REAL-TIME COMPUTER GENERATED IMAGERY

USING STREAM PROCESSING TECHNIQUES

A thesis presented for the degree of

DOCTOR OF PHIT.OSOPHY

of the

UNIVERSITY OF SOUTHAMPTON

in the

FACULTY OF ENGINEERING AND APPL.IED SCIENCE

DEPARTMENT OF EIL.ECTRONICS AND COMPUTER SCIENCE

by

JEFFREY DENNIS EVEMY

OCTOBER 1989



TO MY FATHER



ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dave Allerton,
both for his guidance and support and for the contribution
made to this project by his work on the flight simulation

system software.

I would also like to thank Ed Zaluska for helping me
to develop the skills necessary to complete this project. I
think that the better aspects of the hardware design reflect

his insight and criticism.

I must also show my gratitude to the members of the
Technical Services Group for their assistance with the

construction of the circuit boards.

I am also indebted to the Science and Engineering

Research Council for paying the bills along the way.

Thanks are also due to numerous other people who
provided assistance in varying forms. In particular, my
parents, Lindley Baker, Hani Muammar, Helen Mathews, Geoff

Newton, Mark Nixon, Barry Savage and Richard Waddy.

Finally, and most of all, I would like to thank my
wife and best friend, Rach, for her love and support. She
has patiently given me encouragement and has had confidence

in me throughout the project.



"We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started

And know the place for the first time."

- from Little Gidding,

T.S.Eliot.



CONTENTS

Section Title
Chapter 1 : INTRODUCTION
1.1 BACKGROUND TO COMPUTER GENERATED IMAGERY
1.2 REAL TIME IMAGE GENERATION FOR FLIGHT SIMULATION
1.2.1 OUTLINE OF A RTIG SYSTEM FOR FLIGHT SIMULATON
1.2.2 THE PROBLEM OF COST IN FLIGHT SIMULATION
1.2.3 CONTEXT OF THE RESEARCH PROJECT
1.3 SCOPE OF THE THESIS - OBJECTIVES
1.3.1 STREAM PROCESSING
1.3.2 SURFACE IN-FILL
1.3.3 SURFACE TEXTURING
1.4 CONTRIBUTIONS OF THE RESEARCH
1.5 ADDITIONAL CONTRIBUTIONS
1.6 ORGANISATION OF THE THESIS
Chapter 2 : ILITERATURE REVIEW
2.1 REVIEW OF RTIG SYSTEMS
2.1.1 COMMERCIAL RTIG SYSTEMS FOR FLIGHT SIMULATION
2.1.2 ACADEMIC RTIG SYSTEMS
2.2 SURFACE IN-FILL TECHNIQUES
2.2.1 ORDERED EDGE LIST
2.2.2 SEED FILL
2.2.3 PARITY CHECK
2.2.4 EDGE FILL
2.3 TEXTURE MAPPING
2.3.1 PRINCIPLES OF TEXTURE MAPPING
2.3.2 REVIEW OF TEXTURE MAPPING SYSTEMS

SUMMARY OF THE LITERATURE REVIEW

10
11
13
14

15

17
17

17 |
20"
30
30
32
34

36
38
38
40

52



Section Title

Chapter 3 : SURFACE IN-FIIIL ALGORITHM

3.1 REQUIREMENTS OF SURFACE IN-FILL ALGORITHM
3.1.1 VERTICAL COHERENCE

3.1.2 EDGE PROCESSING
3.1.3 NESTED REGIONS

3.1.4 ALGORITHM

3.2 LIMITATIONS OF THE IN-FILL ALGORITHM
3.2.1 INTERSECTIONS WITH THE SCREEN BOUNDARIES
3.2.2 REPRESENTATION OF COLOUR IMAGES

3.3 IN-FILL OF SYSTEM USING INTERLACED DISPLAY
3.3.1 INTERLACE PROVISION BY POST-PROCESSING
3.3.2 LIMITATIONS OF INTERLACE RECONSTRUCTION

3.4 SUMMARY

Chapter 4 : IMPIEMENTATION OF IN-FILI SYSTEM

4.1 DESIGN OVERVIEW
4.2 GRAPHICS CONTROL SECTION
4.3 VSP IN-FILL BOARD

4.3.1 FIFO

4.3.2 SECOND PASS PROCESSOR
4.3.3 MAIN PROCESSOR

4.3.4 PIXEL LOGIC DATAPATH
4.3.5 LINE BUFFER

4.3.6 CENTRAL TIMING CONTROL
4.3.7 INTERLACE RECONSTRUCTION

4.4 SUMMARY

Chapter 5 : ANAILYSIS OF IN-FILL SYSTEM

5.1 RESULTS AND PERFORMANCE

5.2 OBSERVATIONS AD DISCUSSION

55

56

58

59

60

61

62

62

66

66

67

71

72

74

74

76

81

82

83

85

89

90

91

92

96

97

97

97



Section Title Page

Chapter 6 : A VSP-BASED TEXTURE MAPPING ARCHITECTURE 101
6.1 REQUIREMENTS OF VSP-BASED IMAGE MAPPING SYSTEM 102
6.1.1 REQUIREMENTS IMPOSED ON THE MAPPING ORDER 103
6.1.2 FILTERING REQUIREMENTS 105
6.2 SPATIALLY VARIANT FILTERING TECHNIQUE 108
6.2.1 FILTERING ALGORITHM 108
6.2.2 FILTERING SUB-SYSTEM ARCHITECTURE 112
6.3 CO-ORDINATE GENERATION 113
6.3.1 INVERSE PERSPECTIVE MAPPING 113
6.3.2 DECOMPOSITION INTO TWO PASSES 116
6.3.3 CLIPPING 118
6.3.4 THE BOTTLENECK PROBLEM 121
6.3.5 SCAN DIRECTION SELECTION ALGORITHM 122
6.3.6 CO-ORDINATE GENERATION
IMPLEMENTATION REQUIREMENTS 132
6.4 SUMMARY 133
Chapter 7 : IMPLEMENTATION OF TEXTURE MAPPING SYSTEM 136
7.1 OBJECTIVES AND OVERVIEW 136
7.2 CO~-ORDINATE GENERATION 140
7.2.1 POLYNOMIAL GENERATION 141
7.2.2 DIVIDER 144
7.2.3 CLIPPING CONTROL 146
7.3 FRAMESTORE DESIGN 148
7.3.1 SOURCE FRAMESTORE 149
7.3.2 INTERMEDIATE FRAMESTORE 153
7.3.3 OUTPUT FRAMESTORE 157
7.4 FILTERING SUB-SYSTEM 160
7.4.1 SUM-TABLE PREFILTERCIRCUITRY 160
7.4.2 FILTERING DATAPATH 163

