pdf (accessed March 2016).

Merkouris, T. 2015. “An Efficient Estimation Method for Matrix Survey Sampling.”

Survey Methodology 41: 237–262.

Meyer, R.K. and C.J. Nachtsheim. 1988. “Constructing Exact D-optimal Experimental

Designs by Simulated Annealing.” American Journal of Mathematical and Manage-

ment Sciences 8: 329–359. Doi: http://dx.doi.org/10.1080/01966324.1988.10737244.

Mitra, D., F. Romeo, and A. Sangiovanni-Vincentelli. 1986. “Convergence and Finite-

Time Behavior of Simulated Annealing.” Advances in Applied Probability 18:

747–771.

Park, I. and H. Lee. 2004. “Design Effects for the Weighted Mean and Total Estimators

under Complex Survey Sampling.” Survey Methodology 30: 183–193.

R Core Team. 2013. “R: A Language and Environment for Statistical Computing.”

R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.

R-project.org/ (accessed March 2014).

Raghunathan, T.E. and J.E. Grizzle. 1995. “A Split Questionnaire Survey Design.”

Journal of the American Statistical Association 90: 54–63.

Ioannidis et al.: A Modular Approach to Survey Integration 285

http://dx.doi.org/10.1002/bimj.4710340503
http://dx.doi.org/10.1002/bimj.4710340503
http://dx.doi.org/10.3233/SJI-150913
http://dx.doi.org/10.3233/SJI-150913
http://www.jstor.org/stable/2236703
http://dx.doi.org/10.1016/S0377-2217(02)00292-8
http://dx.doi.org/10.1016/S0377-2217(02)00292-8
http://dx.doi.org/10.1198/016214504000000601
http://dx.doi.org/10.1198/016214504000000601
https://www.amstat.org/Sections/Srms/Proceedings/y2010/Files/308769_61580.pdf
https://www.amstat.org/Sections/Srms/Proceedings/y2010/Files/308769_61580.pdf
http://2013.isiproceedings.org/Files/IPS020-P3-S.pdf
http://2013.isiproceedings.org/Files/IPS020-P3-S.pdf
http://dx.doi.org/10.1080/01966324.1988.10737244
http://www.R-project.org/
http://www.R-project.org/


Reis, F. 2013. “Links Between Centralisation of Data Collection and Survey Integration in

the Context of the Industrialisation of Statistical Production.” Working paper presented

at the UNECE Seminar on Statistical Data Collection, 25–27 September, 2013,

Geneva, Switzerland. Available at: https://www.unece.org/fileadmin/DAM/stats/

documents/ece/ces/ge.44/2013/mgt1/WP2.pdf (accessed January 2015).

Renssen, R.H. and N.J. Nieuwenbroek. 1997. “Aligning Estimates for Common Variables

in Two or More Sample Surveys.” Journal of the American Statistical Association 92:

368–374. Doi: http://dx.doi.org/10.1080/01621459.1997.10473635.

Smith, P. 2009. “Survey Harmonization in Official Household Surveys in the United

Kingdom.” In Proceedings of the ISI World Statistical Congresses, 16–22 August 2009,

Durban, South Africa.

Tsallis, C. and D.A. Stariollo. 1996. “Generalized Simulated Annealing.” Physica A 233:

395–406. Doi: http://dx.doi.org/10.1016/S0378-4371(96)00271-3.

UNSTATS 2005. Household Sample Surveys in Developing and Transition Countries.

New York: United Nations (ST/ESA/STAT/SER.F/96.). Available at: http://unstats.un.

org/unsd/hhsurveys/pdf/Household_surveys.pdf (accessed January 2015).

Received February 2015

Revised July 2015

Accepted October 2015

Journal of Official Statistics286

https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2013/mgt1/WP2.pdf
https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.44/2013/mgt1/WP2.pdf
http://dx.doi.org/10.1080/01621459.1997.10473635
http://dx.doi.org/10.1016/S0378-4371(96)00271-3
http://unstats.un.org/unsd/hhsurveys/pdf/Household_surveys.pdf
http://unstats.un.org/unsd/hhsurveys/pdf/Household_surveys.pdf

