
REAL-TIME COMPUTER GENERATED IMAGERY

USING STREAM PROCESSING TECHNIQUES

A thesis presented for the degree of

DOCTOR OF PHILOSOPHY

of the

UNIVERSITY OF SOUTHAMPTON

in the

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

by

JEFFREY DENNIS EVEMY

OCTOBER 1989

TO MY FATHER

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dave Allerton,

both for his guidance and support and for the contribution

made to this project by his work on the flight simulation

system software.

I would also like to thank Ed Zaluska for helping me

to develop the skills necessary to complete this project, I

think that the better aspects of the hardware design reflect

his insight and criticism.

I must also show my gratitude to the members of the

Technical Services Group for their assistance with the

construction of the circuit boards.

I am also indebted to the Science and Engineering

Research Council for paying the bills along the way.

Thanks are also due to numerous other people who

provided assistance in varying forms. In particular, my

parents, Lindley Baker, Hani Muammar, Helen Mathews, Geoff

Newton, Mark Nixon, Barry Savage and Richard Waddy.

Finally, and most of all, I would like to thank my

wife and best friend, Rach, for her love and support. She

has patiently given me encouragement and has had confidence

in me throughout the project.

"We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time."

- from Little Gidding,

T.S.Eliot.

CONTENTS

Section Title Page

Chapter 1 ; INTRODUCTION 1

1.1 BACKGROUND TO COMPUTER GENERATED IMAGERY 1

1.2 REAL TIME IMAGE GENERATION FOR FLIGHT SIMULATION 1

1.2.1 OUTLINE OF A RTIG SYSTEM FOR FLIGHT SIMULATON 2

1.2.2 THE PROBLEM OF COST IN FLIGHT SIMULATION 6

1.2.3 CONTEXT OF THE RESEARCH PROJECT 7

1.3 SCOPE OF THE THESIS - OBJECTIVES 8

1.3.1 STREAM PROCESSING 8

1.3.2 SURFACE IN-FILL 10

1.3.3 SURFACE TEXTURING 11

1.4 CONTRIBUTIONS OF THE RESEARCH 13

1.5 ADDITIONAL CONTRIBUTIONS 14

1.6 ORGANISATION OF THE THESIS 15

Chapter 2 ; LITERATURE REVIEW 17

2.1 REVIEW OF RTIG SYSTEMS 17

2.1.1 COMMERCIAL RTIG SYSTEMS FOR FLIGHT SIMULATION 17

2.1.2 ACADEMIC RTIG SYSTEMS 20

2.2 SURFACE IN-FILL TECHNIQUES 30

2.2.1 ORDERED EDGE LIST 30

2.2.2 SEED FILL 32

2.2.3 PARITY CHECK 3 4

2.2.4 EDGE FILL 36

2.3 TEXTURE MAPPING 38

2.3.1 PRINCIPLES OF TEXTURE MAPPING 3 8

2.3.2 REVIEW OF TEXTURE MAPPING SYSTEMS 40

2.4 SUMMARY OF THE LITERATURE REVIEW 52

Section Title page

Chapter 3 : SURFACE IN-FILL ALGORITHM 55

3.1 REQUIREMENTS OF SURFACE IN-FILL ALGORITHM 56

3.1.1 VERTICAL COHERENCE 58

3.1.2 EDGE PROCESSING 59

3.1.3 NESTED REGIONS 60

3.1.4 ALGORITHM 61

3.2 LIMITATIONS OF THE IN-FILL ALGORITHM 62

3.2.1 INTERSECTIONS WITH THE SCREEN BOUNDARIES 62

3.2.2 REPRESENTATION OF COLOUR IMAGES 66

3.3 IN-FILL OF SYSTEM USING INTERLACED DISPLAY 66

3.3.1 INTERLACE PROVISION BY POST-PROCESSING 67

3.3.2 LIMITATIONS OF INTERLACE RECONSTRUCTION 71

3.4 SUMMARY 72

Chapter 4 ; IMPLEMENTATION OF IN-FILL SYSTEM 74

4.1 DESIGN OVERVIEW 74

4.2 GRAPHICS CONTROL SECTION 76

4.3 VSP IN-FILL BOARD 81

4.3.1 FIFO 82

4.3.2 SECOND PASS PROCESSOR 83

4.3.3 MAIN PROCESSOR 85

4.3.4 PIXEL LOGIC DATAPATH 89

4.3.5 LINE BUFFER 90

4.3.6 CENTRAL TIMING CONTROL 91

4.3.7 INTERLACE RECONSTRUCTION 92

4.4 SUMMARY 96

Chapter 5 : ANALYSIS OF IN-FILL SYSTEM 97

5.1 RESULTS AND PERFORMANCE 97

5.2 OBSERVATIONS AD DISCUSSION 97

Section Title Page

Chapter 6 ; A VSP-BASED TEXTURE MAPPING ARCHITECTURE 101

6.1 REQUIREMENTS OF VSP-BASED IMAGE MAPPING SYSTEM 102

6.1.1 REQUIREMENTS IMPOSED ON THE MAPPING ORDER 103

6.1.2 FILTERING REQUIREMENTS 105

6.2 SPATIALLY VARIANT FILTERING TECHNIQUE 108

6.2.1 FILTERING ALGORITHM 108

6.2.2 FILTERING SUB-SYSTEM ARCHITECTURE 112

6.3 CO-ORDINATE GENERATION 113

6.3.1 INVERSE PERSPECTIVE MAPPING 113

6.3.2 DECOMPOSITION INTO TWO PASSES 116

6.3.3 CLIPPING 118

6.3.4 THE BOTTLENECK PROBLEM 121

6.3.5 SCAN DIRECTION SELECTION ALGORITHM 122

6.3.6 CO-ORDINATE GENERATION
IMPLEMENTATION REQUIREMENTS 132

6.4 SUMMARY 13 3

Chapter 7 : IMPLEMENTATION OF TEXTURE MAPPING SYSTEM 136

7.1 OBJECTIVES AND OVERVIEW 136

7.2 CO-ORDINATE GENERATION 140

7.2.1 POLYNOMIAL GENERATION 141

7.2.2 DIVIDER 144

7.2.3 CLIPPING CONTROL 146

7.3 FRAMESTORE DESIGN 148

7.3.1 SOURCE FRAMESTORE 149

7.3.2 INTERMEDIATE FRAMESTORE 153

7.3.3 OUTPUT FRAMESTORE 157

7.4 FILTERING SUB-SYSTEM 160

7.4.1 SUM-TABLE PREFILTERCIRCUITRY 160

7.4.2 FILTERING DATAPATH 163

7.5 SUMMARY 166

Section Title Page

Chapter 8 ; ANALYSIS OF IMAGE MAPPING SYSTEM 169

8.1 PERFORMANCE OF IMAGE MAPPING SYSTEM 169

8.2 OBSERVATIONS AND DESCRIPTION OF PLATES 170

Chapter 9 : CONCLUSIONS 179

9.1 SUMMARY AND DISCUSSION OF RESULTS 179

9.2 FURTHER RESEARCH 183

9.3 CONCLUSIONS AND FINAL REMARKS 185

REFERENCES 187

PUBLICATIONS 196

LIST OF ILLUSTRATIONS

Figure Title page

1.1 Outline Of RTIG System 2

1-2 RTIG System Using Image Mapping 12

2.1 The IRIS 3120 Workstation 19

2.2 Pixel Planes Memory Architecture 23

2.3 Example Of Transputer Based CGI System 24

2.4 Southampton MIMD CGI System 25

2.5 Bradford RTIG System 26

2.6 Shaded Polygon Processor Array 28

2.7 Ordered Edge List Example 31

2.8 Example Of Connectivity 32

2.9 Example Of Seed Fill Algorithm 33

2.10 Isolated Region Arising From Quantisation Error 34

2.11 In-Fill By Parity Check 35

2.12 Edge Fill Technique 37

2.13 Texture Mapping Process 38

2.14 Filter Footprints In Screen And Texture Space 41

2.15 Summed-Area Table Representation 44

2.16 Two-Pass Mapping Technique 45

2.17 Pictorial Example Of Two—Pass Mapping Procedure 46

2.18 Resampling Interpolation Process 47

2.19 Ampex ADO DVE System 49

2.20 Quantel Encore DVE System 50

3.1 Outline Of VSP Based In-Fill System 55

3.2 Section Of Framestore Showing Vertical Coherence 58

3.3 Acute Vertex 58

3.4 Example Of Edge Processing 60

3.5 Intersection Of Line Segment

With Screen Boundary 64

3.6 Vertex At Screen Boundary 64

3.7 Interlace Post Processing Scheme 67

Figure Title Page

3.8 Simple Example Of Interlace Reconstruction 68

3.9 Comparison Of Odd And Even Lines 69

3.10 Examples Of Type 1 Edges 69

3.11 Interlace Reconstruction Of Single Lines 70

3.12 Interlace Reconstruction Of Simple Type-0 Edges 70

3.13 Interlace Reconstruction Of Complex Type-0 Edges 71

4.1 Overview Of CGI System 75

4.2 Outline Of Double-Buffered Configuration 77

4.3 Outline Of Surface In-Fill VSP Architecture 81

4.4 ASM Chart Representing Operation Of SP 84

4.5 MP State Diagram 86

4.6 Implementation Of Line Buffer 90

4.7 Sequencing Of Timing Control Signals 92

4.8 Interlace Reconstruction System 92

4.9 State Assignments Corresponding To Figure 3.10 93

4.10 State Assignments Corresponding To Figure 3.11 93

4.11 State Assignments Corresponding To Figure 3.12 94

4.12 State Assignments Corresponding To Figure 3.13 94

4.13 State Transition Table For Processor IP 95

6.1 Outline Of VSP Based Texturing System 101

6.2 Two-Pass Mapping Architecture 105

6.3 One-Dimensional Filtering Process 106

6.4 Continuous Input Intensity Function 108

6.5 Section Of Pixel Stream

Showing Fractional Parts 109

6.6 Filtering Sub-System T2 112

6.7 Co-Ordinate Axes Representing

Intermediate Image 117

6.8 Example Scene Illustrating Clipping Procedure 119

6.9 Scanning Directions For Source Framestore 123

6.10 Trimetric Projection Of Unit Vectors 125

Figure Title Paae

6.11 Example Scene Illustrating Cusp 127

6.12 Vanishing Points And Source Image 128

6.13 Sixteen Possible Cusp Generating Conditions 131

6.14 Outline Of Co-Ordinate Generation Architecture 132

7. .1 Outline Of Image Mapping System 139

7. , 2 Co-Ordinate Generation System 140

7. ,3 Reciprocal Look-Up-Table 144

7. 4 Clipping Controller State Transition Diagram 146

7. 5 Arrangement Of Four Pixel Quad 149

7. 6 Grouping Of Adjacent Quads 150

7. 7 Source Framestore Architecture 150

7. 8 Organization Of Eight Pixel Memory Block 154

7. 9 Intermediate Framestore Architecture 155

7. 10 Output Framestore Architecture 157

7. 11 Architecture Of VSPl 160

7. 12 Line Buffer Output Adjustment 161

7. 13 Partial Sum Difference Generation 163

7. 14 Footprint Division Architecture 165

LIST OF TABLES

Table Title Page

3.1 Example Of Edge Processing 60

3.2 Description Of Functions;
edge, start.edge And start.run 62

4.1 GDP Mode Control Outputs 79

4.2 Operating Modes Of Datapath PL 89

6.1 Source Co-Ordinate Assignments
For Scan Directions 123

6.2 Coefficient Substitutions
For Each Scan Direction 124

7.1 Definition Of Signals PASS And DONE 143

7.2 Quad Selection Table 151

7.3 Source Framestore Address Sequencing 152

7.4 Datapath Crossbar Operation 153

7.5 Intermediate Framestore RAM Selection 154

7.6 Operation Of Intermediate Framestore Input 155

7.7 Operation Of Intermediate Framestore Datapath 156

7.8 Intermediate Framestore Address Sequencing 156

LIST OF ALGORITMS

Algorithm Title Page

3.1 Two-Pass Surface In-Fill Algorithm 61

3.2 Special Processing For First Line 63

6.1 Single-Pass Inverse Mapping Procedure 103

6.2 Two-Pass Inverse Mapping Procedure 104

6.3 Linear Summed-Area Table Generation 110

6.4 Initial Scan Direction Detection Algorithm 127

7.1 IRS Polynomial Implementation 141

7.2 IRS Coefficient Scaling Procedure 142

Plate

51

511

71

711

81

811

8III

8IV

8V

8VI

8 VII

8VIII

SIX

8X

8X1

8XII

8XIII

8XIV

TABLE OF PLATES

Title

Example In-Filled Image

Example In-Filled Image

Development Environment

Image Mapping Circuit Boards

Source Image

Intermediate Image

Final Image Without Filtering

Final Image With Filtering

Shrunken Image Without Filtering

Shrunken Image With Filtering

Expanded Image Without Filtering

Expanded Image With Filtering

Highly Magnified Image

Image Scanned Using Alternative Scan Direction

Intermediate Image Containing Cusp

Resulting Final Image

1/8 Second Exposure Showing Motion

1/8 Second Exposure Showing Motion

Page

100

100

168

168

172

172

173

173

174

174

175

175

176

176

177

177

178

178

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

REAL-TIME COMPUTER GENERATED IMAGERY

USING STREAM PROCESSING TECHNIQUES

by Jeffrey Dennis Evemy

This thesis describes the use of stream processing
techniques to provide Computer Generated Imagery (CGI) in
real-time. Two applications of stream processing are
examined; surface in-fill and texture mapping.

A novel in-fill algorithm is developed which operates in
scan-line order directly on the output from a raster scan
framestore. The algorithm provides in-fill of all bounded
regions and is compatible with 'wire-frame' images generated
using conventional graphics processors. A stream processing
architecture to implement this algorithm is presented which
is capable of processing each pixel in a single clock cycle
at video rate.

Texturing is provided using a two-pass spatial
transformation technique to map an area of detail onto the
display. The transformation is implemented in scan-line
order by a stream processing architecture operating
directly on the output from the framestore containing the
source image.

Because it incorporates a perspective projection, the
transformation process is non-affine and requires spatially-
variant filtering to prevent aliasing. A novel spatially-
variant filtering algorithm is developed which operates in
scan-line order and is compatible with the two-pass
transformation technique.

A stream processing filtering architecture is presented
together with refinements necessary to implement the two-
pass algorithm in real-time. A system is described to
implement both processes concurrently at pixel rates using
an efficient pipelined architecture.

Dedicated hardware has been built to implement the surface
in-fill and texturing systems in real-time, demonstrating
the usefulness of stream processing techniques for real-time
CGI applications.

CHAPTER 1

TNTRODUCTION

1.1 BACKGROUND TO COMPUTER GENERATED IMAGERY fCG11

In recent years the use of a computer to generate

images directly has become widespread and as a consequence

Computer Generated Imagery (CGI) has been the subject of

considerable research. This has resulted in the development

of a wide range of display architectures and a proliferation

of algorithms for image generation [SpNe79][FoVa84]. Because

CGI systems are often used for the representation of three-

dimensional images, these algorithms include methods of line

drawing, perspective geometry, shading, surface texturing,

and hidden surface removal.

An important category of CGI is Real-Time Image

Generation (RTIG) in which the image is regenerated at a

sufficient repetition rate to give the illusion of motion.

This limits the time available to generate each frame of the

image and reduces the fidelity of RTIG systems when compared

to non-real-time CGI in which greater realism may be

achieved at the expense of processing time.

1.2 REAL TIME IMAGE GENERATION FOR FLIGHT SIMULATION

Most of the research effort reported in the literature

has concentrated on flight simulation [Scha83]. More recent

applications include motion pictures, computer aided design

and arcade games, and as technology improves it is likely

that other applications will be found. The research project

detailed in this thesis has been carried out primarily for

inclusion as part of a flight simulation system. However,

the results of this research have broader significance

because of the central issues which are common to all

applications of RTIG.

In flight simulation, the pilot is stimulated by

visual cues (and possibly aural and motion cues) and in

comparison with actual flight training in aircraft has the

advantage of lower training costs and and the ability to

create controlled situations, including hazardous conditions

such as engine failure or bad weather. RTIG is a major

component of modern flight simulation systems and provides

the main visual cue by generating a simulated view from the

cockpit.

For brevity a full account of the development of

flight simulation systems is not included in this thesis. A

good account of the historical aspects of flight simulation

which have lead to the adoption of CGI techniques is given

by Price [Pric84].

1.2.1 OUTLINE OF A RTIG SYSTEM FOR FLIGHT SIMULATION

RTIG systems are based on the 'projective method' in

which individual components of the scene are geometrically

transformed and projected onto the viewing screen. Other

techniques such as 'Ray-Tracing' [Roth82] and fractal based

models [Carp82][Mand82] provide realistic images but can not

currently be implemented in real-time.

The computational processes required to implement the

projective method are illustrated in Figure 1.1 below.

HOST GEOMETRIC DISPLAY

SYSTEM OPERATlOfsIS HARDWARE

W (b) (c)

Figure 1.1 Outline Of RTIG System

3

a - Host System

This image is represented by abstract objects defined

by co-ordinate information in three-dimensional 'world'

space, stored as part of a database on the host computer.

Conventional Cartesian co-ordinates are used, represented in

this thesis by the triple (x ,y ,z) with the z axis
w w w w

defined vertically upwards. Real-time constraints limit

objects to flat polygonal surfaces, represented by the co-

ordinates of the vertices.

The host computer acts upon responses from the pilot

to determine the position (p ,p ,p) and attitude of the

aircraft (represented by <p ,<p » and <p the angles of
y z

rotation about the x ,y , and z axes respectively) using a

model incorporating flight dynamics and external stimuli.

This information is used to select potentially visible

objects from the database which, together with position and

attitude are passed to the geometric operation stage.

b - Geometric Operations

Geometric operations are performed on the 'world'

objects in order to present an image to the viewer on a two-

dimensional screen. Generally, three procedures are

required: transformation from world to viewing co-ordinates,

removal of objects (or parts of objects) which are out of

view, and perspective projection from three-dimensional

viewing space onto two-dimensional screen space.

The transformation of an object from world space to

viewing space is performed by a series of operations on each

vertex which may be reduced to a translation followed by a

single 3 by 3 matrix operation. This operation is

illustrated overleaf:

[X ,y ,z] = [X -p ,y -P ,z -p]
y

a a a
a^^ a^^ a^^
^2X ^ 2 2 ^ 2 3

3 1 3 2 3 3

(1.1)

The values (x ,y ,z) represent the object co-
V V V

ordinates in viewing space, (x^,y^,z^) represent the object

co-ordinates in world space and coefficients a^^ are

determined from the attitude parameters (ip ,(p , and (p) .
>c y z

Equation (1.1) is not definitive and various

representations of this operation occur in the literature;

in particular, homogeneous matrix representation [Roge76]

may be used (combining translation and transformation as

single matrix) and the equations determining the

coefficients depend on the order in which the angles

and (p̂ are defined.

A perspective projection is performed to determine the

two-dimensional screen co-ordinates (x ,y) at which a point

in viewing space should appear. For the vertex of an object

given by (x ,y ,z) in viewing space the screen co-ordinates

are given by:

X = (X /z) S + S /2 (1.2)
S V V X X

y. = S y + Sy / 2 (1 . 3)

where S and S represent the size of the screen.
3c y

The removal of objects, or parts of objects, which are

not visible is generally performed by two processes,

clipping and hidden surface removal.

Clipping is performed between the transformation and

perspective projection stages to eliminate objects which are

outside the screen area. This is generally performed by the

Sutherland-Hodgeman algorithm [Suth74] determining the

intersection of polygon edges with a canonical viewing

volume and is fully described in the literature.

Hidden surface removal is necessary to remove objects

or parts of objects occluded by objects nearer to the

viewer. Many algorithms have been proposed to suit different

applications. Further discussion is not included here and a

full review of different techniques is given by Sutherland

et al. [Suth74].

c - Display Hardware

Finally the resultant two-dimensional co-ordinate

information is passed to the display hardware for

representation to the pilot. The image is usually viewed on

a raster-scan Cathode Ray Tube (CRT) developed as an

extension of conventional television technology. The use of

a raster-scan CRT imposes a scan-line order on the display

process which must generate a serial bit-stream of video

information. The screen area is represented by an array of

picture elements or pixels indexed by integer co-ordinates

(x^,y^), the scan-line being directly related to the y co-

ordinate .

The process of converting a list of polygon vertices

to a set of pixels of a specified colour is known as scan-

conversion. Scan-conversion may be implemented in scan-line

order to provide a direct video output or a bit-mapped pixel

'framestore' may be used allowing scan-conversion in polygon

order.

Often, the display hardware implements image

enhancement processes such as smooth shading [Gour71],

texturing (Section 1.3.3 q.v.), and anti-aliasing.

Aliasing effects are introduced by the three-

dimensional sampling imposed by bit-mapped raster-scan

6

displays [Dubo84]: Two-dimensional spatial sampling (because

of the discrete pixel array) causes a staircase effect

(termed 'jaggies') visible at polygon edges. Sampling in the

time domain (because of the frame period) gives rise to

artifacts called temporal effects. Aliasing is discussed at

length by Szabo (see [Scha83]) and as part of the review of

texture mapping in Section 2.3.

1.2.2 THE PROBLEM OF COST IN FLIGHT SIMULATION

The view presented to the pilot must contain

sufficient realism to be of significant training value. This

requires not only that the image be generated in real-time

but that it contain sufficient detail. A considerable data

processing overhead is necessary to meet these requirements

and the resulting RTIG system becomes complex and expensive.

A visual system for a commercial aircraft simulator

typically costs at least 2 million dollars [Moxo87] with

military systems costing up to five times this figure.

Consequently, the cost of this approach to training has

proved prohibitive for many users, thereby giving an

opportunity for smaller systems to provide an acceptable

cost-performance ratio. In contrast, recent developments in

dedicated display hardware(e.g [AMDQ87][Texa87]) have placed

RTIG within the reach of personal computer systems. The

degree of realism offered is not sufficient for serious

training programmes and features such as anti-aliasing and

texture mapping have remained beyond the scope of such

systems.

7

1.2.3 CONTEXT OF THE RESEARCH PROJECT

The research project described in this thesis was

undertaken to extend research already completed at the

Department of Electronics and Computer Science, University

of Southampton. The results of this research are outlined

below:

First, it has been demonstrated that a RTIG system can

be based on a fixed-point representation of object data and

flight dynamics [AlZa85]. This allows geometric operations

to be implemented by a simple microprocessor based system at

a lower cost than equivalent floating point systems.

Secondly, two flight simulation systems based on this

approach have been developed. The first of these was

designed for lower cost (< £5,000) applications and uses two

microprocessors (Motorola type MC68000) to implement the

host system and geometric operations respectively as

outlined in Figure 1.1. The display hardware is based on a

double buffered framestore architecture [Evem85] implemented

using low cost commercially available Graphics Display

Processors (GDPs) [Math75]. The GDP contains a hardwired

vector generator [Alia84] which generates lines based on the

co-ordinate information. A display of 512 by 512 pixels (16

colours) is supported providing an output conforming to 625

line CCIR standards [DTIC84] displayed on a conventional

colour monitor. A working system has been completed capable

of generating an image composed of over twenty 'wire-frame'

polygons at frame rate (25 times per second).

8

1.3 SCOPE OF THE THESIS - OBJECTIVES

The evaluation of all areas of RTIG to provide greater

realism at lower cost is beyond the scope of this thesis.

However, the technique of image enhancement by 'post

processing' the serial bit-stream output from the framestore

has been investigated. The required 'post processing'

algorithm is performed in hardware by a 'stream processor'.

This stream processor is incorporated in the display

hardware between the framestore and CRT display.

The objective of this project is to assess the

usefulness of stream processing as a means of implementing

low cost RTIG. This includes:

1). The development of algorithms to support a stream

processing architecture.

2). The design of architectures to implement these

algorithms.

1.3.1 STREAM PROCESSING

This approach was first proposed formally by Tenebaum

[TeneSO] but has been proposed indirectly as part of many

spatial transformation algorithms (Section 2.3 q.v.). In

general, video stream processors (VSPs) operate on pixel

data in the scan-line order imposed by raster scan display

hardware. This information may then be passed to the display

device or to a second stream processor either directly or

via a second framestore. The VSP may be considered as a

serial emulation of a SIMD (Single Instruction Multiple

Data) processor array, with the added feature that

individual processors may use data from other processors

which are emulated earlier within the frame period.

9

The processing is performed at video rate, e.g. a 512

by 512 pixel image requires a cycle time of about 100ns.

Although this implies a performance of only 10 MIPS (IPS =

Instructions Per Second), the processing bandwidth is many

times greater as several operations can be performed during

each cycle. This is possible because the predefined (scan-

line) order of the data allows a pipelined architecture,

performing a finite number of operations on each pixel

during a single cycle.

The main use of VSP techniques has been for image

processing including edge detection [Ples87], and spatial

transformations [CaSmSO] (for special effects and to assist

image recognition). The use of stream processing

architectures for RTIG has been limited to processes

directly applicable to a video signal, such as haze effects

[Hall87].

This thesis aims to formulate more complex VSP designs

based upon algorithms which operate in more than one pass.

It also proposes the concept of designing algorithms

specifically for a VSP architecture.

The usefulness of this design approach is assessed by

using stream processing techniques to address two areas of

image enhancement:

1). Surface in-fill.

2). Texture mapping.

In both cases compatibility with the existing system

at the University of Southampton has been taken into

account.

10

1.3.2 SURFACE IN-FILL

An in-filled polygon represents a small increase in

information content compared to a non in-filled polygon and

can be evaluated from the same co-ordinate information. This

information is contained in the framestore and surface in-

fill can be provided by post-processing a non in-filled

image.

Direct implementation of conventional in-fill

algorithms is frustrated by bandwidth limitations between

the display processor and the framestore. Systems which

provide real time in-fill usually exploit some form of

parallelism (e.g. [WalsSO]).

Algorithms have been proposed which support a stream

processing architecture [Pavl79][AcWeSl][HaCh85]. These

algorithms implement simple post-processing but require a

complex contour description of the region to be in-filled.

This imposes additional requirements on the original 'wire-

frame' image and precludes the use of simple vector

generators. Such methods are not compatible with

commercially available GDPs and do not comply with the low

cost design philosophy.

A solution to this problem is sought by using a more

complex stream processor to provide region in-fill with

minimum demands on the contour generation algorithm.

11

1.3.3 SURFACE TEXTURING

As the representation of surface detail becomes more

intricate, explicit modelling with polygons becomes

impractical. A better approach is to add synthetic 'texture'

to selected polygons providing the illusion of finer detail.

This 'texture' may be periodic (such as the image of a

ploughed field), random (such as a gravel path) or a

combination of both.

An efficient technique, first suggested by Catmul

[Catm74], is to map a predefined image onto the surface to

be 'textured'. As an alternative to image mapping a

predefined texture pattern may be rendered repeatedly over

the surface, in a fashion similar to that of tiles on a

floor, this is known as texture tiling.

The implementation of either image mapping or texture

tiling in real-time is a formidable task requiring solutions

to two separate problems, these are outlined below;

1) Co-ordinate information must be generated such that

the position of the texture information corresponds to

the geometric transformation and projection of the

surface to which the texture is applied. In principle

this requires that each pixel must undergo individual

transformation and projection.

2) The problem of aliasing must be addressed [Crow??].

Aliasing arises because the discrete nature of a pixel

based display implies that the texture pattern must be

spatially sampled to be represented. The texturing

system must therefore include some form of filtering

to reduce the effects of this problem. Flight

simulation introduces a further problem as it involves

12

a perspective projection. This is a form of non-affine

transformation which has been shown to require a

spatially-variant filter function [Heck86] and

frustrates conventional filtering techniques.

Many techniques have been proposed in the literature

which address these issues and will be reviewed in more

detail in Section 2.3.

This thesis concentrates on texture generation by

image mapping. For a flight simulation application the

region would be a detailed map of an. area of land such as

the landing area (including runway markings, taxiway detail

etc.). This region is then presented to the pilot in

perspective as part of a less detailed image (such as that

provided by the surface in-fill system outline above). This

process is illustrated below;

DETAILED MAP FINAL DISPLAY

Figure 1.2 RTIG System Using Image Mapping

The objective is then to implement this system using a

stream processing architecture to address the problems

outlined above to provide a more cost-effective solution.

13

1.4 CONTRIBUTIONS OF THE RESEARCH

The contributions offered by the research detailed in

this thesis show the potential of stream processing as a

technique for RTIG. In addition to the identification of the

shortcomings of existing approaches this includes:

1) The development of a two-pass surface in-fill

algorithm which uses a two-pass VSP architecture. This

algorithm is novel because:

i) It operates directly on an 8-connected image

generated by commercially available GDP.

ii) It provides in-fill by exploiting the vertical

coherence between successive scan-lines. Only

one line of storage is required. This is made

possible by a recursive datapath utilising

feedback between two separate VSPs.

2) The development of a image mapping system based on a

stream processing architecture. Novel features of this

design include:

i) A two-pass filter algorithm which provides

spatially-variant filtering for pixel data

generated from the application of a non-affine

transformation matrix. This is performed at a

cost of one processing cycle per output pixel

using a pipelined datapath. No additional

operations are required to perform edge anti-

aliasing and synchronisation with the output

data stream.

14

ii) The filtering process is implemented by two VSP

sub-systems separated by an intermediate buffer.

The first VSP operates at the input data rate

and the second VSP operates at the output data

rate. This permits the source texture to be

defined at a higher resolution than the display

to which it is mapped.

iii) The filtering algorithm combines directly with a

pipelined co-ordinate generation system in which

a conventional two-pass technique implements the

required spatial transformation. An efficient

scan selection algorithm derives the optimum

scanning order using the attitude and position

parameters.

iv) The co-ordinate generation system is designed to

make use of a proprietary Image Resampling

Sequencer (IRS) to minimise hardware

requirements and reduce system cost.

1.5 ADDITIONAL CONTRTBUTIONS

The hardware presented in this thesis utilises recent

advances in Programmable Logic Devices (PLDs). This is

reflected by the more advanced designs presented in Chapter

7, implemented more than a year after the system described

in Chapter 4. In part, this has been due to the acquisition

of the Programmable Logic Programming Language (PLPL) an

advanced software development tool for logic compilation.

PLPL was provided free of charge as a source file (in

the *C' programming language) to the Department of

Electronics and Computer Science, University of Southampton

by Advanced Micro Devices (AMD). PLPL is now installed on

15

the TRICE distributed processing network inside the

department.

In addition, device drivers were written to allow the

use of more complex EPLDs (Eraseable PLDs) produced by IC

manufacturers ICT and Altera, an example of which is given

in Appendix I. All of these tasks were performed by the

author, requiring over four months of the research

programme.

1.6 ORGANISATION OF THE THESIS

Chapter 1 (this chapter) presents a general background

to RTIG with a particular emphasis on the requirements of

flight simulation. The need for a relatively low cost system

is explained together with a brief summary of research

carried out for this purpose at the University of

Southampton. The concept of stream processing is introduced

suggesting two areas in which this may be applied.

Chapter 2 takes a detailed look at the literature

published on the relevant aspects of CGI. This is organised

in three sections covering RTIG display architectures, in-

fill algorithms and texture mapping systems.

Chapter 3 details the requirements of the 'wire-frame'

in-fill algorithm and outlining the aspects of a VSP design

which may be used for this purpose. An algorithm is

developed and formally presented, together with the

limitations which it imposes.

Chapter 4 discusses the function of the VSP blocks

necessary for a real-time implementation of the in-fill

algorithm outlined in Chapter 3. This includes a detailed

description of the hardware implementation of the complete

in-fill system.

16

Chapter 5 presents results obtained from the surface

in-fill system and analyses its performance as part of a

flight simulation system.

Chapter 6 looks in more detail at the problems of co-

ordinate generation and filter implementation for texture

mapping. The use of a a VSP architecture to separate the

filtering process into two passes is suggested and an

associated algorithm is presented. The generation of mapping

co-ordinates from the position and attitude parameters is

described and a scan selection algorithm is developed to

ensure the most efficient implementation of the two-pass

transformation process.

Chapter 7 presents a detailed account of the

development of hardware to implement the image mapping

system in real-time. The influence of programmable logic and

the associated software design tools on the implementation

is described. A detailed description of the complete system

is presented in three sections; co-ordinate generation,

framestore design, and filtering sub-system.

Chapter—8 analyses the performance of the image

mapping system. A typical source image is used to

demonstrate operation in real-time and results are used to

assess the advantages and possible limitations of the

system.

Chapter 9 draws conclusions to the research together

with suggestions for further work.

17

CHAPTER 2

LITERATURE REVIEW

The literature review and critique presented in this

chapter comprises three sections. The first section

describes relevant aspects of commercial and academic RTIG

systems found in the open literature and is intended to

provide a background to RTIG at system level. Sections two

and three provide a detailed analysis of published in-fill

and texture mapping techniques respectively emphasising

suitability for real-time implementation.

2.1 REVIEW OF RTIG SYSTEMS

This section provides an outline of commercial and

academic RTIG systems designed for flight simulation. A full

review of all research in this field is beyond the scope of

this thesis and detail is given only where relevant to the

goals outlined in chapter 1. In addition, as there is no

standard method of evaluating the performance of RTIG

systems this section avoids comparison of complete systems

and concentrates on the illustration of differing display

architectures.

2.1.1 COMMERCIAL RTIG SYSTEMS FOR FLIGHT SIMULATION

A good review of commercially available RTIG systems

is given by Schachter [SchaSl][Scha83] although this does

not provide a detailed account of individual system

architectures. In general such information is not readily

available in the open literature and information is often

limited to performance statistics. Although widely reported

in aviation magazines (e.g. [Warw87]) these statistics are

intended for marketing purposes and not only provide little

18

architectural information but are often presented in a

manner which makes direct comparison with other systems

difficult.

It is clear from Schachter's review, however, that

raster video generation hardware techniques consist of two

categories.

First there are systems which generate a video output

directly from a sorted list of polygon edges intercepting a

given scan-line. Hidden surface occlusion and edge smoothing

are also performed at this level using additional priority

information. Examples of this approach include the GE C-130

Visual Simulator (General Electric) which can display up to

600 edges per scan-line, the Singer/Link Digital Image

Generation System (512 edges per scan-line), and the

Advanced Technology System's Computrol.

The other group of simulator systems incorporate a

framestore at the final stage of image generation. This

framestore is scanned in scan-line order but allows the

image to be entered in an arbitrary order. An example of

this is the CT-5 system (Evans and Sutherland) which

generates the image in feature rather than scan-line order

using rectangular areas to partition the processing tasks. A

more recent review of flight simulator systems [YanJ85]

indicates that advances in memory technology have resulted

in greater use of framestore based display hardware. This

allows the display capability to be limited by image

complexity and not by the complexity of the 'busiest'

individual scan-line.

It was mentioned in the Introduction that a common

factor of all commercial flight simulator systems is high

cost. An exception to this is the FOG-M system [ZydaBB]

19

which is priced below $100,000. Although this system was

developed at the Naval Postgraduate School (USA) it is

included in this section as the display hardware is a

commercially available colour graphics workstation (the

Silicon Graphics IRIS 3120).

ETHERNET CABLE

MAGNETIC

TAPE

ODNTROLLER

MULTIBUS

FLOATING

POINT

AOCOT.IULATOR

MC68020

ETHERNET

CONTROLLER

FRAMESTORE
CONTROLLER

GEOMETRY
ENGINE

MEMORY

(2/4 MB)

KEYBOARD

UP TO
16MB

DISK

COhrmOLLER

UPDATE

CONTROLLER

1024 X 1024
X 32 BITS

DISPLAY

MEMORY

DISPLAY COLOUR

CONTROLLER MAP

OUTPUT

Figure 2.1 The IRIS 3120 Workstation.

The IRIS 3120 (Figure 2.1) incorporates a double

buffered framestore using a Motorola MC68020 microprocessor

for system and database control. The MC68020 also provides

hidden surface removal (using the Painter's algorithm

[Suth74]); the geometric transformations, however, are

performed by a pipeline of 12 VLSI 'Geometry Engines'

[ClarSO][Clar82]. Finally, the resulting polygons are

coloured according to an algorithm which incorporates the

angle of the face to an illuminating point source.

Performance is reported as 1500 to 2000 polygons per frame,

but it qualifies loosely as a real-time system as an update

rate of only three to four frames per second is provided.