7.5 SUMMARY 166



Section Title

Chapter 8 : ANALYSIS OF IMAGE MAPPING SYSTEM

8.1 PERFORMANCE OF IMAGE MAPPING SYSTEM

8.2 OBSERVATIONS AND DESCRIPTION OF PLATES

Chapter 9 : CONCLUSIONS

9.1 SUMMARY AND DISCUSSION OF RESULTS
9.2 FURTHER RESEARCH

9.3 CONCLUSIONS AND FINAL REMARKS
REFERENCES

PUBLICATIONS

169
169

170

179
179
183

185

187

196



Figure

LIST OF ILLUSTRATIONS

Title

1.1

2.15

Outline Of RTIG System

RTIG System Using Image Mapping

The IRIS 3120 Workstation

Pixel Planes Memory Architecture

Example Of Transputer Based CGI System
Southampton MIMD CGI System

Bradford RTIG System

Shaded Polygon Processor Array

Ordered Edge List Example

Example Of Connectivity

Example Of Seed Fill Algorithm

Isolated Region Arising From Quantisation Error
In-Fill By Parity Check

Edge Fill Technique

Texture Mapping Process

Filter Footprints In Screen And Texture Space
Summed-Area Table Representation

Two-Pass Mapping Technique

Pictorial Example Of Two-Pass Mapping Procedure
Resampling Interpolation Process

Ampex ADO DVE System

Quantel Encore DVE System

Outline Of VSP Based In-Fill System

Section Of Framestore Showing Vertical Coherence

Acute Vertex
Example Of Edge Processing

Intersection Of Line Segment
With Screen Boundary

Vertex At Screen Boundary

Interlace Post Processing Scheme

12

19
23
24
25
26
28
31
32
33
34
35
37
38
41
44
45
46
47
49

50

55

58

60

64
64

67



Figure Title Page

3.8 Simple Example Of Interlace Reconstruction 68
3.9 Comparison Of O0dd And Even Lines 69
3.10 Examples Of Type 1 Edges 69
3.11 Interlace Reconstruction Of Single Lines 70
3.12 Interlace Reconstruction Of Simple Type-0 Edges 70
3.13 Interlace Reconstruction Of Complex Type-0 Edges 71
4.1 Overview Of CGI System 75
4.2 Outline Of Double-Buffered Configuration 77
4.3 Outline Of Surface In-Fill VSP Architecture 81
4.4 ASM Chart Representing Operation Of SP 84
4.5 MP State Diagram 86
4.6 Inmplementation Of Line Buffer 90
4.7 Sequencing Of Timing Control Signals 92
4.8 Interlace Reconstruction System 92
4.9 State Assignments Corresponding To Figure 3.10 93
4.10 State Assignments Corresponding To Figure 3.11 93
4.11 State Assignments Corresponding To Figure 3.12 94 -
4.12 State Assignments Corresponding To Figure 3.13 54
4.13 State Transition Table For Processor IP 95
6.1 Outline Of VSP Based Texturing System 101
6.2 Two-Pass Mapping Architecture 105
6.3 One-Dimensional Filtering Process 106
6.4 Continuous Input Intensity Function 108
6.5 Section Of Pixel Stream

Showing Fractional Parts 109
6.6 Filtering Sub-System T2 112
6.7 Co-Ordinate Axes Representing

Intermediate Image 117
6.8 Example Scene Illustrating Clipping Procedure 119
6.9 Scanning Directions For Source Framestore 123

6.10 Trimetric Projection Of Unit Vectors 125



Figure

6.12
6.13

6.14

7.9

7.10
7.11
7.12
7.13

7.14

Title

Example Scene Illustrating Cusp
Vanishing Points And Source Image
Sixteen Possible Cusp Generating Conditions

Outline Of Co-Ordinate Generation Architecture

Outline Of Image Mapping System
Co-Ordinate Generation System

Reciprocal Look-Up-Table

Clipping Controller State Transition Diagram
Arrangement Of Four Pixel Quad

Grouping Of Adjacent Quads

Source Framestore Architecture
Organization Of Eight Pixel Memory Block
Intermediate Framestore Architecture
Output Framestore Architecture
Architecture Of VSP1

Line Buffer Output Adjustment

Partial Sum Difference Generation

Footpriﬁt Division Architecture

131

132

139
140
144
146
149
150
150
154
155
157
160
161
163

165



LIST OF TABLES

Title

Example Of Edge Processing

Description Of Functions;

edge, start.edge And start.run

GDP Mode Control Outputs

Operating Modes Of Datapath PL

Source Co-Ordinate Assignments

For Scan Directions

Coefficient Substitutions

For Each Scan Direction

Definition Of Signals PASS And DONE

Quad Selection Table

Source Framestore Address Sequencing
Datapath Crossbar Operation

Intermediate Framestore RAM Selection
Operation Of Intermediate Framestore Input
Operation Of Intermediate Framestore Datapath

Intermediate Framestore Address Sequencing

LIST OF ALGORITMS

Algorithm Title

3.1

Two-Pass Surface In-Fill Algorithm

Special Processing For First Line

Single-Pass Inverse Mapping Procedure
Two-Pass Inverse Mapping Procedure
Linear Summed-Area Table Generation

Initial Scan Direction Detection Algorithm

IRS Polynomial Implementation

IRS Coefficient Scaling Procedure

62

79

89

123

124

143
151
152
153
154
155
156

156

63

103
o4
110

127

141

142



Plate
51

511

71

711

81
8I1
8I1T
81V
8V
8Vl
8VII
8VIII
8IX
8X
8XI
8XII
8XIIT

8XIV

TABLE OF PLATES

Title
Example In-Filled Image

Example In-Filled Image

Development Environment

Image Mapping Circuit Boards

Source Image
Intermediate Image

Final Image Without Filtering
Final Image With Filtering
Shrunken Image Without Filtering
Shrunken Image With Filtering
Expanded Image Without Filtering
Expanded Image With Filtering
Highly Magnified Image

Image Scanned Using Alternative Scan Direction
Intermediate Image Containing Cusp
Resulting Final Image

1/8 Second Exposure Showing Motion

1/8 Second Exposure Showing Motion

168

le8

172
172
173
173
174
174
175
175
176
176
177
177
178

178



UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

REAL-TIME COMPUTER GENERATED IMAGERY

USING STREAM PROCESSING TECHNIQUES

by Jeffrey Dennis Evemy

This thesis describes the use of stream processing
techniques to provide Computer Generated Imagery (CGI) in
real-time. Two applications of stream processing are
examined; surface in-fill and texture mapping.

A novel in-fill algorithm is developed which operates in
scan-line order directly on the output from a raster scan
framestore. The algorithm provides in-fill of all bounded
regions and is compatible with ‘wire-frame’ images generated
using conventional graphics processors. A stream processing
architecture to implement this algorithm is presented which
is capable of processing each pixel in a single clock cycle
at video rate.

Texturing is provided wusing a two-pass spatial
transformation technique to map an area of detail onto the
display. The transformation is implemented in scan-line
order by a stream processing architecture operating
directly on the output from the framestore containing the
source image.

Because it incorporates a perspective projection, the
transformation process is non-affine and requires spatially-
variant filtering to prevent aliasing. A novel spatially-
variant filtering algorithm is developed which operates in
scan-line order and 1is compatible with the two-pass
transformation technique.

A stream processing filtering architecture is presented
together with refinements necessary to implement the two-
pass algorithm in real-time. A system is described to
implement both processes concurrently at pixel rates using
an efficient pipelined architecture.

Dedicated hardware has been built to implement the surface
in-fill and texturing systems in real-time, demonstrating
the usefulness of stream processing techniques for real-time
CGI applications.



CHAPTER 1
INTRODUCTION

1.1 BACKGROUND TQO COMPUTER GENERATED IMAGERY (CGI)

In recent years the use of a computer to generate
images directly has become widespread and as a consequence
Computer Generated Imagery (CGI) has been the subject of
considerable research. This has resulted in the development
of a wide range of display architectures and a proliferation
of algorithms for image generation [SpNe79][FoVa84]. Because
CGI systems are often used for the rebresentation of three-
dimensional images, these algorithms include methods of line
drawing, perspective geometry, shading, surface texturing,
and hidden surface removal.