20

2.1.2 ACADEMIC RTIG SYSTEMS

Many academic institutions have research projects

aimed at the development of efficient RTIG systems. Some of

this research has concentrated on raster-scan display

architectures and will be discussed in detail in this

section. Other important projects which address the

geometric transformation and projection of co-ordinate

information are not relevant to this thesis and will not be

included in this analysis. These projects include VLSI

solutions such as 'MAGIC 1' [Agat86] and 'MAGIC II' [Finc88]

and multi processor solutions such as the 'CSI processor'

[Char86].

Where possible, the survey is presented in

chronological order. Some of the most recent additions were

published during the course of the research reported in

thesis.

a - Zone Management Processor [Grim79]

The Zone Management Processor (ZMP) system was

developed at the University of Sussex to perform polygon

scan conversion as part of a multi-processor CGI system.

Each ZMP handles a separate polygon (4 sides maximum) and

provides a direct video output, no framestore is required.

In addition, a ZMP may display more than one polygon per

frame provided there is no contention chronologically. A

separate microprocessor system being used to co-ordinate

data transfers from the host system to individual ZMPs.

Hidden surface removal is incorporated by merging individual

ZMP elements with priority according to the painter's

algorithm.

Because the framestore is omitted, no horizontal

quantisation is imposed and horizontal temporal anti-

21

aliasing may be incorporated using a faster horizontal clock

to provide sub-pixel positioning. Vertical temporal anti-

aliasing is also provided, though this is more complex,

requiring a line buffer to store the intensity values of the

previous line for interpolation. Anti-aliasing required to

prevent static effects ('jaggies') may be incorporated using

gradient information to provide 'soft' (low pass filtered)

intensity changes at the polygon edges.

Early systems were based on bit-slice processor design

communicating with the host via DMA interface [Pric84]

although future development rests on a VLSI implementation.

b - BITBLT based architectures

Bit BLock Transfer (BITBLT) is a technique used to

enhance the performance of framestore based systems by

providing fast manipulation of blocks of pixels. An example

of this approach is the '8 by 8 system' [GuptSl] in which

the framestore memory is divided into square blocks of 64 (8

by 8) adjacent pixels which are operated on in parallel.

Line and character generation is provided by replicating a

segment several times. Such operations entail problems of

re-alignment which require shifting, rotation, mirroring and

transposition of the original block. Originally implemented

using a microcontroller (AMD type 2901 [AMDM83]) research

was then directed towards the production of 'smart' memory

chips incorporating circuitry to assist the alignment

problem.

An enhanced and more generalised form of this

architecture is the DisArray (Distributed processor Array)

system [Page83] which handles 16 by 16 (256 pixel) arrays in

parallel. The system incorporates 256 individual processing

22

elements in a SIMD (Single Instruction Multiple Data)

arrangement such that each processing element handles all

the pixels in the framestore which occur in that part of the

block. System control is performed by a 16 bit

microcontroller (AMD type 29116 [AMDM83]) interpreting

graphics primitives (termed 'RasterOp's) from the host

system.

BITBLT techniques are best suited to interactive CAD

(Computer Aided Design) applications requiring window

orientated operations and menu displays.

c - Pixel Planes [FuchSl][Fuch82]

Pixel Planes is a VLSI orientated design performing

calculations with special hardware at each pixel. Only

display hardware is supported, polygon data being supplied

(in screen co-ordinate form) from a host system. This

information is not presented in the normal fashion (a vertex

list), instead each line (edge) of the polygon is defined by

the coefficients its equation; in the form:

f(x,y) = ax + by + c (2.1)

The equation is evaluated at each pixel which is set

according to the sign of the result. This process is

repeated for each edge, the sign being used to eliminate

pixels which lie outside the polygon. There is no limit on

the number of edges although these must be presented in

predetermined order (clockwise or anti-clockwise) and only

convex polygons are supported. The equation is implemented

at each pixel in parallel using a 'smart memory

architecture', a 4 by 4 example of which is outlined in

Figure 2.2.

23

MULTIPLIER TREE

Figure 2.2 Pixel Planes Memory Architecture

The equation is evaluated in two stages such that the

multiplication is only required for each x and y value and

not for each pixel and is evaluated by the multiplier trees

shown above. Only one addition is then required at each

pixel to evaluate the value of the function.

d - INMOS transputer graphics systems [Inmo89][Atki88]

The transputer is a 32-bit microcomputer with internal

memory and four high speed (up to 20 Mbits/s) serial links

for communication with other transputers or the outside

world. Two devices, types T425 and T800 are particularly

suited to graphics applications and include a configurable

external memory interface for framestore implementation

capable of 40 Mbytes/s sustained data rate. Graphics

primitives [Harr87] are provided based on the BITBLT

principle outlined in item 'b' above and operate on either

external or internal memory.

An additional feature of the T800 is the inclusion of

a 64-bit floating-point unit, capable of operation at up to

2.25 Mflops (flops = floating point operations per second).

This makes the T800 suitable for transformation, projection

24

and clipping as well as scan-conversion and surface

rendering.

The transputer is intended for parallel processing

applications in which different tasks or data are processed

by separate transputers concurrently. A special programming

language, 'occam', has been developed to support this

feature allowing a system to be described as a collection of

concurrent processes which communicate with each other.

The main advantage of this approach is flexibility, as

tasks can be distributed according to the number of

transputers in a given array. Indeed, no de facto standard

exists for graphics applications and performance can be

improved by using a larger network transputers. An upper

limit is placed on the performance according to how the

image generating tasks can be distributed.

An example flight simulation system is described by

Atkin and Ghee [AtGh88] and is illustrated below in Figure

2.3.

SHADEES DISPLAY
MEMORY

Y-CLIP

CONTROL

X-CLIP

Z-CLIP /
PERSPECTIVE

DATA BASE /
3D TRANSFORM

Figure 2.3 Example Of Transputer Based CGI System.

This system uses nine transputers (type T800)

implementing the particular tasks indicated in the diagram.

This configuration is capable of displaying 200 polygons per

frame at a rate of 17 frames per second.

25

e - Southampton Flight Simulator [AlZa85][AlZa86]

A CGI system under development at the University of

Southampton uses a Multiple-Instruction Multiple-Data (MIMD)

system incorporating 30 microsystems (using 12MHz MC68000

devices [M0T083]) connected by a global input and a global

output bus as shown below.

FROM FLIGHT

DYNAMICS

(etc.)

> DISPLAY

MICROSYSTEM

OUTPUT BUS
CONTROLLER FRAMESTORE

MICROSYSTEM

INPUT BUS
CONTROLLER

Figure 2.4 Southampton MIMD CGI System

An important feature of this system is that all co-

transformations are calculated using fixed—point

arithmetic, increasing system throughput. The workload is

partitioned between each processor into regions of

potentially visible polygons. Each global bus is controlled

by a high speed microcontroller performing all input and

output operations. Scan-conversion is performed within the

MIMD array and the Output Bus Controller passes individual

spans to be filled to the framestore section.

The framestore section consists of two separate

filling processors and two framestore memory arrays (512 by

512 pixels) configured in a double—buffered arrangement.

Each span is specified by a 40 bit word, this includes the

scan-line (10 bits), the starting x co-ordinate (10 bits),

the span length (10 bits), the span colour (8 bits) and two

26

mode bits (used for handshake control). High speed data

transfer to the framestore memory is provided by

segmentation of the framestore memory allowing 16 pixels to

be modified in parallel. Memory control is performed using a

microcontroller incorporating a writable control store to

increase system flexibility and allow future development.

Simulations show that a full system incorporating 30

microsystems can display approximately 500 polygons per

frame (40 ms) assuming an average span length of 100 pixels.

f - Bradford University RTIG System [RhSe88][Serr87]

The complete RTIG system developed at the University

of Bradford is based upon a four stage multi-processor

pipeline in which scan-conversion is implemented by two

microprocessor systems and a dedicated hardware processor.

Figure 2.5 shows an outline of this stage, which may be

divided into two sections; the Polygon Raster Generator

(PRG) and the Video Display Processor (VDP).

POLYGON EASTER GENERATOR

SCAN
CONVERSION

FIFO

START
PROCESSOR

END
PROCESSOR

VIDEO DISPLAY PROCESSOR

SPAN FRAME
FILLER BUFFER

Figure 2.5 Bradford RTIG System

The PRG uses two microprocessors (Motorola type

MC68020 [M0T083] running at 16.7 MHz) operating on two

dimensional polygon vertex information provided by the

previous stage.

27

First the vertices are sorted in the y direction by

one processor (the master processor) which also provides

control of the PRC. Only convex polygons are supported,

giving a maximum of two intersections between the edges of

the polygon and each scan-line.

Next, the X co-ordinate of the left (x-start) and

right (x-end) intersection for each scan line is calculated

separately by each processor starting at the top of the

polygon. The time taken to calculate each intersection pair

depends upon the gradient of the polygon edges but an

average of 3 to 4 |j,s has been reported.

The VDP contains a double buffered framestore memory

(512 by 512 pixels with 8 data bits per pixel) with

associated display and arbitration control and a Span

Filler, designed to draw horizontal lines at high speed. The

Span Filler performs two functions; clearing the screen (at

the start of each frame) and drawing the polygons, line by

line, using the four parameters (x-start, x-end, y and

colour) received from the PRG. High speed is achieved by

segmentation of the frame buffer such that 16 pixels may be

modified in one memory cycle, similar to the Southampton CGI

system (item 'e' above). The VDP uses a simpler system

providing individual segment selection using a mapping PROM.

The VDP can clear the screen in 3.27 ms and a line of

100 pixels can be filled in 1.4 us. Based upon an average of

60 lines per polygon and an average line length of 100

pixels, this gives a filling rate of 476 polygons per frame

(40 ms).

The overall performance is limited by the PRG and a

performance of 200 average polygons per frame is reported.

28

q - Shaded Polygon System [West87]

The shaded polygon generation system proposed by

Westmore is a distributed architecture using one processor

per polygon similar to the ZMP system (item 'a' above). As

shown in Figure 2.6 the processors are arranged in a

pipelined linear array which may be extended indefinitely.

Each processor is connected only to its adjacent neighbours

overcoming the problem of interconnection between a large

array of processors encounted on an earlier system

[Fuss82].

VIDEO CLKS-
PEIORITY BUS-

RED BUS-
GREEN BUS -

BLUE BUS -

COMMUNICATIONS

PICTURE
PROCESS

FRAME BUFFER

COMMUNICATIONS

SCANLINE
PROCESS

PIXEL

RATE

PROCESS

PICTURE
PROCESS

FRAME BUFFER

SCANLINE
PROCESS

PIXEL

RATE

PROCESS

Figure 2.6 Shaded Polygon Processor Array

Each processor transforms, projects, and scan—converts

a single triangle which is added to the image generated by

the previous processor. Synchronisation signals are also

passed through the array providing a direct video signal

from the output of the final processor. Colour shading is

provided by interpolation of colour value along the edges of

each triangle, known as Gouraud shading [Gour71]. Only

triangles are supported as Gouraud shading for more complex

polygons is not invariant under rotation. The operation of

each processor is divided into three processes according to

the speed of each operation.

29

Picture rate processes are performed once for each

frame and include the transformation, perspective

projection, clipping and scan-conversion of each triangle. A

list of parameters is generated for each edge pair in order

of decreasing y, defining the top and bottom y co-ordinate

(Y TOP and Y BOTTOM), initialisation (colour and x co-

ordinate), and gradient (d(colour)/dy and dx/dy).

These parameters are passed, via a buffer (for

synchronisation purposes), to the scan-line section. For

each scan-line a new set of parameters are generated

defining the x start and extent, initial colour, colour

gradient (d(colour)/dx), and priority of the span to be

displayed.

Finally, the image is generated by the pixel rate

section, and merged with the incoming video signal (from the

previous stage). The pixel rate operations performed by the

colour interpolator and priority resolver are implemented

using one-bit accumulators in a skewed parallel arrangement,

each processor adding a latency of one clock cycle to the

system.

A high resolution non-interlaced display (1280

horizontal by 1024 vertical) is supported and it is

suggested that up to a million processors could be combined.

Only simulated results are available and a real-time system

is planned based on a VLSI implementation.

30

2_!_2 SURFACE IN-FILL TECHNTOTTF.q

The widespread development of raster scan framestore

orientated CGI systems has provided a proliferation of

techniques to provide in-fill. These are widely reported in

the literature (e.g. [Roge85][Revi85]) and maybe placed

into four categories: ordered edge list, seed fill, parity

check and edge fill.

2.2.1 ORDERED EDGE LIST rOET.t

This group of algorithms is not attributed to any

individual author but is treated in general texts (e.g.

[SpNe79]) as the standard method of scan—converting

polygons. These algorithms use polygon vertex co-ordinate

information directly and, in general, this type of algorithm

proceeds in three stages.

(i) The co-ordinates of the intersection of each polygon

edge with the centre of each scan-line are computed.

The co-ordinates are stored in a list and the

procedure is repeated for all polygons.

(ii) The list is then sorted to place the co-ordinates in

groups in order of increasing y, and in order of

increasing x within each group. This procedure is

illustrated by Figure 2.7 (b) which shows the sorted

edge list for the polygon in Figure 2.7 (a).

(iii) Finally each group is sorted into adjacent pairs of

the form(xl,y)(x2,y) for scan-line y and the span of

pixels having integer values of x between xl and x2 is

filled (as shown in Figure 2.7 (b)).

31

y

6

5

4

3

2

1

y CO-ORDINATE
^ OF SCAN-LINE

ORDERED EDGE LIST RUN/S TO BE
FILLED

y

6

5

4

3

2

1

s .

ORDERED EDGE LIST RUN/S TO BE
FILLED

y

6

5

4

3

2

1

s X 6

(2.4) (4,4) (5,4) (8.4)
0 3) (&3)
(22) (8.2)
(2,1) (8.1)

NONE
2-3 & 6-8
2-4 & 5-8

2-8
2-8
2-8

y

6

5

4

3

2

1

5
(2.4) (4,4) (5,4) (8.4)

0 3) (&3)
(22) (8.2)
(2,1) (8.1)

NONE
2-3 & 6-8
2-4 & 5-8

2-8
2-8
2-8

y

6

5

4

3

2

1

4 (2.4) (4,4) (5,4) (8.4)
0 3) (&3)
(22) (8.2)
(2,1) (8.1)

NONE
2-3 & 6-8
2-4 & 5-8

2-8
2-8
2-8

y

6

5

4

3

2

1
3

(2.4) (4,4) (5,4) (8.4)
0 3) (&3)
(22) (8.2)
(2,1) (8.1)

NONE
2-3 & 6-8
2-4 & 5-8

2-8
2-8
2-8

y

6

5

4

3

2

1 2

(2.4) (4,4) (5,4) (8.4)
0 3) (&3)
(22) (8.2)
(2,1) (8.1)

NONE
2-3 & 6-8
2-4 & 5-8

2-8
2-8
2-8

1 2 3 1 5 6 7 8 9 * ^

(2.4) (4,4) (5,4) (8.4)
0 3) (&3)
(22) (8.2)
(2,1) (8.1)

NONE
2-3 & 6-8
2-4 & 5-8

2-8
2-8
2-8

(a) POLYGON (b) TABLE SHOWING SORTING

Figure 2.7 Ordered Edge List Example

The efficiency of this technique depends upon the

efficiency of the sorting algorithm. This can be improved by

combining steps (i) and (ii) and determining the

intersections in scan-line order. For a convex polygon this

requires that only two edges need to be considered at any

one time. The intersections for these two edges can be

calculated using difference equations using an efficient

line drawing algorithm (such as [Bres65]) and incorporated

with the sorting procedure to provide a combined algorithm;

as employed by many of the RTIG systems described in Section

2.1 q.V..

This method, however cannot be used to scan-convert

concave polygons as an arbitrary number of edges could be

present in one scan-line (as demonstrated by scan-lines 4

and 5 in Figure 2.7). Concave polygons must first be

decomposed into a structure of convex polygons using a

suitable algorithm [BrFe79][LaMR83][Scha78] for this more

efficient sorting algorithm to be used.

32

2.2.2 SEED FTT.T.

Seed fill is a form of boundary fill algorithm which

may be used to fill arbitrary shaped areas. This technique

assumes that a unique region has been defined by a boundary

which has already been entered into the framestore and that

a co-ordinate of a pixel which is known to be contained

within this boundary is given. The operation of this

algorithm depends upon the properties of the surrounding

boundary and particularly by the way in which the pixels

which compose the boundary are connected. The pixels are

assumed to be square and connectivity of adjacent pixels is

defined as follows [Rose70]: Two pixels are four-connected

if they share one of the four possible edges, and two pixels

are eight-connected if they share an edge or corner.

• AB-
• • * c

Figure 2.8 Example Of Connectivity

Figure 2.8 shows examples of both four-connected and

eight-connected pixels as part of a 4 x 4 framestore array

(four scan-lines) of pixels. The convention adopted in this

and subsequent diagrams is to represent an empty pixel by a

dot or a lower case letter and a filled pixel by an upper

case letter. The actual letters which are used have no

significance but provide a convenient label for text

references to a particular pixel or area. For example in

Figure 2.8 pixel A is four-connected to pixel B and pixel B

is eight-connected to pixel C.

Conventional line drawing algorithms produce lines

which are at least eight-connected which guarantees that

interior and exterior regions can never be four-connected.

33

Several algorithms have been reported to fill four-connected

regions [Sinit79] [Lieb78] [CaDe79] treating pixels in groups

called runs (a run is defined as the horizontal row of

pixels enclosed between two boundary pixels). Successive

runs are filled at increasing distances from the seed pixel

until all pixels have been filled.

PPPP QQQ
• R • • SSS TTTT . . . U • • • •
• • u • • • • v w • • w w w X .
• • - Yc - • • -dZZe fM- •
• • • • Na bO •

L s K

Figure 2.9 Example Of Seed Fill Algorithm

Figure 2.9 shows an example in which the algorithm is

progressing upwards from the seed pixel 's' toward the top

of the contour. After the in-fill of run a-b the filling can

proceed in two directions, to fill run c—d or run e—f. A co-

ordinate within the run which is not chosen must be stored

to allow the algorithm to continue after all the area above

the chosen run has been filled. Hence a stack must be

created to store pixels which must be re-visited after the

of a particular section has been completed.

The speed of the algorithms depend on both the

structure of the stacking procedures and the shape of the

bounding contour. Shani [ShanSO] emphasizes the

correspondence between contour filling and graph traversal

[Wils72] and exploits this in order to determine the most

efficient path to traverse all the pixels within a given

area. Using such techniques the depth of the stack (and

hence the number of pixels which are visited more than once)

can be minimized.

34

As the framestore memory is used as a working memory,

pixels have integer co-ordinates limiting the effectiveness

of this algorithm. Quantisation errors resulting from the

contour drawing algorithms can give rise to non-planar

shapes with isolated regions such as pixel 'a' in Figure

2.10 which will not be in-filled.

PPPP
• Qa • RRR
• -SS- • -TTT
• • • -U V W - • • •

WW XXX

Figure 2.10 Isolated Region Arising From Quantisation Error

A further disadvantage of seed-fill is the need to

define an initial interior pixel, particularly as the

position of this pixel could affect the efficiency of the

algorithm. Despite these disadvantages, however, seed fill

offers the most direct method to fill arbitrarily defined

contours and is implemented within some commercially

available GDPs [Hita84][AMDQ87].

2.2.3 PARITY CHKCK

Parity check is another technique providing in-fill

for arbitrarily shaped regions already defined by a contour

in the framestore memory.

The algorithm proceeds along a scan-line from left to

right, and a count is incremented when an edge (part of the

bounding contour) is encountered. As a run of pixels is

traversed in-fill is generated if the value of the count

(the parity) at that point is odd, hence alternate runs are

in-filled.

35

P
• We fQ G
• X V W g • • hR • • • H • • •
Ya••bUU Sc ••dl••

M K
NNNNNN L

000000

Figure 2.11 In-Fill By Parity Check

For example. Figure 2.11 illustrates an area of

framestore in which the value of the count for each scan-

line is assumed to be initialised (zero) at the start of

that line. The area below the contour 0-L represents the

interior of a region and should be in-filled. The runs a-b

and c-d are both correctly in-filled as the values of the

count are 1 and 3 respectively (the count is incremented at

edges Y, U, S and I).

This trivial parity check does not work for all cases;

the run e-f is also filled as the count is incremented by

edge W and is equal to 1, however, this run should not be

filled as it lies outside the contour. Pixel W corresponds

to a vertex and it is possible to remove or mask all

vertices from the contour before application of the parity

check algorithm. Pixel M, however, also represents a vertex

but increments the count correctly. It can be shown [FoVa84]

that for correct in-filling, any vertex which corresponds to

a maximum or minimum should not be allowed to increment the

count.

Quantisation errors may also give rise to erroneous

values of the count as two line segments can merge near a

vertex. For example the two edges marked by pixels X and V

will only cause the count to be increased by 1 as they are

four-connected and run g-h will be filled. True detection of

this event requires interrogation of the framestore after

36

the contour has been drawn. Pavlidis [Pavl79][PavlSl]

proposes several algorithms ranging from the naive parity

fill to a complex algorithm which copes with the example of

quantisation error illustrated above. This algorithm

requires two passes around the complete boundary inspecting

pixels vertically above and below the contour. This

information is then used to mask pixels which should not

increment the count.

2.2.4 EDGE FTT.T,

An improvement to the parity check algorithm can be

made by the use of a special line drawing algorithm to

provide an unambiguous contour. This combination of parity

check and line drawing is known as the edge fill or edge

flag technique.

The line drawing algorithm uses different integer co-

ordinate systems for scan-lines and vector generation. These

co-ordinate systems are offset by a y value of one half the

scan-line interval and all vectors are therefore defined by

co-ordinates which correspond to the mid-point between two

scan-lines. Line segments are then represented by one pixel

per scan-line which is placed at the x co-ordinate at which

the vector intersects that scan-line. In-fill is then

performed by a modified parity check which increments the

count at every pixel which forms part of an edge.

Figure 2.12 (overleaf) shows a section of framestore

memory containing vectors drawn by this method on scan—lines

with y co-ordinates between 2 and 6.The solid lines

represent the co-ordinate system used for vector generation

and vertices are denoted by .

37

y co-ordinate
9.5 *

1.5
8 RS
7.5
7 T - Z
6.5
6 U- • • -M
5.5
5 V N
4.5
4 W 0--
3.5
3 X J..
2.5
2 Y K ...

Figure 2.12 Edge Fill Technique

It can be seen by inspection that application of the

modified parity check will provide correct in-fill except

for the scan-line with y co-ordinate 9. The vertex above

pixel Q represents a local maximum and because of

quantisation errors pixel Q forms part of line segments Q-Y

and Q-0. Pixel Q is visited twice during the line drawing

process, representing a collision of contour information. To

ensure correct in-filling the line drawing algorithm must

avoid potential collisions of contour information (occurring

when a second pixel is entered into a given framestore

location). Two methods have been proposed; removing

(complementing) the original pixel [AcWeSl] or shifting the

X co-ordinate of the second pixel [HaCh85].

Vertices which do not represent maxima or minima in

the contour are ignored by this process and in-filling is

unaffected by quantisation errors. This is because the

offset co-ordinate system ensures that neighbouring pixels

are on separate scan-lines (e.g. Pixels O and J adjacent to

the vertex with y co-ordinate 3.5).

38

2.3 TEXTURE MAPPING

This section forms the final part of the literature

review and examines texture mapping techniques published in

the open literature. Before these techniques are discussed

in full, however, an introductory section is included to

highlight the problems associated with texture mapping.

2.3.1 PRINCIPLES OF TEXTURE MAPPING

The process of texture mapping is illustrated in

Figure 2.13 in which the source image (defined in texture

space) is mapped onto a surface in three-dimensional object

space and finally mapped to the destination image (two-

dimensional screen space) by the viewing projection.

TEXTURE MAPPING OBJECT PROJECTION SCREEN
SPACE SPACE SPACE SPACE SPACE SPACE

(u,v) Cxo,yo2o) (x,y)

Figure 2.13 Texture Mapping Process

For most applications, texture space is two-

dimensional; three-dimensional representations have been

developed [Gard85] but are beyond the scope of this thesis.

Throughout this dissertation texture space will be described

by the pair (u,v) and screen space by the pair (x,y).

The object space representation provides physical

meaning but is often forgotten as the complete mapping may

be represented as one operation:

x,y = f(u,v) (2 . 2)

If this function is evaluated for each element (or

pixel) of the source image the process is termed direct

mapping. Inverse mapping is defined as the evaluation of the

39

inverse of the function for each pixel in screen space.

Inverse mapping is essential for tiling systems as the

mapping is no longer single valued (viz. as the texture

pattern is repeated each texture element maps to an

arbitrary number of screen pixels).

In general there is not a one-to-one correspondence

between destination and source pixels and the colour value

of each destination pixel must be determined by sampling.

The discrete nature of screen space imposes an upper limit

on the spatial frequencies which may be represented and

unless precautions are taken aliasing is introduced

[Crow77].

The simplest sampling method is to choose the

intensity of the pixel in texture space corresponding to the

co-ordinate resulting from the inverse mapping function.

This is known as point sampling and although it is

computationally cheap (simple data transfer from texture

store to output framestore) the aliasing introduced is

unacceptable [Heck86].

Aliasing can be reduced by the use of more complex

sampling techniques which incorporate filtering to remove

spatial frequency components in texture space which exceed

the Nyquist limit [Oppe83]. Filtering techniques are

discussed more fully in the next section but in general

involve convolution (weighted average) of a two-dimensional

filter function with the texture data.

A major difficulty with direct convolution arises

because the mapping process outlined in Figure 2.13

invariably involves a perspective projection. This produces

a mapping function which is non-affine and requires a filter

function which is space-variant (i.e. different for each

40

output pixel). In particular, screen pixels close to the

vanishing point or horizon need a filter function which

spans many texture pixels. This is a severe constraint for

real-time applications in which the number of operations per

output pixel (hence the filter size) are limited.

The aliasing problem and filtering techniques are

fundamental to the texture mapping techniques reviewed in

the next section.

2.3.2 REVIEW OF TEXTURE MAPPING SYSTEMS

Many texture mapping algorithms have been proposed,

some have been developed for real-time application whilst

others have image quality as the prime objective. A good

review of current techniques is given by Heckbert [Heck86]

and due to the proliferation of individual authors this

section is divided under headings which emphasise features

not necessarily unique to a particular system.

The section concludes with a review of commercially

available Digital Video Effect (DVE) systems designed for

real-time image mapping.

a - Direct Convolution Methods

Filtering may be implemented by direct convolution of

the filter function with intensities of pixels in texture

space. Thus an individual output pixel is determined by

summing all texture pixels after multiplication by the

filter coefficient value at that point.

Sampling theory suggests that the most effective

filtering is achieved by convolution with the sine function.

The infinite width of this function, however, makes its

implementation unrealizeable and Finite Impulse Response

(FIR) filter functions must be used.

41

In general the two-dimensional filter function is

defined in screen space and inverse mapped into texture

space before convolution with texture data. This is

illustrated in Figure 2.14 where (a) shows a grid

representing an array of pixels in screen space and (b)

shows the area in texture space corresponding to

quadrilateral ABCD.

SCREEN SPACE TEXTURE SPACE „ A ff

D

A B
/ P q \

X

S R

C

P'
F 1 F

/ V /
1 I r

/ E' L /
D' S'

(a) (b)

Figure 2.14 Filter Footprints In Screen And Texture Space

The area PQRS in (a) is the boundary of an arbitrary

FIR filter used to compute pixel 'X'. The corresponding area

P'Q'R'S' in (b) represents the 'footprint' of the filter

function in texture space and covers all those pixels

required by the convolution process.

The inverse mapping of the filter function onto

texture space provides a filter realization which is space-

variant and has been shown [FeSk85] to conform with the

principles of sampling theory.

The shape (cross section) of the filter determines the

effectiveness of the filtering operation and in his review

paper Yan [YanJ85] observes that it is also necessary for

adjacent footprints to cover the texture region uniformly.

42

The simplest FIR filter is the box; first applied to

prevent aliasing in the subdivision patch rendering

algorithm developed by Catmul [Catm74]. This algorithm, the

first to map a predefined texture onto an image does not use

direct or indirect mapping. Instead, the algorithm proceeds

in object space, using surface patches. Patches are created

using a bicubic parametric equation, each patch is then

subdivided until it spans a maximum of four pixels in

texture space. The patch is then approximated by a

quadrilateral under which the intensities of the four pixels

are averaged. Finally, all the patches which contribute to a

given output pixel are averaged to provide the resultant

intensity. This operation is equivalent to convolving

texture pixels with a box filter with a footprint equal in

size to that of each output pixel.

A triangular cross section FIR is implemented by Blinn

and Newell [BlNe76]. Inverse mapping is used to map a 2 by 2

pixel area in screen space to a quadrilateral in texture

space (similar to the way in which the 3 by 3 area is mapped

to the quadrilateral in Figure 2.14). The intensities of the

texture pixels within the quadrilateral are then averaged

with a weighting proportional to the distance from the

centre of the quadrilateral.

More complex FIR filter shapes have been implemented;

in particular the method of Feibush et al. [FeLCSO] which

uses a look-up-table to provide filter coefficients. The

look-up-table is aligned using inverse mapping and differing

filter shapes may be implemented to provide the best results

for a given application.

Other complex filter functions have been reported by

Ganget et al. [GaPC82] and by Greene and Heckbert [GrHe86].

43

Both methods use filter functions with circular two-

dimensional representations producing elliptical footprints

in texture space.

These techniques illustrate a trend towards greater

realism in CGI and are so computationally intensive that

real-time implementation is not possible. For example, using

a VAX 11/780 minicomputer the method of Greene and Heckbert

takes between one and six hours to generate a single frame.

The computational cost per screen pixel is directly

proportional to the area of the filter footprint in texture

space. Moreover, as this depends on the orientation of the

mapping transformation the convolution may only be

constrained between best and worst case time limits.

b - Prefilterina Techniques

It is possible to pre-filter the texture data off-line

to reduce the number of computations required during the

rendering process. This is possible only with static

textures and is termed prefiltering. Two methods of

prefiltering have been proposed; Multiple Table MIP Mapping,

and Summed-Area Table.

Multiple table MIP mapping was first proposed by

Dungan et al. [DuSS78] who suggest that the texture data

should be prefiltered by powers of two in both dimensions.

For example, if the original pattern is defined by a 512 by

512 pixel array then lower resolution patterns (256 by 256,

128 by 128, 64 by 64 etc.) are also generated off-line and

may be selected during rendering when the filter footprint

is large.

Many refinements have been proposed: Bolton [Bolt79]

uses intermediate levels prepared off-line by a complex

filter function to provide texture tiling in real-time. Burt

44

[BurtSl] proposes a technique called Hierarchical Discrete

Convolution (HOC) implementing a Guassian filter function

using contributions from different filter levels. Williams

[Will83] uses interpolation to provide intermediate levels

as a continuous function of footprint size and promotes the

term MIP (Multum In Pravo - "much in little"). Because pre-

filtering is aligned with the texture axes (u,v) and scaled

equally in u and v, the footprint shape for MIP-MAP

filtering is always square.

An alternative technique, the Summed-Area Table was

developed independently by Crow [Crow84] and by Ferrari and

Sklansky [FeSk84]. Ferrari and Sklansky develop the

technique in a mathematical context showing the equivalence

to discrete convolution, Crow uses a practical approach

giving examples of images created using the technique.

v2

vl

T[ul,v2] T[u2,v2]

A B

T[ul,vl]

c D

T[u2,vl]

ul u2

Figure 2.15 Summed-Area Table Representation

The process is illustrated in Figure 2.15. This shows

part of the Summed-Area Table which has been generated off-

line from the original texture data. The table values T[u,v]

have been calculated for all u and v such that at any point

T[u,v] represents the intensity sum of all the pixels to the

left and below T. Hence T[ul,vl] represents the intensity

sum of all the pixels enclosed by region C. The rectangular

region B represents the filter footprint and the screen

45

pixel intensity is determined by averaging the intensity

over this region given by:

Intensity sum of pixels within region B
Area of region B

Collecting regions A,B,C and D this becomes:

Tfu2.v21 - Trul.v21 - Tru2.vn + TFul.vn (2.3)
(112 - ul) (v2 - vl)

To enhance spatial accuracy, fractional values of u and

v can be used by interpolating between adjacent table

entries. Memory requirements are increased between two to

four times depending on image size; for example a 256 by 256

texture pattern having 8 bit intensity values requires 24

bits per table entry. The region B in Figure 2.15 represents

the filter footprint implemented by this technique, limited

to a rectangle in texture space.

c - Two-Pass Mappings

In many image mapping applications it is possible to

decompose the two-dimensional transformation process into

two orthogonal one-dimensional passes.

SOURCE INTERMEDIATE DESTINATION

FRAMESTORE FRAMESTORE FRAMESTORE FRAMESTORE FRAMESTORE FRAMESTORE

(u,v) (u,>Oor(x,v) (k.y)

Figure 2.16 Two-Pass Mapping Technique

As shown in Figure 2.16 each pass implements the

mapping for one co-ordinate only and an additional

framestore is used to store the intermediate image. A

pictorial example showing simple rotation implemented in two

passes is given in Figure 2.17. Part (a) shows the original

46

pattern, (b) shows the intermediate image after mapping u to

X and (c) shows the final image.

t 7 " /
/

X

w (b) (c)

Figure 2.17 Pictorial Example Of Two—Pass Mapping Procedure

This technique was pioneered by Catmul and Smith

[CaSmSO] demonstrating the process for affine, perspective,

bilinear and biquadratic (quartic) mappings. Each pass may

be performed in scan-line order and in their paper a stream

processing architecture is suggested. A further advantage is

that filtering is greatly simplified as only one-dimensional

sampling is required.

A new problem, referred to by Catmul and Smith as the

bottleneck problem', is introduced by this technique. A

loss of information occurs whenever the area of the

intermediate image is smaller than that of the destination

image. This is illustrated by representing the simple

rotation matrix by two one—dimensional operators:

(2.4)

Where c, s and t represent cos <p, sin <p and tan tp

respectively, and (p is the angle of rotation. The problem

arises as (p approaches 90° where the terms t and 1/c tend to

infinity. At this point the first pass has reduced the

source image to a single line and application of the second

c s c 0 1 t

-s c -s 1 0 1/c

47

pass is not possible. The problem can be avoided by scanning

the source framestore by an arbitrary offset of 90° to

optimise the area of the intermediate image. For example, a

rotation of 60° is accomplished most efficiently by

scanning the texture framestore to give an apparent

rotation of 90° and application of a matrix giving a

rotation of 60°- 90° = -30°.

Various applications of two pass transformations have

been proposed: Shantz [Shan82] outlines a system performing

linear and second-order mappings in which filtering is

provided by a simple extensions of point sampling. Paeth

[Paet86] reports a rotation only system decomposed into

three one-dimensional passes which do not require additional

filtering.

The resampling interpolation algorithm proposed by

Fant [Fant86] combines the transformation and filtering

operations implementing affine mappings in real-time.

OUTPUT
CYCLE

INPUT
CYCLE

NEW OUTPUT
PIXEL VALUE ACCUMULATOR

COMPARE 1 / SIZEFAC 1.0

FACTOR

DIFFERENCE

FACTOR • PIXEL

INSEG OUTSEG

SIZEFAC * ACCUMULATOR
CURRENT

INPUT
PIXEL

Figure 2.18 Resampling Interpolation Process

48

The process used by the one-dimensional mapping

algorithm is outlined in Figure 2.18. INSEG and OUTSEG are

fractional pointers to the stream of input and output pixels

respectively. The value SIZEFAC expresses the ratio of

output pixels to input pixels and determines how many output

pixels should be generated from an input pixel (SIZEFAC > 1

indicates expansion, SIZEFAC < 1 indicates compression).

Each cycle results in either an input pixel being used up or

an output pixel being generated. A complete scan-line

composing n pixels is processed in a maximum of 2n cycles.

The mapping is direct and additional hardware is required to

position the output stream in the output framestore.

Because all input pixels contributing to a given

output pixel have equal weights, the algorithm implements

filtering equivalent to convolution with a spatially

accurate box cross section filter.

d - Commercial Image Mapping Systems

In recent years image mapping systems have been used

to generate special effects for television broadcasts.

Reviews of these Digital Video Effects (DVE) systems are

provided [BrSE87][Haln88] but are presented from a

commercial point of view and lack architectural details. The

number of different manufacturers and systems is increasing

continually and for brevity this section describes only the

two market leaders; the Ampex ADO, and the Quantel

Encore/Mirage systems.