An important category of CGI is Real-Time Image
Generation (RTIG) in which the image is regenerated at a
sufficient repetition rate to give the illusion of motion.
This limits the time available to generate each frame of the
image and reduces the fidelity of RTIG systems when compared
to non-real-time CGI in which greater realism may be

achieved at the expense of processing time.

1.2 REAL TIME IMAGE GENERATION FOR FILIGHT SIMULATION

Most of the research effort reported in the literature
has concentrated on flight simulation [Scha83]. More recent
applications include motion pictures, computer aided design
and arcade games, and as technology improves it is 1likely
that other applications will be found. The research project
detailed in this thesis has been carried out primarily for
inclusion as part of a flight simulation system. However,
the results of this research have broader significance

because of the central issues which are common to all



applications of RTIG.

In flight simulation, the pilot is stimulated by
visual cues (and possibly aural and motion cues) and in
comparison with actual flight training in aircraft has the
advantage of lower training costs and and the ability to
create controlled situations, including hazardous conditions
such as engine failure or bad weather. RTIG is a major
component of modern flight simulation systems and provides
the main visual cue by generating a simulated view from the
cockpit.

For brevity a full account of the development of
flight simulation systems is not included in this thesis. a
good account of the historical aspects of flight simulation
which have lead to the adoption of CGI techniques is given

by Price [Pric84].

l.2.1 OUTLINE OF A RTIG SYSTEM FOR FLIGHT SIMULATION

RTIG systems are based on the ’‘projective method’ in
which individual components of the scene are geometrically
transformed and projected onto the viewing screen. Other
techniques such as ‘Ray-Tracing’ [Roth82] and fractal based
models [Carp82][Mand82] provide realistic images but can not
currently be implemented in real-time.

The computational processes required to implement the

projective method are illustrated in Figure 1.1 below.

HOST GEOMETRIC DISPLAY

SYSTEM OPERATIONS HARDWARE

@ 6 ©

Figure 1.1 Outline Of RTIG System



a - Host System

This image is represented by abstract objects defined
by co-ordinate information in three-dimensional ‘world’
space, stored as part of a database on the host computer.
Conventional Cartesian co-ordinates are used, represented in
this thesis by the triple (X ¥ _,2) with the z  axis
defined vertically upwards. Real-time constraints 1limit
objects to flat polygonal surfaces, represented by the co-
ordinates of the vertices.

The host computer acts upon responses from the pilot
to determine the position (px,py,pzj and attitude of the
aircraft (represented by wx,wy, and P the angles of
rotation about the X /Y and z axes respectively) using a
model incorporating flight dynamics and external stimuli.
This information is used to select potentially visible
objects from the database which, together with position and

attitude are passed to the geometric operation stage.

b - Geometric Operations

Geometric operations are performed on the ‘world’
objects in order to present an image to the viewer on a two-
dimensional screen. Generally, three procedures are
required: transformation from world to viewing co-ordinates,
removal of objects (or parts of objects) which are out of
view, and perspective projection from three-dimensional
viewing space onto two-dimensional screen space.

The transformation of an object from world space to
viewing space is performed by a series of operations on each
vertex which may be reduced to a translation followed by a
single 3 by 3 matrix operation. This operation is

illustrated overleaf:



a a a
S § 12 13
= - - - . 1.1
[xv’yv’zv] [xw px’yw py’zw pz] a21 a22 :23 ( )
‘ 31 3z 33

The values (xv,yv,zv) represent the object co-
ordinates in viewing space, (xw,yw,zw) represent the object
co-ordinates in world space and coefficients a, are
determined from the attitude parameters (mx,my, and wz).

Equation (1.1) is not definitive and various
representations of this operation occur in the 1literature;
in particular, homogeneous matrix representation [Roge76]
may be used (combining translation and transformation as
single matrix) and the equations determining the
coefficients depend on the order in which the angles P, 1P
and ¢_ are defined.

A perspective projection is performed to determine the
two-dimensional screen co-ordinates (xs,ys) at which a point
in viewing space should appear. For the vertex of an object
given by (xv,yv,zv) in viewing space the screen co-ordinates

are given by:

i

X

y

(x /2z_)-S_+ S_/2 (1.2)

(yv/zv)-Sy + Sy/2 (1.3)

where Sx and Sy represent the size of the screen.

The removal of objects, or parts of objects, which are
not visible is generally performed by two processes,
clipping and hidden surface removal.

Clipping 1is performed between the transformation and
perspective projection stages to eliminate objects which are
outside the screen area. This is generally performed by the
Sutherland-Hodgeman algorithm [Suth74] determining the

intersection of polygon edges with a canonical viewing



volume and is fully described in the literature.

Hidden surface removal is necessary to remove objects
or parts of objects occluded by objects nearer to the
viewer. Many algorithms have been proposed to suit different
applications. Further discussion is not included here and a
full review of different techniques is given by Sutherland

et al. [Suth74].

c - Display Hardware

Finally the resultant two-dimensional co-ordinate
information is passed to the display hardware for
representation to the pilot. The image is usually viewed on
a raster-scan Cathode Ray Tube (CRT) developed as an
extension of conventional television technology. The use of
a raster-scan CRT imposes a scan-line order on the display
process which must generate a serial bit-stream of video
ihformation. The screen area is represented by an array of
picture elements or pixels indexed by integer co-ordinates
(xa,ya), the scan-line being directly related to the y_ co-
ordinate.

The process of converting a list of polygon vertices
to a set of pixels of a specified colour is known as scan-
conversion. Scan-conversion may be implemented in scan-line
order to provide a direct video output or a bit-mapped pixel
‘framestore’ may be used allowing scan-conversion in polygon
order.

Often, the display hardware implements image
enhancement processes such as smooth shading [Gour71],
texturing (Section 1.3.3 q.v.), and anti-aliasing.

Aliasing effects are introduced by the three-

dimensional sampling imposed by bit-mapped raster-scan



6
displays [Dubo84]: Two-dimensional spatial sampling (because
of the discrete pixel array) causes a staircase effect
(termed ’jaggies’) visible at polygon edges. Sampling in the
time domain (because of the frame period) gives rise to
artifacts called temporal effects. Aliasing is discussed at
length by Szabo (see [Scha83]) and as part of the review of

texture mapping in Section 2.3.

1.2.2 THE PROBLEM OF COST IN FLIGHT SIMULATION

The view presented to the pilot must contain
sufficient realism to be of significant training value. This
requires not only that the image be generated in real-time
but that it contain sufficient detail. A considerable data
processing overhead is necessary to meet these requirements
and the resulting RTIG system becomes complex and expensive.
A visual system for a commercial aircraft simulator
typically costs at least 2 million dollars [Moxo87] with
military systems costing up to five times this figure.
Consequently, the cost of this approach to training has
proved prohibitive for many users, thereby giving an
opportunity for smaller systems to provide an acceptable
cost-performance ratio. In contrast, recent developments in
dedicated display hardware(e.g [AMDQ87][Texa87]) have placed
RTIG within the reach of personal computer systems. The
degree of realism offered is not sufficient for serious
training programmes and features such as anti-aliasing and
texture mapping have remained beyond the scope of such

systems.



1.2.3 CONTEXT OF THE RESEARCH PROJECT

The research project described in this thesis was
undertaken to extend research already completed at the
Department of Electronics and Computer Science, University
of Southampton. The results of this research are outlined
below:

First, it has been demonstrated that a RTIG system can
be based on a fixed-point representation of object data and
flight dynamics [AlZa85]. This allows geometric operations
to be implemented by a simple microprocessor based system at
a lower cost than equivalent floating'point systems.

Secondly, two flight simulation systems based on this
approach have been developed. The first of these was
designed for lower cost (< £5,000) applications and uses two
microprocessors (Motorola type MC68000) to implement the
host system and geometric operations respectively as
outlined in Figure 1.1. The display hardware is based on a
double buffered framestore architecture [Evem85] implemented
using low cost commercially available Graphics Display
Processors (GDPs) [Math75]. The GDP contains a hardwired
vector generator [Alia84] which generates lines based on the
co-ordinate information. A display of 512 by 512 pixels (16
colours) is supported providing an output conforming to 625
line CCIR standards [DTIC84] displayed on a conventional
colour monitor. A working system has been completed capable
of generating an image composed of over twenty ‘wire-frame’

polygons at frame rate (25 times per second).



1.3 SCOPE OF THE THESIS - OBJECTIVES

The evaluation of all areas of RTIG to provide greater
realism at lower cost is beyond the scope of this thesis.
However, the technique of image enhancement by ‘post
processing’ the serial bit-stream output from the framestore
has been investigated. The required ‘post processing’
algorithm is performed in hardware by a ‘stream processor’.
This stream processor is incorporated in the display
hardware between the framestore and CRT display.

The objective of this project is to assess the
usefulness of stream processing as a'means of implementing
low cost RTIG. This includes:

1). The development of algorithms to support a stream
processing architecture.
2). The design of architectures to implement these

algorithms.

1.3.1 STREAM PROCESSING

This approach was first proposed formally by Tenebaum
[Tene80] but has been proposed indirectly as part of many
spatial transformation algorithms (Section 2.3 g.v.). 1In
general, video stream processors (VSPs) operate on pixel
data in the scan-line order imposed by raster scan display
hardware. This information may then be passed to the display
device or to a second stream processor either directly or
via a second framestore. The VSP may be considered as a
serial emulation of a SIMD (Single Instruction Multiple
Data) processor array, with the added feature that
individual processors may use data from other processors

which are emulated earlier within the frame period.



9

The processing is performed at video rate, e.g. a 512
by 512 pixel image requires a cycle time of about 100ns.
Although this implies a performance of only 10 MIPS (IPS =
Instructions Per Second), the processing bandwidth is many
times greater as several operations can be performed during
each cycle. This is possible because the predefined (scan-
line) order of the data allows a pipelined architecture,
performing a finite number of operations on each pixel
during a single cycle.

The main use of VSP techniques has been for image
processing including edge detection iPlesS?], and spatial
transformations [CaSm80] (for special effects and to assist
image recognition). The use of stream processing
architectures for RTIG has been 1limited to processes
directly applicable to a video signal, such as haze effects
[Hall87].

This thesis aims to formulate more complex VSP designs
based upon algorithms which operate in more than one pass.
It also proposes the concept of designing algorithms
specifically for a VSP architecture.

The usefulness of this design approach is assessed by
using stream processing techniques to address two areas of

image enhancement:

1). Surface in-fill.

2). Texture mapping.

In Dboth cases compatibility with the existing system
at the University of Southampton has been taken into

account.



10
1.3.2 SURFACE IN-FILL

An in-filled polygon represents a small increase in
information content compared to a non in-filled polygon and
can be evaluated from the same co-ordinate information. This
information is contained in the framestore and surface in-
fill can be provided by post-processing a non in-filled
image.

Direct implementation of conventional in-fill
algorithms is frustrated by bandwidth 1limitations between
the display processor and the framestore. Systems which
provide real time in-fill usually exploit some form of
parallelism (e.g. [Wals80]).

Algorithms have been proposed which support a stream
processing architecture [Pavl79][AcWe81][HaCh85]. These
algorithms implement simple post-processing but require a
complex contour description of the region to be in-filled.
This imposes additional requirements on the original ‘wire-
frame’ 1image and precludes the use of simple vector
generators. Such methods are not compatible with
commercially available GDPs and do not comply with the low
cost design philosophy.

A solution to this problem is sought by using a more
complex stream processor to provide region in-fill with

minimum demands on the contour generation algorithm.



11
1.3.3 SURFACE TEXTURING

As the representation of surface detail becomes more
intricate, explicit modelling with polygons becomes
impractical. A better approach is to add synthetic ‘texture’
to selected polygons providing the illusion of finer detail.
This ‘texture’ may be periodic (such as the image of a
ploughed field), random (such as a gravel path) or a
combination of both.

An efficient technique, first suggested by Catmul
[Catm74], 1is to map a predefined image onto the surface to
be ‘textured’. As an alternative' to image mapping a
predefined texture pattern may be rendered repeatedly over
the surface, in a fashion similar to that of tiles on a
floor, this is known as texture tiling.

The implementation of either image mapping or texture
tiling in real-time is a formidable task requiring solutions

to two separate problems, these are outlined below:

1) Co-ordinate information must be generated such that
the position of the texture information corresponds to
the geometric transformation and projection of the
surface to which the texture is applied. In principle
this requires that each pixel must undergo individual

transformation and projection.

2) The problem of aliasing must be addressed [Crow77].
Aliasing arises because the discrete nature of a pixel
based display implies that the texture pattern must be
spatially sampled to be represented. The texturing
system must therefore include some form of filtering
to reduce the effects of this problem. Flight

simulation introduces a further problem as it involves



12
a perspective projection. This is a form of non-affine
transformation which has been shown to require a
spatially-variant filter function [Heck86 ] and

frustrates conventional filtering techniques.

Many techniques have been proposed in the literature
which address these issues and will be reviewed in more
detail in Section 2.3.

This thesis concentrates on texture generation by
image mapping. For a flight simulation application the
region would be a detailed map of an area of land such as
the landing area (including runway markings, taxiway detail
etc.). This region 1is then presented to the pilot in
perspective as part of a less detailed image (such as that
provided by the surface in-fill system outline above). This

process is illustrated below:

DETAILED MAP FINAL DISPLAY

N

Figure 1.2 RTIG System Using Image Mapping

The objective is then to implement this system using a
stream processing architecture to address the problems

outlined above to provide a more cost-effective solution.



13
1.4 CONTRIBUTIONS OF THE RESEARCH

The contributions offered by the research detailed in
this thesis show the potential of stream processing as a
technique for RTIG. In addition to the identification of the

shortcomings of existing approaches this includes:

1) The development of a two-pass surface in-fill
algorithm which uses a two-pass VSP architecture. This

algorithm is novel because:

i) It operates directly on an 8-connected image

generated by commercially'available GDP.

ii) It provides in-fill by exploiting the vertical
coherence between successive scan-lines. Only
one line of storage is required. This is made
possible by a recursive datapath utilising

feedback between two separate VSPs.

2) The development of a image mapping system based on a
stream processing architecture. Novel features of this

design include:

i) A two-pass filter algorithm which provides
spatially-variant filtering for pixel data
generated from the application of a non-affine
transformation matrix. This is performed at a
cost of one processing cycle per output pixel
using a pipelined datapath. No additional
operations are required to perform edge anti-
aliasing and synchronisation with the output

data strean.



14

ii) The filtering process is implemented by two VSP
sub-systems separated by an intermediate buffer.