Ampex [Ampe88][Haln87] pioneered the production of DVE

systems with the introduction of the ADO (Ampex Digital

Optics) 3000 in 1981. Image mapping is implemented using the

two-pass technique ordered to provide a direct video output

(by performing the horizontal pass last). An outline of the

ADO-3000 is shown below:

49

CONTROL

HOST SYSTEM
COMPUTER

DOUBLE
BUFFERED

FRAMESTORE

VERTICAL
ADDRESS

GENERATOR

HORIZONTAL

INTERPOLATOR

VERTICAL

INTERPOLATOR

HCREONTAL
ADDRESS

GENERATOR

Figure 2.19 Ampex ADO DVE System

After analog to digital conversion the input signal is

temporarily stored in a 720 (horizontal) by 576 (vertical)

double-buffered framestore. The colour coding format used

within the ADO comprises three 8 bit channels: Luminance (Y)

(sampled at 13.5 MHz), and two colour difference channels

(B-Y, R-Y) (sampled at 6.75 MHz). This coding system is

chosen for compatibility with existing broadcasting

technology and is referred to as 4:2:2 sampling.

One dimensional inverse mapping is implemented by the

horizontal and vertical address generators under the control

of the host system. The horizontal and vertical

interpolators provide filtering by point sampling and

interpolation over a group of eight input pixels, equivalent

to limited size box filtering. The mapping is controlled in

real-time by a pre-programmed set of parameters generated by

the host system, possibilities include special 'warping'

effects as well as affine and perspective transformations.

Ampex also produce a simpler system; the ADO-1000,

mapping individual fields (not complete frames) with a

reduced vertical resolution of 288 pixels.

50

The Quantel Encore [QETN88] is described as "a three-

dimensional manipulator for flat TV pictures" and provides

full perspective image mapping in real-time onto any flat

surface defined in object space. The Quantel Mirage DVE

system is similar but operates parametrically to provide

image mapping effects on curved surfaces. A block diagram of

the Encore DVE system is shown below:

FROM FREEZE
MANIPULATOR COMBINER

ADC ' BUFFER
MANIPULATOR COMBINER

L
t

CONTROL
COMPUTER

STATION
COMPUTER

TO

DAC

Figure 2.20 Quantel Encore DVE System

After analog to digital conversion (using the 4:2:2

CCIR standard, see above) the input signal is stored

temporarily in the freeze buffer. The manipulator is a

dedicated hardware system designed to implement the image

mapping. Inverse mapping is used as this generates a signal

which may be passed directly to the combiner without an

additional framestore. Details are not given but filtering

is limited to a compression/expansion ratio of ten,

indicating a limited filter footprint similar to the ADO

system.

The combiner is used to merge the output of the

manipulator with other images (from other Encore or Mirage

systems etc.) before the digital to analog conversion stage.

System control is provided by a dedicated minicomputer

system and remote control providing a range of special

51

effects (e.g. solarisation, cropping) in addition to the

image mapping functions.

At the time of writing the ADO-3000 is priced from

$140,000 and the Quantel Encore system is priced from

£90,000.

52

2.4 SUMMARY OF THE LITERATURE REVIEW

The first section of this review examined a range of

display architectures in current use for RTIG. Although

individual approaches differ greatly a common thread is the

need for parallelism to provide the necessary performance.

Indeed the main factors which distinguish each system is the

way in which the individual tasks are 'farmed out' to

separate processors. For example, the ZMP system distributes

tasks at the polygon model stage whereas the Pixel Planes

system exhibits parallelism at pixel level.

Common to the systems which use horizontal parallelism

is the need for a VLSI solution to consolidate the design, a

factor which is not as important to the modular pipelined

systems.

Section two gave details of the four types of

algorithms used to provide surface in-fill.

The first of these was the Ordered Edge List (OEL)

technique, providing the most direct method of displaying

polygons from co-ordinate information. The processing

overhead required to sort edge intersections can be avoided

if only simple convex shapes are supported. A framestore is

used to buffer the output (unless polygons can be processed

in parallel) and every pixel must be written during the span

filling process. Real-time implementation therefore requires

a high bandwidth between the display hardware and the

framestore, as provided by the span filling architectures

discussed in Section 2.1.2.

Seed fill algorithms use the framestore as the working

memory and require the most framestore operations per pixel

resulting in the slowest operation of the four methods. It

is however, the most commonly used technique for in-filling

53

arbitrary contours.

In principle, parity check in-filling is the simplest

boundary filling technique and may be implemented in scan-

line order at display time. In practice, it is difficult to

avoid the problems caused by quantisation errors without

comprehensive contour interrogation, which increases

framestore input/output overheads and reduces efficiency.

Edge fill algorithms use a modified parity check

algorithm and overcome quantisation errors by providing an

unambiguous contour. The parity check may be implemented at

display time and as only the contour is required, framestore

bandwidth requirements are reduced. Contour generation is

more complex, requiring more processing than normal line

drawing algorithms and only supporting polygons.

The final section of this review provided an analysis

of published texture mapping techniques. Central to these

techniques is the spatial filtering necessary to avoid

aliasing, the quality of which depends on the shape and

accuracy of the filter 'footprint' in texture space.

Direct convolution provides the highest quality of

filtering, but for non-affine mappings cannot be implemented

in real-time. Prefiltering of the source image off-line

using MIP-MAP or Summed-Area Tables, decreases the

operations required to render the image and may be

implemented in real-time. The disadvantage, however, is that

the filter shape is distorted as it must be aligned with the

texture space co-ordinate axes.

Alternatively, a two-pass mapping procedure can be

used, simplifying the filtering to a one-dimensional

process. Additional problems, such as the need to decompose

54

the mapping function into two passes and the 'bottleneck'

problem are introduced, although this does not preclude

real-time implementation.

55

CHAPTER 3

SURFACE IN-FILL ALGORITHM

This chapter describes an in-fill algorithm which has

been developed to operate on 'wire-frame' images generated

by a conventional GDP-framestore architecture. The algorithm

is implemented by a VSP as outlined in Chapter 1 using the

architecture illustrated below:

HOST

SYSTEM

VECTOR
GENERATOR

(GDP)

RASTER
FRAMESTORE VSP SCAN

DISPLAY

Figure 3.1 Outline Of VSP Based In-Fill System

Features of the in-fill algorithm necessary for VSP

implementation are examined together with the shortcomings

of the existing in-fill techniques discussed in Chapter 2.

Based on these criteria, an algorithm is developed and

explained together with refinements necessary to support

additional features such as colour and interlaced raster-

scan display.

Initial development of the algorithm proceeded using

software routines to simulate rudimentary forms of the

algorithm. Many of the complexities, including the

additional 'post-processing' required to support interlaced

displays were developed during the algorithm implementation

using test software. The techniques used are outlined in

Chapter 4 along with the architectural details of the

implementation.

56

3.1 REQUIREMENTS OF SURFACE IN-FILL ALGORITHM

The VSP outlined in Figure 3.1 operates on the output

from a conventional raster-scan framestore displaying a bit-

mapped 'wire-frame' image. The surface in-fill algorithm

implemented by the VSP must therefore fulfil the criteria

listed below:

1). The algorithm must proceed in scan-line order. This is

necessary as the VSP operates on a conventional

raster-scan framestore to provide a direct video

output.

2). The in-fill algorithm should be compatible with the

existing 'wire-frame' system described in Chapter 1

which uses a GDP-based vector generation system.

3). The VSP architecture implements the algorithm at pixel

rate, therefore each output pixel must be generated in

a fixed number of machine cycles regardless of image

complexity).

Of the four types of in-fill algorithm reviewed in

Chapter 2, seed fill, parity check and edge fill methods are

applicable to boundaries defined in a framestore.

Seed fill algorithms (e.g. [Smit79][Lieb78][ShanSO])

operate in an image-dependent order using the framestore as

a random access data memory. Implementation in scan-line

order is not possible and seed fill algorithms are not

suitable for a VSP based design.

Parity check in-fill [FoVa84] proceeds in scan-line

order and the trivial version (which simply toggles the

output colour at each edge) may be implemented readily by a

VSP. However, the modifications proposed by Pavlidis

57

[PavlSl], which are necessary to support vertices and

quantization errors interrogate the contour in an arbitrary

fashion and may not be performed in scan-line order.

Edge fill techniques overcome the shortcomings of the

trivial parity check technique by providing an unambiguous

contour allowing in-fill to be provided using simple

hardware [AcWeSl]. The unambiguous contour is provided by

complex line drawing routines (e.g. [HaCh85]) and is not

supported by conventional GDPs.

Extensions of the trivial parity check (including edge

fill) offer the only method of providing in-fill directly in

scan-line order. It is the modifications required to provide

in-fill in all cases which are not compatible with the VSP

design constraints. The objective is then to develop an in-

fill algorithm based on parity check but fulfilling with the

design criteria outlined above.

Because the VSP must perform some form of contour

interrogation a buffer must be included within the VSP

architecture to provide information from pixels on previous

scan-lines. Existing parity check and edge fill techniques

are based solely on analysis of the contour and do not

exploit connectivity of pixels adjacent to a given run.

Extending the parity check algorithm to exploit the

connectivity or vertical coherence between successive scan-

lines is discussed in the next section.

58

3.1.1 VERTICAT. COHERENCE

Provided that previous lines have been in-filled

correctly and edges drawn by the vector generator are at

least eight-connected (this is true for lines drawn by all

proprietary GDPs) then the colour of a run can be determined

from its connectivity to the pixels above.

PPPPPPPPP-•
QQQQQQQQQb cR

SSSSSSSSSd eT

Figure 3.2 Section Of Framestore Showing Vertical Coherence

Figure 3.2 shows two typical line segments S-P and P-T

representing the vertex of a polygon, (using the same

notation as Chapter 2). If the run of pixels b-c has been

correctly in-filled then the run of pixels d-e may readily

be filled as some pixels between d and e are four-connected

to in-filled pixels between b and c. Similarly, the colour

of the run of pixels b-c can be determined from pixels on

scan-line x. These pixels have a colour opposite to that of

the run b-c as they are separated by the horizontal edge P

which is at least eight-connected to the edges Q and R

defining the run b-c. Pixels on the scan-line containing x,

however, are two scan-lines above run b-c and direct use of

these pixels to determine the colour of run b-c requires a

buffer which is longer than one scan-line.

P
QQ •

• • RRR
•ScT-•
U--V-•

Figure 3.3 Acute Vertex

59

Furthermore, consider the acute vertex depicted in

Figure 3.3. In this case, correct in-fill can only be

determined by the examination of pixels several lines above.

For example, the colour of pixel c in Figure 3.3 is opposite

to the colour of pixel x (which is four scan-lines above).

Clearly the buffer can not be an arbitrarily defined length

as suggested by these examples but must be fixed to the

minimum possible length. This discussion has concentrated on

connectivity between runs separated by edges; the next

section examines the significance of connectivity within the

edge itself.

3.1.2 EDGE PROCESSING

As the colour assigned to a pixel directly below a

vertex (such as c in Figure 3.3) is determined by the pixel

directly above the vertex (in this case x), it follows that

the edges that separate these pixels must be four-connected

vertically. For example, edge P which is directly below x is

four-connected (vertically) to edge R which is directly

above c.

If a parameter is assigned to the vertex (denoted v-

flag) and passed to each edge below, it can be used to

assist the in-filling of subsequent scan-lines by providing

information on the colour of the run above the vertex (f-

flag denotes the fill value assigned to a particular run).

This is illustrated by Table 3.1 (overleaf) showing values

of the parameters v-flag and f-flag corresponding to the

example shown in Figure 3.4. The value of v-flag is copied

from any edge which is four-connected above, otherwise if

the area above is clear (i.e. contains no edges) then a

value opposite to that of the run above is assigned.

Similarly the value of f-flag is copied from any run which

60

is four-connected above, if the area above is completely

bounded by an edge then the value of v-flag is used.

X Value of Value of
PPPPPPPPP-•• v-flag f-flag

QQQQQQQQQQQQQ P I T 1 x 0
RRRRRRRRR-b- -SSSS Q 1 U 0 b 1

• • ttTTTTTTT . c- - UUUU R 1 V I c 1
d WWWW S I W O d l

Figure 3.4 Table 3.1

Example Of Edge Processing

This procedure also provides correct in-fill for acute

vertices which give rise to non-planar distortion caused by

quantization effects. This is illustrated by Figure 3.4 in

which the run containing pixel c and the isolated run

containing pixel b are both correctly filled as the value of

v-flag for edges Q and R are both derived from edge P and

pixel X.

The value of each flag is determined using

information from the previous scan-line allowing the buffer

to be limited to a single scan-line. In addition, the

processing of an edge or a run can be multiplexed in the

time domain as both an edge and a run cannot occur in the

pixel stream simultaneously.

3.1.3 NESTED REGIONS

The arguments presented above do not depend on the

particular value of pixel x and consequently correct in-

filling of nested regions is automatically provided.

Furthermore, although the examples presented have been

restricted to polygons, the process applies to in-filling of

any planar region defined by a boundary which is at least

eight-connected.

61

3.1.4 ALGORITHM

An algorithmic description (in a 'Pascal-like'

notation) of this process is given below:

1 BEGIN
2 FOR y = y.top TO y.bottom BY -1 DO
3 BEGIN
4 read.fifo (old.v-flag, old.f-flag)
5 bound := TRUE
6 clear := TRUE
7 FOR x = x.left TO x.right DO
8 BEGIN
9 {PASS 2 : output line y+1 }
10 IF start.edge (x, y+1) THEN
11 read.fifo (old.v-flag, old.f-flag)
12 output (old.f-flag)
13 {PASS 1 : process line y }
14 IF edge (x, y) AND clear THEN
15 IF edge (x, y+1) THEN
16 BEGIN
17 v-flag := old.v-flag
18 clear := false
19 END
20 ELSE v-flag := NOT old.f-flag
21 ELSE IF start.run (x, y) THEN
22 BEGIN
23 write.fifo (v-flag, f-flag)
24 bound := edge (x, y+1)
25 clear := TRUE
26 END
27 bound := bound AND edge (x, y+1)
28 IF bound THEN
29 f-flag := old.v-flag
30 ELSE f-flag := old.f-flag
31 END
32 write.fifo (v-flag, f-flag)
33 END
34 END

Algorithm 3.1 Two-Pass Surface In-Fill Algorithm

The algorithm operates in two passes although these

may occur concurrently. The first pass processes the input

pixel stream whilst the second pass provides the in-fill for

the output pixel stream one scan-line above. 'Clear' is used

when an edge is being processed to evaluate v-flag and is

FALSE if there is another edge above (four-connected to) the

edge being processed. 'Bound' is used during the processing

of a run and is TRUE only if all the area above the run is

part of an edge. The functions read.fifo and write.fifo

62

operate on a conventional first-in first-out (FIFO) buffer

and allow the asynchronous passing of parameters v-flag and

f-flag from the first pass to the second pass. The functions

at (x, y) are defined from the input pixel stream for scan-

line y as shown below in Table 3.2:

x-1 X edge start.edge start.run

0 0 FALSE FALSE FALSE
0 1 TRUE TRUE FALSE
1 0 FALSE FALSE TRUE
1 1 TRUE FALSE FALSE

Table 3.2 Description Of Functions;
edge, start.edge And start.run

Where a '1' denotes that the input pixel is asserted (filled

in the framestore) and a '0' indicates that the input pixel

is negated (not filled in the framestore).

3.2 LIMITATIONS OF THE IN-FILL ALGORITHM

The preceding discussion has been limited to binary

images (each pixel on or off) and has not considered the

effect of the screen boundaries. Modifications to the

algorithm necessary to support these situations are

discussed in this section.

A more severe problem arises when the algorithm is

applied to images displayed using interlaced raster-scan and

this is discussed in Section 3.3.

3.2.1 INTERSECTIONS WITH THE SCREEN BOUNDARIES

Several problems arise when the algorithm is applied

at the top, sides, and bottom of screen and the cause of

these problems is discussed overleaf, followed by a summary

of procedures adopted to ensure correct in-filling under

these conditions.

63

a - Intersections With The Top Of The Screen

The algorithm can not be implemented for the first

scan-line of the display (y = y.top) as no previous scan-

line has been processed (scan-line y+l is undefined).

Although scan-line y+l is defined when processing the second

scan-line the output values old.f-flag and old.v-flag are

not present as the first scan-line has not been processed.

The algorithm can commence on the second scan-line but must

be modified to operate without the in-fill information for

the previous scan-line (v-flag and f-flag). This modified

algorithm is shown below:

1 BEGIN
2 v-flag := FALSE
3 f-flag := FALSE
4 FOR X = x.left TO x.right DO
5 BEGIN
6 {PASS 1 : process scan-line y }
7 IF edge (x, y) THEN
8 IF edge (x, y+l) THEN
9 v-flag := TRUE
10 ELSE
11 IF start.run (x, y) THEN
12 BEGIN
13 write.fifo (v-flag, f-flag)
14 v-flag := FALSE
15 f-flag := edge (x, y+l)
16 END
17 ELSE IF edge (x, y+l) THEN
18 f-flag := TRUE
19 END
20 write.fifo (v-flag, f-flag)
21 END
22 END

Algorithm 3.2 Special Processing For First Line

The values of f-flag and v-flag for the second scan-

line are thus determined by the presence of a pixel

(detected by edge(x, y+l)) on the first scan-line. Thus the

first scan-line is not processed by the algorithm but is

reserved for use by the system software to place seed pixels

to initiate filling. If a seed pixel is placed above a run,

the f-flag is set and if a seed pixel is placed above an

64

edge, the v-flag is set.

b - Intersections With The Sides Of The Screen

Initial conditions for each scan-line are determined

by the read.fifo operation performed at the start of each

scan-line during the second pass of the algorithm.

Processing of each scan-line during the first pass is

concluded by a write.fifo operation at the end of each scan-

line .

Therefore the algorithm interprets the left and right

hand sides of the screen (x coordinate = x.left or x.right)

as 'virtual' edges and areas bounded by this edge are

correctly in-filled.

+x
+Q
+bQQQ
+c- dQQQ

Figure 3.5 Intersection Of Line Segment With Screen Boundary

For example. Figure 3.5 shows a line segment which

intersects the left hand screen boundary (represented by

'+') and in-filling of pixel b and subsequent in-filling of

run c-d are both correctly derived from the value of pixel

x.

+ QQQ
+x••QQQ
+QQQ••c
+bQ••••
+••QQ••
4-' • • ' Q *

Figure 3.6 Vertex At Screen Boundary

Figure 3.6 illustrates a problem in adopting a

'virtual edge' approach. This occurrs when two lines meet or

coalesce at the screen boundary. The area c is assumed to be

in-filled correctly to the opposite value of pixel x but

65

area b is also erroneously filled to the same value as area

c as b is separated from x by edge Q.

c - Intersections With The Bottom Of The Screen

At the bottom of the screen area, the algorithm has

completed the processing of all scan-lines and consequently

no limitations or special considerations are applicable to

edges which intersect this boundary.

Polygons which give rise to conditions (a) and (b)

must be detected by the clipping procedures within the

graphics software. Such ill-conditioned polygons require

additional processing as outlined below:

(i) If two edges of a polygon intersect the left-hand

screen boundary, the x co-ordinate of the two points

of intersection is incremented and a line is drawn to

join those two points.

(ii) If two edges of a polygon intersect the right-hand

screen boundary, the x co-ordinate of the two points

of intersection is decremented and a line is drawn to

join those two points.

(iii) If a polygon intersects the top screen boundary, a

single pixel must be drawn as a seed directly above

the area to be in-filled. Furthermore if the vertex of

a polygon is incident on this boundary then a seed

pixel must be placed directly above that vertex.

In practice only a small proportion of all polygons

are likely to be ill-conditioned and although extra software

is required the worst case involves the drawing of a single

extra line. Also, the magnitude of the errors incurred by

66

the modification of clipping co-ordinates is comparable to

rounding errors resulting from the geometric transformations

and is unlikely to be detectable by the human eye.

3.2.2 REPRESENTATION OF COLOUR IMAGES

The algorithm operates on a single framestore bit

plane and colour images (represented using separate bit

planes) require an independent VSP for each bit plane. This

allows the representation of 2" colours, (where n is the

number of bit planes), but regions which share a particular

plane cannot be considered as completely independent and

must not overlap. This imposes a limitation on the way in

which colours may be assigned to model image features. The

effect of this problem may be reduced by a careful choice of

colours combined with a colour palette output mapping stage

and is discussed further at the end of Chapter 4.

3.3 IN-FILL OF SYSTEM USING INTERLACED DISPLAY

The CGI system must provide an interlaced output if

relatively low-resolution CCIR compatible [DTIC84] displays

are to be used, in order to exploit the greatest possible

vertical resolution. Production of an interlaced output is a

problem for the two-pass algorithm as the algorithm requires

in-fill information relating to the previous scan-line. For

an interlaced picture this information is generated in the

previous field period and, moreover, subsequent scan-lines

are no longer output in true scan-line order.

67

3.3.1 INTERLACE PROVISION BY POST-PROCESSING

A scheme to provide an interlaced output using the

surface in-fill algorithm is illustrated in Figure 3.7. The

in-fill algorithm is applied to a non-interlaced signal and

an additional post-processing VSP is included to provide the

required interlaced output.

HOST
SYSTEM

FRAMESTORE

NON-INTERLACEE
SURFACE IN-FILL

VSP

INTERLACE
RECONSTRUCTION

VSP

INTERLACED
RASTER-SCAN
DISPLAY

HOST
SYSTEM

FRAMESTORE

NON-INTERLACEE
SURFACE IN-FILL

VSP

INTERLACE
RECONSTRUCTION

VSP

INTERLACED
RASTER-SCAN
DISPLAY

Figure 3.7 Interlace Post Processing Scheme

If both odd and even fields are generated from the

framestore simultaneously then the fully interlaced non-in-

filled wire frame image can be reconstructed by selecting

the relevant field. This can be achieved using a two-input

multiplexor with odd and even inputs and a controlling

signal (the field select signal - FIELD) derived from the

framestore. Alternatively if the odd and even bit streams

are logically ORed together the resulting non-interlaced

signal is independent of FIELD and identical for both even

and odd fields. For a fully interlaced input of 512 by 512

pixels this signal represents a non-interlaced display of

one half the vertical resolution (i.e. a resolution of 512

by 256 pixels). Although this represents a loss of

information the two-pass algorithm can be applied readily to

the resulting signal. The interlace post processing VSP must

then reconstruct the full resolution (interlaced) in-filled

image from a full-resolution interlaced contour and half-

resolution fill information.

Consider Figure 3.8 (a) where AC and BD represent line

segments of a polygon with a vertex above the figure, the

interior of which is assumed to be in-filled. The scan-lines

68

including edges A and B and edges C and D represent the odd

and even inputs respectively. Part (b) represents the value

of f-flag and (c) and (d) the required outputs for odd and

even fields respectively. The letters 'H' and 'h' are used

to denote that the output value is asserted and negated

respectively.

AAA BBB
CCC DDD

(a)

LLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLLLLLLLLLLL
(b)

LLLLLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLLLLLLLL
(c)

LLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLLLLL
(d)

Figure 3.8 Simple Example Of Interlace Reconstruction

Inside and outside the polygon the required output is

simply equal to f-flag and in-fill is trivial. Correct

reconstruction requires correct interpretation of f-flag,

the field signal (FIELD - odd or even), and the bit stream

inputs throughout the edges.

An important feature is that the reconstruction is

essentially one-dimensional and does not depend on whether

the odd line is above or below the even line. This removes

the necessity to distinguish specifically between odd and

even lines but only to determine which edge is active for

the required output field.

69

f-flag HHHLLLLLLLLL HHHLLLLLLLLL
Odd line • • AAA AAA- • •
Required output HHHHHHLLLLLL HHHHHHHHHLLL
Even line BBB- • • • • EBB
Required output HHHHHHHHHLLL HHHHHHLLLLLL

(a) (b)

Figure 3.9 Comparison Of Odd And Even Lines

For example with reference to Figure 3.9 it can be

seen that the required output for the odd and even fields of

(a) are equivalent to the required output for the even and

odd fields respectively of (b). Consequently the value of

FIELD is not important except to determine which bit stream

is active on that line (edges hereafter denoted by 'A') and

which is non-active (denoted by 'N').

Before the interlace reconstruction is analysed it is

helpful to simplify the problem by categorizing edges into

smaller groups. An obvious distinction between edges is

whether the edge defines the boundary between runs of

differing value (i.e. different values of f-flag). In the

following discussion, edges which coincide with a change in

f-flag are termed type-1 edges and those with no change

type-0 edges.

Tvpe-1 Edges

This category comprises all edges for which the value

of f-flag changes at the start of the edge. Type-1 edges

clearly define the partition between filled and non-filled

regions on the same scan-line and can be reduced to the four

cases shown below in Figure 3.10.

f-flag LHHHHHHH HLLLLLLL LHHHHHHH HLLLLLLL
Active bit stream AAA AAA AAA AAA
Non-active bit stream -XXXNNN- XXXNNN- NNNXXX- NNNXXX-
Required output LHHHHHHH HHHHLLLL LLLLHHHH HHHHHHHL

(a) (b) (c) (d)

Figure 3.10 Examples Of Type 1 Edges

70

The pixels marked 'X' are 'don't care' and both four-

connected and eight-connected contours are correctly

interpreted as the start or end of in-fill is determined by

'A' only. These four cases are uniquely defined by the

change of f-flag followed by the sequence 'AN' or 'NA' and

detection and subsequent reconstruction is straightforward.

Tvpe-0 Edges

This group is more more complex and includes polygons

which have collapsed to a single line and vertices which

define an area of local maxima or minima. Single lines

require the output value to be asserted during pixels

denoted 'A' and to equal the value of f-flag at all other

times (see Figure 3.11 below).

f-flag LLLLLLLL LLLLLLLL HHHHHHHH HHHHHHHH
Active bit stream • • AAA- • AAA AAA - - -AAA- - - -
Non-active bit stream NNNX XNNN- NNNX XNNN-
Required output LLLHHHLL LHHHLLLL HHHHHHHH HHHHHHHH

(a) (b) (c) (d)

Figure 3.11 Interlace Reconstruction Of Single Lines

Areas of local maxima or minima (assuming only one

maximum or minimum) can be divided further according to

whether the vertex also corresponds to a maximum or minimum

X co-ordinate (i.e. if the two lines are drawn from the

vertex within the same quadrant). Vertices which do not meet

this criterion can be reduced to the four basic cases

outlined in Figure 3.12.

f-flag LLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHH
Active bit stream • -AAAA- - - AA - - - - AA- - -AAAA- - - AA- - AA
Non-active bit stream NNX- -XNN- •XNNNNX- - NNX- -XNN- •XNNNNX- •
Required output LLHHHHLLL HHHHHHHHL HHHHHHHHH HHLLLLHHH

(a) (b) (c) (d)

Figure 3.12 Interlace Reconstruction Of Simple Type-0 Edges

71

Vertices with two lines within the same quadrant can

be reduced to the eight cases outlined below.

f-flag LLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHH
Active bit stream AAAA AA AA - • AAAA AA AA - •
Non-active bit stream • NNNN-• -NNNN NN-NN-• NNNN-•••
Required output LHHHHLLLL LLHHHHHLL HHHHHHHHH HHHHLHHHH

(a) (b) (c) (d)

f-flag LLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHH
Active bit stream • • AAAA- • AA AA AAAA • AA AA - • •
Non-active bit stream • NN-NN NNNN - • • NN-NN NNNN - -
Required output LLLHHHHLL LHHHHHLLL HHHHHHHHH HHHLHHHHH

(e) (f) (g) (h)

Figure 3.13 Interlace Reconstruction Of Complex Type-0 Edges

Closer inspection of the type-0 sequences outlined

above show that correct interpretation is not always

possible by simple analysis of pixel sequences. For example

Figure 3.11 (b) representing a single line is

indistinguishable from the sequences at the start of Figure

3.12 (b) and Figure 3.13 (f) yet the output value during

pixel 'N' is different. The difference between the pixel

sequence for Figure 3.12 (a) and that at the start of Figure

3.13 (b) depends on there being no gap in the sequence of

pixels 'NNNN' in Figure 3.13 (b), (should this occur the two

sequences would become indistinguishable). A similar

comparison can be made between Figure 3.11 (d). Figure 3.12

(d) and Figure 3.13 (h) and between Figure 3.12 (c) and the

start of Figure 3.13 (d).

3.3.2 LIMITATIONS OF INTERLACE RECONSTRUCTION

These examples show that correct interlace

reconstruction requires additional information but simple

sequence analysis provides an approximation for interlace

reconstruction.

In general, errors associated with mis-application of

the in-fill algorithm to ambiguous contours results in a

72

catastrophic failure of the in-fill process. This is wholly

unacceptable as complete regions of screen area may be

represented with the wrong colour.

In contrast, errors associated with an approximation

to interlace reconstruction could occur only at type-0 edges

producing an erroneous reconstruction restricted to the

contour itself without affecting the in-fill of large areas.

Sequence analysis provides the most straightforward solution

and this form of image distortion was considered an

acceptable compromise.

3.4 SUMMARY

Three requirements for a VSP implemented surface in-

fill algorithm have been stated; scan-line order,

compatibility, and fixed cycle performance. Application of

these criteria to existing in-fill techniques suggested that

the required algorithm should be an extension of the parity

check method operating solely on the serial bit-stream

output from the framestore. Addition of a buffer within the

VSP allows vertical connectivity to be incorporated but

examples show that a fixed length buffer is not sufficient

for the processing of vertices. This may be overcome by

assigning a parameter to each vertex which is passed between

successive scan-lines during the processing of each edge.

A surface in-fill algorithm using this process has

been presented which can be applied directly to all planar

'wire-frame' images defined in a conventional framestore.

The algorithm operates in two passes: During the first pass

parameters are evaluated for each edge (v-flag) and for each

run (f-flag). The second pass provides in-filling using

these parameters to indicate the parity of each edge.

73

Performance of the algorithm at the screen boundaries has

been examined and modifications to the graphics software

necessary to ensure correct operation have been outlined.

The additional problem of generating an interlaced output

has been discussed along with a solution involving an extra

VSP processing stage.

With the exception of overlapping polygons (which

result in non-planar regions) correct in-fill is provided

with no modification to the operation of the vector

generator, maintaining compatibility. The algorithm proceeds

in scan-line order using a buffer to store a single previous

scan-line. The final requirement of fixed cycle performance

will be demonstrated in the following chapter.

74

CHAPTER 4

IMPLEMENTATION OF IN-FILL SYSTEM

This section outlines the development of a VSP-based

system to implement in real-time the surface in-fill

algorithm of Chapter 3. An outline of the complete

CGI display system is given together with design criteria

for compatibility with the existing 'wire-frame' system.

Some of the design methods are then discussed, followed by a

detailed description in two parts of the CGI display system

architecture. The first part describes the framestore and

vector generation hardware including control and interface

circuitry necessary to support in-fill. The design of the

in-fill VSP is described in detail in the second part. The

chapter concludes with a discussion of performance results

and observations.

4.1 DESIGN OVERVIEW

The block diagram of Figure 4.1 represents the

physical layout chosen for the complete CGI display system.

The graphics control section contains the double-buffered

GDP-based 'wire-frame' system interfacing to the host

system. It is composed of two PCBs (Printed Circuit Boards);

the main board contains the GDPs and associated control

circuitry and a sub-board for the framestore memory. The VSP

in-fill board is a single separate PCB which implements the

surface in-fill algorithm and interlace reconstruction,

returning its output to the graphics control section. This

arrangement is chosen as the final video output circuitry is

on the graphics control board, allowing the system to be

configured to operate in a non-in-filled mode without the

in-fill section. The framestore memory is organised as 512

75

by 512 by 4, providing four colour planes all of which are

in-filled by the VSP section.

H HOST
SYSTEM

FRAMESTORE
MEMORY

I
GDP & CONTROL |

CIRCUITRY

OUTPUT
CIRCUITRY

IN-FILL &

INTERLACE

PROCESSING

SECTIONS

GRAPHICS CONTROL SECTION VSP IN-FILL BOARD

Figure 4.1 Overview Of CGI System

A 512 by 512 pixel display using the GDP discussed in

Chapter 1 (Thomson type EF9367 [ThSe89]) requires a pixel

clock frequency of 12 MHz. This represents the highest

frequency component within the CGI display system assuming

that the VSP operates on one pixel per timing state. A

synchronous design [WiPrSO] based on this clock is used

allowing a modular implementation of the VSP. The cycle time

of 86 ns allows the use of conventional low power Schottky

TTL (LSTTL) [Texa82] devices for most of the design with

FAST (Fairchild Advanced Schottky TTL) [Mull84] TTL devices

for critical sections.

The VSP design is modular and replicated for each

colour plane making this application ideal for ASICs

(Application Specific ICs) [BuGo87]. The anticipated volume

of production and simple design do not justify the use of

gate array or custom VLSI design. An ideal alternative is

the use of PALs (Programmable Array Logic) [MoMe86] which

not only reduce component count but allow design

^^^i^ication using the PALASM logic simulation software

76

[MoMe83]. This approach has also been used to refine the

existing 'wire-frame' system and to optimize the design of

the interface and control circuitry.

After the initial design of the VSP architecture had

been completed development proceeded in three stages: First,

simple software was written to simulate the EF9367 vector

generator. Secondly, these results were used to create test

vectors allowing direct simulation of the VSP modules with

the PALASM logic simulator. Finally software was written to

allow controlled images (such as single lines, single

vertices, seed pixels and complete polygons) to be output

from the framestore to the prototype system at different

stages during its construction. This included the adaptation

existing graphics library and development of software

to allow the image form to be altered dynamically under host

system keyboard control.

An example PALASM source file is given in Appendix ii

and circuit schematic diagrams for the complete system are

given in Appendix III. All of the test software was written

in BCPL [RiWS85], a systems implementation language, and has

been described by the author in a previous report [Evem87]

which also contains all of the PALASM source files.

4.2 GRAPHICS CONTROL SECTION

The graphics control section is based on the existing

system described in Chapter 1 incorporating

some design improvements and minor modifications necessary

to support the VSP in-fill board. The existing double-

buffered architecture is outlined first (a detailed

description has already been given by the author

[Evem85]). This is followed by a description of the

77

transparent write modification (necessary to support the in-

fill VSP) and the colour palette output circuitry.

a - Double-Buffered Graphics Architecture

The double-buffered scheme uses two identical GDPs in

conjunction with two framestores as shown in Figure 4.2. One

GDP (e.g. GDPl) in conjunction with its own framestore is

designated as 'write-only' allowing its internal hardwired

vector generator to be used at full efficiency whilst the

other (GDP2) is displaying its respective framestore. At the

end of each frame the GDPs switch tasks together allowing

GDPl to display its filled framestore whilst GDP2 is

designated as 'write-only'.

MPU
BtJSr

CONTEOL
REGISTER

SELECTOR 1

DRAM
ARRAY

1

GDP

1

SHIFT
REGISTER 1

CONTROLLER

END OF FRAME
SIGNAL

SELECTOR 2

GDP

2

DRAM
ARRAY

2

GDP

2

DRAM
ARRAY

2

SHIFT
REGISTER 2

• \ M U X
T

VIDEO OUTPUT

Figure 4.2 Outline Of Double-Buffered Configuration

Both GDPs operate independently but are synchronized

to the same line and frame positions by the controller.

Synchronization is performed by comparing the SYNC signals

from each GDP (the SYNC signal is a composite horizontal and

vertical synchronization signal) and inhibiting one GDP

until the SYNC signals match.

The GDP can operate in one of three modes display,

write and refresh (necessary because of the use of dynamic

78

memory (DRAM)). The mode of operation for each GDP (display

or write only) is selected under software control and

communication between the controller and the software is via

a read/write control register. The control register also

indicates to the graphics software that the 'end of frame'

has been reached and the buffers must be swapped.

Dynamic memory (DRAM) [Texa84] is used for framestore

memory as it provides the most attractive technology in

terms of cost and density. In display mode the GDP accesses

the framestore memory in scan-line order and provides

horizontal and vertical synchronization. The access time for

DRAM devices is too great for memory read cycles to access

each pixel individually and the EF9367 GDP is configured to

access the DRAM array as an eight-bit word in display mode.