The first VSP operates at the input data rate

and the second VSP operates at the output data

rate. This. permits the source texture to be
defined at a higher resolution than the display

to which it is mapped.

iii) The filtering algorithm combines directly with a
pipelined co-ordinate generation system in which
a conventional two-pass technique implements the
required spatial transformation. An efficient
scan selection algorithm derives the optimum
scanning order using the attitude and position

parameters.

iv) The co-ordinate generation system is designed to
make use of a proprietary Image Resampling
Sequencer (IRS) to minimise hardware

requirements and reduce system cost.

1.5 DDITION CONTRIBUTIONS

The hardware presented in this thesis utilises recent
advances in Programmable Logic Devices (PLDs). This is
reflected by the more advanced designs presented in Chapter
7, 1implemented more than a year after the system described
in Chapter 4. 1In part, this has been due to the acquisition
of the Programmable Logic Programming Language (PLPL) an
advanced software development tool for logic compilation.

PLPL was provided free of charge as a source file (in
the C’ programming language) to the Department of
Electronics and Computer Science, University of Southampton

by Advanced Micro Devices (AMD). PLPL is now installed on



15

the TRICE distributed processing network inside the
department.

In addition, device drivers were written to allow the
use of more complex EPLDs (Eraseable PLDs) produced by IC
manufacturers ICT and Altera, an example of which is given
in Appendix I. All of these tasks were performed by the
author, requiring over four months of the research

programme.

1.6 ORGANISATION OF THE THESIS

Chapter 1 (this chapter) presents a general background
to RTIG with a particular emphasis on the requirements of
flight simulation. The need for a relatively low cost system
is explained together with a brief summary of research
carried out for this purpose at the University of
Southampton. The concept of stream processing is introduced
suggesting two areas in which this may be applied.

Chapter 2 takes a detailed look at the 1literature
published on the relevant aspects of CGI. This is organised
in three sections covering RTIG display architectures, in-
fill algorithms and texture mapping systems.

Chapter 3 details the requirements of the ‘wire-frame’
in-fill algorithm and outlining the aspects of a VSP design
which may be used for this purpose. An algorithm is
developed and formally presented, together with the
limitations which it imposes.

Chapter 4 discusses the function of the VSP blocks
necessary for a real-time implementation of the in-f£ill
algorithm outlined in Chapter 3. This includes a detailed
description of the hardware implementation of the complete

in-fill system.



le6

Chapter 5 presents results obtained from the surface
in-fill system and analyses its performance as part of a
flight simulation system.

Chapter 6 looks in more detail at the problems of co-
ordinate generation and filter implementation for texture
mapping. The use of a a VSP architecture to separate the
filtering process into two passes is suggested and an
associated algorithm is presented. The generation of mapping
co-ordinates from the position and attitude parameters is
described and a scan selection algorithm is developed to
ensure the most efficient implemenfation of the two-pass
transformation process.

Chapter 7 presents a detailed account of the
development of hardware to implement the image mapping
system in real-time. The influence of programmable logic and
the associated software design tools on the implementation
is described. A detailed description of the complete system
is presented in three sections; co-ordinate generation,
framestore design, and filtering sub-system.

Chapter 8 analyses the performance of the image
mapping system. A typical source image is used to
demonstrate operation in real-time and results are used to
assess the advantages and possible 1limitations of the
system.

Chapter 9 draws conclusions to the research together

with suggestions for further work.



17

CHAPTER 2

LITERATURE REVIEW

The literature review and critique presented in this
chapter comprises three sections. The first section
describes relevant aspects of commercial and academic RTIG
systems found in the open literature and is intended to
provide a background to RTIG at system level. Sections two
and three provide a detailed analysis of published in-fill
and texture mapping techniques respectively emphasising

suitability for real-time implementation.

2.1 REVIEW OF RTIG SYSTEMS

This section provides an outline of commercial and
academic RTIG systems designed for flight simulation. A full
review of all research in this field is beyond the scope of
this thesis and detail is given only where relevant to the
goals outlined in chapter 1. In addition, as there is no
standard method of evaluating the performance of RTIG
systems this section avoids comparison of complete systems
and concentrates on the illustration of differing display

architectures.

2.1.1 COMMERCIAL RTIG SYSTEMS FOR FLIGHT SIMULATION

A good review of commercially available RTIG systems
is given by Schachter [Scha8l1][Scha83] although this does
not provide a detailed account of individual system
architectures. In general such information is not readily
available in the open literature and information is often
limited to performance statistics. Although widely reported
in aviation magazines (e.g. [Warw87]) these statistics are

intended for marketing purposes and not only provide 1little



18
architectural information but are often presented in a
manner which makes direct comparison with other systems
difficult.

It 1is clear from Schachter’s review, however, that
raster video generation hardware techniques consist of two
categories.

First there are systems which generate a video output
directly from a sorted list of polygon edges intercepting a
given scan-line. Hidden surface occlusion and edge smoothing
are also performed at this level using additional priority
information. Examples of this approach include the GE C-130
Visual Simulator (General Electric) which can display up to
600 edges per scan-line, the Singer/Link Digital Image
Generation System (512 edges per scan-line), and the
Advanced Technology System’s Computrol.

The other group of simulator systems incorporate a
framestore at the final stage of image generation. This
framestore is scanned in scan-line order but allows the
image to be entered in an arbitrary order. An example of
this is the CT-5 system (Evans and Sutherland) which
generates the image in feature rather than scan-line order
using rectangular areas to partition the processing tasks. A
more recent review of flight simulator systems [YanJ85]
indicates that advances in memory technology have resulted
in greater use of framestore based display hardware. This
allows the display capability to be 1limited by image
complexity and not by the complexity of the ‘’busiest’
individual scan-line.

It was mentioned in the Introduction that a common
factor of all commercial flight simulator systems is high

cost. An exception to this is the FOG-M system [Zyda88]



19
which is priced below $100,000. Although this system was
developed at the Naval Postgraduate School (USA) it is
included in this section as the display hardware is a
commercially available colour graphics workstation (the
Silicon Graphics IRIS 3120).

ETHERNET CABLE

MAGNETIC
ETHERNET DISK
TAPE
CONTROLLER CONTROLLER
CONTROLLER
MULTIBUS l ‘ I
FRAMESTORE
FLOATING CONTROLLER
bomT MC68020 UPDATE DISPLAY COLOUR
CONTROLLER CONTROLLER
GEOMETRY MAP
ACCUMULATOR ENGINE
l [ kevBoarD | ‘
1024 X 1024 I
P 10 X 32 BITS |
MEMORY 16MB DISPLAY ]
(2/4 MB) MEMORY | -

Figure 2.1 The IRIS 3120 Workstation.

The IRIS 3120 (Figure 2.1) incorporates a double
buffered framestore using a Motorola MC68020 microprocessor
for system and database control. The MC68020 also provides
hidden surface removal (using the Painter’s algorithm
[Suth741]); the geometric transformations, however, are
performed by a pipeline of 12 VLSI ‘Geometry Engines’
[Clar80][Clar82]. Finally, the resulting polygons are
coloured according to an algorithm which incorporates the
angle of the face to an illuminating point source.
Performance is reported as 1500 to 2000 polygons per frame,
but it gualifies loosely as a real-time system as an update

rate of only three to four frames per second is provided.



20
2.1.2 ACADEMIC RTIG SYSTEMS
Many academic institutions have research projects
aimed at the development of efficient RTIG systems. Some of
this research has concentrated on raster-scan display
architectures and will be discussed in detail in this
section. Other important projects which address the
geometric transformation and projection of co-ordinate
information are not relevant to this thesis and will not be
included in this analysis. These projects include VLSI
solutions such as ‘MAGIC I’ [Agat86] and ’‘MAGIC II’ [Finc88]
and multi processor solutions such as the ‘CSI processor’
[Char86].
Where possible, the survey is presented in
chronological order. Some of the most recent additions were
published during the course of the research reported in

thesis.

a - Zone Management Processor [Grim79]

The Zone Management Processor (ZMP) system was
developed at the University of Sussex to perform polygon
scan conversion as part of a multi-processor CGI system.
Each ZMP handles a separate polygon (4 sides maximum) and
provides a direct video output, no framestore is required.
In addition, a ZMP may display more than one polygon per
frame provided there is no contention chronologically. A
separate microprocessor system being used to co-ordinate
data transfers from the host system to individual ZMPs.
Hidden surface removal is incorporated by merging individual
ZMP elements with priority according to the painter’s
algorithm.

Because the framestore is omitted, no horizontal

guantisation is imposed and horizontal temporal anti-



21

aliasing may be incorporated using a faster horizontal clock
to provide sub-pixel positioning. Vertical temporal anti-
aliasing is also provided, though this is more complex,
requiring a line buffer to store the intensity values of the
previous line for interpolation. Anti-aliasing required to
prevent static effects (’jaggies’) may be incorporated using
gradient information to provide ’soft’ (low pass filtered)
intensity changes at the polygon edges.

Early systems were based on bit-slice processor design
communicating with the host via DMA interface [Pric84]

although future development rests on a VLSI implementation.

b - BITBLT based architectures

Bit BLock Transfer (BITBLT) is a technique used to
enhance the performance of framestore based systems by
providing fast manipulation of blocks of pixels. An example
of this approach is the ’8 by 8 system’ [Gupt8l1] in which
the framestore memory is divided into square blocks of 64 (8
by 8) adjacent pixels which are operated on in parallel.
Line and character generation is provided by replicating a
segment several times. Such operations entail problems of
re-alignment which require shifting, rotation, mirroring and
transposition of the original block. Originally implemented
using a microcontroller (AMD type 2901 [AMDM83]) research
was then directed towards the production of ’smart’ memory
chips incorporating circuitry to assist the alignment
problem.

An enhanced and more generalised form of this
architecture is the DisArray (Distributed processor Array)
system [Page83] which handles 16 by 16 (256 pixel) arrays in

parallel. The system incorporates 256 individual processing



22
elements in a SIMD (Single Instruction Multiple Data)
arrangement such that each processing element handles all
the pixels in the framestore which occur in that part of the
block. System control is performed by a 16 bit
microcontroller (AMD type 29116 [AMDM83]) interpreting
graphics ~primitives (termed ‘RasterOp’s) from the host
systenmn.

BITBLT techniques are best suited to interactive CAD
(Computer Aided Design) applications requiring window

orientated operations and menu displays.

c - Pixel Planes [Fuch81][Fuch82]

Pixel Planes is a VLSI orientated design performing
calculations with special hardware at each pixel. Only
display hardware is supported, polygon data being supplied
(in screen co-ordinate form) from a host system. This
information is not presented in the normal fashion (a vertex
list), instead each line (edge) of the polygon is defined by

the coefficients its equation; in the form:
f(x,y) = ax + by + ¢ (2.1)

The equation is evaluated at each pixel which is set
according to the sign of the result. This process is
repeated for each edge, the sign being used to eliminate
pixels which lie outside the polygon. There is no limit on
the number of edges although these must be presented in
predetermined order (clockwise or anti-clockwise) and only
convex polygons are supported. The equation is implemented
at each pixel in parallel wusing a ’smart memory
architecture’, a 4 by 4 example of which is outlined in

Figure 2.2.



23

N

/x MULTIPLIER TREE\

|,__J

L
)
L]

Y MULTIPLIER TREE

I I I O

N [ N i I
N I O I O

I N I I ) O I

Figure 2.2 Pixel Planes Memory Architecture

The equation is evaluated in two stages such that the
multiplication is only required for each x and y value and
not for each pixel and is evaluated by the multiplier trees
shown above. Only one addition is then required at each

pixel to evaluate the value of the function.

d - INMOS transputer graphics systems [Inmo89][Atki88]

The transputer is a 32-bit microcomputer with internal
memory and four high speed (up to 20 Mbits/s) serial 1links
for communication with other transputers or the outside
world. Two devices, types T425 and T800 are particularly
suited to graphics applications and include a configurable
external memory interface for framestore implementation
capable of 40 Mbytes/s sustained data rate. Graphics
primitives [Harr87] are provided based on the BITBLT
principle outlined in item ‘b’ above and operate on either
external or internal memory.

An additional feature of the T800 is the inclusion of
a 64-bit floating-point unit, capable of operation at up to
2.25 Mflops (flops = floating point operations per second).

This makes the T800 suitable for transformation, projection



24

and clipping as well as scan-conversion and surface
rendering.

The transputer is intended for parallel processing
applications in which different tasks or data are processed
by separate transputers concurrently. A special programming
language, ‘occam’, has been developed to support this
feature allowing a system to be described as a collection of
concurrent processes which communicate with each other.

The main advantage of this approach is flexibility, as
tasks can be distributed according to the number of
transputers in a given array. Indeed, no de facto standard
exists for graphics applications and performance can be
improved by using a larger network transputers. An upper
limit is placed on the performance according to how the
image generating tasks can be distributed.

An example flight simulation system is described by

Atkin and Ghee [AtGh88] and is illustrated below in Figure

2.3.
> S
DATA BASE /
I 3D TRANSFORM x-cup | || |
CONTROL SHADERS | ﬁg;%?; |
Bt
Z-CLIP / -, | ]
PERSPECTIVE Y-CLIP |
L ]

Figure 2.3 Example Of Transputer Based CGI System.

This system uses nine transputers (type T800)
implementing the particular tasks indicated in the diagram.
This configuration is capable of displaying 200 polygons per

frame at a rate of 17 frames per second.



25
e - Southampton Flight Simulator [AlZa85][AlZa86]

A CGI system under development at the University of
Southampton uses a Multiple-Instruction Multiple-Data (MIMD)
system incorporating 30 microsystems (using 12MHz MC68000
devices [MOTO083]) connected by a global input and a global

output bus as shown below.

FROM FLIGHT INPUT BUS N

DYNAMICS CONTROLLER 7
MICROSYSTEM (etc) MICROSYSTEM
1 ALy N
AN
17
OUTPUT BUS |
CONTROLLER 0 FRAMESTORE —— DISPLAY

Figure 2.4 Southampton MIMD CGI System

An important feature of this system is that all co-
ordinate transformations are calculated using fixed-point
arithmetic, increasing systenm throughput. The workload is
partitioned between each processor into regions of
potentially visible polygons. Each global bus is controlled
by a high speed microcontroller performing all input and
output operations. Scan-conversion is performed within the
MIMD array and the Output Bus Controller passes individual
spans to be filled to the framestore section.