The shift register is used to convert this byte into a

serial-bit stream at the 12 MHz pixel frequency. Each memory

read cycle is implemented as a 'read-modify-write' cycle

allowing the entire framestore to be erased during the

display phase. This avoids the need to erase each line

segment individually before the next image is drawn.

During write mode the vector generator provides

addresses to enter individual pixels into the framestore

using co-ordinate information transferred from the host

system via internal registers. Eight DRAM devices are

required to allow byte-wide access at display time and

individual access for the vector generator using the

selector.

The GDP was specifically designed for direct use with

DRAM devices and accordingly the memory addresses are output

in two stages. It is necessary that control signals to the

DRAM are synchronized with the address sequencing and an

79

additional address latch is included to provide the

controller with precise control. The address lines to the

DRAM array have a high intrinsic capacitance and series

resistors are used to reduce current impulses when address

values change [Mits82][HaRa84].

The controller generates all the timing necessary for

the memory read and write operations and controls the

loading of the shift register. This shift register has bi^

directional parallel data lines and can be configured to act

as the data source during write operations. The output is

cleared and enabled if a logic zero is required (pull-up

resistors ensure a logic one if the output is not enabled).

This configuration is determined by mode control inputs

generated by the controller.

The controller is a Moore type finite state machine

[LeeS76] which is operated at the dot frequency, each memory

operation taking eight timing states. The mode of operation

is defined by the GDP outputs ALL and BLK (the video

blanking signal) according to Table 4.1 below and

conditional outputs which depend on the mode of operation

are generated separately for each buffer.

MODE BLK ALL

DISPLAY 0 0
WRITE 1 1
REFRESH 1 0

Table 4.1 GDP Mode Control Outputs.

The controller circuitry is implemented using three

registered PAL devices (type 16R8). Both fields of each

frame are required by the interlace reconstruction VSP and

the framestore is configured to generate these concurrently,

providing eight serial bit-streams of pixel data. In

80

addition, three synchronizing signals are passed to the in-

fill VSP; vertical synchronization, horizontal

synchronization and the field select signal.

b - Transparent Write Mndifinmtinn

Four colour planes are implemented in the framestore

memory using individual DRAM devices with an internal four-

bit data bus structure. Independent in-filling of each

contour by the VSP requires that they be completely non-

interacting. However, as the vector generator cannot write a

pixel in one colour plane without writing a value into the

other planes and possibly erasing part of a contour in that

colour plane.

This difficulty is overcome by implementing the write

cycle as a 'read-modify-write' cycle. The value of a

location is read into the shift register and only the colour

plane to be accessed is modified, then the value is written

back to that location.

C - Output Cirrnifry

The eight-bit outputs from each framestore (four-bits

for each field) are multiplexed to a single output under

software control. The eight-bit data stream is passed to the

in-fill VSP board and to an additional multiplexor activated

by the FIELD signal. This provides a direct four-bit non in-

filled output allowing the graphics control card to operate

without the in-fill VSP board. A similar output is returned

from the in-fill VSP board which includes the in-fill

processing delays and is in phase with the in-filled data

stream. This provides a non in-filled output when the

complete system is configured and the output from the second

is disabled. A non in-filled data stream assists

81

debugging and provides flexibility, allowing the in-fill

function to be inhibited for individual colour planes.

The colour palette (Inmos type IMSG170 [IninG89])

allows full software mapping of the corresponding eight

lines via a colour look-up-table (GLUT) to provide a choice

from a palette of possible 256k colours. A CCIR compatible

75 n impedance output is provided [CaTo69] which can be

directly coupled to an analog RGB monitor. A TTL level

synchronization signal is derived directly from the GDP.

4.3 VSP IN-FILL BOARD

The in-fill board section contains four independent

surface in-fill and interlace reconstruction VSP systems

together with the associated control circuitry and 'glue'

logic. The implementation of the 'post-processing' interlace

reconstruction VSP is separate from the surface in-fill VSP

and a discussion of its design is deferred until the end of

this section. An outline of the VSP architecture necessary

to implement the surface in-fill algorithm is given below.

HSYNC

VSYNC-

> OUT

LINE BUFFER

FIFO

MP

PL

SP

Figure 4.3 Outline Of Surface In-Fill VSP Architecture

82

The first pass of the algorithm is implemented by a

straightforward microcontroller (MP - Main Processor) and

associated datapath (PL - Pixel Logic). The inputs from the

framestore are the serial bit stream (logical OR of odd and

even fields) along with frame (VSYNC) and line (HSYNC)

synchronizing signals.

The line buffer provides a single scan-line delay and

allows the concurrent implementation of the second pass of

the algorithm on the previous line. The second pass is less

complex and is shown as a single block combining datapath

and controller (SP - Second Pass processor). The FIFO

implements the functions write.fifo and read.fifo described

in Section 3.1.4 allowing the first pass of the algorithm to

communicate f-flag and v-flag to the second pass.

A more detailed analysis of each block is presented in

the following sections.

4.3.1 FIFO

The FIFO function may be implemented directly by any

conventional device supporting a two-bit word and operating

at the required speed. A MSI (Medium Scale Integration) TTL

FIFO device (type 74LS222) is used which provides first-in-

first-out storage of up to 16 four-bit words. The depth of

the buffer places a upper limit of 16 on the maximum number

of edges which can be processed in one scan-line. Expansion

by cascading additional devices is straightforward, but as

this depth is sufficient for the anticipated image

complexity a single device is used.

The 74LS222 FIFO can be written to and read from

asynchronously using two edge-triggered inputs; LDCK and

UNCK respectively. An overriding reset input is provided

(CLR) which may be connected directly to the vertical

83

blanking signal to initialize the FIFO at the start of each

field.

A restriction of this device [TexaSl] is that

asynchronous operation is not guaranteed when only one value

is stored in the FIFO. To overcome this an extra value is

stored at the end of each scan-line and retrieved at the end

of the next scan-line, ensuring that any retrieve operation

will always leave at least one value in the FIFO. This

decreases the maximum number of edges which can be processed

in one scan-line from 16 to 15.

4.3.2 SECOND PASS PROCESSOR

The second pass of the surface in-fill algorithm is

simpler than the first pass and the implementation of this

section is discussed first as an introduction to the design

approach.

First the task of the VSP is separated into two

sections; controller and datapath. Referring to Algorithm

3.1 (Section 3.1.4) the objective is to implement the

procedure for each pixel (within the 'FOR x' loop) in a

single machine cycle. A limited number of additional timing

states are acceptable for each scan-line (within the 'FOR y'

loop) to initialize parameters. Initialization of the

complete system at the start of each field is synchronized

to the vertical blanking signal and is assumed throughout

this Chapter.

The only data handled during the second pass are the

binary parameters old.f-flag and old.v-flag and the only

operation is simple storage, making the datapath

implementation trivial. The operation of the controller may

then be represented using an Algorithmic State Machine (ASM)

84

chart [Clar73][WiPrSO)][Mano84] as shown in Figure 4 .4

below.

START

SLl

SLl

TARTEDGE

SLl ^

^ 0

ITARTfDGE

UNLOAD FIFO

HOLD V-FLAG
HOLD F-FLAG

WAIT FOR
START OF UNE

Figure 4.4 ASM Chart Representing Operation Of SP

Two datapath operations are performed; during state S2

the FIFO is unloaded and values of old.f-flag and old.v-flag

are retrieved, during state S3 the values are held

(providing the function output(old.f-flag) implicitly).

State SI represents a null operation during which the

operation of SP is inhibited, forced by the assertion of the

external input signal SLl (generated by the central timing

control discussed in Section 4.3.6). The value of start.edge

is derived directly from the pixel bit-stream output from

85

the line buffer according to Table 3.2.

The states are assigned such that the least

significant bit of the state code is zero when a FIFO unload

operation is required simplifying the operation of the

datapath. Using these assignments the finite state machine

controller and the datapath can be completely implemented

using one 16R8 PAL.

4.3.3 MAIN PROnKSSnP

The main processor (MP) is the controller which

implements the first pass of the surface in-fill algorithm

in conjunction with the datapath PL. Controller MP operates

directly on input scan-line (y) to implement Table 3.2

unloading the FIFO and changing the mode of the datapath

accordingly. Datapath PL uses the output from the line

buffer (scan-line y+l) evaluating Table 3.2 to determine

values of the variables 'bound', 'clear', f-flag and v-flag.

Referring to Algorithm 3.1 the program flow of the

controller MP depends only on the function values for scan-

line y, i.e. edge(x, y) and start.run(x, y). The program

implemented by MP must also incorporate the special

operation for the first line (Algorithm 3.2) and the

additional procedures required between scan-lines. A state

diagram representation of the complete program, providing

single-cycle performance (which may be implemented in a

single 16R8 PAL) is given in Figure 4.5 overleaf, followed

by a description of each state.

FROM ANY STATE WHEN LVB IS TRUE 86

E = EDGE (ML1 OR ML2 LOW)

R = RUN (ML1 OR ML2 LOW)

M = ML2 HIGH (END OF SCAN-LINE)

EDGE1 SRUN1

E + M RUN1

ELOAD
EXTRA

DUMMY

WAIT

FRUN

SRUN CEND

Figure 4.5

MP State Diagram

87

STATE 0 (START)

In this state the system is awaiting the start of the

first line of a field, indicated by the signal MLl.

STATE 12 (WAIT)

Indicates that the processor is awaiting the start of

a subsequent (not first) line and indicates that the main

algorithm has begun. The start and end of a scan-line is

indicated by MLl and ML2 respectively.

STATES 8,9,3,10,1 (SEDGE,EDGE,FRUN,SRUN,RUN)

These states control the operation of the main

algorithm throughout a single line. EDGE and RUN indicate

the presence of a true or false pixel in the input bit-

stream (EDGE corresponds to a TRUE result for the function

edge(x, y)). The prefix S indicates that it is the first

pixel of an edge or run (corresponding to start.edge(x, y)

and start.run(x, y)) and changes the mode of the datapath.

The condition start.edge(x, y) is not present in Algorithm

3.1 but is included as the datapath requires one state for

the previous result to be collated. The first pixel of a run

(SRUN) is followed by the loading of the FIFO except during

state FRUN which indicates the start of a run coincident

with the first pixel of the scan-line. The FIFO is also

loaded directly after any edge (states SEDGE or EDGE) if

that pixel is the last pixel in the scan-line (indicated by

ML2 high).

STATES 2,6,7 (EDGEl,RUNl,SRUNl)

These states control the special processing of the

first scan-line and configure the datapath to detect the

presence of a seed pixel above. EDGEl and RUNl have similar

meanings to their counterparts described above but the

suffix '1' indicates that they relate to the first line.

88

Similarly the FIFO is loaded directly after state SRUNl and

after EDGEl if ML2 is high. State EDGEl has a dual role and

is also used at the end of a scan-line (when ML2 is high)

after states RUNl and SRUNl allowing the datapath to

calculate f-flag before the FIFO is loaded.

STATE 4 (END)

"̂ his state indicates the end of each scan—line loading

the FIFO with the final values of f-flag and v-flag.

STATE 5,14 (CEND,ELOAD)

These states indicate that the end of a scan—line has

been reached immediately after a previous state which loaded

the FIFO. They provide a dummy state in which the datapath

calculates final values of v-flag and f-flag before the FIFO

is loaded by state END. State CEND directly follows states

SRUN and FRUN allowing time for the datapath to calculate f-

flag. Similarly state ELOAD directly follows states EDGEl,

EDGE and SEDGE when these states have been used to load the

FIFO (as described above) and allows time for the datapath

to calculate v-flag.

STATES 13,11 (DUMMY,EXTRA)

After the processing of every scan—line, a dummy state

(DUMMY) and an extra FIFO load cycle (EXTRA) is executed.

89

4.3.4 PIXEL LOGIC DATAPATH

Datapath PL operates on the output from the line

buffer (scan-line y+1) using the signals old.f-flag and

old.v-flag and determines the parameters 'bound', 'clear',

f-flag and v-flag. The mode of operation is controlled by

controller MP via four inputs representing the states

described in the previous section. Datapath PL can also be

implemented using a single 16R8 PAL device but requires an

external OR operation as there are insufficient product

terms to evaluate v-flag. The modes of operation are

summarized in Table 4.2 below, where '*' denotes a logical

AND ' +', a logical OR and ' ' a logical NOT •

STATE INTERNAL FLAGS f-flag OUTPUT V-flag OUTPUT
(FROM MP) B(bound) C(clear) F V

START 0 1 1 0 V
RUN 1 B*P 1 F V
EDGEl 2 1 1 F V+P
FRUN 3 B*P 1 0 V
END 4 1 1 F V
CEND 5 1 1 B*P*OF+(B+P)*OF V
RUNl 6 1 1 F+P 0
SRUNl 7 1 1_ P_ _ _ V
SEDGE 8 1 C*P B*P*OF+(B+P)*OF (C+P)*OV+C*P*OF
EDGE 9 1 C*P F (C+P)*OV+C*P*OF
SRUN 10 B*P 1 F V
EXTRA 11 1 1 F V
WAIT 12 1 1 0 V
DUMMY 13 1 1 0 V
ELOAD 14 1 1 F V

Table 4.2 Operating Modes Of Datapath PL

P represents the bit stream input and OF and OV

represent the values for old.f-flag and old.v-flag

respectively. Values of F, V,B and C used as inputs to the

table represent results from the previous operation (timing

state).

90

4.3.5 LINE BUFFER

The line buffer is implemented by a shift register

with a length equal to the number of pixels in one scan-

line, i.e. 512 bits. When the design was undertaken (1986)

the only 512-bit devices were constructed using NMOS

technology and could not support the required operating

speed of 12 MHz. At that time 256-bit bipolar devices were

available [TRWS81], but as two devices would be needed for

each of the eight line buffers (one for each field of each

colour plane) a total of sixteen devices would be required

and the resulting cost of over £576 made their use very

unattractive.

An alternative implementation of the 512 by eight

shift register function at a much lower cost is provided

using two static RAMs (SRAMs) configured to operate in a

double buffered mode. An outline of this circuit is

illustrated in Figure 4.6 below.

SRAM 1

SRAM 2

ADDRESS AND
CONTROL LOGIC

Figure 4.6 Implementation Of Line Buffer

The SRAM devices (Cypress type CY128-45 [CySe86]) have

an address access time of 45ns and data can be transferred

to or from the latches (FAST type 74F374) within the cycle

time of 86ns. The SRAM address inputs (common to both

devices) are incremented after each cycle and whilst data is

91

being written into one SRAM, data for the previous line is

read from the other SRAM. At the end of each scan-line the

operation of each SRAM is transposed and the address counter

is reset. The address counter and read/write mode control is

provided by a PAL (type 20X10) with some additional simple

circuitry.

The latches insert two extra delays into the data path

giving a total line buffer delay of 514 bits. Reducing this

to the desired value of 512 bits (by shortening the address

count to 510) is not possible (as the complete 512-bit scan-

line must be stored in the SRAM) and two compensatory delays

must be added to the pixel data not passed through the line

buffer.

4.3.6 CENTRAL TIMING CONTRnT,

Each in-fill VSP section requires four common control

signals MLl, ML2, SLl, and SL2. These signals are generated

by a PAL (type 16R8) and are derived from the horizontal and

vertical synchronization signals output from the main

graphics control section.

MLl, ML2, SLl, and SL2 remain high throughout the

horizontal and vertical blanking periods and are low when

processing a normal scan-line. The timing of these signals

at the start and end of an individual scan-line is

illustrated in Figure 4.7 (a) and (b) respectively and

determines the sequencing of MP and SP at this time. MLl and

ML2 remain high throughout the first scan-line of a field

suspending operation of MP until the line buffer is filled.

Similarly, SLl and SL2 do not activate SP until the third

scan-line, when MP has completely processed the first scan-

line. In addition to these signals a signal IBLANK is

92

generated to provide video blanking outside the display

window.

Pixel bit-stream LLLLLL-512 bits of data- LLLLLL
Horizontal Sync Input HHLLLLLLLLL LLHHHHHHHHHH
MLl (except first line) HHHHHHLLLLL LLLLLLHHHHHH
ML2 (except first line) HHHHHHHLLLL LLLLLLLHHHHH
SLl (except first 2 lines) HHHLLLLLLLL LLLLLLHHHHHH
SL2 (except first 2 lines) HHHHHHHHHLL LLLLLLLLLHHH

(a) (b)

Figure 4.7 Sequencing Of Timing Control Signals

4.3.7 INTERLACE RECONSTRUCTION

The in-fill VSP system described above operates on the

logical OR of the odd and even fields producing a lower

resolution in-fill signal. An additional VSP stage (IP)

reconstructs the surrounding contour at full resolution

using the arrangement illustrated in Figure 4.8 below.

FIELD: ODD/EVEN-

ODD FIELD IN-
EVEN FIELD OUT

TO MP, SP, & PL FROM SP

LINE BUFFER

Figure 4.8 Interlace Reconstruction System

This process was outlined in Section 3.3 and contour

reconstruction is based on a sequential analysis of both

non-in-filled bit-streams (odd and even field) in

conjunction with the output from SP (representing the value

of f-flag). The output required for all expected input

sequences was given in Figures 3.10 - 3.13 in Section 3.3.1.

Analysis of these figures indicates that the length of a

particular sequence (e.g. 'AAA' or 'NNN') is unimportant,

93

moreover, for each figure a state can be assigned to

represent any repetitive unchanged condition. For example, a

single state can represent a non-in-filled run; in which f-

flag, 'N' and 'K' remain negated for an arbitrary number of

cycles. It can be determined by inspection that seven

independent states are sufficient to represent the decision

flow of each figure, allowing a finite state machine

implementation. These assignments are illustrated below and

overleaf in Figures 4.9 - 4.12 followed by a description of

each state. These figures also show the actual output

generated by the finite state machine indicating the contour

distortion errors consistent with the ambiguities described

in Section 3.3.1.

State assignments 26667777 75553332 23335557 77775552

f-flag LHHHHHHH HLLLLLLL LHHHHHHH HLLLLLLL
Active bit stream -AAA AAA AAA AAA-
Non-active bit stream XXXNNN- XXXNNN- -NNNXXX- NNNXXX-
Reguired output LHHHHHHH HHHHLLLL LLLLHHHH HHHHHHHL

Actual output LHHHHHHH HHHHLLLL LLLLHHHH HHHHHHHL
(a) (b) (c) (d)

Figure 4.9 State Assignments Corresponding To Figure 3.10

State assignments 26667777 75553332 23335557 77775552

f-flag LLLLLLLL LLLLLLLL HHHHHHHH HHHHHHHH
Active bit stream • • AAA • AAA AAA • AAA • • •
Non-active bit stream NNNX XNNN • NNNX XNNN •
Required output LLLHHHLL LHHHLLLL HHHHHHHH HHHHHHHH

Actual output LLLHHHLL LHHHHHHL HHHHHHHH HHHHHHHH
(a) (b) (c) (d)

Figure 4.10 State Assignments Corresponding To Figure 3.11

94

State assignments 7224555332 264777552 7775555557 755555457

f-flag LLLLLLLLLL LLLLLLLLL HHHHHHHHHH HHHHHHHHH
Active stream •• AAAA-•• -AA-• AA- •• AAAA-•• AA •-AA-
Non-active stream •NNX••XNN• ••XNNNX•• •NNX••XNN• ••XNNNX••
Required output LLLHHHHLLL LHHHHHHHL HHHHHHHHHH HHHLLLHHH

Actual output LLLHHHHLLL LHHHHHHHL HHHHHHHHHH HHHHHHHHH
(a) (b) (c) (d)

Figure 4.11 State Assignments Corresponding To Figure 3.12

State assignments 2264453322 234435522 755555577 7755555577

f-flag LLLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHHH
Active stream • - AAAA AA - AA - • - AAAA AA - AA -
Non—active stream •••NN•NN•• •NNNN NN•NN•• ••NNNN - -
Required output LLHHHHLLLL LLHHHHHLL HHHHHHHHH HHHHHLHHHH

Actual output LLHHHHLLLL LLHHLHHLL HHHHHHHHH HHHHHHHHHH
(a) (b) (c) (d)

State assignments 2233544522 266755322 777555577 7755544777

f-flag LLLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHHH
Active stream • • • AAAA - • AA AA AAAA • • - AA - AA -
Non-active stream • NN NN NNNN - • NN NN NNNN-
Required output LLLLHHHHLL LHHHHHLLL HHHHHHHHH HHHHLHHHHH

Actual output LLLLHHHHLL LHHHHHLLL HHHHHHHHH HHHHHHHHHH
(e) (f) (g) (h)

Figure 4.12 State Assignments Corresponding To Figure 3.13

STATE 2

This state represents a non-in-filled run

(entered when f-flag, 'N' and 'A' are negated) and

negates the video output.

STATE 7

Represents an in-filled run and is entered when

f-flag is asserted and both bit streams are negated

and asserts the video output. This state is also

entered when 'N' is asserted in cases where in-fill is

required.

95

STATE 3

This state is represents pixels 'N' which

require no video output.

STATE 4

This state is entered when both 'K' and 'N' are

asserted providing a method to distinguish between

different type 0 edges and asserting the video output.

STATES 5 AND 6

Entered when 'K' is asserted. These states

provide intermediate positions during the sequence

detection and generate an asserted video output.

An additional state (STATE 1) is included to provide

blanking outside the display window and the full state

transition diagram is given in Figure 4.13 below. The values

of 'A' and 'N' are derived from the odd and even bit-streams

using the FIELD signal.

A = A C T ^ t PIXEL INPUT
N = NON-ACTIVE PIXEL INPUT
F = F-FLAG

(F+NH AN

Figure 4.13 State Transition Table For Processor IP

96

This provides single cycle performance and the states

are assigned such that the most significant bit of the state

number corresponds to the assertion or negation of the video

signal. Two separate finite state machines can be

implemented on a single PAL (type 16R8) allowing the full

system to be implemented using two devices per colour plane.

4.4 SUMMARY

This chapter has described the design of a CGI system

to implement the surface in-fill algorithm of Chapter 3.

This system is composed of two parts; the graphics control

section, and the VSP in-fill sub-system.

The graphics control section uses a double-buffered

framestore, with host system interface and vector generation

provided by a Thomson EF9367 GDP.

The in-fill sub-system uses three VSP sections to

implement the in-fill algorithm. The main processor (MP) and

associated datapath implement the first pass of the

algorithm, storing values of v-flag and f-flag in a FIFO

buffer. A second processor (SP) retrieves f-flag and v-flag

from the FIFO and implements the second pass of the in-fill

algorithm. An additional interlace 'post-processing' stage

(using the third processor (IP)) performs interlace

reconstruction according to the edge types discussed in

Chapter 3. Each VSP provides single-cycle per output pixel

performance and is implemented using a finite state machine

operating at pixel rate.

97

CHAPTER 5

ANALYSIS OF IN-FILL SYSTEM

5.1 RESULTS AND PERFORMANCE

A CGI system providing an implementation of the two-

pass surface in-fill algorithm has been built and tested.

The geometric calculations are performed by a Motorola

m68000 microprocessor based system and vector generation is

implemented with a Thomson EF9367 GDP. The complete CGI

system has been integrated with the flight simulation system

at the Department of Electronics and Computer Science,

Southampton University and provides an image represented by

approximately 25 four-sided polygons.

5.2 OBSERVATIONS AND DISCUSSION

Plates 51 and 511 illustrate images generated by this

system and typically contain hills, a horizon, a runway with

a centre-line and taxi-way, and approximately ten fields.

Performance of the complete CGI system is influenced

by the software overheads required to process ill-

conditioned polygons. This reduces the total number of

polygons which can be represented when compared with the

existing 'wire-frame' only system and is difficult to assess

as the system must be able to cope with a worst-case image

in which the highest number of ill-conditioned polygons is

anticipated. Extensive use in a real-time application,

however, has demonstrated that reduction of performance due

to the conditioning software is insignificant.

The picture distortion resulting from the processing

of ill-conditioned polygons is not discernible to the un-

aided eye. Contour distortion arising from the interlace

reconstruction is apparent only at the vertices of some

98

polygons particularly when the angle of incidence to the

horizontal is small. An example of this can be seen in Plate

51 at the right of the black polygon near the runway area.

All visual detection and recognition effects involve

memory processes [RoKa76]. Image distortion effects become

more apparent when they are known to exist and are enhanced

when the image is created in a manner which causes the

distortion to be present continually or occur regularly. The

irregular motion and attitude of an airplane gives an image

in which the contour distortion is not readily noticeable

under normal operation.

The major limitation of the system is the inability to

process overlapping polygons which are represented using the

same colour plane. Flight simulation applications allow the

position of objects in 'world—space' to be predefined in

order to minimize the likelihood of this event. It is still

possible, particularly at low altitudes, to position the

airplane such that polygons which reduce to single lines

near the horizon can overlap causing in-fill errors. This

could be prevented by removing offending polygons but as

these events are rare and detection is difficult a solution

has not been pursued.

The number of completely independent colours which can

be represented is limited to four, but this has not imposed

a noticeable restriction on the number of different coloured

regions which can be presented. This is due to the support

of nested regions and to the flexibility provided by the

colour palette device, allowing overlapping regions to be

defined in a different colour. An example of this is the

grey runway region; defined using the same image plane as

the hills but assigned with a different colour (the hills

99

overlap the sky whereas the runway region overlaps the

ground).

Despite the various limitations of this technique the

resulting image is rarely impaired and provides a major

improvement in training value when compared to the original

'wire-frame' image.

100

Plate 51

Plate 511

101

CHAPTER fi

A VSP-BASgP TEXTURE MAPPING ARCHITECTURE

This chapter presents an architecture to provide

texturing by image mapping using a VSP as proposed in

section 1.3. An outline of the proposed texturing system is

shown in Figure 6.1 below:

FROM OTHER
VSP SYSTEMS

SOURCE VSP

IMAGE SYSTEM '(+ TO

DISPLAY

FROM EXISTING
CGI SYSTEM

Figure 6.1 Outline Of VSP Based Texturing System

The source image represents the predefined region of

detail to be mapped onto the screen and is defined using the

texture co-ordinate pair (u,v). The framestore containing

the source image is scanned in conventional scan-line order

generating a serial bit-stream which is passed to the VSP

system. The output from the VSP system is then merged with

the video signal representing the existing non-textured

objects of the image to provide the final combined image. A

more complex application might use several image mapping

systems combined at this stage to render additional regions

of high detail. The architectural features of the VSP system

are developed in this chapter; full implementation details

are deferred until Chapter 7.

First, the suitability of existing image mapping

technigues (g.v. Chapter 2) to a VSP architecture is

examined and found to favour a separable (two-pass)

102

approach. Shortcomings of existing two-pass techniques are

discussed in order to formulate objectives for the proposed

system.

Subsequently a one-dimensional spatially-variant

filtering algorithm is developed to support the two-pass

transformation technique. This is formulated from first

principles and optimized to produce an efficient VSP

implementation.

Finally the process of generating mapping co-ordinates

for each pass of the transformation is described in detail.

These are derived from the position (p«, Py and) ="3

attitude and <p,) parameters introduced In section

1.2.1. special^ procedures are also presented to solve the

bottleneck problem (Section 2.3.2) introduced by the two-

pass technique.

The filtering algorithm was simulated in a non-real-

time environment using software routines in conjunction with

a test-bed framestore. This system was also used to develop

the scan selection algorithm (Section 6.3.5) and an example

program listing (in the. BCPL systems implementation

language) is given in Appendix IV. Full listings of all the

support software are given by the author in a specific

report [Evem89].

A 1 RKOUIREMENTS OF VSP-BASED IMAGE MAPPING SYSTEM

The VSP system outlined in Figure 6.1 operates on the

serial bit-stream from the source image framestore generated

in scan-line order. Similarly the output from the VSP system

must be produced In scan-line order and synchronized both

with other systems and with the remainder of the RTIG

system. In addition, filtering must be provided to prevent

103

aliasing. This filtering must be spatially variant because

of the non-affine mapping function. For real-time operation

the filtering process must operate in a predefined number of

cycles regardless of the position or attitude of the source

region.

The effect of the processing order of existing

transformation techniques is discussed first, followed by an

examination of requirements for the filtering process.

6.1.1 REQUIREMENTS IMPOSED ON THE MAPPING ORDER

Clearly the order in which the transformation is

performed will affect the suitability of a particular method

to a VSP implementation. Aside from filtering methodologies,

the texture mapping techniques reviewed in Chapter 2 may be

classified into two groups: single-pass and separable (two-

pass) mappings.

Single-pass methods (e.g. [Bolt79],[FeSk84]) usually

operate using an inverse mapping following a procedure

similar to that shown below:

1 FOR (each screen scan-line y) DO
2 FOR (each screen pixel x) DO
3 BEGIN
4 Compute u,v = f(x,y)
5 Copy Source Pixel[u,v] to Screen Pixel[x,y]
6 END

Algorithm 6.1 Single-Pass Inverse Mapping Procedure

where f is the inverse mapping function expressing the

source co-ordinates (u,v) in terms of the screen co-

ordinates (x,y). Screen co-ordinates are processed in scan-

line order, enabling the output may be passed directly to

the display device, resulting in references to source co-

ordinates (u,v) in an arbitrary order. The operator 'Copy'

would normally incorporate the filtering operation which

104

must be two-dimensional as the output pixel footprint can

span both u and v values. VSP techniques can not therefore

easily be used to process or filter the source image output

and single-pass mapping methods are inappropriate for a VSP

implementation.

Two-pass mapping techniques (e.g. [CaSmSO], [Fant86])

perform the two-dimensional transformation (f) as a sequence

of two orthogonal one-dimensional operations (f^ and f^),

each of which leaves one co-ordinate unchanged. This process

is illustrated below:

Pass 1:
1 FOR (each intermediate scan-line u) DO
2 FOR (each intermediate pixel y) DO
3 BEGIN
4 Compute v = f (y,u)
5 Copy Source[u^v] to Intermediate[u,y]
6 END

Pass 2:
1 FOR (each screen scan-line y) DO
2 FOR (each screen pixel x) DO
3 BEGIN
4 Compute n = f (x,y)
5 Copy Intermediate[u,y] to Screen[x,y]
6 END

Algorithm 6.2 Two-Pass Inverse Mapping Procedure

The main advantage of this approach is the reduction

of mapping and filtering to one dimension at the cost of an

additional intermediate framestore. A disadvantage is that

texture tiling cannot be implemented because of the non-

linear properties of the intermediate image. At each stage

the output is generated in scan-line order and the input

framestore is accessed scan-line by scan-line. The two-pass

technique is therefore ideally suited to a VSP

implementation, and Catmul and Smith [CaSmSO] reported this

feature as an important advantage. An outline of a VSP-based

two-pass mapping system is given overleaf:

105

T2
INTERMEDIATE

IMAGE

SOURCE

IMAGE

DESTINATION

IMAGE

Figure 6.2 Two-Pass Mapping Architecture

In this arrangement two VSP sub-systems T1 and T2 are

used to implement each pass of the mapping. For example,

sub-system T2 evaluates function f^ providing the mapping

co-ordinate (u = corresponding to output pixel x) and

generates a stream of output intensity pixels in x for the

stream of pixels in u. In these examples the v co-ordinate

is transformed first, (giving an intermediate image with co-

ordinates (u,y)), although the alternative configuration

(with u transformed first) could be used.

6.1.2 FILTERING REQUIREMENTS

A one-dimensional filtering algorithm is required to

provide a complete mapping of each source scan-line onto

each destination scan-line, without aliasing. This is

illustrated in Figure 6.3 showing a region of the input

pixel stream (in u) mapped onto the output pixel stream (in

x). The filtering process must ensure that the intensity of

each output pixel accurately represents the corresponding

region of the input pixel stream.

106

INPUT PIXEL STREAM

OUTPUT PIXEL STREAM

n
n

Figure 6.3 One-Dimensional Filtering Process

Direct convolution can be used but the filter shape

must be spatially-variant to support non-affine mappings.

This approach is employed by Shantz [Shan82] who uses a

variable width filter to implement linear and cubic

interpolation for non-affine (second order) mappings. The

hardware necessary to perform the convolution in real-time

is proportional to the kernel size (number of filter

coefficients) and for adequate antialiasing is reported to

be highly complex. Consequently the use of direct

convolution techniques has not been pursued.

Prefiltering techniques have not been reported for

separable transformation techniques. This is because

prefiltering techniques use additional image information

which is prepared off-line. This information cannot be used

directly for the second pass of the transformation and must

be regenerated to correspond to the distorted intermediate

image. The regeneration must be repeated at frame rate

defeating the object of off-line prefiltering.

The resampling interpolation algorithm proposed by

Fant [Fant86] provides a more efficient filtering solution;

as a scan-line of n pixels requires only 2n operations to

107

prevent aliasing. The algorithm generates each output pixel

using a weighted sum of all the input pixel intensities

under the output pixel footprint. Each input pixel intensity

is weighted according to the number of input pixels spanned

by a given output pixel footprint. This process is unique in

that it considers pixels to be rectangular regions of

uniform intensity [FanL86] as opposed to the classical

representation of pixels as point samples on a discrete

grid.

Despite the simplicity of this method the algorithm

has several shortcomings: First, input and output pixels are

processed during separate machine cycles and pipelining

cannot be used to improve efficiency. Hence an output stream

of n pixels generated from an input stream of m pixels

requires a maximum of n + m machine cycles. Secondly, the

stream of output pixels is not synchronized with the

scanning of the intermediate framestore and additional

hardware is necessary to position the output scan-line in

the output pixel stream. Finally, only direct (not inverse)

mapping is supported and additional hardware is required to

provide input image clipping information necessary to

initialize the processing of each scan-line.

An important advantage of Fant's algorithm, however,

is that boundaries of the source image which are visible in

the destination image are automatically filtered against a

null background. This avoids the 'edge aliasing' or

staircase pattern which would otherwise be present at the

edges of the source region.

The next section outlines a new filtering technique

extending this basic concept (rectangular pixels of uniform

intensity) to overcome the shortcomings and to provide a

108

more efficient implementation,

6.2 SPATIALLY VARIANT FILTERING TECHNIQUE

This section describes a spatially variant filtering

technique developed to be implemented by the VSP sub-systems

T1 and (Figure 6.2) based on the filtering concepts

outlined in the previous section. The first part of this

section develops the filtering algorithm whilst the second

part discusses the architecture necessary for real-time

implementation. For consistency, all examples and formulae

presented in this section refer to the u to x mapping,

although the principles apply equally well to the v to y

mapping.

6.2.1 FILTERING ALGORITHM

To define the filtering process, first consider the

input to T2 as a continuous intensity function of u, I(u).

Figure 6.4 shows this function for a range of u including

the footprint defined by M and M which maps to the

boundaries of an output pixel in x.

i "

Average intensity
over footprint

Footprint of
output pixel X

M V- M
X - 1 X

u - INPUT STREAM POSITION

Figure 6.4 Continuous Input Intensity Function

109

Assuming that equal weights are applied to all

intensities under the footprint, the required output value

is given by the average intensity A over the interval

where:

PM

M
I(u)•du

M - M
(6.1)

Applying the same principle to the discrete input data

stream gives (for integer values of M):

M
I[u]5u

u=M

M - M

(6 . 2)

where I[u] represents the intensity of the input pixel at u

and 6u is unity. In the general case M is non-integer and

Equation (6.2) must be modified to include fractional

components. This is illustrated in Figure 6.5 (below) which

shows a section of the input pixel stream from u to u+r

(where u,u+l...u+r represent the boundaries of input

pixels). The 'footprint' of the output pixel is the region

(A C B) marked by the values M and M . The values P and Q
\ / ^ ^ a.

represent the integer and fractional parts of M respectively

with P = u and P = u + (r-1)
3C—]_ >C

x-1

u+1

D A

x - l
M x-l

u-Ki-1) u+r

B

M

Figure 6.5 Section Of Pixel Stream Showing Fractional Parts

110

The summed intensity using Equation (6.2) with values

and corresponds to the region D+C+A and must be

corrected for the fractional contributions by including B

and excluding D. Using the assumption that each input pixel

represents a rectangular area with uniform intensity

distributions, the required intensity is then:

M
S"" I[u]5u + Q l[P] - Q I[P]

u=M ^ ^
1 _

M - M
(6.3)

>c— a.