The framestore section consists of two separate
filling processors and two framestore memory arrays (512 by
512 pixels) configured in a double-buffered arrangement.
Each span is specified by a 40 bit word, this includes the
scan-line (10 bits), the starting x co-ordinate (10 bits),

the span length (10 bits), the span colour (8 bits) and two



26

mode bits (used for handshake control). High speed data
transfer to the framestore memory is provided by
segmentation of the framestore memory allowing 16 pixels to
be modified in parallel. Memory control is performed using a
microcontroller incorporating a writable control store to
increase system flexibility and allow future development.
Simulations show that a full system incorporating 30
microsystems can display approximately 500 polygons per

frame (40 ms) assuming an average span length of 100 pixels.

f - Bradford University RTIG System [RhSe88][Serr87]

The complete RTIG system developed at the University
of Bradford is based upon a four stage multi-processor
pipeline in which scan-conversion is implemented by two
microprocessor systems and a dedicated hardware processor.
Figure 2.5 shows an outline of this stage, which may be
divided into two sections; the Polygon Raster Generator

(PRG) and the Video Display Processor (VDP).

g M S QG

POLYGON RASTER GENERATOR

! P i
i i : i
i i . I
. START i . VIDEO DISPLAY PROCESSOR !
| PROCESSOR T i
- SCAN ' i i
i i —+  SPAN FRAME !
| | CONVERSION i i, FILER BUFFER | |
! FIFO : i
. END , '
; PROCESSOR i i
i
i | :
t i I

Figure 2.5 Bradford RTIG System

The PRG uses two microprocessors (Motorola type
MC68020 [MOTO83] running at 16.7 MHz) operating on two
dimensional polygon vertex information provided by the

previous stage.



27

First the vertices are sorted in the y direction by
one processor (the master processor) which also provides
control of the PRG. Only convex polygons are supported,
giving a maximum of two intersections between the edges of
the polygon and each scan-line.

NeXt, the x co-ordinate of the left (x-start) and
right (x-end) intersection for each scan line is calculated
separately by each processor starting at the top of the
polygon. The time taken to calculate each intersection pair
depends upon the gradient of the polygon edges but an
average of 3 to 4 us has been reported.

The VDP contains a double buffered framestore memory
(512 by 512 pixels with 8 data bits per pixel) with
associated display and arbitration control and a Span
Filler, designed to draw horizontal lines at high speed. The
Span Filler performs two functions; clearing the screen (at
the start of each frame) and drawing the polygons, 1line by
line, wusing the four parameters (x-start, x-end, y and
colour) received from the PRG. High speed is achieved by
segmentation of the frame buffer such that 16 pixels may be
modified in one memory cycle, similar to the Southampton CGI
system (item ‘e’ above). The VDP uses a simpler system
providing individual segment selection using a mapping PROM.

The VDP can clear the screen in 3.27 ms and a line of
100 pixels can be filled in 1.4 ps. Based upon an average of
60 lines per polygon and an average line 1length of 100
pixels, this gives a filling rate of 476 polygons per frame
(40 ms).

The overall performance is limited by the PRG and a

performance of 200 average polygons per frame is reported.



28

g - Shaded Polygon System [West87]

The shaded polygon generation system proposed by

Westmore is a distributed architecture using one processor

per polygon similar to the ZMP system (item ‘a’ above). As

shown in Figure 2.6 the processors are arranged in a

pipelined 1linear array which may be extended indefinitely.

Each processor is connected only to its adjacent neighbours
overcoming the problem of interconnection between a large
array of processors encounted on an earlier system
[Fuss82].
——— COMMUNICATIONS COMMUNICATIONS (—»
PICTURE PICTURE
PROCESS PROCESS
FRAME BUFFER FRAME BUFFER
SCANLINE SCANLINE
PROCESS PROCESS
VIDEO CLKS —— —
PRIORITY BUS — PIXEL PIXEL L,
RED BUS — RATE RATE >
GREEN BUS — PROCESS PROCESS —
BLUE BUS —] ——p

Figure 2.6 Shaded Polygon Processor Array

Each processor transforms, projects, and scan-converts
a single triangle which is added to the image generated by

the previous processor. Synchronisation signals are also

passed through the array providing a direct video signal

from the output of the final processor. Colour shading is

provided by interpolation of colour value along the edges of

each triangle, known as Gouraud shading [Gour71]. Only

triangles are supported as Gouraud shading for more complex
polygons is not invariant under rotation. The operation of
each processor is divided into three processes according to

the speed of each operation.



29

Picture rate processes are performed once for each
frame and include the transformation, perspective
projection, clipping and scan-conversion of each triangle. A
list of parameters is generated for each edge pair in order
of decreasing y, defining the top and bottom y co-ordinate
(Y_TOP and Y _BOTTOM), initialisation (colour and x co-
ordinate), and gradient (d(colour)/dy and dx/dy).

These parameters are passed, via a buffer (for
synchronisation purposes), to the scan-line section. For
each scan-line a new set of parameters are dgenerated
defining the x start and extent, initial colour, colour
gradient (d(colour)/dx), and priority of the span to be
displayed.

Finally, the image is generated by the pixel rate
section, and merged with the incoming video signal (from the
previous stage). The pixel rate operations performed by the
colour interpolator and priority resolver are implemented
using one-bit accumulators in a skewed parallel arrangement,
each processor adding a latency of one clock cycle to the
system.

A high resolution non-interlaced display (1280
horizontal by 1024 vertical) is supported and it is
suggested that up to a million processors could be combined.
Only simulated results are available and a real-time system

is planned based on a VLSI implementation.



30

2.2 SURFACE IN-FILL TECHNIQUES

The widespread development of raster scan framestore
orientated CGI systems has provided a proliferation of
techniques to provide in-fill. These are widely reported in
the literature (e.gq. [Roge85][Revi85]) and may be placed
into four categories: ordered edge list, seed fill, parity

check and edge fill.

2.2.1 ORDERED EDGE LIST (OEL)

This group of algorithms is not attributed to any
individual author but is treated in general texts (e.q.
[SpNe791]) as the standard method of scan~converting
polygons. These algorithms use polygon vertex co-ordinate
information directly and, in general, this type of algorithm

pProceeds in three stages.

(1) The co-ordinates of the intersection of each polygon
edge with the centre of each scan-line are computed.
The co-ordinates are stored in a list and the

procedure is repeated for all polygons.

(ii) The 1list is then sorted to place the co-ordinates in
groups in order of increasing Yy, and 1in order of
increasing x within each group. This procedure is
illustrated by Figure 2.7 (b) which shows the sorted

edge list for the polygon in Figure 2.7 (a).

(iii) Finally each group is sorted into adjacent pairs of
the form(x1l,y)(x2,y) for scan-line Y and the span of
pixels having integer values of x between x1 and x2 is

filled (as shown in Figure 2.7 (b)).



31

y CO-ORDINATE | ORDERED EDGE LIST | RUN/S TO BE

64 OF SCAN-LINE FILLED
5 6 ~ NONE
4 5 (25) (3.5) (65.5) (8.5 2-3 & 6-8
3 4 29N (4) (80 2-4 & 5-8
2 3 23)B3) 2-8
1 2 22)(82) 2-8

123456789 x 1 @nEn 2-8

(a) POLYGON (b) TABLE SHOWING SORTING

Figure 2.7 Ordered Edge List Example

The efficiency of this technique depends wupon the
efficiency of the sorting algorithm. This can be improved by
combining steps (i) and (ii) and determining the
intersections in scan-line order. For a convex polygon this
requires that only two edges need to be considered at any
one time. The intersections for these two edges can be
calculated using difference equations using an efficient
line drawing algorithm (such as [Bres65]) and incorporated
with the sorting procedure to provide a combined algorithm;
as employed by many of the RTIG systems described in Section
2.1 q.v..

This method, however cannot be used to scan-convert
concave polygons as an arbitrary number of edges could be
present in one scan-line (as demonstrated by scan-lines 4
and 5 in Figure 2.7). Concave polygons must first be
decomposed into a structure of convex polygons using a
suitable algorithm [BrFe79][LaMR83][Scha78] for this more

efficient sorting algorithm to be used.