This provides a method to derive the intensity of

output pixel x given the mapping co-ordinates M and M . A
>c >c—2.

disadvantage, however, is the arbitrary number of input

pixels (and corresponding machine cycles) required to

evaluate the summation. The value of the summation can be

obtained [Crow84][FeSk84] from two indexed operations on a

summed-area table. Although prefiltering off-line is not

possible, a linear summed-area table can be generated

individually for each scan-line in advance. This

prefiltering operation is performed in input pixel space and

may be applied directly to the input pixel stream using (for

sub-system T2) the algorithm shown below:

1 FOR each scan-line y
2 BEGIN
3 Sum := 0
4 FOR each pixel u
5 BEGIN
6 Sum := Sum + I[u]
7 Store S[u] = Sum
8 END
9 END

Algorithm 6.3 Linear Summed-Area Table Generation

The value S[u] is equal to the summed intensity of all

the pixels in the input stream from the start of the scan-

Ill

line up to and including the uth pixel. Hence for u and u
3. 2

(arbitrary values of u):

u
S^I[u]6u = S[u] - S[u] (6.4)

u=u

and using values of I and S Equation (6.3) may be simplified

to:

S[P] - S[P] + Q I[P 3 - Q I[P]
A ^ (6.5)

M - M
>c >c —]_

Taking advantage of the sequential nature of x and

forming the partial sum K :

K = S[P] + Q I[P] (6.6)
>c yc X X '

Equation (6.5) becomes:

K - K
A = —— ——— (6.7)

M - M
>C 1

Implementation of Equations (6.6) and (6.7) provides

an intensity corresponding to an average of all the input

pixels contributing to output pixel x. Assuming that the

mapping function is constant over the output pixel this is

equivalent [FeSk84] to continuous convolution with a

spatially-variant box filter spanning the output pixel.

112

6.2.2 FILTERING SUB-SYSTEM ARCHITECTURE

A block diagram of the sub-system T2 necessary to

implement the filtering algorithm is shown in Figure 6.6 and

incorporates two separate VSP sections VSPl and VSP2.

tu]

VSP 1

I LINE BUFFER

S LINE BUFFER

VSP 2 tx]

M.

Figure 6.6 Filtering Sub-System T2

VSPl operates seguentially at the clock rate of the

input stream generating the linear summed-area table

according to Algorithm 6.3. The values of S[u] and I[u] for

all u are placed in the line buffers S and I by VSPl for

subsequent use by VSP2. These line buffers provide an

efficient mechanism for the random access of pixels by VSP2,

thus providing a separation between the input stream clock

rate (used by VSPl) and the output stream clock rate (used

by VSP2).

VSP2 implements Equations (6.6) and (6.7) using the

values taken from buffers I and S for each output pixel.

Using a pipelined architecture this reduces to one

multiplication, three additions and one division per output

pixel. Furthermore, only one index is required to access

both line buffers and single cycle per output pixel

operation is possible. The values of P (used to address the

113

"• line buffers) and Q are provided directly by the mapping

co-ordinate M which is assumed to be generated sequentially

in X. The generation of M is discussed in the next section.

6.3 CO-ORDINATE GENERATION

The mapping co-ordinates M and used by T1 and T2

are obtained directly from the separate mapping functions f^

and as defined in Algorithm 6.2. The derivation of these

functions from the position and attitude parameters

generated by the host system is described in the following

sections.

6.3.1 INVERSE PERSPECTIVE MAPPING

Several derivations of inverse perspective mapping are

reported in the literature (e.g. [West83], [Hour83] and

[Brac87]) but the method presented here uses the position

(p , p and p) and attitude (a) parameters already
at y z i j

generated by the host system and introduced in Section

1.2.1. This approach is chosen to provide compatibility with

the existing RTIG system (described in Section 1.2.3) which

implements Equations (1.1), (1.2) and (1.3) (reproduced

below for reference):

[X ,y ,z] = [X -p ,y -p ,z -p]
V V V w > c w y w z 21 _ 2 2

3 1 3 2

(1.1)

X = (X /z) S + s /2 (1.2)

y = (y /z) s + s /2
V V y y

(1.3)

These equations may be combined eliminating the

viewing space co-ordinates (x , y^ and z^) to express x and

y (the screen co-ordinates) in terms of the position and

114

attitude parameters and the world space co-ordinates (x ,

y and z) as outlined below:

Rearranging (1.2) and (1.3) and expanding (1.1) gives:

2x +z

2 z
^ _ X V V (6 . 8)

S 2y +z
y = -y. Y z

2 z
(6.9)

Then by substitution:

(6.10)

(6.11)

(6.12)

S (2a +a)(X -p)+(2a +a)(y -p)+(2a +a)(z -p)
11 13 w >c 21 23 W y 31 33 W Z

2 ai3(x_-P=)+a=,(y_-Pr)+a33(z_-P.) (6.13)

S (2a +a)(x -p)+(2a +a)(y -p)+(2a +a)(z -p)
_ y 1 2 1 3 W X 2 2 2 3 w y 3 2 3 3 W z

(6.14)

Assuming that the region to be textured is defined as

a flat surface on the ground aligned with the world axes the

triple (x ,y ,z) can be replaced by the source pair (u,v)

with z^ = 0. Equations (6.13) and (6.14) can then be

simplified and represented using a 3 by 3 homogeneous matrix

([H]) [Roge76] as shown below (where w represents the

homogeneous co-ordinate):

[x,y,w] = [u,v,l] .
h h
h'
ĥ "̂ h^^ ĥ =̂

3 1 3 2 3 3

(6.15)

115

Such that:

And:

h u + h V + h
13. 21 :

h u + h V + h

h u + h V + h
1 2 2 2 3 2

h u + h V + h
3.3 2 3 3 3

(6.16)

(6.17)

Where:

h = S (2a +a)/2
1 1 X 1 1 1 3

h = S (2a +a)/2
2 1 X 2 1 2 3

h = —p h —p h —p S (2a +a)/2
3 1 X 1 1 y 2 1 z X 3 1 3 3

h = S (2a +a)/2
1 2 y 1 2 1 3

h = S (2a +a)/2
2 2 y 2 2 2 3

h = —p h —p h —p S (2a +a)/2
3 2 X 1 2 2 2 Z y 3 2 3 3

h = a
1 3 1 3

h = a
2 3 2 3

h = -p a - p a - p a
3 3 sc 1 3 y 2 3 z 3 3

(6.18)

(6.19)

(6 . 2 0)

(6.21)

(6 . 2 2)

(6.23)

(6.24)

(6.25)

(6 . 2 6)

The inverse mapping function ((u,v) = f(x,y)) can be

obtained from the inverse matrix [H]~^ defined [Ayre74] as

the adjoint matrix (adj[H]) scaled by the determinant(|H|).

Assuming that [H] is non-singular (i.e |H| is non-zero) the

homogeneous representation allows the scaling factor |H| to

be ignored [Heck86] and the inverse relationship can be

written:

[u,v,q] = [x,y,l]
a d g
b e h
c f i

(6.27)

Where q represents the new homogeneous co-ordinate such

that:

ax + by + c

gx + hy + i
(6 . 2 8)

And:

116

dx + ey + f
V" = (6 • 29)

gx + hy + i

Where:

a = h h -h h (6.30)
22 33 23 32

b = h h -h h (6.31)
23 3X ZX 33

c = h h - h h (6.32)
23. 32 22 31

d = h h - h h (6.33)
3.3 32 3.2 33

e = h h —h h (6.34)
13. 33 13 31

f = h h -h h (6.35)
12 31 11 32

g = h h -h h (6.36)
3.223 13.23

h = h h - h h (6.37)
3.3 23. 3.3. 23

i = h h -h h (6.38)
XX 22 X 2 2 X

6.3.2 DECOMPOSITION INTO TWO PASSES

Equations (6.28) and (6.29) represent the two-

dimensional inverse mapping function ((u,v) = f(x,y)) which

must be decomposed into two one-dimensional mapping

functions (f^ and f^) to be implemented by Algorithm 6.2.

Assuming the v co-ordinate is transformed first the

second pass mapping function (f^) can be implemented

directly using Equation (6.28), hence:

ax + by + c
u = M = f (x,y) (6.28)

^ gx + hy + i

The co-ordinate system (u,y) used to reference the

intermediate framestore is defined as shown in Figure

6.7(a). This convention is chosen such that the point (0,0)

represents the start of the scanning process.

117

(a) (b)

Figure 6.7 Co-Ordinate Axes Representing Intermediate Image

Because the two passes are orthogonal the scanning

order of the intermediate framestore is offset by 90° during

the second pass. Figure 6.7(b) illustrates this showing the

offset axes used as source for the second pass (denoted by

the pair (y',u') and shown as fine lines) and the axes (y,u)

used as destination for the first pass (in bold lines). In

this example the output from the intermediate framestore is

scanned 90° anticlockwise relative to its input, (this

choice is arbitrary; the opposite configuration is also

possible)

The first pass mapping is implemented using the u and

y co-ordinate system (i.e. v = f^(y,u)) and inspection of

Figure 6.7 indicates that:

And

u = S -u'

y = y'

(6.39)

(6.40)

To determine f^(y,u) it is first necessary to express

x as a function of u by combining Equations (6.28), (6.39)

and (6.40):

ax + by + c

gx + hy + i
S -u (6.41)

118

Rearranging gives:

{(b-S h) + hu}y + (c-S i) + iu
x (6.42)

(S^g-a) - gu

Substituting this into Equation (6.29) provides the

mapping equation for the first pass:

Ay + Bu + C + Dyu
V = M = f (y,u) = ——— — — — — — (6.43)

V ^ Ey + F

Where:

A = (bd-ae) + S (eg-dh) = (bd-ae) - S^D (6.44)

B = (di-fg) (6.45)

C = (cd-af) + S (fg-di) = (cd-af) - S^B (6.46)

D = (dh-eg) (6.47)

E = (bg-ah) (6.48)

F = (cg-ai) (6.49)

6.3.3 CLIPPING

Clipping is necessary to suppress operation when

outside the source image window and is performed using two

criteria: the value of the mapping co-ordinate and the sign

of the dividend and divisor polynomials forming the mapping

function.

The dividend polynomial (denoted represents the

trimetric projection of the output image onto the input co-

ordinate system. Moreover, for a given scan-line both f

and f (dividend polynomials for each pass) are linear

with respect to the pixel stream position, i.e.: For the

first pass,

5(f)
-22- = A + Du = Constant for scan-line u (6.50)
5y

119

and for the second pass.

f(f=22) = a

fix
(6.51)

The sign of the dividend therefore contains half the

information required for clipping, provided the input image

is defined on a positive co-ordinate system in which

scanning starts at the origin (0,0).

During the second pass the divisor polynomial (denoted

f r e p r e s e n t s the proximity of the viewing window to the

image surface in object space. The sign of the divisor

therefore indicates the polarity of the viewing cone. A

positive divisor is defined as normal; a negative divisor

indicates that the source image lies behind the viewing

point and should be clipped. This process (known as 'Z-

clip') is optional on some commercial DVE systems (e.g.

[QETN88]) allowing a secondary mirrored image to be

generated when the reverse viewing cone intersects the

source image.

DIVIDEND -VE \ p / g

p DIVISOR -VE 'i y /

\ T y / DIVIDEND 'VE

" - — D I V I S O R -VE F Q'

DIVIDEND -VE / \

DIVISOR -VE \

Q'

DIVIDEND -VE / \

DIVISOR -VE \ F
C

A'

^ DIVIDEND »VE " D'

DIVISOR »VE \E

(a) (b)

Figure 6.8 Example Scene Illustrating Clipping Procedure

120

These factors are summarized in Figure 6.8(a)

(previous page) depicting a typical scene in which the

source image is represented by quadrilateral ABCD. The

vertical (v) source axis is shown (RS) separating areas in

which u is positive or negative. A similar boundary (PQ)

between the forward and reverse viewing cones (positive and

negative proximity) is also shown. Straightforward

inspection of the signs of dividend and divisor allows

immediate clipping to the RTQ quadrant. Because this is the

u to X transform, the final clipping operation is to the

broken line EF corresponding to the detectable condition M

< S .

Interpretation of the first pass mapping divisor

polynomial (denoted /^^^) is more complex particularly as

is a function of y (the pixel position) only. To

explain this, consider point T in Figure 6.8(a) at the

intersection of the v axis and the line PQ. PQ represents

the line along which the proximity of the source image is

zero, or its distance from the viewing point is infinite,

i.e. on the horizon. All lines parallel to the v axis must

meet at this point which is therefore the vanishing point

for all u as V tends to infinity. Figure 6.8 (b) shows the

same image before the second pass with A'B'C'D' representing

the corners of the quadrilateral after the first pass.

Because the y co-ordinate is unchanged during the second

pass the vertical position of these points is identical to

that in Figure 6.8.

The horizontal line P'Q' represents the co-ordinate y

at which the divisor is zero and v tends to infinity for all

values of u, thus corresponding to the vanishing point T in

Figure 6.8(a). For clipping purposes the image is not

121

defined in the region above this line and the same clipping

criteria can be applied as for the second pass. The special

case arising when line AB is above the vanishing point and

line CD below is discussed Section 6.3.5.

6.3.4 THK BOTTLENF.nK PROBLEM

As discussed in Chapter 2, [CaSmSO], this problem

occurs when the rotational component of the transformation

approaches ±90° causing the area of the intermediate image

to shrink to zero. To solve this problem Catmul and Smith

propose that the area of the intermediate image be optimized

for four different transformation methods:

(i) - perform v to y pass first (as in examples above),

(ii) - as (i) but scan source framestore with 90° offset.

(iii) - perform u to x pass first.

(iv) - as (iii) but scan source framestore with 90° offset.

For case (i) the area of the intermediate image (A^^^)

is obtained by first finding the mapping function from the

source to the intermediate.framestore (given by , the

inverse of Equation (6.43)).

Bu — Fv + C
y = f ~^(v,u) (6.52)

^ -Du + Ev - A

The length of transformed scan-line u is then given by:

Bu + C Bu + L
f -^(S ,u) - f "^(0,u) (6.53)
3- y ^ Du + A Du + M

where L = C - FS , and M = A - ES .
y y

122

The area is then given by integrating Equation

(6.53) from u = 0 to S , thus:

A
INT

BU + C — — — — — — —

0 Du + A

S Bu + L
——————#du

0 Du + M

(CD-BA).{ln(S D+A)/A} - (LD-BM)•ln{(S D+M)/M}
(6.54)

0"=

Similar expressions can be derived for cases (ii),

(iii) and (iv) and each must be evaluated and compared

before the optimum scan direction is chosen. Furthermore,

this method does not provide a correct result when the

divisor of Equation (6.52) passes through zero and the

mapping 'returns from infinity'. Catmul and Smith suggest

that the source image should undergo a clipping operation

before the test or transformation is applied.

Solution of the 'bottleneck problem' using this

approach is clearly a formidable problem, even at frame

rate. Consequently an alternative method is proposed below,

using the attitude parameters to provide scan direction

selection directly.

6.3.5 SCAN DIRECTION SELECTION ALGORITHM

Throughout this section it is assumed that the v to y

transform is performed first and that a positive co-ordinate

system (as outlined in Section 6.3.3) is used to assist the

clipping process. All orientations of the transformed region

can then be supported by allowing the source framestore to

be scanned using any of the four possible schemes outlined

overleaf:

123

^ V

NORTH EAST

V ^

SOUTH WEST

Figure 6.9 Scanning Directions For Source Framestore

Four more scan direction methods are also possible,

providing mirrored versions of the above. These are not

required for a flight simulation application as the

transformed region is never viewed from below.

To provide a convenient method of reference each scan

direction is labelled with a cardinal point indicating the

relative scanning increments. The 'north' direction

corresponds to the 'normal' orientation outlined previously.

Inspection of Figure 6.9 provides Table 6.1 showing the

substitution of the source co-ordinate pair (u,v) required

for a particular scan direction.

1 Scan Direction 1 Source Co-Ordinate Values

1 north 1 u v

1 east 1 S^- v u

1 south 1 S - u S - v

1 west v S - u

Table 6.1 Source Co-Ordinate Assignments For Scan Directions

Hence, to determine the the coefficients (a to i)

required to implement the 'west' scanning direction, the

substitutions above are applied to Equations (6.28) and

(6.29).

124

Substitution of v = u into (6.28) gives:

a X + b y + c
V — — ̂— — — (6*55)

g X + h y + i

Where the subscript ' i n d i c a t e s the original northward

parameter. Similarly, putting S -u = v into Equation (6.29):

d X + e y + f
.. / c N N N

^ q x + h y + i
N N N

(S g - d)x+ (S h - e) y + (S i - f)
2-2 iJ — 2 — - - (6.56)

g X + h y + i
N N N

Values of a to i can then be inferred by equating
W W

coefficients with Equations (6.28) and (6.29). Similar

procedures can be used to derive a^ to i^ and a^ to i^ and

all four representations are collated in Table 6.2 below:

+ = = = = = = = = + = +

I Scan Direction |
Coeff- + 1- 1- 1- H
icient | north | east | south | west j

I = i i I I
H 1 1 1 1
I b I b I b = e | b = S h - b | b = S h - e

N E N S U N N ' W X J N N H 1 1 1 1
c c = f I c = S i -c | c = S i - f
N E N I S U N N ' v j u n n ' 4 1 1 1 1

I d I d I d = S g -a | d = S g - d | d = a |
N E N S V ' N N ' W N ' 4 1 1 — 1 1 T

I e I e | e = S h - b | e = S h - d | e = b j
_j j N j E N j S 2 I 12 2 |.
I f I f | f = S i - c | f = S i - d I f = c I

N E V N N S V N N , W N ,

Table 6.2 Coefficient Substitutions For Each Scan Direction

The coefficients g, h and i are not included in this

table as they remain unaltered for all scan directions.

These substitutions should be made after Equations (6.30) to

(6.38) have been evaluated and before Equations (6.44) to

125

(6.49) (used to evaluate coefficients A to F for the first

pass).

The substitution requires the optimum scan direction

to be chosen in advance, as outlined below.

Consider the two unit vectors i and j in world
w w

space, aligned with the world axes x and y respectively.

The orientation of these vectors in screen space can be

approximated using the attitude parameters only and the

effects of foreshortening can be ignored, except in

positions which involve a high degree of perspective. Using

this approach the position parameters are unimportant and

for convenience the viewing co-ordinate system (x^,y^,z^)

and the world co-ordinate system (x^,y^,z^) can be made

copunctal at the origin. The orientation in screen space can

then be determined using a simple trimetric projection of i^

and j onto the x ,y view plane.

Figure 6.10 Trimetric Projection Of Unit Vectors

126

This process is illustrated in Figure 6.10(a) above

showing a typical orientation of the world axes relative to

the viewing axes (the and axes are omitted for

clarity). The projection of i^ and onto the x^,y^ view

plane (lightly shaded) is marked by projection vectors

and (shown more clearly in Figure 6.10(b) showing only

the view plane). Expressions for p^ and p^ can be taken

directly from Equation (1.1) thus:

p. -

p = a i + a j (6.58)

Where i and j^ indicate unit vectors aligned with the x

and y axes respectively.

A two-dimensional vector (V^) is then defined in

screen space representing the alignment of the projected

vectors with the corresponding view plane axes. is formed

by combining the projected vectors p^ and p^ using a vector

sum such that points vertically upwards when both co-

ordinate systems are aligned. Vector p^ already indicates

the alignment of y^ with the ordinate (y^) but the alignment

of p^ with the abscissa (x^) must first be converted to an

alignment with the ordinate by a rotation through 90°. is

then given by:

(6.59)
3.2 21 V '

V = (a,)i^ +

The magnitude of is not important but its direction

indicates the overall orientation of the source image

relative to the vertical on the viewing screen. The inverse

relationship (the orientation of the screen relative to the

source image ordinate) is obtained by reflecting about

the vertical to form V , the screen orientation vector:

V = (a -a)i + (a +a)j
s 2X 12 V 11 22 V

127

(6 . 6 0)

The required scanning direction can then be obtained

by finding the cardinal point closest to V using the

algorithm outlined below. Where V and V indicate the i
s i . s j

and j components of V respectively.

1

2

3
4
5

6
7

TEST

THEN TEST V

s ±

> 0

THEN scan direction is north
ELSE scan direction is south

ELSE TEST V > 0
s ±

THEN scan direction is east
ELSE scan direction is west

Algorithm 6.4 Initial Scan Direction Detection Algorithm

This algorithm does not detect cases where the source

region straddles the vanishing point during the first pass

(outlined at the end of Section 6.3.3). This problem is

illustrated in Figure 6.11(a) (cf. Figure 6.8) showing a

typical scene in which the source image is represented by

quadrilateral ABCD. Line PQ represents the horizon and point

T the V axis vanishing point.

A

\ ^
C

\ N
D

F

A'
F

F

D'

(a) (b)

Figure 6.11 Example Scene Illustrating Cusp

128

It is assumed that the source framestore is being

scanned in the northwards direction (determined using

Algorithm 6.4) and the corresponding intermediate image is

shown in Figure 6.11(b). Vertical co-ordinates are not

affected by the second pass and points A'B'C'D' represent

the source region after the first pass. The line A'B' is

inverted and lies above the horizontal line P'Q'

representing v vanishing point co-ordinate. Region A'B'S is

therefore removed by the clipping process and the remaining

region D'C'S contains a cusp at S. Clearly, the resulting

image will be distorted and incomplete and the northward

scanning direction should not be used.

If the vertical co-ordinate of one vanishing point

crosses the souroe region then the vertical co-ordinate

corresponding to the other vanishing point can not cross

this region. This is demonstrated in Figure 6.12 where ABCD

represents the source region and VI and V2 the two vanishing

points lying on the horizon HH'. The vertical co-ordinates

of VI and V2 can both lie within the source region only if

part of the region is above the horizon and part below;

which is clearly not possible.

Figure 6.12 Vanishing Points And Source Image

129

Hence, after the application of Algorithm 6.4, if a

cusp occurs in the intermediate image then the closest other

scan direction (to V) can be chosen without further

testing.

The following procedure can be used to detect the

presence of a cusp in the intermediate image:

First, calculate the vertical (y) co-ordinate of the

relevant vanishing point; the v axis for north and south

directions, the u axis for east or west. The required co-

ordinate (y) is then obtained by equating the divisor of

Equation (6.43) to zero giving:

y - - F/E

which reduces to:

y = S a /a + S /2 (6.61)
vp y 22 2 3 y

for directions north and south and:

y = S a /a + S /2 (6.62)
v p y 3 . 2 1 3 y

for directions east and west.

If y is outside the viewing window (i.e. if y > S
vp vp y

or y < 0), the original scan direction is accepted without

further testing.

Next, the intersections between the line y = y and

the screen boundary (x = 0 or S) must be computed and

projected onto the source image space. These points are

marked R and S in Figure 6.11(a) and are calculated as

follows:
b y + c

X = -2_-e 2 (6.63)
h y + 1

N v p 1

130

e y + f
y = — E — — — (6.64)
^ h y + i

N V p N

for the left hand screen intersection and;

a S + b y + c
= -2-5 U-YE 2 (6.65) x

^ g S + h y + i
N >C N vp N

d S + e y + f
y = ——————————————— (6.66)
^ g S + h y + i

N 3« N v p N

for the right hand screen intersection.

Only one intersection will be on the ground (i.e. in

the positive viewing cone) and two of these equations can be

trivially rejected according to the sign of the divisor.

Finally, the source intersection point (x^,y^) is

tested to see if it lies in a region which would cause a

cusp in the intermediate image. In Figure 6.11(a) the

intersection occurs at point R and for a cusp to be

generated R must lie within the KBL quadrant. The particular

test region depends on the original scan direction, whether

the intersection is at the left or right of the screen, and

whether the image is above or below the horizon in screen

space.

The position of the image relative to the horizon is

determined by the attitude parameters indicating whether or

not the viewing plane is upside down with respect to the

world co-ordinate system. Using the arrangement of Figure

6.10 this is determined by calculating the trimetric

projection of the unit vector k (along the world z axis)

onto the viewing ordinate (y). The corresponding value of

y (denoted y^) is given by:

y = a (6.67)
Ic 3 2

131

Hence the sign of a can be used directly to
3 2

determine whether the image appears above or below the

horizon.

Sixteen different test regions arise from the

combinations of parameters described above and are

illustrated below in Figure 6.13 showing the screen for each

particular example. The shaded region represents the source

region and the arrow indicates its orientation. A two letter

key below each example indicates the test region, e.g. LT

means the quadrant containing the source image and bounded

at the left and top (as in Figure 6.11(a)), other boundaries

are denoted R (right) and B (bottom).

IMAGE BELOW HORIZON

NORTH

IMAGE ABOVE HORIZON

EAST

SOUTH

TOST

t ! - 1
t

T
INTERSECTION ON
LEFT HAND SIDE

INTERSECTION ON
RIGHT HAND SIDE

Figure 6.13 Sixteen Possible Cusp Generating Conditions

132

A cusp will occur in the intermediate image if the

pair (x^,y^) are within the test region and the alternative

scan direction can be chosen. However, some image distortion

will result when the intermediate image approaches the cusp

point and a better approximation is made if the test region

is expanded to include a safety margin.

6.3.6 CO-ORDINATE GENERATION IMPLEMENTATION REQUIREMENTS

To provide co-ordinate generation in real-time

Equations (6.28) and (6.43) must be implemented at pixel

rate, generating the mapping co-ordinates required by the

filtering process. A suitable architecture is outlined in

Figure 6.14 below:

HOST

SYSTEM

HOST

SYSTEM

DIVIDEND POLYNOMIAL GENERATOR

HOST

SYSTEM

DIVIDEND POLYNOMIAL GENERATOR

HOST

SYSTEM

HOST

SYSTEM
DIVISOR POLYNOMIAL GENERATOR

HOST

SYSTEM
DIVISOR POLYNOMIAL GENERATOR

HOST

SYSTEM OR M

Figure 6.14 Outline Of Co-Ordinate Generation Architecture

The mapping co-ordinate is generated using two

polynomial generators and a divider. The polynomial

generators implement the dividend and divisor of the

equation in scan-line order under control of the host

system. Two of the above systems are required, one for each

pass (generating M or M) with additional circuitry to

synchronize co-ordinate generation to the scanning of each

framestore.

133

The source framestore must support scan-line access

using any of the four orthogonal directions required to

solve the bottleneck problem. In addition, the intermediate

framestore must be configured to provide a 90° offset

between the scan line order of input and output operations.

The design of these framestores is discussed in more detail

in the next chapter.

The coefficients (a to i and A to F) are passed from

the host system to the polynomial generators at the start of

each frame. This requires the host system to implement

Equations (6.18)-(6.26) , (6.30)-(6.38) and (6.44)-(6.49) at

frame rate. Additionally, the host system must perform the

scan selection procedure (outlined in Section 6.3.5) and

provide the necessary substitutions.

Routines to implement these equations have been

written in BCPL using the floating point extensions [RiWS85]

to provide adequate dynamic range. No additional hardware

support is required on the development system for

coefficient generation as all of the above procedures can be

completed for worst case conditions (when a cusp is detected

and the scan direction adjusted) in under 10ms (using an

8MHz 68000 type microprocessor).

6•4 SUMMARY

After a review of existing image mapping techniques

the two-pass transformation method was considered the most

suitable for a VSP implementation. Associated filtering

methods were examined and for a VSP based implementation the

resampling interpolation algorithm proposed by Fant showed

the most promise. However, the existing technique had many

drawbacks, in particular the lack of synchronization of the

input and output streams and the inability to pipeline the

134

input and output operations.

Consequently a spatially-variant filtering algorithm

has been developed to overcome these drawbacks using linear

summed-area table prefiltering to provide single-cycle per

output pixel performance. An important advantage is the

separate processing of input and output streams using two

processors; VSPl and VSP2. The VSPl processor must operate

at input pixel rate but only requires a single addition

whilst the more complex VSP2 processor operates at output

pixel rate. This feature permits straightforward mapping of

a higher-resolution source image to a lower-resolution

output.

The generation of mapping co-ordinates required by the

filtering algorithm using an inverse perspective mapping

function for each pass was discussed. These functions were

derived from the position and attitude parameters and shown

to be rational polynomials (the quotient of two

polynomials). Clipping procedures based on simple sign and

magnitude comparisons were developed for each pass.

The bottleneck problem reported by Catmul and Smith

has been reviewed together with the solution they proposed.

The complex computational requirements make the technique

unfavourable for real-time implementation and an alternative

solution has been presented. This involves choosing from

four possible source framestore scanning schemes based on

the orientation of the source image relative to the

observer. The orientation is determined using a scan

direction vector which is readily derived from the attitude

parameters. Additional tests are required to avoid a cusp

occurring in the intermediate image and a procedure to

detect and prevent this has also been presented.

135

Finally, a co-ordinate generation architecture was

proposed requiring two polynomial generators and a divider

each capable of operation at pixel rates. The evaluation of

the polynomial coefficients and choice of scan direction are

only required at frame rate and can be implemented by the

host system software.

The framestore architectures are described in the

following chapter, together with a more detailed account of

the filtering and co-ordinate generation systems.

136

CHAPTER 7

IMPLEMENTATION OF TEXTURE MAPPING SYSTEM

This chapter describes a real-time implementation of

the VSP-based texture mapping system presented in Chapter 6.

An overview of the system is presented together with

objectives based upon real-time requirements and

compatibility. This is followed by an outline of the project

describing some of the design tools and development

strategies.

After the overall layout is discussed, implementation

details are presented in three sections; co-ordinate

generation, framestore design and filtering sub-system.

Finally, observations and results are given, to indicate the

performance of the complete system.

7.1 OBJECTIVES AND OVERVIEW

One principal objective of the image mapping system is

that it maintain compatibility with the existing system

described in Chapter 4. To maintain compatibility the output

from the system should be synchronized with the scanning

process implemented by the GDP, therefore defining a 512

pixel by 512 pixel output resolution.

A disadvantage of the GDP is that the display window

occupies less than 56% of the available frame period. A VSP

system using this timing would be extremely inefficient, but

by increasing the pixel rate from 12MHz to 15MHz it is

possible to scan a 512 by 512 display in 17.5ms. Allowing a

14% margin for control and synchronization overheads it is

possible to implement both passes of the image

transformation in a single frame period. However, an

additional dual-buffered framestore is required to provide

137

output synchronization. Clearly this is an acceptable

compromise as both passes can then be implemented using the

same transformation and filtering sub-system, reducing

hardware requirements.

A feature of the filtering algorithm developed in

Chapter 6 is the ability to map a higher—resolution image to

a lower-resolution output. This is exploited by supporting a

1024 by 1024 pixel source image, generating a fourfold

increase in source bandwidth and necessitates a parallel

architecture to implement VSPl. In addition, two filtering

datapaths are necessary for the first pass as the number of

scan—lines is doubled. No additional bandwidth requirements

are placed on the co-ordinate generation hardware if

adjacent scan-lines are processed in pairs using the same

mapping co-ordinates. The effect of this approximation will

only be noticeable in areas of high magnification and is

discussed again at the end of this chapter.

Colour images can clearly be implemented using three

image planes representing red, green and blue components.

Only the filtering datapath needs to be triplicated as the

co-ordinate generation is common to each plane. However, to

speed the development process and reduce the project cost

(in particular the framestore memory requirements) the

demonstration prototype is a monochrome system.

Finally, the number of grey levels supported was

determined by the memory devices used for the framestores.

Suitable devices use a byte-wide architecture suggesting

that a four-bit or eight-bit pixel data structure is most

G^ficient. Early simulations indicated that sixteen grey

levels were sufficient to show the fidelity of the filtering

process and a four-bit pixel representation was chosen.

138

The development of the image mapping system was

completed using a 68000-based microcomputer (Atari 1040ST

workstation) as the host system interfacing to a rack

containing the system PCBs (Plates 71 and 711). This system,

together with a 512 by 512 pixel framestore was also used to

simulate the operation of the filtering and mapping

algorithms.

The hardware implementation was designed in two

stages. Initially, a simpler system was constructed, using a

512 by 512 pixel image for source and destination. A single

polynomial generator was used capable of implementing affine

and second order (quadratic) mapping functions. Operating in

real-time this system proved the design of the filtering

datapath and polynomial generator. Subsequently the complete

system was implemented, requiring the expansion of the

framestores and the development of the divider circuitry.

In order to increase the compactness of the complete

system, extensive use of EPLDs (Erasable Programmable Logic

Devices) has been made throughout the design. The PLPL

software (Section 1.5 q.v.) provides a powerful design tool

[AMDP87], particularly for designing finite state machines.

Furthermore, comprehensive simulation is supported allowing

the designs to be evaluated before implementation. This

feature was particularly important during the design of the

framestore controllers and datapaths.

To simplify the descriptions given in this chapter,

finer details have been omitted from the diagrams. In

addition 'glue' logic and pipeline registers required to

synchronize different datapaths have also been omitted. The

full circuitry is given in Appendix VI and an example PLPL

source file can be found in Appendix VII. A more

139

comprehensive description of the complete system has also

been provided [Evem89]. This includes circuit diagrams, full

PLPL source files for all the devices and program listings

for the system support software.

The physical layout chosen for the image mapping

system is shown below in Figure 7.1.

BOARD I BOARD 11 BOARD 111 BOARD IV
SYSTEM CONTROL BUS

>11 LINE BUFFER

OUTPUT

1 LINE BUFFER

• I s LINE BUFFER

V S P l

V S P l

CONTROL OONTROL CONTROL

DIVISOR
GENERATOR

DIVIDEND
GENERATOR

CLIPPING

CONTROL

VSP2

VSF2
FRAMESTORE

OUTPUT

FRAMESTORE

SOURCE

INTERMEDIATE

FRAMESTORE

UT
*•

Figure 7.1 Outline Of Image Mapping System

The complete system is implemented using four wire-

wrapped circuit boards. Each board communicates directly

with its neighbour, and control and synchronization is

effected using a global system control bus. In addition

boards I and IV have a host system interface and each

framestore connects to the filtering datapath using a common

input bus and common output bus, allowing operation for both

passes.

The operation of the complete system is described in

the following three sections; co-ordinate generation,

filtering sub-system and framestore design.

140

7•2 CO-ORDINATE GENERATION

An important design factor of the co-ordinate

generation system is the resolution used to represent the

mapping co-ordinate. An advantage of image mapping is that

the co-ordinate accuracy is required only within the source

region and accurate operation outside the clipping window is

not important. Conversely, the spatial accuracy provided by

texture tiling systems must be maintained over the entire

screen area, requiring substantial hardware resources (e.g.

the 24-bit implementation reported by Lopez [Lope87]).

A spatial resolution of 14 bits is clearly sufficient

for this application, providing four fractional bits for a

1024 by 1024 pixel image. Additional bits are required to

ensure that accuracy is maintained and both overflow and

underflow must be handled correctly. A 16-bit floating-point

format is chosen to implement the division and equation

coefficients are prescaled to fully exploit the 16-bit

output range of a fixed-point polynomial generator. This

system is shown below, followed by a detailed description of

each section.

MANTISSA

IDIVIDENEI

IRS

FIX

TO

FLOAT

MANTISSA

MANTISSA

EXPONENT

1 / X

LUT

DIVISOR

IRS

FIX

TO

FLOAT

i SCALE REGISTER j-

EXPONENT

FLOAT

TO

FIX

CLIPPING

CONTROL

SIGN BITS
EXPONENT

Figure 7.2 Co-Ordinate Generation System.

141

7.2.1 POLYNOMIAL GENERATION

The polynomial generator must implement the dividend

and divisor of Equations (6.28) and (6.43) in scan-line

order at pixel rate (15MHz). Apart from the numerator of the

first pass mapping function (which includes a second order

term) each polynomial is a linear equation in terms of the

two scanning co-ordinates (pixel position and scan-line).

The predefined scanning order allows an efficient

implementation of each equation using difference equations

[SpieVl] requiring a pipelined structure of adders and

accumulators. A floating-point system is hardware intensive

[GoslSO] but ensures that resolution is maintained over a

wide range of coefficient values. A fixed-point

implementation is simpler but requires greater care to

provide the desired resolution and prevent problems caused

by overflow and underflow.

A deciding factor in the choice of a fixed-point

implementation was the availability of a VLSI device

specifically designed for this purpose. This device (an

Image Resampling Sequencer (IRS) TRW type TMC2301 [TRWI87])

provides a 17-bit (16-bit and sign bit) output representing

the most significant bits of an internal 32-bit accumulator.

The IRS is capable of implementing a second-order polynomial

using difference equations at 18MHz, thus supporting the

quadratic term of the first pass mapping function. The

polynomial is implemented for all destination co-ordinates

in scan line order using a nested algorithm [ElWe87]:

1 FOR each scan-line i (i < i < i)
m i n xne i^c

2 FOR each pixel j (j < j < j)
*• m ± n x n a > c

3 Output = Pi2 + Qj: + Rij + Si + Tj + U

Algorithm 7.1 IRS Polynomial Implementation.

142

The equation coefficients (P to U) can be loaded at

frame rate by the host system and parameters i ,i ,j
J n ± n m a a e m ± n

and may be configured to support destination image

sizes up to 4096 by 4096 pixels. The 32-bit internal

structure ensures sufficient accuracy providing the output

value uses the optimum dynamic range of the 16-bit output.

This is guaranteed by prescaling the equation coefficients

before loading the IRS, also providing protection against

overflow and underflow conditions. The prescaling algorithm

which is implemented as part of the host system software is

outlined below:

1 Max.poly = 0
2 Scale.value = 0
3 FOR each corner of window
4 Val.poly := |Value of polynomial]
5 IF (Val.poly > Max.poly)
6 THEN Max.poly := Val.poly
7 TEST (Max.poly > Max.IRS)
8 THEN WHILE (Max.poly > Max.IRS)
9 Max.poly := Max.poly / 2
10 Coefficients := Coefficients / 2
11 Scale.value := Scale.value + 1
12 ELSE WHILE (Max.poly < Max.IRS / 2)
13 Max.poly := Max.poly * 2
14 Coefficients := Coefficients * 2
15 Scale.value := Scale.value - 1

Algorithm 7.2 IRS Coefficient Scaling Procedure.

Where 'Max.IRS' represents the maximum output value

supported by the IRS and the use of the 'Scale.value'

parameter is described in the next section. In practice, the

scaling process is more readily implemented while the

coefficients are in floating-point format, the divide (or

multiply) and test process being replaced by a decrement (or

increment) and test operation on the exponent.

The fixed-point output from the polynomial generators

must be converted to floating-point format before passing to

the divider. This process is implemented by two 900-gate

143

equivalent EPLDs [Alte88] configured to provide the required

shifting operations. The 16-bit fixed-point value is then

represented as a 15-bit mantissa with a four-bit exponent.

Two out-of-range (OOR) signals are also generated indicating

when either polynomial is negative or zero; this information

is used by the clipping controller described in Section

7.2.3.

Synchronization of the co-ordinate generation process

is performed by a single PAL (type 22V10) controlling the

IRS. At the start of each pass each IRS is initialized and

operation commences after the first scan-line has been

prefiltered by VSPl (indicated by the co-ordinate request

input (C_REQ) from the system control bus). The IRS

generates two synchronizing signals indicating the end of a

scan-line (END) and the end of a frame (DONE). END is used

by the controller to generate a signal (IRSVALID)

indicating to the divider that the polynomial data is valid.

DONE is used to initiate the second pass (at the end of the

first pass) or to halt the system (at the end of the second

pass). Corresponding signals (PASS & /PASS_INIT) are also

generated indicating which pass is active and to initialize

each pass. These signals are output to the system control

bus to synchronize the operation of the complete system. The

values of PASS and DONE are also available to the host

system and are defined as follows:

PASS 1 DONE 1 Condition

0
0
1
1

0
1
0
1

System performing first pass
First pass completed
System performing second pass
Second pass completed

Table 7.1 Definition Of Signals PASS And DONE.

144

7.2.2 DIVTnEP

Many architectures have been proposed to perform

floating-point division and a good review is given by

Gosling [GoslSO]. Traditional techniques use an algorithmic

approach and do not provide single cycle performance. For

16-bit applications, however, it is possible to implement

division of mantissas (the exponents are simply subtracted)

using a reciprocal look-up-table followed by a parallel

multiplier. This approach has been implemented successfully

by Lok [LokY83] who gives a detailed account of suitable

look-up-table architectures. In particular, the size of the

table may be reduced by using linear interpolation to

process the least significant bits of the divisor. The

architecture chosen for this application is based on this

principle and illustrated below:

MSBs

LSBs

MSBs

8k X 16

ROM

512 X 8

ROM

Figure 7.3 Reciprocal Look-Up-Table.

145

The upper 13 bits of the divisor mantissa are used to

address an 8192 entry reciprocal table providing a 16-bit

result. The remaining two bits are used to select an offset

value which is subtracted from the 16-bit result. The offset

is chosen from a sub-table selected using the 7 most

significant bits of the divisor. Simulation results

indicated that this provides 15-bit accuracy over the

complete input range. The simulation program, written in the

' C programming language [KeRi78], was also used to generate

the table values and a listing is given in Appendix V.

The 15-bit multiplication required to complete the

division process is implemented using a 16-bit parallel

multiplier (IDT type IDT7217L-25 [IDTM85]) capable of

operation at pixel rates. The output datapath from this

device is limited to 16 bits and is configured to provide

the most significant word. Because the inputs are normalized

this always contains the 14-bit information necessary for

co-ordinate generation.

The exponent is calculated by subtracting the divisor

exponent from the dividend exponent using a four-bit adder

(the subtrahend is generated in two's complement form). A

further addition stage is implemented to include the six-bit

signed output from the scaling register. This register is

loaded by the host system and contains the difference

between the dividend and divisor scale factors determined by

Algorithm 7.2.

As both the reciprocal generation and multiplication

stages implement a rounding process, care is needed to

minimize errors. The method used is 'Add 1' rounding

[Gosl80] where a 1 is added to the most significant of the

bits to be stripped off prior to truncation. This is

146

incorporated in the reciprocal table generation program and

provided directly by the multiplier.

7.2.3 CLIPPING CONTROL

The floating-point output from the divider must be

converted into the 14-bit mapping co-ordinate output

reguired by VSP2. Two 900-gate eguivalent EPLDs provide the

reguired shifting operations and clipping control is

implemented by a finite state machine using an additional

EPLD (type 18CV8 [PEEL89]).

The clipping controller uses the OOR signals

(generated when the polynomials are negative or zero) and

the exponent value to determine when the co-ordinate is

outside the source window. When the polynomials are

positive, the exponent value indicates whether the clipped

co-ordinate lies to the left (assuming a horizontal scan-

line) or the right of the source image. Since a positive co-

ordinate system is used, the default condition at the start

of each scan-line is that the mapping co-ordinate lies to

the left of the source window. These factors are summarized

by the state transition diagram of Figure 7.4 below:

MANTISSA IN RANGE
• EXPONENT IN RANGE

START OF # L b t 1 U f

•M SOURCE
SCAN-UNE \ WINDOW

EXPONENT OUT OF RANGE
MANTISSA OUT OF RANGE

INSIDE
SOURCE

WINDOW

RIGHT OF
M SOURCE

WINDOW MANTISSA IN RANGE
» EXPONENT TOO BIG

Figure 7.4 Clipping Controller State Transition Diagram

147

The two bits required to represent these states are

assigned such that each indicates the left of range (LOR)

and right of range (ROR) conditions directly. These signals

are used by the two co-ordinate shifting EPLDs to provide

default values of the mapping co-ordinates outside the

source window. This is necessary for VSP2 to prevent

aliasing at the edges of the source region as described in

Section 7.4.2.

A major advantage of this clipping procedure is that

valid co-ordinate values are not required when either

polynomial is negative or zero. This greatly reduces

hardware requirements as negative numbers need not be

supported by the format converters or the divider, and

division by zero can be undefined.

148

7.3 FRAMESTORE DESIGN

This section describes the construction of each of the

three framestores. The required features are summarized

briefly below, followed by a detailed discussion of each

framestore.

1. Source Framestore.

Storage: 1024 by 1024 four bit pixels (% Mbyte).

Input: From host system, off-line.

Output: In scan-line order in any of four

directions at 15MHz. Two scan-lines output

in parallel, each scan-line providing two

pixels per in parallel.

2. Intermediate Framestore.

Storage: 1024 by 512 four-bit pixels (% Mbyte).

Input: From two VSP2s in scan-line order at

15MHz; adjacent 512 pixel scan-lines input

in parallel.

Output: In scan-line order at 90° offset to input

scanning scheme. Pairs of pixels from each

1024 bit scan-line output in parallel at

15MHz.

3.Output Framestore

Storage: 512 by 512 four-bit pixels; double

buffered to allow simultaneous loading and

display.

Input: From one VSP2 in scan-line order at 15MHz.

Output: In scan-line order with interlace to

display device at 12MHz. Scanning

procedure synchronized with GDP based-

system.

149

7.3.1 SOURCE FRAMESTORE

As outlined above this framestore must provide

parallel output of four pixels to support the required

bandwidth. Therefore the 1024 by 1024 pixel array is

addressed as a 512 by 512 array of 'quads'. Each quad is a

16-bit memory location representing four adjacent pixels

arranged as shown below:

PI P2

P3 P4

-j- ̂ ^ ^ ^ —»»—»^

Figure 7.5 Arrangement Of Four Pixel Quad.

Where the labels PI to P4 provide a convenient label

for each pixel. All four pixels (the complete quad) are

output simultaneously generating two parallel 1024-bit scan-

lines (with adjacent pixels output in pairs).

The 15MHz output bandwidth implies a memory access

time of approximately 50ns (allowing a reasonable margin for

data setup and address settling). At the time of

construction (1988) large geometry (> 64k bits) memory

devices with suitable access times were not available. As

the cost of implementing a large memory array using smaller

devices was prohibitive it was decided to implement the

array using slower memory accessed in parallel. This limits

the number of locations accessible in each vertical or

horizontal scan-line to 256, suggesting a two by two

grouping of adjacent quads as outlined below (the labels Q1

to Q4 are for textual reference).

150

Q1 Q2

Q4 Q3

Figure 7.6 Grouping Of Adjacent Quads.

During a scan sequence, two quads will be required for

each memory access (two clock cycles). The pair of quads

selected for a particular access depends on the scan

direction but are always adjacent; hence quads 1 and 3

(similarly 2 and 4) are never required together. Non-

adjacent quads may therefore share a common data bus

allowing the memory organization shown below;

QUAD 1 QUAD 3

64k X 16 64k X 16

(4X

32k X 8)

\
16

(4X

32k X 8)

CROSSBAR

MODULE

1

QUAD 2 QUAD 4

64k X 16 64k X 16

(4X

32k X 8)
16

(4X

32k X 8)

A 16

CROSSBAR

MODULE

2

4 X 4-BIT
PIXEL

STREAMS

Figure 7.7 Source Framestore Architecture.

151

The quads forming the framestore memory are physically

separated into four 64k by 16-bit sections. Each section

comprises four 32k by 8-bit SRAM devices (NEC type

M.PD43256C-10L [NECM87]). These devices have an access time

of 100ns allowing a sufficient margin for a memory cycle

time of two clock periods (133ns). The output enable feature

(/OE) is used to allow two 32k byte devices to be addressed

as a 64k byte block; the chip enable (/CE) feature

implements the quad select (/Ql to /Q4) function. The quad

selection pair depends on the scan direction and on the

particular scan-line, alternating between different pairs on

adjacent scan-lines. The selection process is summarized

below in Table 7.1.

SCAN
DIRECTION

LSB OF SCAN-
0 1

-LINE COUNT
1

NORTH 1 Ql -> Q2 1 Q4 -> Q3

EAST 1 Ql -> Q4 1 Q2 -> Q3

SOUTH 1 Q2 -> Ql 1 Q3 -> Q4

WEST 1 Q4 -> Ql 1 Q3 -> Q2

Table 7.2 Quad Selection Table.

The scan direction corresponds to the definitions

given in Chapter 5 and the symbol indicates the order

in which the quads should be output. For example, when the

scan direction is south and the scan count LSB is 0 quads 2

and 1 are selected but quad 2 should appear in the data

stream before quad 1. The output order is determined by

enabling the output of the appropriate datapath.

The quad selection pair toggles at the end of each

scan-line and initial selection (for the first scan-line)

depends only on the scan direction. Correct sequencing of

152

the quad selection, therefore, does not require explicit

generation of the LSB of the scan-line count. This is shown

clearly in Table 7.2; the quad selection output Q3 can be

interpreted as the LSB of the scan-line count.

The 256 by 256 array of quads are addressed using

eight horizontal and eight vertical scanning addresses. The

sequencing and hierarchy of these addresses is determined by

the scan direction as given below by Table 7.3.

+= I
+ -

+

-T" + +
I VERTICAL ADDRESSING | HORIZONTAL ADDRESSING | -+ + +

SCAN COUNT COUNT
DIRECTION HIERARCHY DIRECTION HIERARCHY DIRECTION

I NORTH I
4 — ——
I EAST I

- I 1 - -

I SOUTH I

I WEST I
-f=====:=====-|-=

MOST

LEAST

MOST

I UPWARDS I
.-l—— 1-.

I UPWARDS I
- H h -

I DOWNWARDS |
1 —— 1 ——

LEAST I DOWNWARDS | MOST
=========+===========+=======:

LEAST

MOST

LEAST

I UPWARDS I

I DOWNWARDS | —+

1 DOWNWARDS |
•H H
I UPWARDS I

= + = = = = = = = = = = = +

Table 7.3 Source Framestore Address Sequencing.

The addresses, quad selection and datapath control are

all implemented using a single 900-gate equivalent EPLD. The

datapaths are implemented using the same devices and perform

two functions. First they provide individual quad selection

and ordering for each output cycle as described above.

Secondly, a crossbar switch is implemented, routing the

outputs PI to P4 to the output stream according to the scan

direction as outlined below.

153

jOUTPUT FOR SCAN-LINE 1 | OUTPUT FOR SCAN-LINE 2 I

DIRECTION

+ = = = = = = = = = + =

FIRST
PIXEL

SECOND
PIXEL

FIRST
PIXEL

SECOND
PIXEL

I NORTH I PI I P2 I P3 I P4 I

I EAST I P2 I P4 I PI P3 I

I SOUTH I P4 I P3 I P2 PI 1

I WEST I P3 I PI I P4 I P2 I + - - + + + + +

Table 7.4 Datapath Crossbar Operation.

The loading of the framestore from the host system is

straightforward as the control and datapath EPLDs allow host

system access. However, as the array locations are not

memory-mapped additional registers are used to provide 16-

bit data access and address generation. The host system

combined with the complicated quad addressing

scheme make the loading process slow; a typical test pattern

taking between 20 and 30 seconds to load. Although this

could be improved by incorporating a dedicated loading (or

DMA) controller, as this process is performed off-line, no

other solution has been pursued.

7.3.2 INTERMEDIATE FRAMESTORE

Although the bandwidth and scanning requirements are

less severe compared with the source framestore, the

intermediate framestore must support retrieval and storage

at pixel rates. In addition to the write control circuitry,

this requires a bi-directional datapath using a different

format for input and output pixel streams. Store or retrieve

operation is selected according to the system control bus

signal PASS, and scanning operation is initialized by the

signal /PASS INIT.

154

The 1024 by 512 pixel array is implemented using four

64k by eight-bit memory units (two SRAM devices each)

allowing a group of eight pixels to be addressed in

parallel. The assignment of the four memory units (denoted

RAMI to RAM4) to each of the eight pixels is shown below,

where LSN and MSN indicate the least and most significant

nybble of a particular memory byte respectively.

H— — 1--. — — h
I RAMI LSN I RAM2 LSN |
4 1 — H
I RAMI MSN I RAM2 MSN |

- I — 1 H

I RAM3 LSN I RAM4 LSN |
4 — — 1———— i-
I RAM3 MSN I RAM4 MSN |

Figure 7.8 Organization Of Eight Pixel Memory Block.

This block represents a portion of the complete

framestore memory defined as 512 pixels horizontally by 1024

pixels vertically. Therefore an array of 256 by 256 blocks

is required to implement the complete framestore, allowing

two cycles for each block access to conform with the SRAM

timing requirements. The selection of a particular RAM

device is summarized below and depends on the least

significant bit of the scan-line count and the store or

retrieve operation being performed.

OPERATION LSB OF SCAN-LINE COUNT
0 I 1

+ = = = = = = = = = = = + = = = = = = = = = = = = = + = = = = = = = = = = = = = +

STORING 1 RAMI & RAM2 1 RAM3 & RAM4

RETRIEVING| RAMI & RAM3 1 RAM2 & RAM4
4—— — — — 1 ——— 1 ————— —
I RETRIEVING] RAMI & RAM3 | RAM2 & RAM4 |
+ = = = = = = = = = = = + = = = = = = = = = = = = = + = = = = = = = = = = = = = +

Table 7.5 Intermediate Framestore RAM Selection.

Inspection of Table 7.5 indicates that RAMI and RAM4

(similarly RAM2 and RAM3) are never accessed simultaneously

155

allowing a common data bus to be used. The corresponding

organization of the complete framestore is shown below in

Figure 7.9. Furthermore, if the RAM select signals are

derived directly (by swapping at the end of each scan-line),

the least significant bit of the scan-line count is given by

the selection signal RAM4.

INPUT

STREAM
1

RAM 1

64k X 8

32k X 8)

LSN

MSN

X

INPUT

STREAM]
2

RAM 2

64k X 8

(2X
32k X 8)

LSN

MSN

RAM 4

1 64k X 8 LSN 1
(2X

32k X 8) 1
MSN

RAM 3

64k X 8 LSN

(2X
32k X 8)

MSN MSN

OUTPUT —•

PIXEL 1

OUTPUT

PIXEL 2

Figure 7.9 Intermediate Framestore Architecture.

Incoming data is generated by two VSP2 processors and

is received as two parallel streams of 512 bits per scan-

line. Each stream is processed by a separate datapath

(implemented using an EPLD type 18CV8) operating according

to Table 7.6 below:

+ = = = = = = = = = = = + = + = +

LSB 1 INPUT FROM STREAM 1 | INPUT FROM STREAM 2 \
OF + + +

SCAN-LINE
COUNT

FIRST
PIXEL

SECOND
PIXEL

FIRST
PIXEL

SECOND
PIXEL

=+= + = = = = = = = =

I 0
H —

I 1 I RAM3 LSN I RAM4 LSN | RAM3 MSN | RAM4 ME

Table 7.6 Operation Of Intermediate Framestore Input

0 j RAMI LSN I RAM2 LSN \ RAMI MSN | RAM2 MSN |
1 1 1 1 1-

1 I RAM3 LSN I RAM4 LSN | RAM3 MSN | RAM4 MSN |
= = = = = = = + = = = = = = =

156

Outgoing data is generated as a single stream of pixel

pairs representing part of each 1024 pixel scan-line. The

operation of the output datapath is summarized below and may

be implemented using two octal latches controlled as shown

in Figure 7.9.

LSB I OUTPUT DURING CYCLE 1 OUTPUT DURING CYCLE 2 I
OF +

SCAN-LINE
COUNT

FIRST
PIXEL

SECOND FIRST SECOND
PIXEL PIXEL 1 PIXEL

I 0 I RAM2 LSN | RAM2 MSN | RAM4 LSN | RAM4 MSN I

I 1 I RAMI LSN I RAMI MSN | RAM3 LSN | RAM3 MSN I
+ ======+===========+===========+==========+============+

Table 7.7 Operation Of Intermediate Framestore Datapath

The controller (implemented using a 18CV8 type EPLD)

provides all memory access signals for both read and write

operation and a single 900-gate equivalent EPLD is used to

address the 256 by 256 block array. This generates row and

column addresses according to Table 7.8 below, providing a

90 offset between storing and retrieving operations.

I I ROW ADDRESSING I COLUMN ADDRESSING I

OPERATION COUNT COUNT
HIERARCHY DIRECTION HIERARCHY DIRECTION

I STORING I MOST | UPWARDS j LEAST j UPWARDS j

I RETRIEVING I LEAST | UPWARDS | MOST | DOWNWARDS I
+ = = = = = = = = = = + = = = = = = = = = = = + = = = = = = = = = = = + = = = = = = = = = = = + = = = = = = = = = = = +

Table 7.8 Intermediate Framestore Address Sequencing.

157

7.3.3 OUTPUT FRAMESTORE

The output framestore provides synchronization of the

image mapping process with the display process and requires

a double-buffered arrangement to allow simultaneous access.

Only 512 by 512 pixel storage is required and input and

output operations are performed using the same scan-line

order. An advantage of this feature is that DRAM can be used

to provide storage as addressing can be defined to ensure

that refresh requirements are not violated.

Each bit plane is implemented using a 64k by 4 DRAM

(Hitachi type HM50464P-12 [HitM88]) requiring only four

devices for each framestore. This part is particularly

suitable as memory access can be implemented in four clock

cycles and the corresponding parallel access is conveniently

matched with the four-bit datapath. The full bandwidth can

therefore be supported using a four-bit shift register to

provide input and output for each bit plane.

The complete double-buffered output framestore

architecture is outlined below consisting of the memory

array, arbitration logic, and separate address generation

and memory control for the input and output sections.

PDCEL
+- TO DISPLAY

INPUT

D_VALID
INPUT

DISPLAY
COUNTERS

LOADING
COUNTERS

INPUT SHIFT
REGISTER

OUTPUT SHIFT
REGISTER

DRAM ARRAY 2

DRAM ARRAY 1

ARBITRATION CONTROL LOGIC

Figure 7.10 Output Framestore Architecture.

158

Output addresses are generated using two PAL devices

(type 20X10) providing separate horizontal (line) and

vertical (frame) outputs. Operating from a l2MHz clock these

devices provide interlaced scanning using timing parameters

identical to those provided by the EF9367 GDP. An additional

PAL (type 16R8) is used to generate an accompanying SYNC

signal which may be used to synchronize the image mapping

output with the surface in-fill system described in Chapter

4. A multiplexor is included to provide the correct address

format required by the DRAM and a 16R4 PAL device is used to

generate memory timing and shift register control signals.

Input address generation is provided by two EPLDs

(types EP600 and 18CV8) configured to operate as counters in

conjunction with a multiplexor to support the DRAM

addressing format. An additional PAL (type 22V10) controls

the counters and input shift registers and generates the

memory timing and control signals. Loading operation is

controlled by a signal (data valid — D_VALID) accompanying

the input pixel stream to provide synchronization with the

image mapping system. An additional input selects the

appropriate pass, allowing the output from either pass to be

displayed. After the loading operation is completed, the

counters continue to operate providing refresh cycles until

the framestores are swapped.

Arbitration logic is provided by a finite state

machine implemented using an EPLD (type 18CV8) operating at

3MHz. All timing clocks used throughout the image mapping

system are derived from a master 60MHz crystal oscillator.

This provides three timing clocks at frequencies of 15MHz,

12MHz and 3MHz, used by the image mapping system, display

counters and arbitration logic respectively. The rising edge

159

of the 3MHz clock is synchronized with a rising edge of each

of the other clocks allowing the arbitration finite state

machine to interface directly with both 12MHz and 15MHz

circuitry.

In the absence of any external synchronization the

output framestore is free-running and the complete image

mapping system is initialized by the arbitration controller.

Additionally, if the loading of the framestore is not

finished when the display of the previous frame is completed

the buffers are not swapped and the previous frame is

repeated. This feature proved useful during the development

stage as the output image is displayed continuously even

after the image mapping process is interrupted, allowing

observations and adjustments to be made.

160

7.4 FILTERING SUB-SYSTEM

This section describes the design of processors VSPl

and VSP2 used to implement the filtering algorithm described

in Section 6.2. The architecture used is based on the

outline given in Figure 6.6 q.v. and is described in two

sections: prefiltering (VSPl and line buffers) and the

filtering datapath (VSP2).

An important feature of this application is that all

the values (pixel intensity and co-ordinate values) are

positive numbers and it is not necessary to process signed

values. This greatly simplifies the design of the arithmetic

units required to implement the filtering equations.

7.4.1 SUM-TABLE PREFILTER CIRCUITRY

Prefiltering is provided by VSPl which generates a

linear summed-area table from the input pixel stream using

Algorithm 6.3. VSPl is implemented using the architecture

outlined below:

i n p u t
s t r e a m

i n p u t _
s t r e a m

2

i n c r e m e n t i n g
r e g i s t e r

c a r r y

+ §

s t a b l e

10 14 o u t p u t

Figure 7.11 Architecture Of VSPl.

161

The last table entry is generated by summing 1024

four-bit pixels and a 14-bit representation is required to

support the maximum possible result. The lower six bits are

generated using conventional adders (type ACT283[RCAA88]) to

add the incoming bit stream (augend) to the existing result

(addend). The upper bits are generated using a ten-bit

incrementing register (PAL type 22V10) performing an

increment operation when the carry output from the six lower

bits is asserted. The latch and the incrementing register

are cleared at the start of each input scan-line, ensuring

that the first entry in the summed-area table is zero.

The augend is generated from the sum of both input

pixel streams; these represent adjacent pixels which are

output from the framestore in parallel. This circuitry

therefore generates a 512 entry summed-area table

representing the sum of pairs of pixels from the 1024 pixel

input stream. This approach relaxes the bandwidth

requirements on VSPl and the line buffers and in addition,

halves the number of line buffer locations.

The full 1024 pixel resolution is restored at the

output of the line buffer using the circuit outlined below;

14 s BUFFER
^OUTPUT

1 BUFFER
OUTPUT

MAH9-1]

MAPC9-0]

GENERATOR

OFFSET

S BUFFER

I BUFFER

AND

Figure 7.12 Line Buffer Output Adjustment.

162

The multiplexor allows the appropriate pixel value to

be chosen from the I buffer according to the least

significant mapping co-ordinate (MAP_P[0]). MAP_P[0] is also

used to generate an offset value (S OFF) which is added to

the S buffer output to provide the required suramed-area

table value. S_OFF is equal to zero for even mapping co-

ordinates and equal to the first pixel of the pair output

from the I buffer for odd mapping co-ordinates. The

multiplexor and offset generator are implemented using a

single PAL (type 20G10 [CySe89]) and the offset is added to

the S buffer value using a conventional four-bit adder and

an additional ten-bit incrementer (PAL 22V10).

The line buffer must support two 4-bit I buffers and

the 14-bit S buffer, a total requirement of 22 bits. A

suitable implementation is provided using three 8-bit wide

memory devices providing 24-bit storage. A double buffered

arrangement is required to separate input and output

operations and six devices are required in total. A 2k by 8

SRAM (Inmos type IMS1433[InmM87]) was chosen for this

application as the fast access time of 45ns supports single

cycle operation. A nine—bit address must be generated to

allow the buffer to be loaded in the correct order,

implemented using a single PAL (type 22V10).

The control of the line buffers is implemented by a

finite state machine (also using a 22V10 PAL) which provides

memory timing signals and supervises the double-buffered

operation.

163

7.4.2 FILTERING DATAPATH

The first operation performed by VSP2 is the

generation of the partial sum given by Equation (6.6)

followed by the subtraction of the previous value, giving

the numerator of Equation (6.7). Both operations are

implemented using the architecture outlined below:

14

+ + 18

PARTIAL SUM

PARTIAL
> SUM

DIFFERENCE

Figure 7.13 Partial Sum Difference Generation.

The four-bit by four-bit multiplication is readily

implemented using a look-up table and the result is added to

the 14-bit S buffer output to generate an 18-bit partial

sum. The difference value for successive cycles is obtained

from an 18-bit subtracter. The partial sum value is applied

directly to the minuend input and the previous (latched)

partial sum value to the subtrahend input. The subtracter is

implemented using conventional four bit adders (type F283

[Mull84]) using a two's complement representation for the

subtrahend.

A similar process is used to generate the denominator

of Equation (6.7) (the footprint size) using the combined

164

co-ordinates MAP_P and MAP_Q. The footprint is only required

to four-bit accuracy but has a dynamic range of up to 14-

bits, therefore a simple four-bit floating-point

representation is used to represent the footprint size. The

four-bit mantissa and four-bit exponent can be generated

from the fixed-point footprint value using a single 22V10

PAL.

To prevent edge aliasing correct filtering operation

must be maintained when entering or leaving the source

window. At these points the MAP_P co-ordinates default to

the end points of the line buffers. This provides a correct

partial sum at the leading edge of the source window as S[0]

is defined as zero. However, the last entry in the summed

area table contains the sum of all preceding pixels

excluding the last pixel itself. An error can occur at the

trailing edge of the source window because the default value

outside the source window should contain the sum of all the

pixels in the source scan-line.

This can be avoided by making the last two entries in

the summed area table equal, i.e. by making the last pixel

in each source scan-line zero. This reduces the source

region to 1023 by 1023 pixels but is considered an

acceptable solution to this problem.

However, the footprint value is not maintained when

entering or leaving the source window as it is derived from

the clipped mapping co-ordinate. A solution to this problem

is made by approximating the footprints either side of the

source window by extrapolation. This is implemented by

controlling the length of a pipeline register forming part

of the footprint datapath.

The exponent is used to shift the partial sum

165

difference value to align it with the footprint mantissa,

implicitly cancelling and rounding the numerator and

denominator of Equation (6.7). This operation is performed

using two 22V10 type PAL devices and is illustrated in

Figure 7.14 below. An additional PAL (type 22V10) is

included to implement 'Add 1' rounding before the division.

p a r t i a l s u m
d i f f e r e n c e

f o o t p r i n t
e x p o n e n t

18

H O
%
e p

• e z
6 p o

c

d i v i d e r

l o o k

512X8

o u t p u t
> p i x e l

s t r e a m

f o o t p r i n t _ _ _ _ _
m a n t i s s a 4

Figure 7.14 Footprint Division Architecture.

The advantage of this approach is that the division

is performed on two five-bit numbers, allowing a complete

implementation at pixel rate using a single look-up table.

The look-up table is implemented using a 512 by 8 registered

PROM and includes the 'add 1' rounding feature to minimize

errors. The special case arising when the footprint is zero

is processed by replacing the filtered pixel by the direct

point-sampled equivalent (from the I buffer). Since the

footprint is zero this provides an accurate representation

of the pixel intensity.

166

7.5 SUMMARY

This chapter has described an architecture to

implement the filtering algorithm and co-ordinate generation

process presented in Chapter 6.

The co-ordinate generation system implements Equations

(6.28) and (6.43) at pixel rate using two polynomial

generators and a divider. A 16-bit floating-point

representation ensures sufficient accuracy and is used for

the division operation. The polynomial generators, however,

have been implemented in fixed-point arithmetic for reasons

of efficiency using a proprietary VLSI device and accuracy

has been maintained by software scaling. The divider is

implemented using a reciprocal look-up table followed by a

parallel multiplier, together with a finite state machine to

provide clipping control.

A parallel architecture is used to implement the

source and intermediate framestores as memory access times

are too slow for pixel rate operation. The datapath and

addressing schemes required for each framestore are

implemented efficiently using complex EPLDs to allow scan

direction to be controlled by the host system. A double-

buffered arrangement is used for the output framestore, in

order to utilize the available bandwidth more efficiently. A

15MHz clock is sufficient for a single VSP system to

implement both passes in sequence at frame rate, and the

output framestore provides synchronization with the display

process.

The filtering sub-system is implemented using an

arrangement of pipelined arithmetic units, the design of

which is simplified because only positive numbers are

supported. Additionally, the multiplication and division

167

operations required by the filtering algorithm have been

implemented directly using look-up tables.

PLATE 71

168

PLATE 711

169

CHAPTER 8

ANALYSIS OF IMAGE MAPPING SYSTEM

8.1 PERFORMANCE OF IMAGE MAPPING SYSTEM

A real-time CGI system to provide texturing by image

mapping has been built and tested. Aliasing is significantly

reduced using an implementation of the spatially-variant

filtering algorithm developed in Chapter 6. The system is

controlled by a 68000-based host computer providing full

software support for the requirements outlined in Chapters 6

and 7. This includes coefficient derivation from attitude

and position parameters, polynomial scaling and solution of

the bottleneck problem.

The complete system is capable of rendering a 1024 by

1024 source image in full perspective, onto a 512 by 512

display at frame rate. Monochrome images are represented

using 16 grey scales and the output format is compatible

with an existing CGI system described in Chapter 4. The co-

ordinate generation hardware implements 14 floating-point

operations per pixel, giving a performance bandwidth

equivalent to 210 Mflops. The filtering sub-system performs

five operations per output pixel and one operation per

input pixel, a total of 5.5 million operations per frame

(equivalent to 137 MIPS).

These figures indicate the high bandwidth supported by

this architecture, although the system clock frequency of

15MHz allows the use of conventional TTL devices. In

addition, the extensive use of EPLDs provides an efficient

hardware implementation; the complete system occupies a

board area of only 500mm by 250mm.

170

8.2 OBSERVATIONS AND DESCRIPTION OF PLATES

Plate 81 illustrates a typical source image used to

evaluate system performance and generate the following

plates. It contains a chess board pattern, a cross hatch

pattern and two grey scale digitized images captured using a

camera.

Plates Bill and 8IV show a typical view of the source

image in perspective, Plate 8III has the filtering inhibited

and Plate 8IV has the filtering enabled. The effects of the

filtering are clear, particularly over the cross hatched

area and at the edges of the source region. Plate 811 shows

the intermediate image generated after the first pass.

Plates 8V to 8VIII illustrate similar filtered and

non-filtered images of a highly expanded and contracted

source region. These images clearly demonstrate the accuracy

of the perspective qualities of the mapping function. Again

the advantages of the filtering are obvious but some fringes

are noticeable on the cross hatched portion of the expanded

image. For the shrunken image the filtering process is very

successful and aliasing is prevented without excessive

blurring.

Plate 8IX shows an example of extreme magnification,

illustrating an undesirable effect. The jagged edges are not

due to aliasing artifacts, but to the distortion of

individual pixels caused by quantization effects of the two-

pass transformation. This distortion could be reduced by

generating separate mapping co-ordinates for the scan-lines

processed in parallel during the first pass. This could be

achieved using linear interpolation but at best would only

halve the size of the edge steps, and has not been pursued.

171

Plate 8X illustrates an image which is scanned using

an alternative direction because the initial scan direction

created a cusp in the intermediate image. Plate 8X1 shows

the intermediate image containing the cusp and Plate 8XII

shows the distorted image generated from Plate 8X1.

Finally Plates 8XIII and 8XIV are taken using an

exposure time of 1/8 second and clearly demonstrate the

real-time operation of the system.

172

•IHIIIH

1 > Ml KtIlls

PLATE 81 Source Image

I I

PLATE 811 Intermediate Image

173

*tr
PLATE 8III Final Image Without Filtering

PLATE 8IV Final Image With Filtering

174

PLATE V Shrunken Image Without Filtering

PLATE VI Shrunken Image With Filtering

175

/ //

PLATE VII Expanded Image Without Filtering

/ I//

PLATE VIII Expanded Image With Filtering

176

i

PLATE IX Highly Magnified Image

PLATE X Image Scanned Using Alternative Scan Direction

177

PLATE XI Intermediate Image Containing Cusp

PLATE XII Resulting Final Image

178

PLATE XIII 1/8 Second Exposure Showing Motion

PLATE XIV 1/8 Second Exposure Showing Motion

179

CHAPTER 9

CONCLUSIONS

A summary and discussion of the complete research

project is given in this chapter. This is followed by

suggestions for further work and final remarks.

9.1 SUMMARY AND DISCUSSION OF RESULTS

The main objective of this project (as outlined in

Chapter 1) was to assess the usefulness of stream processing

as a means of implementing real-time image generation,

requiring:

1). The development of algorithms appropriate to a Video

Stream Processing (VSP) architecture.

2). The design of the VSP architecture to implement the

algorithms.

Specifically, these objectives have been applied to

two areas of image enhancement; surface in-fill and texture

mapping.

A survey of existing in-fill techniques showed that

most require a high bandwidth between the host system and

the framestore. Alternative methods which provide in-fill by

'post processing' require complex contour generation

techniques and are not compatible with conventional vector

generation hardware.

Consequently a surface in-fill algorithm has been

developed which can be applied to any 8-connected region and

is compatible with proprietary graphics processors. The

algorithm operates in scan-line order using two passes and

can be implemented using a VSP architecture.

Restrictions are imposed on the way in which polygons

180

should intersect the screen boundaries and additional

processing is required to ensure correct operation. This is

incorporated in the graphics software and results show that

the effect on performance is negligible.

The algorithm does not support interlaced output

directly and an additional VSP section was developed to

support this feature. The additional VSP provides an

interlaced output but under certain conditions the original

contour is distorted. In practice, the effects of the

distortion are not readily noticeable and a better solution

has not been pursued.

The algorithm is implemented in hardware using a VSP

architecture capable of processing each pixel in a single

clock cycle. For a 512 by 512 image a clock frequency of

12MHz is required allowing the VSP to be implemented using

conventional TTL devices.

In comparison with conventional in-fill techniques

the VSP system reduces the bandwidth requirements between

the host system and the framestore. For example, a typical

image composed of 20 square regions each 60 by 60 pixels

requires 3600 framestore memory accesses to provide in-fill

explicitly, compared to 240 accesses using the VSP system.

At a frame refresh rate of 25Hz the corresponding bandwidths

are 1.8MHz and 120kHz respectively.

This low bandwidth is within the range of conventional

low-cost GDPs and a image generation system based on this

architecture has been built and tested. The VSP-based system

is capable of rendering an image composed of 25 in-filled

polygons at frame rate and has been successfully

incorporated with a low-cost flight simulation system in

commercial use.

181

The second part of this thesis has described the

application of VSP techniques to provide texturing by means

of image mapping. A survey of current image mapping

techniques indicates that a two-pass spatial transformation

is suitable for a VSP implementation but that existing

filtering techniques could be improved to provide more

efficient anti-aliasing.

A filtering algorithm has been developed allowing

spatially-variant filtering to be implemented directly as

part of the transformation process. Two VSP systems are

required to implement the filtering process: The first VSP

provides prefiltering of the incoming pixel stream by

generating a linear summed-area table for each scan-line.

The second VSP uses the prefiltered data to implement the

spatially-variant filter providing single-cycle per output

pixel performance. The input and output pixel streams are

processed separately allowing differing resolutions to be

supported. This feature is exploited by the hardware

implementation described in Chapter 7 which maps a 1024 by

1024 pixel source image to a 512 by 512 pixel display.

Mapping co-ordinates are generated at pixel rate to

provide real-time operation and an efficient hardware

implementation has been developed using a pipelined

architecture.

A fundamental problem associated with two-pass

transformation is the bottleneck problem, which must be

solved at frame rate to select the optimum scanning scheme

for the source framestore. An efficient scan selection

algorithm has been developed which uses the attitude

parameters to select an initial scan direction and performs

tests to avoid an additional problem caused by the occurance

182

of a cusp in the intermediate image. This algorithm is

implemented at frame rate by the host system software and

additional hardware is not required.

However, results show that in certain circumstances

none of the four scanning schemes prevent loss of

information and minor distortion of the image can occur. In

practice, these conditions are rare and the corresponding

distortion is insignificant; a possible improvement is

suggested in the next section.

A real-time implementation of the image mapping system

has been built and tested using simulated attitude and

position parameters. An important advantage of the VSP

architecture is the efficient hardware implementation, this

is enhanced by the extensive use of PLDs and the complete

system occupies a board area of only 250mm by 500mm.

The most important advantage of the VSP architecture

is the high performance provided by the pipelined

architecture. The circuitry operates at 15MHz and is

implemented using conventional TTL type devices. The

performance of the co-ordinate generation is equivalent to

210Mflops, and the filtering system effectively operates at

137 MIPS.

Although the system has not been integrated with an

existing image generation system, results indicate that

image quality is sufficient to give the illusion of motion

over the surface region. The increase in image fidelity

resulting from the filtering is clear, and a particular

advantage of the filtering algorithm is the removal of

aliasing artifacts from the edges of the source region.

The main limitation of the image mapping system is the

jagged appearance of the image at positions of high

183

magnification, occurring when the viewpoint is positioned

close to the ground. This places an upper limit on the

feature size which should be represented by a single pixel

in the source region.

9.2 FURTHER RESEARCH

The main disadvantage of the in-fill system is the

inability to process overlapping regions. Extensive use of

the in-fill system indicate that four bit planes places an

upper limit on image fidelity of about 30 polygons. This

could be improved by increasing the number of bit planes,

but as image complexity increases the advantage of automatic

in-fill is less obvious. This is because the average screen

size of each polygon will fall and the overheads of the in-

fill system become comparable to the extra bandwidth

reguired to provide in-fill explicitly. Since the project

was completed, advances in GDP design (e.g.

[Texas?][AMDQ87][Hita84][ThSe89]) overcome the bandwidth

problem using VLSI technology. Conseguently, further work on

this project is unlikely.

Conversely, apart from the obvious extensions to

support colour and integrate with the flight simulation

system, the image mapping system offers considerable

potential. Several possibilities exist for further research

and some suggestions are given below.

1). Because of the fixed number of product terms

implemented by currently available EPLDs it is not

possible to minimize the arithmetic units. A more

efficient implementation, therefore, could be provided

if other forms of ASIC devices were used, such as

programmable [Xili87] or dedicated gate arrays.

184

2). A better solution to the bottleneck problem may be

found by allowing the order of the passes to be

interchanged, therefore increasing the number of

scanning options to eight. This would require a more

complex output framestore and additional selection

procedures, but could offer a small improvement in

image fidelity.

3). The image mapping system has been developed to map

static images which have been loaded off-line. The

addition of a double buffered source framestore would

allow changing images, also generated in real-time, to

be mapped onto the viewing screen. This dynamic

texturing could be used to represent such features as

waves on a sea or lake or windswept crops.

Alternatively, a finite number of separate images

could be loaded off-line, allowing different regions

to be displayed according to the position of the

viewer. This would be particularly useful for a system

incorporating several image mapping systems.

4). The image mapping system has demonstrated the

application of a VSP architecture to two-dimensional

spatial transformations. A more ambitious objective

would be to apply the VSP architecture and filtering

process to more complex separable transformations, for

example, the three-dimensional image manipulation

algorithm proposed by Robertson [Robe87].

185

9.3 CONCLUSIONS AND FINAL REMARKS

This thesis has promoted the use of stream processing

techniques, (hitherto used only for simple effects), as a

method to provide real-time image generation. Two specific

applications have been evaluated, surface in-fill and image

mapping.

The surface in-fill system overcomes bandwidth

limitations between the host system and output framestore

but processing restrictions make it less attractive as image

complexity increases. It has been demonstrated, as a

practical method, to provide an efficient image enhancement

technique for images containing less than 30 polygons.

The image mapping system provides an efficient

implementation of perspective spatial transforms in real-

time. The VSP architecture supports a spatially-variant

filtering algorithm providing effective anti-aliasing,

particularly on shrunken images. The main disadvantage is

the jagged effect evident on highly magnified images,

although this is acceptable if the feature size is small. As

outlined in item 3 of the previous section, inclusion of a

double buffered source framestore allows the mapping of an

arbitrary video input. Although originally intended for a

flight simulation application this feature makes the system

ideally suited to broader digital video effects

applications.

An underlying advantage of both VSP applications is

the efficient hardware solution, arising from the extensive

use of pipelining techniques. VSP architectures exploit the

scan-line order of raster scan displays and it is probable

186

that other image enhancement features could be implemented

using this approach. As it is likely that raster scan

techniques will continue to dominate display systems for

many years, the author hopes that research into VSP

techniques will be continued.

187

REFERENCES

[AcWeSl]

[Agat86]

[Alia84]

[Alte88]

[AlZa85]

[AlZa86]

[AMDM83]

[AMDP87]

[AMDQ87]

[Ampe88]

[AtGh88]

[Atki88]

[Ayre74]

[BlNe76]

[Bolt79]

Ackland B.D. and Weste N.H. (1981): "The Edge Flag
Algorithm - A Fill Method For Raster Scan
Displays", IEEE Trans, on Computers, c-30, pp 41-
48.

Agate M., Finch H.R., Garel A.A., Grimsdale R.L.,
Lister P.F. and Simmonds A.C. (1986): "A Multiple
Application Graphics Integrated Circuit - MAGIC",
Eurographics' 86, pp 67-77.

Alia G., Martinelli E. and Tani N. (1984): "An
Approach To The Design Of Hardware Curve
Generators For Graphic Displays", Eurographics
'84, Amsterdam, Holland, pp 377-386.

(1988): "User Configurable Logic Data Book",
Altera Corporation, California, USA.

Allerton D.J, and Zaluska E.J. (1985): "Computer
Image Generation In Real Time", Int. Conf.
electronic Displays, London, UK.

Allerton D.J. and Zaluska E.J. (1986): "A Multi-
processor Approach To Image Generation", lEE Int.
Conf. Simulators, Warwick, UK.

(1983): "Bipolar Microprocessor Logic And
Interface (1983 Data Book)", AMD Inc., California,
USA.

(1987): "Programmable Logic Handbook/Databook
1987", AMD Inc., California, USA. pp 2-35 - 2-42.

(1987): "Quad Pixel Dataflow Manager (QPDM)
Am95C60", Technical Manual (Revision B), AMD Inc.,
California, USA.

(1988): "ADO The Ultimate In Digital Special
Effects", Technical Brochure, Ampex Corporation
Video Systems Division, California, USA.

Atkin P. and Ghee S. (1988): "A Transputer Based
Multi-User Flight Simulator", Technical note 36,
Inmos Ltd., Bristol, UK.

Atkin P. and Packer J. (1988): "High Performance
Graphics With The IMS T800", Technical note 37,
Inmos Ltd., Bristol, UK.

Ayres F. (1974):
York, USA.

"Matrices", McGraw-Hill, New

Blinn J.F.and Newell M.E. (1976): "Texture And
Reflection In Computer Generated Images", Comm.
ACM, 19-10, pp 542-547.

Bolton M.J.P. (1979): "The Production Of Surface
Textures In Real-Time Computer Generated Imagery",
D.Phil. Thesis, University Of Sussex, UK.

188

[Brac87]

[Bres65]

[BrFe79]

[BrSE87]

[BuGo87]

[Burt81]

[CaDe79]

[Carp82]

[CaSmSO]

[Catm74]

[CaTo69]

[Char86]

[Clar73]

[ClarSO]

[Clar82]

Braccini C. and Marino G. (1987): "Fast
Geometrical Manipulations Of Digital Images",
Computer Graphics and Image Processing, 13, pp
127-141.

Bresenham J.E. (1965): "Algorithm For Computer
Control Of A Digital Plotter", IBM System Journal,
4,pp 25-30.

Brassel K.E. and Fegeas R. (1979): "An Algorithm
For Shading Regions On Vector Display Devices",
Computer Graphics (Proc. SIGGRAPH '79), 13, pp
126-133.

(1987): Broadcast Systems Engineering, October
1987 Supplement, Link House Publications Ltd.,
Croydon, UK, pp 3-15.

Bursky D. and Goodenough F.(1987): Feature
Application Specific ICs, Electronic Design, 35-38
(April), pp 13-43.

Burt P.J. (1981): "Fast Filter Transforms For
Image Processing", Computer Graphics And Image
Processing, 16, pp 20-51.

Caspers B.E. and Denes P.B. (1979): "An
Interactive Terminal For The Design Of
Advertisements", Bell Systems Technical Journal,
pp 2189-2216.

Carpenter L., Fournier A. and Fussell D. (1982):
"Computer Rendering Of Stochastic Models",
Communications Of The ACM, 25-7, pp 371-384.

Catmul E. and Smith A.R. (1980): "3D
Transformations Of Images In Scan-Line Order",
Proc. SIGGRAPH '80, Published as Computer
Graphics, 14-3, pp 279-286.

Catmull E. (1974): "A Subdivision Algorithm For
Computer Display Of Curved Surfaces", PhD Thesis,
University of Utah, USA.

Carnt P.S. and Townsend G.B. (1969): "Colour
Telvision, Volume 2", Iliffe Books Ltd., London,
UK.

Charot F. and Rousee F. (1986): "CSI: A Processor
For Image Synthesis", Eurographics'86, pp 79-91.

Clare C.R. (1973): "Designing Logic Systems Using
State Machines", McGraw-Hill, New York, USA.

Clark J.H. (1980): "Structuring A VLSI System
Architecture", LAMBDA, 1-2, pp 25-30.

Clark J.H. (1982): "The Geometry Engine: A Vlsi
Geometry System For Graphics", Computer Graphics,
16-3, pp 349-355.

189

[Crow77]

[Crow84]

[CySe86]

[CySe89]

[DTIC84]

[Dubo84]

[DUSS78]

[ElWe87]

[Evein85]

[Evem87]

[Eveiti89]

[Fant86]

[FanL86]

[FeSk84]

[FeSk85]

Crow F.C. (1977): "The Aliasing Problem In
Computer Generated Shaded Images", Comm. ACM, 20,
pp 799-805.

Crow F.C. (1984): "Summed-Area Tables For Texture
Mapping", Computer Graphics (Proc. SIGGRAPH '84),
18-3, pp 207-212.

(1986): "CMOS Data Book",
San Jose, USA.

Cypress Semiconductor,

(1989): "CMOS BiCMOS Data Book", Cypress
Semiconductor, California, USA, pp 4-33 - 4-51.

(1984): "Specification Of Television Standards For
625-Line System Transmission In The United
Kingdom", Radio Regulatory Division, Department Of
Trade And Industry, London, UK.

Dubois E. (1984): "The Sampling And Reconstruction
Of Time-Varying Imagery", Rapport technique de
I'INRS-Telecommunications 83-84, Quebec, Canada.

Dungan W., Stenger A. and Sutty G. (1978):
"Texture Tile Considerations For Raster Graphics",
Computer Graphics (Proc, SIGGRAPH '78), 12-3, pp
130-134.

Eldon J. and Wegner R. (1987): "Using The TMC2301
Image Resampling Sequencer", TP-37, TRW Inc.,
California, USA.

Evemy J.D. (1985)
MSc Dissertation,
Southampton, UK.

"Real Time Computer Graphics",
University Of Southampton,

Evemy J.D. (1987): "Real-Time Computer Generated
Imagery Using Stream Processing Techniques",
Transfer Mini-Thesis, University Of Southampton,
Southampton, UK.

Evemy J.D. (1989): "Real-Time Image Mapping
System", Reference Manual, University Of
Southampton, Southampton, UK.

Fant K.M. (1986): "A Nonaliasing, Real-Time
Spatial Transform Technique", IEEE Computer
Graphics And Applications, January, pp 71-80.

Fant K.M. (1986): Letters to the Editor, IEEE
Computer Graphics And Applications, July, pp 3-8.

Ferrari L.A. and Sklansky J. (1984): "A Fast
Recursive Algorithm For Binary-Valued Two-
Dimensional Filters", Computer Vision, Graphics
And Image Processing, 26-3, pp 292-302.

Ferrari L.A. and Sklansky J. (1985): "A Note On
Duhamel Integrals And Running Average Filters",
Computer Vision, Graphics And Image Processing,
29, pp 358-360.

190

[FeLCSO]

[Finc88]

[FoVa84]

[FuchSl]

[Fuch82]

[Fuss82]

[GaPC82]

[Gard85]

[Gosl80]

[Gour71]

[GrHe86]

[Grim?9]

Feibush E.A., Levoy M. and Cook R.L. (1980):
"Synthetic Texturing Using Digital Filters",
Computer Graphics (Proc.SIGGRAPH '80), 14-3 pp
294-301.

Finch H.R., Agate M., Garel A.A., Lister P.F. and
Grimsdale R.L. (1988): "A Multiple Application
Graphics Integrated Circuit - MAGIC II", Advances
in Computer Graphics Hardware II, Springer-Verlag.

Foley J.D. and Van Dam A. (1984): "Fundamentals Of
Interactive Computer Graphics". Addison Wesley,
Reading, USA.

Fuchs H. and Poulton J. (1981): "Pixel-Planes: A
VLSI-Oriented Design For A Raster Graphics
Engine", VLSI design. Third quarter, pp 20-28.

Fuchs H., Poulton J., Paeth A. and Bell A. (1981):
"Developing Pixel-Planes, A Smart Memory-Based
Raster Graphics System", Proc. of the Conf. on
Advanced Research in VLSI 1982, pp 137-146.

Fussell D. (1982): "A VLSI-Oriented Architecture
For Real-Time Raster Display Of Shaded Polygons",
Proc. of Graphics Interface '82, pp 373-380.

Gagnet M., Perny D. and Coueignoux
"Perspective Mapping Of Planar
Eurographics '82, pp 52-71.

P. (1982):
Textures",

Gardner G.Y. (1985): "Visual Simulation Of
Clouds", Proc. ACM SIGGRAPH '85, 19-3, pp 297-303.

Gosling J.B. (1980): "Design Of Arithmetic Units
For Digital Computers", The Macmillan Press Ltd.,
London, UK.

Gouraud H.
Surfaces",
628.

(1971): "Continuous Shading Of Curved
IEEE Trans. Computers, c-20-6, pp 623-

[GuptSl]

[HaCh85]

Greene N. and Heckbert P.S (1986): "Creating
Raster Omnimax Images From Multiple Perspective
Views Using The Elliptical Weighted Average
Filter", IEEE CG&A 6-6 pp 21-27.

Grimsdale R.L., Hadjiaslanis A.A. and Willis P.J.
(1979): "Zone Management Processor: A Module For
Generating Surfaces In Raster-Scan Colour
Displays", Computers and Digital Techniques, 2-1,
pp 20-25.

Gupta S., Sproull R.F. and Sutherland I.E. (1981):
"A VLSI Architecture For Updating Raster-Scan
Displays", Computer Graphics, 15-3, pp 333-340.

Harary I. and Chlamtac M. (1985): "Filling
Algorithm (SXPW) Using Contour For Raster Scan",
Proc. 14th Conv. of Electrical and Electronic
Engineers in Israel, pp 4.4.5/1-4.

191

[Haln87]

[Haln88]

[Hall87]

[HaRa84]

[Harr87]

[Heck86]

[Hita84]

[HitM88]

[Hours3]

[IDTM85]

[InmG89]

[InmMS?]

[Inmo89]

[KeRiVS]

[LaMR83]

[LeeS76]

(1987): "Hardware Feature: Digital Video Effects",
Broadcast Hardware International, The Hardware
Magazine Company Ltd., Reading, UK, August 1987,
pp 15-38.

(1988): "Hardware Special Feature: Television
Graphics And Paint Systems", Broadcast Hardware
International, The Hardware Magazine Company Ltd.,
Maidenhead, UK, October 1988, pp 35-76.

Halls G.A. (1987): "Video Post-Processing System",
Undergraduate Project Report, Dept. of Electronics
and Computer Science, University of Southampton.

Hastings C. and Rajpat S. (1984): "Improving Your
Memory With 'S700-Family MOS Drivers", AN-117,
Systems Designs Handbook, Monolithic Memories,
Santa Clara, USA, pp 10.3 - 10-11.

Harriman G. (1987): "Notes On Graphics Support And
Performance Improvements On The IMS T800",
Technical note 26, Inmos Ltd., Bristol, UK.

Heckbert P.S. (1986): "Survey Of Texture Mapping",
IEEE CG&A, November, pp 56-67.

Hitachi (1984): "Hitachi HD63484 ATRTC Advanced
CRT Controller User's Manual", Hitachi (UK) Ltd.,
Harrow, Uk.

(1988): "Hitachi IC Memory Data
(UK) Ltd., Harrow, Uk.

Book", Hitachi

Hourcade J.C. and Nicolas A. (1983): "Inverse
Perspective Mapping In Scanline Order Onto Non-
Planar Quadrilaterals", Eurographics '83, Zagreb,
Jugoslavija, pp 309-319.

(1985): "IDT7216L/IDT7217L 16 X 16 Bit Parallel
CMOS Multiplier Data Sheet", Integrated Device
Technology Inc., California, USA.

(1989): "The Graphics Databook",
Inmos Ltd., Bristol, UK.

First edition.

(1987): "IMS1433 CMOS High Performance 2k X 8
Static RAM Data Sheet", Inmos Ltd., Bristol, UK.

(1989): "The Transputer Databook", First edition,
Inmos Ltd., Bristol, UK.

Kernighan B.W. and Ritchie D.M. (1978): "The C
Programming Language", Prentice-Hall Inc., New
Jersey, USA.

Lane J.M., Magedson R., and Rarick M. (1983): "An
Algorithm For Filling Regions On Graphics Display
Devices", ACM Trans. Graphics, July pp 192-196.

Lee S.C. (1976): "Digital Circuits And Logic
Design", Prentice-Hall, New Jersey, USA.

192

[Lieb78] Lieberman K. (1978): "How To Colour In A Colouring
Book", Proc. SIGGRAPH '78, IEEE CG&A, 12, pp 111-
116.

[LokY83] Lok y.F. (1983): "A Real-Time Computer Generated
Imagery System For Flight Simulators", D.Phil.
Thesis, University of Sussex, UK.

[Lope87] Lopez J.M. (1987): "Real-Time Texture Synthesis In
Computer Generated Imagery", D.Phil. Thesis,
University of Sussex, UK.

[Mand82] Mandelbrot B.B. (1982); "The Fractal Geometry Of
Nature", Freeman, San Francisco, USA.

[Mano84] Mano M.M. (1984): "Digital Design", Prentice-Hall
Inc., New Jersey, USA.

[Math75] Matherat p, (1975): "A Chip For Low-Cost Raster-
Scan Graphic Display", Proc. SIGGRAPH '75, USA, pp
181-186.

[MoMe83] (1983): "PAL (Programmable Array Logic) Handbook",
Monolithic Memories, Santa Clara, USA.

[MoMe86] (1986): "PAL/PLE Device - Programmable Logic Array
Handbook", Monolithic Memories, Santa Clara, USA.

[M0T083] (1983): "16-Bit Microprocessors Data Manual",
Revision September 1983 - B012B, Motorola
(Schweiz) AG, Schlieren, Switzerland.

[M0X087] Moxon J. (1987): "Visuals For All", Flight
International, 131, pp 39-43.

[Mits82] (1982): "Memory Dvelopement Approaches", LSI Data
Book, Mitsubishi Electric, Tokyo, Japan, pp 15-5 -
15-85.

[Mull84] (1984): "Mullard Technical Handbook 4 - FAST TTL
Digital ICs", Mullard, London, UK.

[NECM87] (1987): "Data Book Memory Products 1987", NEC
Electronics (Europe) GmbH, Dusseldorf, FDR.

[Oppe83] Oppenheim A.V., Willsky A.S. and Young I.T (1983):
"Signals And Systems", Prentice-Hall, New Jersey,
USA.

[Paet86] Paeth A.W (1986): "A Fast Algorithm For General
Raster Rotation", Graphics Interface '86 pp77-81.

[QETN88] (1988): "Quantel Encore Technical Notes", Quantel,
California, USA.

[Page83] Page I. (1983): "DisArray: A 16 X 16 RasterOp
Processor", Eurographics'83, Zagreb, Jugoslavija,
pp 367-381.

[Pavl79] Pavlidis T. (1979): "Filling Algorithms For Raster
Graphics", Computer Graphics And Image Processing,
10, pp 126-141.

193

[PavlSl] Pavlidis T. (1981)): "Contour Filling In Raster
Graphics", Computer Graphics, August, pp 29-36.

[PEEL89] (1989): "PEEL 18CV8 CMOS Programmable Electrically
Erasable Logic Device Data Sheet", International
CMOS Technology Inc., California, USA.

[Ples87] (1987): "PDSP16401 2-Dimensional Edge Detector
Data Sheet", Plessey Semiconductors Ltd., Swindon,
UK.

[Pric84] Price S.M. (1984): "A Visual System For A Flight
Simulator Using Computer-Generated Images", D.Phil
Thesis, University Of Sussex.

[RCAA88] (1988): "Advanced CMOS Logic ICs Data Book", SSD-
283A, GE Corporation, New Jersey, USA.

[Revi85] Reviczky J. (1985): "Filling Algorithms In
Computer Graphics", Tanulmanyok, Magyar Tudomanyos
Akaedmia, Budapest, Hungary.

[RhSe88] Rhodes R.L. and Serra L. (1988): "A Scan
Conversion System For Real-Time Graphics", Proc.
Int. Conf. on Parallel Processing for Computer
Vision and Display, Leeds, UK.

[RiWS85] Richards M. and Whitby-Strevens C, (1985): "BCPL
The Language And Its Compiler", Cambridge
University Press, Cambridge, UK.

[Robe87] Robertson P.K. (1987): "Fast Perspective Views Of
Images Using One-Dimensional Operations", IEEE
Computer Graphics And Applications, February, pp
47-56.

[RoKa76] Rosenfield A. and Kak A.C. (1976): "Digital
Picture Processing", Academic Press, New York,
USA.

[Roge76] Rogers D.E. and Adams J.A. (1976): "Mathematical
Elaments For Computer Graphics", McGraw-Hill, New
York, USA.

[Roge85] Rogers D.E. (1985): "Procedural Elements For
Computer Graphics", McGraw-Hill, New York, USA.

[Rose70] Rosenfield A. (1970): "Connectivity In Digital
Pictures", Jounal ACM, 17, pp 146-160.

[Roth82] Roth S.D (1982): "Ray Casting For Modelling
Solids", Computer Graphics And Image Processing,
18-2, pp 109-144.

[Scha78] Schachter B.J. (1978): "Decomposition Of Polygons
Into Convex Sets", IEEE Trans. Computers C-27, pp
1078-1082.

[Scha81] Schachter B.J. (1981): "Computer Image Generation
For Flight Simulation", IEEE Computer Graphics and
Applications, October, pp 29-68.

194

[Scha83] Schachter B.J. (1983): "Computer Image
Generation", Wiley, New York, USA.

[SerrSV] Serra L. (1987): "A Multiprocessor System For
Real-Time Image Generation", PhD Thesis,
University of Bradford, UK.

[ShanSO] Shani U. (1980): "Filling Regions In Binary Raster
Images - A Graph Theoretic Approach", Proc.
SIGGRAPH '80, pp 321-327.

[Shan82] Shantz M.(1982): "Two-Pass Warp Algorithm", Proc.
Soc. Photo Optical Instrument Engineers, pp 160-
164.

[Smit79] Smith A.R. (1979): "Tint Fill", Computer Graphics
(Proc. SOGGRAPH '79), 13 pp 276-283.

[Spie71] Spiegel M.R. (1971): "Calculus Of Finite
Differences And Differential Equations", McGraw-
Hill, New York, USA.

[SpNe79] Sproull R. F. and Newman W. M. (1979):
"Principles Of Interactive computer Graphics",
McGraw-Hill, New York, USA.

[Suth74] Sutherland I.E., Sproull R.F. and Schumacker R.A.
(1974): "A Characterization Of Ten Hidden-Surface
Algorithms", Computing Surveys, 6-1, pp 1-55.

[Tene80] Tenebaum J.M. (1980): "Video Stream Processors: A
cost-Effective Computational Architecture For
Image Processing", Project 7864, SRI
International, California, USA.

[ThSe89] (1989): "Graphic Processors Databook", First
edition, DBGRAPHICST/1, SGS-Thomson Micro-
electronics, Milano, Italy.

[Texa81] (1981): "The Bipolar Microcomputer Comonents Data
Book For Design Engineers", Texas Instruents
Incorportated, Dallas, USA.

[Texa82] (1982): "The TTL Data Book For Design Engineers",
Texas Instruments (Deutschland) GmBH, Freising,
FDR.

[Texa84] (1984): "MOS LSI TMS4416 DRAM Data Sheet", Texas
Instruments Incorporated. Dallas USA.

[Texa87] (1987): "TMS 34010 Users Guide", Texas Instruments
Ltd., Bedford, UK.

[TRWS81] (1981): "TDC1005J And TDC1006J Shift Register Data
Sheet", TRW LSI Products, Calafornia, USA.

[TRWI87] (1987): "TMC2301 CMOS Image Resampling Sequencer",
Data Sheet, TRW Inc., California, USA.

[Wals80] Walsby A.M. (1980): "Fast Colour Paster Graphics
Using An Array Processor", Eurographics 80.

195

[Warw87]

[West83]

[Wests?]

[Will83]

[Wils72]

[WiPrBO]

[Xili87]

[YanJ85]

[Zyda88]

Warwick G. (1987); "Towards Total Simulation",
Flight International, 131, pp 42-52.

Westmore R.J. (1983): "Real-Time Texture Synthesis
In Computer Generated Imagery", D.Phil. Thesis,
University of Sussex, UK, pp 29-42.

Westmore R.J. (1987): "Real-Time Shaded Colour
Polygon Generation System", IEEE Proc. 134-E-l, pp
31-38.

Williams L. (1983): "Pyramidal Parametrics",
Computer Graphics (Proc. SIGGRAPH '83), 17-3, pp
1-11.

Wilson R.J. (1972): "Introduction To Graph
Theory", Longman Scientific and Technical, Harlow,
UK.

Winkel D. and Prosser F. (1980): "The Art Of
Digital Design", Prentice-Hall Inc., New Jersey,
USA.

(1987): "The Programmable Gate Array Design
Handbook", First edition, Xilinix Inc.,
California, USA.

Yan J. (1985): "Advances In Computer-Generated
Imagery For Flight Simulation", IEEE Computer
Graphics and Applications, 5-8, pp 37-51.

Zyda M.J., McGhee R.B., Ross R.S., Smith D.B. and
Streyle D.G. (1988): "Flight Simulators For Under
$100,000", IEEE computer Graphics and
Applications, January, pp 19-27.

196

PUBLICATIONS

Paper 1 : "Real-Time Scan-Line In-Fill"

Refereed paper presented at Eurographics '87 in August

at Amsterdam, Holland, and published as proceedings, pp 209-

220.

Paper 2 ; "Real-Time Computer Generated Animation"

Presented at ISBT '87 (International Symposium on

Broadcasting Technology) in September at Beijing, People's

Republic of China, and published as proceedings, pp 581-590.

Paper 3 : "Video-Rate. Spatially Variant

Filtering Technique Using Stream Processing Architecture"

Refereed paper published in lEE Electronics Letters,

Volume 24, Number 25, (December 1988) pp 1580-1581.

Paper 4 ; "A Stream Processing Architecture For Real-Time

Implementation Of Perspective Spatial Transformations"

Refereed paper presented at the lEE Third

International Conference on Image Processing and its

Applications in July 1989 at Warwick, England, and published

as proceedings, pp 482-486.

APPENDIX I

This section contains an example PLPL database written

by the author. The database is defined as an ASCII file

exactly in the format given in this listing. This particular

listing supports the ICT PEEL18CV8 EPLD.

I - 1

"Database for PEEL 18CV8 jde 9-2-88

Pin Types:
CLOCK = dedicated clock
CLK_INPUT = clock and input
INPUT = input
OUTPUT = output
BREG = buried registers
10 = input or output; i.e., with feedback
VCC,GND = power,ground pins

Output Types:
0 = programmable
1 = active LOW
2 = active HIGH

The I/O macrocell assignments are as follows :-
A = Active low or active high output
B = Registered or combinatorial output
C = Combinatorial or registered feedback
D = I/O pin or logic array feedback

It

12696 20 20 36 "<# of fuses>
<# of pins>
<physical # of pins>
<§ of inputs to AND array>"

1 CLK_INPUT 0 1 2 0 "pin #, pin type,
true and complement array input line"

0 0 0 0
combinatorial -1
@ "@ symbol used to terminate definition for this pin"

2 INPUT 4 5 2 0
0 0 0 0
combinatorial -1 @

3 INPUT 8 9 2 0
0 0 0 0
combinatorial -1

4 INPUT 12 13 2 0
0 0 0 0
combinatorial -1 @

5 INPUT 16 17 2 0
0 0 0 0
§ combinatorial -1 @

6 INPUT 20 21 2 0
0 0 0 0
combinatorial -1 @

7 INPUT 24 25 2 0
0 0 0 0
combinatorial -1

8 INPUT 28 29 2 0
0 0 0 0
combinatorial -1

1 - 2

9 INPUT 32 33 2 0
0 0 0 0
combinatorial -1

10 GND @
11 INPUT 2 3 2 0

0 0 0 0
combinatorial -1
§

12 10 34 35 0 0 "xl x2 x3 x4 (as for other pins)
<feedback source> <output type>"

"Feedback source indicates where feedback is being taken:
e.g.; in a registered part, feeback can come from
HIGH or LOW Q output of the register.
Feedback Source: 0 = HIGH FDBK

: 1 = LOW_FDBK
: 2 = NO_FDBK
: 3 = CORRECT_FDBK

II

8 2016 "# of product terms (PT),
starting at link address 2016"

1 2556 1 2592 1 2628 "# of enable PTs starting at 2556
of sync preset PTs at 2592
of async reset PTs at 2628

— > architecture fuses marked by # with choices marked by +
e.g: combinatorial/registered fuse for I_0 pin 12 is at

2693 and combinatorial mode is selected by resetting
the fuse to 0 and registered mode is selected by
setting the fuse to 1 in the JEDEC map.
If no feature is specified, then the first (leftmost)
option is selected as default"

"A" # ACTIVE_HIGH 2692 0 + ACTIVE_LOW 2692 1
"B" # COM 2693 0 + REG 2693 1
"C" # FEED_COM 2 694 1 + FEED_REG 2694 0
"D" # DEFAULT_D 2695 0 + FEED_PIN 2 695 1

13 10 30 31 0 0
8 1728
1 2520 1 2592 1 2628

ACTIVE_HIGH 2688 0 + ACTIVE_LOW 2 688 1
COM 2689 0 + REG 2689 1
FEED_COM 2690 1 + FEED_REG 2690 0
DEFAULT_D 2691 0 + FEED_PIN 2691 1 @

14 10 26 27 0 0
8 1440
1 2484 1 2592 1 2628

ACTIVE_HIGH 2684 0 + ACTIVE_LOW 2684 1
COM 2685 0 + REG 2685 1
FEED_COM 2 686 1 + FEED_REG 268 6 0
DEFAULT_D 2687 0 + FEED_PIN 2687 1
@

1 - 3

15 10 22 23 0 0
8 1152
1 2448 1 2592 1 2628

ACTIVE_HIGH 2680 0 + ACTIVE_LOW 2680 1
COM 2681 0 + REG 2681 1
FEED_COM 2682 1 + FEED_REG 2682 0
DEFAULT D 2683 0 + FEED PIN 2683 1 @

16 10 18 19 0 0
8 864
1 2412 1 2592 1 2628

ACTIVE_HIGH 2676 0 + ACTIVE_LOW 2676 1
COM 2677 0 + REG 2677 1
FEED_COM 2678 1 + FEED_REG 2678 0
DEFAULT D 2679 0 + FEED PIN 2679 1 @

17 10 14 15 0 0
8 576
1 2376 1 2592 1 2628

ACTIVE_HIGH 2672 0 + ACTIVE_LOW 2672 1
COM 2673 0 + REG 2673 1
FEED_COM 2674 1 + FEED_REG 2674 0
DEFAULT D 2675 0 + FEED PIN 2675 1
@

18 10 10 11 0 0
8 288
1 2340 1 2592 1 2628

ACTIVE_HIGH 2668 0 + ACTIVE_LOW 2 668 1
COM 2669 0 + REG 2669 1
FEED_COM 2670 1 + FEED_REG 2670 0
DEFAULT D 2671 0 + FEED PIN 2671 1

19 10 6 7 0 0
8 0
1 2304 1 2592 1 2628

ACTIVE_HIGH 2664 0 + ACTIVE_L0W 2664 1
COM 2665 0 + REG 2665 1
FEED_C0M 2666 1 + FEED_REG 2666 0
DEFAULT D 2667 0 + FEED PIN 2667 1

20 VCC @
$

APPENDIX II

This section contains the PALASM source file for the

MP main processor PAL part of the in-fill VSP. For brevity

simulation vectors are not included.

II - 1

PALI 6R8
MP1
MAIN PROCESSOR
SOUTHAMPT® UNIVERSITY
CLK NC LVB ML1 ML2 LPA LPB NC PC (2®
OE PD R1 R2 FL /S3 /S2 /SI /SO VOC

JEFF EVEMY

SO:=/S3*/S2*S0*/R1•/LVB*/ML1
+/S2*S1*/S0*/LVB*/R1*/ML1
+S3*S2*/S1 */S0*/LVB*/R1 */l4L1
+/S3*/S2*S0*/LVB*ML1
+S3*/S2*S1 */S0*/LVB*I4L1
+S3*/S2*/S1*R1*/LVB*/ML1
+/S3*S2*/S1*/SO*/LVB
+S3*/S2*S1•SO*/LVB

SI :=/S3*/S2*/S0*/LVB*/ML1
+S3*S2*/S1 */S0*/LVB*/R1 */l4L1
+S3*/S2*/S1•/LVB*/R1*/ML1
+S3*/S2*/S1•/LVB*ML1
+/S3*S2*S1*/LVB
+/S3*/S2*S1 */S0*ML1 */i4L2*/LVB

STATES 1 AND 3 R1 AND ML1 LOW
STATES A AND 2 R1 AND ML1 LOW
STATE C R1 AND ML1 LOW
STATES 1 AND 3 ML1 HIGH
STATE A ML1 HIGH
STATES 8 AND 9 R1 HIGH AND ML1
STATE 4
STATE B

STATES 0 AND 2 ML1 LOW
STATE C R1 AND ML1 LOW
STATES 8 AND 9 R1 AND ML1 LOW
STATES 8 AND 9 ML1 HIGH
STATES 6 AND 7
STATE 2 ML1 HIGH AND ML2 LOW

LOW

+/S3*S2*/S1*/S0*/LVB ;STATE 4

S2:=S3*/S1*/LVB*ML1 ;STATES 8 9 C AND D ML1 HIGH
+/S2*S1 */S0*/LVB%1 ;STATES 2 AND A ML1 HIGH
+/S3*/S2*S0*/LVB*ML1 ;STATES 1 AND 3 ML1 HIGH
+/S3*S2*S1*/LVB*/R1*/ML1 ;STATES 6 AND 7 R1 AND ML1 LOW
+/S3*/S2*/S0*/LVB*/R1*/ML1 ;STATES 0 AND 2 R1 AND ML1 LOW
+S2*/S1*SO*/LVB ;STATES 5 AND D
+S3*/S2*S1*SO*/LVB ;STATE B
+S3*S2*S1*/SO*/LVB ;STATE E

S3: =/S3*/S2*S0*/LVB*R1 */l«IL1 ;STATES 1 AND 3 R1 HIGH AND ML1 LOW
+S3*S2*/S1 */S0*/LVB*Rl*/ML1
+S3*/S2*S1 */S0*/LVB*R1 */l4L1
+S3*S2*/S1*/LVB*ML1

;STATE C R1 HIGH AND ML1 LOW
; STATE A R1 HIGH AND ML1 LOW
;STATES C AND D ML1 HIGH

+/S3*/S2*S1*/S0*ML1*/ML2*/LVB;STATE 2 ML1 HIGH AND ML2 LOW
+S3*/S2*/S1*/LVB
+/S3*S2*/S1*/SO*/LVB
+S3*/S2*S1*SO*/LVB

/FL:=/S2*S1 •SO
+/S3*/S1*S0
+S3*S2*/S0
+/S3*/S2*/S1*/S0
+/S3*S2*S1*/S0
+S3*/S2*/S1*/ML1
+/S3*/S2*S1*/S0*/ML1
+/S3*/S2*S1*/S0*ML2

/R2:=LPA*LPB

/R1:=/R2

/PD:=/PC

;STATES 8 AND 9
;STATE 4
;STATE B

;STATES 3 AND B
; STATES 1 AND 5
;STATES E AND C
;STATE 0
;STATE 6
;STATES 8 AND 9 ML1 LOW
;STATE 2 ML1 LOW
;STATE 2 ML2 HIGH

;R2 LOW IF LPA AND LPB HIGH

;R1 = R2 DELAYED BY 1

;PD = PC DELAYED BY 1

APPENDIX III

The complete circuit of the surface in-fill CGI system

is given in this appendix. Three separate diagrams are

included, corresponding to each of the three circuit boards.

I l l - 1

w:
IUSSl2

«
f
0
RASH

CSX IZ A4X
M) M

MK M
C ZZ

dJ

wr 36
D#K 38
tSA *8

9C
EN —
M »

-
s KA£ir
* <usot

va
«3 DCT
ts cxo
1B
ib
g CAST
31 vg
23 aSY
5g;

LA/g IB
LAO 9
LAI 10

RCTCTU C4BK1.A
ica

LS2538
TTTcrsTinT̂rrTir

W FF03C^

L*e/

AND OR GATE ARRAY

n LATCH

AlK-eLDO
A2l2_gLDl

&5b_oUM

EK DIP

P1SL8 LS2538
TT^Y^nrsysnn

¥1 LCi 32

as
LR/P 4

AND OR GATE ARRAY

FTpn
ssEfissSfi aEU^»«

esBsassg
'374 "3
SSBiSES

' W

r f %

?sh[KŜ

a is
«3 43 Dcpas a>*4 c w o o r sicc

CRirt
LAC M
LAI 27

KLK

G r a p h i c s B o a r d

I l l - 2

.11

i
rf g i B < O ^

JOiJjj'dA s B

-̂-i-- MI I III I -U-I

II WA ispilSa izz
I ga; 599:55=;

593:95:

| [
K Dite __

aw njS 1̂

n "h%

i
s

RSr AAS4:
PT

*:ssgs
T

^ ' 4 !? Dl b vo

i ! i F i
Ctsls

RASl«

I
t
s
5
?

a

i !

, k
SK IIS o

F r a m e s f o r e M e m o r v (I of 2)

Ill - 3

B xYbsa* fco ON* XYtitN 31dD ONV

444
Avayy 3iv3 to ow B5B8S8B&

»ZE,
BSBSSBBk

BSBBaSBb

SSBBXBBk
Avwv 3iV3 dO OW

AYMWV 31V3 dO dWV •
5

41 AvTdwv iivo ac ONv

BsassBBb
tZE.

BoBSaBBb
kteir#«4s BsBBSBBb

VES
BG&BNb bkB

. - ,̂ o

. J
BSBBZBBk BSaGSaaB

BSti
BSB8SBB&

tZE
BSBBSBBk

eeeesess*** eegBagssf**

T M T
3ZA3 pU

<I93IS9SS5; IS 5
3ZA3 pfc

5795:SS55SI I I b
Bsassaaa

I g S i

kk
zaaaaaaaa : qacaaadda

m M M
AVMWV 31V3 fcC ONV

SoaSasSa
»ZE.

B.85B5S8S&
AVWWV WOX WO ONV

rreCEE

XYdHV 21*3 dD ONV AVddV 31V3 HO ONV

:g3*g9B5skk&&c"rrCfrl
8 1 — B p gh

5i&#

V

k I 31 vs' tC CTW ' I Avyyv a i m dO crwv

In - Fill Board

APPENDIX IV

The implementation of the scan selection algorithm

given in this section is written in the BCPL systems

implementation language. This listing forms part of the host

system software used to support the image mapping system in

real-time.

GET "\headers\libhdr"

IV - 1

MANIFEST

SOURCE.SIZE = 512.0 //

NORTH 0 //
SOUTH = 2 //
EAST = 1 //
WEST = 3 //
MARGIN = 128.0 //
LEFT.BOUNDARY = 0.0 i - MARGIN //
RIGHT.BOUNDARY = 512.0 1+ M.ARGIN //
TOP.BOUNDARY = 0.0 f- MAlGIN //
BOTTOM.BOUNDARY = 512.0 #+ M.11GIN //
UPSIDE.DOWN = 8 //
RIGHT.WAY.UP = 0 //
$)

//

// globals
GLOBAL
$(

all gg + 40 //
al2 99 + 41
al3 99 + 42
a21 99 + 43
a22 99 + 44
a23 99 + 45
a31 99 + 46
a32 99 + 47
a33 99 + 48

c.a gg + 60 //
c.b 99 + 61
c.c gg + 62
c.d gg + 63
c.e 99 + 64
c.f 99 + 65
c.g 99 + 66
c.h 99 + 67
c.i 99 + 68

$)

// Source size from IRS viewpoint

Upside down flag (bit 2 = 1)

// aij coefficients

a - i coefficients

IV - 2

AND adjust.direction(scan.direction)
$(

LET a , b , c , d , e , f =

SKITCHON scan.direction INTO
$(
CASE NORTH: RETURN
CASE EAST:

$(

a
b
c
d
e
f
$)
ENDCASE

CASE SOUTH:
$(

a := c.g I* SOURCE.SIZE #- c.a
:= c.h f* SOURCE.SIZE }- c.b
:= c.i #* SOURCE.SIZE #- c.c
:= c.g #* SOURCE.SIZE {- c.d
:= c.h #* SOURCE.SIZE #- c.e
:= c.i

:= c.d
:= c.e
:= c.f
:= c.g i* SOURCE.SIZE }- c.a
:= c.h SOURCE.SIZE #- c.b
:= c.i f* SOURCE.SIZE i- c.c

i* SOURCE.SIZE i- c.f

b
c
d
e
f
$)
ENDCASE

CASE WEST:
$(

a := c.g f* SOURCE.SIZE i- c.d
b := c.h i* SOURCE.SIZE h c.e
c := c.i #* SOURCE.SIZE #- c.f
d := c.a
e := c.b
f := c.c
$)
ENDCASE

$)

c.a

$)

c.b
c.c
c.d
c.e
c.f

a
b
c
d
e
f

BE // Adjusts a - i for scan direction

// Temporary storage for new values

// No adjustment necessary
// Adjust for eastward position

// a -> d
// b -> e
/ / c - > f
// d -> g.S - a
// e -> h.S - b
// e -> i.S - c

// Adjust for southward position

// a -> g.S - a
// b -> h.S - b
// c -> i.S - c
// d -> g.S - d
// e -> h.S - e
// e -> i.S - f

// Adjust for westward position

// a -> g.S - d
// b -> h.S - e
// c -> i.S - f
// d -> a
// e -> b
// f -> c

// Restore a coefficient value
// Restore b coefficient value
// Restore c coefficient value
// Restore d coefficient value
// Restore e coefficient value
// Restore f coefficient value

IV - 3

>J© find.directionO - VALOF // Returns required scan direction

LET d = cardinal(a21 f- al2,a22 1+ all)
// First guess

LET v.vp = ? // V value of vanishing point
LET prx.l,prx.r = ?,? // Left and right proximity values
LET xi,yi = ?,? // Associated screen intersections
LET flag = d // Lower 2 bits represent N,S,E & W

TEST (d = EAST) | (d = WEST)
THEN v.vp := SOURCE.SIZE i* (al2 f/ al3 #+ 0.5)

// E or W; Compute x vanishing point
ELSE v.vp := SOURCE.SIZE }* (a22 1/ a23 #+ 0.5)

// N or S; Compute y vanishing point
TEST a32 |< 0.0
THEN flag
ELSE flag

:= UPSIDE.DOWN // Image upside dora
:= RIGHT.WAY.UP // Image right way up

IF (v.vp f> 0.0) & (v.vp t< SOURCE.SIZE)
THEN // Within bounds
$(

prx.l := c.h f* v.vp #+ c.i // Compute proximity of screen edges
prx.r := c.g I* SOURCE.SIZE 1+ prx.l

IF prx.l f> 0.0 // Left hand screen intersection
THEN //on ground
$(// First compute source co-ordinates
xi := (c.b I* v.vp |+ c.c) #/ prx.l
yi := (c.e i* v.vp #+ c.f) #/ prx.l
SWITCHON flag INTO
$(
CASE (NORTH t RIGHT.WAY.UP):
CASE (EAST + UPSIDE.DOWN):
IF (xi l> LEFT.BOUNDARY) & (yi l> TOP.BOUNDARY)

// Cusp within image (left,top)
THEN RESULTIS cardinal2(a21 i- al2,a22 #+ all)

// Return alternative scan direction
ENDCASE // End of left,top

CASE (WEST + RIGHT.WAY.UP):
CASE (NORTH + UPSIDE.DOWN):
IF (xi f> LEFT.BOUNDARY) S (yi l< BOTTOM.BOUNDARY)

// Cusp within image (left,bottom)
THEN RESULTIS cardinal2(a21 #- al2,a22 #+ all)

// Return alternative scan direction
ENDCASE // End of left,bottom

CASE (EAST + RIGHT.WAY.UP):
CASE (SOUTH + UPSIDE.DOWN):
IF (xi f< RIGHT.BOUNDARY) & (yi #> TOP.BOUNDARY)

// Cusp within image (right,top)
THEN RESULTIS cardinal2(a21 f- al2,a22 f+ all)

// Return alternative scan direction
ENDCASE // End of right,top

CASE (SOUTH + RIGHT.WAY.UP):
CASE (WEST + UPSIDE.DOWN):
IF (xi i< RIGHT.BOUNDARY) & (yi #< BOTTOM.BOUNDARY)

// Cusp within image (right,bottom)
THEN RESULTIS cardinal2(a21 f- al2,a22 #+ all)

// Return alternative scan direction
ENDCASE // End of right,bottom

$) // End of left intersection CASE
$) // End of IF left hand intersection

IV - 4

$)

IF prx.r #> 0.0 // Eight hand screen intersection
THEN // on ground
$(// First compute source co-ordinates
xi := (c.a »* SOURCE.SIZE #+ c.b f* v.vp #+ c.c) f/ prx.r
yi := (c.d SOURCE.SIZE #+ c.e i* v.vp 1+ c.f) #/ prx.r
SWITCHON flag INTO
$(
CASE (WEST + EIGHT.WAY.UP):
CASE (SOUTH + UPSIDE.DOWN):
IF (xi l> LEFT.BOUNDARY) S (yi |> TOP.BOUNDARY)

// Cusp within image (left,top)
THEN EESULTIS cardinal2(a21 al2,a22 1+ all)

// Return alternative scan direction
ENDCASE // End of left,top

CASE (SOUTH + RIGHT.WAY.UP):
CASE (EAST + UPSIDE.DOM):
IF (xi f> LEFT.BOUND.iJtY) i (yi l< BOTTOM.BOUNDARY)

// Cusp within image (left,bottom)
THEN RESULTIS cardinal2(a21 t- al2,a22 all)

// Return alternative scan direction
ENDCASE // End of left,bottom

CASE (NORTH + EIGHT.WAY.UP):
CASE (WEST + UPSIDE-DOWN):
IF (xi f< EIGHT.BOUNDARY) S (yi l> TOP.BOUNDARY)

// Cusp within image (right,top)
THEN EESULTIS cardinal2(a21 f- al2,a22 f+ all)

// Return alternative scan direction
ENDCASE // End of right,top

CASE (EAST + EIGHT.WAY.UP):
CASE (NORTH + UPSIDE.DOWN):
IF (xi i< EIGHT.BOUNDARY) & (yi #< BOTTOM.BOUNDARY)

// Cusp within image (right,bottom)
THEN EESULTIS cardin3l2(a21 I- al2,a22 f+ all)

11 Eeturn alternative scan direction
ENDCASE // End of right,bottom

$) // End of right intersection CASE
$) // End of IF right hand intersection

$) // End of IF within bounds

RESULTIS d // No problem; return original guess

IV - 5

AND cardinal(i,j) = VALOF
$(
TEST Eiod(j) #> iiod(i)
THEN
TEST j l> 0
THEN RESULTIS NORTH
ELSE RESULTIS SOUTH

ELSE
TEST i |> 0
THEN RESDLTIS EAST
ELSE RESULTIS WEST

$)

AND cardinal2(i,j) = VALOF
$(
TEST Eod(j) f< inod(i)
THEN
TEST j l> 0
THEN RESULTIS NORTH
ELSE RESULTIS SOUTH

ELSE
TEST i f> 0
THEN RESULTIS EAST
ELSE RESULTIS WEST

AND quadrant(i,j) = VALOF
$(
TEST j i> 0
THEN
TEST i i> 0
THEN RESULTIS 0
ELSE RESULTIS 3

ELSE
TEST i t> 0
THEN RESULTIS 1
ELSE RESULTIS 2

$)

// Returns cardinal direction of
// vector (i,j)
// Whether i or j largest
// j largest; north or south
// Upper or lower half
// Upper half; northward direction
// Lover half; southward direction
// i largest; east or west
// Left or right half
// Right half; eastward direction
// Left half; westward direction

// Returns second closest cardinal
// direction to vector (i,j)
// Whether i or j largest
// j smallest; north or south
// Upper or lower half
// Upper half; northward direction
// Lower half; southward direction
// i smallest; east or west
// Left or right half
// Right half; eastward direction
// Left half; westward direction

// Returns quadrant of vector (i,j)

// j tve; upper half
// Left or right half
,// Right half; quadrant 0
// Left half; quadrant 3
// j -ve; lower half
// Left or right half
// Right half; quadrant 1
// Left half; quadrant 2

APPENDIX V

The program listed in this appendix is used to

generate the look-up-table values for the reciprocal

datapath and is written in the C programming language. The

program also reports the accuracy of the table output by

comparison with a high precision result obtained by direct

division.

V - 1

* *

* RECIPROCAL TESTING AND GENERATING ROUTINE «RECIP.C» *
* *

* Calculates exact reciprocal and compares with estimate *
* calculated using difference table with constant segments *
* *

înclude "\headers\stdio.h"

Idefine H.AXINT 0X10000
fdefine MAX LUT 0X20001
fdefine 0NE~13 0X80000000L

unsigned long int divide();

main()
{
FILE *out file,*diff file;
unsigned long int number,reciprocal,mantissa,>;,nask;
unsigned long int recip_13,Bant_13,slope,selection,rec;
int exponent,exp_13,exp,difference;
int err_l,err_2,err_3,i;

if((out_file=fopen("diff.asc","*"))==NULL)
{
printf("\nCannot create result file: diff.asc");
exit(O);

.)

if((di ff_f ile=fopen("diff.rom","wb"))==NULL)
{ .
printf("\nCannot create result file: diff.rom");
exit(O);
)

printf("\nEnter number of bits for difference table selection > ");
scanf("ld",oiselection);
err_l=0;
err_2=0;
err_3=0;

for(number=l;number<MAXINT;number++) /« for each number */

mantissa=number;
for(exponent=0;mantissa<(MAXINT/2);mantissa=mantissa((l)
exponent++; /* normalise number */

exp_13=exponent;
exp=exponent;

mantissâmantissa S 0X7FFF; /* strip off top bit */

/* first calculate exact (16 bit) reciprocal */
y****x****x*x*x***********x**x*****xxx*xx*x*****xxx*xx**xx*************xx***y
reciprocal=0L;
if (mantissa—0)
exponent++;

else
reciprocal=divide(mantissa | 0X8000) & OXFFFF;

/* calculate 17 bit reciprocal */
reciprocal=(reciprocal+l)>>l; /* include rounding in 16 bit result */

V - 2

/* now calculate 13 bit reciprocal */

mant_13=mantissa>>2; /* strip off two lower bits */
recip_13=0L;
if (mant_13==0)
exp_13++;

else
recip_13=0NE_13/(mant_13 | 0X2000) & OXIFFFF;

/* calculate 13 bit reciprocal */
recip_13=(recip_13+l)»l; /* include rounding in 13 bit result */

/* now calculate slope */

x=mantissa | 0X8000; /* replace leading one */
Bask=(l«(15-selection))-l; /* mask for lower bits */
if((mantissa & mask)==0) /* start of new segment */
{

x=x>>(15-selection); /* number of bits left = selection */
x=(x«l) + 1; /* place at centre of region */
x=x * x; /* square x */
slope=divide(x); /* slope = 1/x squared */
if(number>0X7FFF)
{
fprintf(out_file,"\nSegient IX slope = IX",

mantissa>>(15-selection),
slope>>(24-2*selection));

for(i=0;i<4;i++)
putc((char)((((slope * i)>>(27-2»selection))+l)>>l),diff_file);

}
)
difference=slope * (mantissa & 3); /* calculate difference */
difference=difference>>(27-2*selection); /* re align */
difference=(difference + 1)>>1; /* round */

/*
if(difference! =0)
printf("\nx squared = IX\tslope = lX\tdifference = IX",x,slope,difference);

*/

y******A*̂*x*x*4*xx*xx*x*xxxxx***x*xAxxxxKxx&xxxxx%x**A
/* now correct with difference table ' */
yAxxAxAAxAiAxAxAxxxxxxAiiiiiixxxixAixAx

if(recip_13"0 && difference! =0)
exp_13--;
rec=(recip_13 - difference) & OXFFFF;
difference = (int)((reciprocal<<l)-rec)/2;

if(difference!=0)
{

err_l++;
difference=difference/2;
if(difference!=0)
{
err_2++;
difference=difference/2;
if(difference!=0)
err_3++;

]
)

V - 3

/*

*/

printf("\nN = I5X R = 1.I4X E I2d Eec_13 = LI4X E I2d R13 = 1.I4X D = Id",
number,reciprocal«l,exponent,recip_13,exp_13,rec,difference) ;

)
printf("\n\t\t\tError Report");
printf("\n\tErrors in Bit 0 = l-5d",err_l);
printf("\n\tErrors in Bit 1 = l-5d",err_2);
printf("\n\tErrors in Bit 2 = l-6d",err_3);
fclose(out_file);
fclose(diff_file);
printf("\nAll done");
getchar();
getchar();
exit(O);
)

unsigned long int divide(divisor)
unsigned long int divisor;
{
unsigned long int dividend,quotient;
dividend = OL - divisor;
quotient = (dividend/divisor) + IL;
return(quotient);
)

/* divides into 1 0000 0000 H */

/* one divisor subtracted */
/* divide and add one */

APPENDIX VI

The complete circuit of the real-time image mapping

system is given in this appendix. Seven separate diagrams

are included; corresponding to each of the three

framestores, VSPl and VSP2 sub-systems, the polynomial

generator and the divider circuitry.

VI - 1

SSaas&SS

3aaBa88ba% 1 ^
A3 M

L #

Baaao

"="» gfiffEltfSfc

gag

aaaMabaa

aaiBfe
i m n n

H i AB

i i MB4K4

3a88aBab8b

aassBBbS

SaaaawBbBb
aaaa

gawsaBabak

WBagsaSS

Sdaaaaabak
AB

g :
%4K4*

duuuuuu

i l
M ev

sv
8V

888a88&S8

aaaaabaaab

888&W8b8a

Baaaaaabgaak

3 a

^ Bg

i : AO DS MB4M

gaaaaaabab

awaawabaaS

rr~-
I I " I i aaaaabaa

fV-aaaaabaa
]

fc 8J R fc£ k B B % k e p &

aagasasa 339*98*3
#j=LWzW

3**898*3 98983*

i & B P B % e p e

3 8 9 8 9 8 3 *

aaaaabaaaaB

3 3 9 8 9 8 3 * 3 3 9 8 9 8 3 * 3 3 9 8 9 8 3 *

liiill

VI - 2

tttt+tt

ES

i

aa88b*Ba8Bae8aag a8%8&88a8BaeaaS8

2zEE&2K2EgZ2SWaa i!3!£Sk££iS£C£SiSa
m

saweG sawaaBab

gdas&HBb
8@ aaasaBBB

aa aaasawab w
aaaaaBSb

§§
33VdbBiNz viva wai&iG ism

awaaHBhamaaa
mm
awaaBBbsaa

g§P$e^l§g
PMMWWMMMMH

awQaBabBBa
nUiiii 05
§858833 ig SiE8E§s99S

VI - 3

11

aaaawahaaa a sftff

plpililslppip 8a88888ei

aaasaBgb

aaasBBSSBil

gaQaMabsaaSa

BSBBb

8 3 8 8 5 8 8 6

aaas&wab

8888gW8b

aaaa&Hab
illllll!

&88&aaa8*B*
aaasaaab

+@)C%B
3a*9)*ss;953g

aaaaaaab
taeuB

sagssssssgggg
n sal

[rpfiTTI I T c c ^ h
m aiaaiiii^

8aH8b 8Sa8SB8bjj_^

Fi
aaaaaaab

aaaaaaab

aaasaaab
irrrrm

aaasaaafa
trmrrt

VI - 4

iDdina Hvauis -axid
88S
0.0.0.0.

bawaaaaa^B*

ssmysggasRB

aa 88888886, ̂

ad aaasaaab K

m I gg

aa aaasaHSb g

ea aaaaaHBfe h

SS I LL=555—n| a8B&Bab883a9

8@ aaws&BBb g

sa aaasawab k
333333-}-̂ aaaaBBbamBSz!

ni

awaaBabaaa

aaaawabaaaSg

IsdlQ
aaBaaabaaSaB

M T i n

dwaawabaaaaB
8388*8861

aaaaaaab

sawBb
88

GkBBBMBb

aaasaaab

awaBBBBb

aaaaaaab*'

aaasawab
—~-n~~i § ̂—I'l* ̂
rrl i — L - — J i ! SaaaaabaaSSS I L L ^

88
amsMBb

aaasaaab

BBBB&WBb

aaaaaaab

baaasaaa^B*

*5sg*3ga9KB

n

ii

VI - 5

ifHjra 3-Hw. wne
9935

aaaBaHab

aaas&Bgb

8Qa8Bbg0**B

awaawabSBaaa

sawab 88885886 gaasawBb

saasaBBb aaHaaaa&

- m m r _

gaasaBBb

888aHab

SaaSaaab

l|i

9399*9*5393

8aa8aH8& luiQi)̂

lii i

gg gg

rrrrrrrr..
8888a8ab

aawaaHab

Baasawab

aaasaaab

aaBawBhBBadg

n r a i m
S88588G88 §

iraiui
iQruns lauo oi BBlVNUUMn SNIcUVU

8888a8a&

aaasawaa
adaaaaas

aaaaaaab

h

g§ ggg
s5E
i££i see

incNI Mvaus -BXld

VI - 6

T vraais

_ i.iwrajIe iruinn -TavT_i wwuw
IE £ £ £ J £ E E E

a wvatuB

3883588 r aSSSaSaS

aaaawBbBB

aaaaawab

aaasaBBb

aawaaBBb 88883888 aawaaaHb

aaaasBSfe

88883886

Wl
bkb

SSaSSiSiSfe

" m a c ,
gtiaSSBBhl' aaaaaaa&

aaaasaafe
U T i m r

gaaaaaab
TOTTTTr

sSaSiSSS 83883=

T WV3UXS S WV3H1S
aaoisawytu SMIOS wotw

§saaaaa&

532i5i!5!s!issl3̂ sl
aWa'ân'

32y93yy%9g333a3

kbb saaaaaab

33a!i2$!aS5!i99il|li

WW

kbw
$

aaaaaaab

kbb
?

aaaaaaab

saygiygsggaag^a
na'a'̂g'âĝct'g'ââfl'âg'̂

saygaygsggaagaa
ĤgV c/ôâ nt5-
WW
MWW aaaaaaab

3a2!5J!SS!i?gaâ al

kbb aaasaaab

sayssygsssaa^Sa

saaaaasb

a-vi(X]ni-4-
gaggsggsggaaaaa

gaga saaa
T m m r

/

:i

P
§ • •

S

aMsawBbSBa

aagb aaa6
" " m r

3399

I
MV3ULS T3XId iDcKI ?

6666

aaawBhsaa

aaasBSG

WBawabSB

WMMMHMMMWHHM

MMMMMMHH

VI - 7

JDciirD T3XId T 3Nn i/TcUnO T H a d 3 3 O T

ssss s§
££££ 0.0 .0 .0 .

&aa& agsb
WjW ggb

BBk
aa88sBa& aaasaaBb kbb .aaaaaaab

I
5amm99353l3

kbki

h
.aaas&aab

sssMS$5i99asll$
/-^SS333S3SS3Si3SS^

wwb .aaaaaaab

I
saggsygsggaSgga

ggggsggsggaa^Sa

msh
s_

.gaas&aab

^52222222255222?"

j®55SW

939g$ygs99aagg3
y-522222222222222~

SBB" .aaasaaab

93%9**g%$@3a^32 saggaggsggaSgga
/^W dVdVmWa'aVdV

rrrrmr
aaasaaab aawsaaab

3ts
Kkb

*
aaasaaab

3399mM9l3l3$
|>-Ĥ 0V25252252525

>̂-222522222222222"̂

kkb .gaasaaa^

3aai5sas!is5lllî
2̂ 2222"

aaaasHiF^

aaasaaa&'^G

saggsgysgggagSa
^252222222222225

kbb
3

aaasaaa^

%
kbb

r r r r r r m

.aaaaaaa^

sssjsiasiisssssss

3BI _fi55i!22m

c j t z

kMb ^aaaaaaak

^ i i
9<93399&g9aag33

«^aMS£4?5|a323
y522222iS2222^22~
Sift
kbb

5555555!!l

T
aaaaaaa^

aflcpscan
WaiSAS ISQH HOUd

saasaua^

saaaaaafa

aasisaasg

aaasaaab

3395mMMMIi_
-̂222-222-222255555"

J W W ! Z
aaaaaaab

aaasaaa^

bnIUS^®*

i o m
MMMMMMM

9399l!6!;%

n g8§588&§

*^8aaB8b88a

W ISSBBgS

li

1 g
aa
BSaBS&g

QABBbSBa

sSSSsSSS sSSSSSSB B
onoaapaa qooooooo
WaiSAS IGOH WOkid ĜiSAS 18GH WCXdd

iiiiiiii '
WEIBA8 J£CH WOUd

asasaaa^

aaaaaaab

88G§Ss3982
' iii

WaiSAS SISQH HCUd

m

b e

mm
saa!3i!«

APPENDIX VII

This section provides an example PLPL source file to

illustrate the design process. The source file given is for

the 22V10 PAL used to implement the IRS controller.

VII - 1

DEVICE IRS Controller (P22V10)

PIN
CLK15
/Init
IRSJnd
C_request
/Done

= 1
= 2

= 3
= 4
= 5

/Sysjnit = 23
/Passjnit = 22
Divisor_Init = 21
/IRŜValid = 20
/Divisor_Noop = 19
Pass

S[0:2]
/Old init

= 15

(CLK_IKPUT)
(INPUT combinatorial)
(INPUT combinatorial)
(INPUT combinatorial)
(INPUT combinatorial)

"Polynomial generator controller"

"15 MHz input"
"Initialisation"
"Divisor end of line"
"Coordinate request"
"Pass completed"

(OUTPUT registered activejow) "System initialization"
(OUTPUT registered activejow) "Pass initialization"
(OUTPUT registered active_high) "Divisor init"
(OUTPUT registered active_low) "iRS data valid"
(OUTPUT registered active_low) "Divisor no operation"
(OUTPUT registered active_high) "Pass; 0 = Passl"

= 18:16 (OUTPUT registered active_high) "Internal states"
= 14 (OUTPUT registered activejow) "Old value of Init"

DEFINE
Start
Finish
Passl
Ne«_Pass
Initialize
Running
Request_l

= /Init * Oldjnit,
= Done * /Pass_Init,
= /Pass,
= Finish * Passl,
= Start T Ne»"_Pass,
= /Pass_Init,

"Start at falling edge of Init"
"End of pass"
"First pass"
"Request for next pass"
"Start of new pass"
"State machine operating"

= Divisor_Init * Cjequest * /Pass_Init,
"Request first line"

IRS_Init
IRS_wait_l
Valid
End_2
End_l
IRS Wait

"State asignments"
= #8000,

= #B001,
= fBOlO,
= IBOII,
= fBlOO,
= fBlOl

"Initialize state 1"
"Wait for IRS data line 1"
"Valid data stream"
"2 states before end"
"1 state before end"
"Wait for IRS data"

BEGIN
Control Terms

PRESET (Divi sor_̂Init,/Divisor_Noop,
/SysJnTt, Passjnit, Pass,
IRS_Valid,S[2:0],
/Oldjnit) = 0;

RESET(Divisor Jnit, /Divisor_Noop,
/Sysjnit,Pass Init,Pass,
IRSJalid,S[2:0],
/Oldjnit) = 0;

ENABLE(Divisor Jnit, /Divisor_Noop,
/ Sys Jnit, Passjnit, Pass,
IRSJalid,Sf2:0],
/Oldjnit);

"No preset term"

"No reset term"

Oldjnit = Init;
IF (Start)
THEN Sysjnit = 1;

"Always enabled"

System Initialization

"To detect falling edge"
"At falling edge"
"Initialize system, one timing state"

VII - 2

IF (Initialize)
THEN Pass_Init = 1;
ELSE Pass = Pass;

IF (Ne*_Pass)
THEN Pass = 1;

Pass Initialization

"At start of either pass"
"Initialize pass, one timing state"
"Store pass value"

"Pass = Pass 2"

IRS Initialization

IF (Initialize + Divisor_Init)
THEN IF (Eequest_l)_

THEN Divisorjnit = 0;
ELSE Divisor Init = 1;

"Start of operation"
"Requesting first line"
"Start IRS"
"IRS initialized until first C_req"

State Machine Operation

"State asignments"
IF (Running)
THEN CASE (S[2;0])
BEGIN
IRSJnit)

IF (Divisorjnit)
THEN S[2:0] = IRSJnit;
ELSE S[2:0] = IRS_Wait_l; "Wait for first line of data"

IRS Wait_l)

"IRS initialized"
"Stay in state"

S[2:0] = Valid;
Valid)

BEGIN
IRS_Valid = 1;
IF (IRS_End)
THEN S[2:0] = End_2;
ELSE S[2:0] = Valid;

END;
End_2)

BEGIN
IRS_V3lid = 1;
S[2:0] = End 1;
END;

End_l)
BEGIN
Si 2:0] = IRS_Kait;
Divisor_Noop = 1;

END;
IRS Wait)

IF (C_Request)
THEN
S[2;0] = Valid;

ELSE
BEGIN
S[2:0] = IRSJWait;
Divisor_Noop = 1;
END;

END;

"Go to valid data state"

"Data valid"
"End of line approaching"
"Count do»-n"
"Wait for end of line"

"Data still valid"
"Count Dovn"

"Wait for start of line"
"Bold IRS"

"Requesting next line"

"Valid data state"

"Wait for C_Request"
"Hold IRS"

"End of CASE statement"

fl
END.

VII - 3

TEST_VECTORS
IN CLK15;
IN Init,C_request,IES_End,Done;
OUT Pass,Pass_Init;
OUT Sysjnit,Divisorjnit,Divisor_Noop,IES_Valid;
BEGIN

C_req Done Pass Init Divisor lES
CLK Init End Pass Sys Init Noop Valid

c 1 X X X X X
c 0 X X X L a
c 0 0 X X L L
c 0 0 X 0 L L
C 0 0 X 0 L L
C 0 0 X 0 L L
c 0 0 X 0 L L
C 0 0 X 0 L L
C

1
0 0 X 0 L L

C 0 0 X 0 L L
C 0 1 X 0 L L
C 0 X 0 0 L L
C 0 X 0 0 L L
C 0 X 0 0 L L
C 0 X 0 0 L L
C 0 X 1 0 L L
C

1
0 0 X 0 L L

c 0 0 X 0 L L
c 0 0 X 0 L L
c 0 1 0 0 L L
c 0 X 0 0 L L
c 0 X 0 0 L L
c 0 X 0 0 L L
c 0 X 0 0 L L
c 0 X 1 0 L L
c
1

0 0 X 0 L L

c 0 X X 1 a a
c 0 0 X X B L
c 0 0 X X B L
c 0 0 X X B L
c 0 0 X X B L
c 0 0 X X B L
c 0 0 X X B L
c

t
0 0 X X B L

c 0 0 X X B L
c 0 1 X X B L
c 0 X 0 X B L
c 0 X 0 X B L
c 0 X 0 X B L
c 0 X 0 X B L
c 0 X 1 X a L
c 0 0 X X B L

X X X
H H L
L H L
L H L
L H L
L H L
L H L
L H L
L H L
Generate a line --
L H L
L L L
L L L
L L L
L L L
L L L
L L L
L L
Generate next line
L L B
L L H
L L L
L L L
L L L
L L L
L L L
L L L
L L L
Start Second Pass
L H X
L H L
L H L
L H L
L H L
L B L
L B L
L B L
Generate a line —
L B L
L L L
L L L
L L L
L L L
L L L
L L L
L L L

X;"Start initialisation
L;"Initialization
L;"Wait for Cjequest
L;"Wait for Cjequest
L;"Wait for Cjequest
L;"Wait for Cjequest
L;"Wait for C_request
L;"Wait for C_request
L;"Wait for C_request

L;"Waiting
L;"Start the line
L;"Wait for end signal
L;"Wait for end signal
H;"Wait for end signal
H;"Wait for end signal
H;"End of line
B;"Wait for next C_req

L;"Waiting
L;"Waiting
L;"Start the line
B;"Wait for end signal
B;"Wait for end signal
B;"Wait for end signal
H;"Kait for end signal
B;"End of line
B;"Wait for next C_req

L;"Initialization
L;"Wait for Cjequest
L;"Mait for Cjequest
L;"Kait for Cjequest
L;"Wait for Cjequest
L;"Wait for Cjequest
L;"Wait for Cjequest
L;"Wait for Cjequest

L;"Waiting
L;"Start the line
L;"Wait for end signal
L;"Kait for end signal
B;"Wait for end signal
H;"Wait for end signal
B;"End of line
E;"Wait for next C req

VII - 4

" - Generate next line "
C O O X X H L L L H L; "Waiting "
C O O X X H L L L H L; "Waiting "
C O l O X H L L L L L; "Start the line "
C O X O X H L L L L H;"Wait for end signal "
C O X O X H L L L L H;"Wait for end signal "
C O X O X H L L L L H;"Wait for end signal "
C O X O X H L L L L H;"Wait for end signal "
C 0 X 1 X H L L L L H;"End of line "
C O O X X H L L L L H;"Wait for next C_req

n

END.