32
2.2.2 SEED FILL

Seed fill is a form of boundary fill algorithm which
may be used to fill arbitrary shaped areas. This technique
assumes that a unique region has been defined by a boundary
which has already been entered into the framestore and that
a co-ordinate of a pixel which is known to be contained
within this boundary is given. The operation of this
algorithm depends upon the properties of the surrounding
boundary and particularly by the way in which the pixels
which compose the boundary are connected. The pixels are
assumed to be square and connectivity of adjacent pixels is
defined as follows [Rose70]: Two pixels are four-connected
if they share one of the four possible edges, and two pixels

are eight-connected if they share an edge or corner.
'AB.
... C

Figure 2.8 Example Of Connectivity

Figure 2.8 shows examples of both four-connected and
eight-connected pixels as part of a 4 x 4 framestore array
(four scan-lines) of pixels. The convention adopted in this
and subsequent diagrams is to represent an empty pixel by a
dot or a lower case letter and a filled pixel by an upper
case letter. The actual letters which are used have no
significance but provide a convenient label for text
references to a particular pixel or area. For example in
Figure 2.8 pixel A is four-connected to pixel B and pixel B
is eight-connected to pixel C.

Conventional 1line drawing algorithms produce lines
which are at least eight-connected which guarantees that

interior and exterior regions can never be four-connected.



33

Several algorithms have been reported to fill four-connected
regions [Smit79][Lieb78][CaDe79] treating pixels in groups
called runs (a run is defined as the horizontal row of
pPixels enclosed between two boundary pixels). Successive
runs are filled at increasing distances from the seed pixel

until all pixels have been filled.

PPPP: - -« .. QOQ- - - .. ..
..... R-.8SS........7ppD u.--....
...... U VVV.: - WWW. .. ... .. X.....
....... Yc dZ2Ze----......fM-
........ Na----..............bO
......... LsK

Figure 2.9 Example Of Seed Fill Algorithm

Figure 2.9 shows an example in which the algorithm is
progressing upwards from the seed pixel ’s’ toward the top
of the contour. After the in-fill of run a-b the filling can
proceed in two directions, to fill run c-d or run e-f. A co-
ordinate within the run which is not chosen must be stored
to allow the algorithm to continue after all the area above
the chosen run has been filled. Hence a stack must Dbe
created to store pixels which must be re-visited after the
in-fill of a particular section has been completed.

The speed of the algorithms depend on both the
structure of the stacking procedures and the shape of the
bounding contour. Shani [Shan80] emphasizes the
correspondence between contour filling and graph traversal
[Wils72] and exploits this in order to determine the most
efficient path to traverse all the pixels within a given
area. Using such techniques the depth of the stack (and
hence the number of pixels which are visited more than once)

can be minimized.



34

As the framestore memory is used as a working memory,
pixels have integer co-ordinates limiting the effectiveness
of this algorithm. Quantisation errors resulting from the
contour drawing algorithms can give rise to non-planar
shapes with isolated regions such as pixel ’a’ in Figure

2.10 which will not be in-filled.

Figure 2.10 Isolated Region Arising From Quantisation Error

A further disadvantage of seed-fill is the need to
define an initial interior pixel, particularly as the
position of this pixel could affect the efficiency of the
algorithm. Despite these disadvantages, however, seed fill
offers the most direct method to fill arbitrarily defined
contours and is implemented within some commercially

available GDPs [Hita84][AMDQ87].

2.2.3 PARITY CHECK

Parity check is another technique providing in-fill
for arbitrarily shaped regions already defined by a contour
in the framestore memory.

The algorithm proceeds along a scan-line from left to
right, and a count is incremented when an edge (part of the
bounding contour) is encountered. As a run of pixels is
traversed in-fill 1is generated if the value of the count
(the parity) at that point is odd, hence alternate runs are

in-filled.



35

Figure 2.11 In-Fill By Parity Check

For example, Figure 2.11 illustrates an area of
framestore in which the value of the count for each scan-
line is assumed to be initialised (zero) at the start of
that 1line. The area below the contour O-L represents the
interior of a region and should be in-filled. The runs a-b
and c-d are both correctly in-filled as the values of the
count are 1 and 3 respectively (the count is incremented at
edges Y, U, Sand I ).

This trivial parity check does not work for all cases;
the run e-f is also filled as the count is incremented by
edge W and is equal to 1, however, this run should not be
filled as it lies outside the contour. Pixel W corresponds
to a vertex and it is possible to remove or mask all
vertices from the contour before application of the parity
check algorithm. Pixel M, however, also represents a vertex
but increments the count correctly. It can be shown [Fova84]
that for correct in-filling, any vertex which corresponds to
a maximum or minimum should not be allowed to increment the
count.

Quantisation errors may also give rise to erroneous
values of the count as two line segments can merge near a
vertex. For example the two edges marked by pixels X and V
will only cause the count to be increased by 1 as they are
four-connected and run g-h will be filled. True detection of

this event requires interrogation of the framestore after



36
the contour has been drawn. Pavlidis [Pavl79][Pavls8l]
proposes several algorithms ranging from the naive parity
fill to a complex algorithm which copes with the example of
quantisation error illustrated above. This algorithm
requires two passes around the complete boundary inspecting
pixels Vertically above and below the contour. This
information is then used to mask pixels which should not

increment the count.

2.2.4 EDGE FILL

An improvement to the parity check algorithm can be
made by the use of a special line drawing algorithm to
provide an unambiguous contour. This combination of parity
check and 1line drawing is known as the edge fill or edge
flag technique.

The line drawing algorithm uses different integer co-
ordinate systems for scan-lines and vector generation. These
co-ordinate systems are offset by a y value of one half the
scan~line interval and all vectors are therefore defined by
co~ordinates which correspond to the mid-point between two
scan-lines. Line segments are then represented by one pixel
per scan-line which is placed at the x co-ordinate at which
the vector intersects that scan-line. 1In-fill is then
performed by a modified parity check which increments the
count at every pixel which forms part of an edge.

Figure 2.12 (overleaf) shows a section of framestore
memory containing vectors drawn by this method on scan-lines
with y co-ordinates between 2 and 6.The solid lines
represent the co-ordinate system used for vector generation

and vertices are denoted by ’*’.



37

y co-ordinate
9.5  emeeeee L

e —— —————— — ——— > ———— —t—

NN WWEAIUIOAGINI®®YWY
L]
()] [S,} ()] ()] (§)] ()] [&)]

Figure 2.12 Edge Fill Technique

It can be seen by inspection that application of the
modified parity check will provide correct in-fill except
for the scan-line with y co-ordinate 9. The vertex above
pixel Q represents a local maximum and because of
quantisation errors pixel Q forms part of line segments Q-Y
and Q-0. Pixel Q is visited twice during the line drawing
process, representing a collision of contour information. To
ensure correct in-filling the line drawing algorithm must
avoid potential collisions of contour information (occurring
when a second pixel is entered into a given framestore
location). Two methods have been proposed; removing
(complementing) the original pixel [AcWe81] or shifting the
x co-ordinate of the second pixel [HaCh85].

Vertices which do not represent maxima or minima in
the contour are ignored by this process and in-filling is
unaffected by quantisation errors. This is because the
offset co-ordinate system ensures that neighbouring pixels
are on separate scan-lines (e.g. Pixels O and J adjacent to

the vertex with y co-ordinate 3.5).



38

2.3 TEXTURE MAPPING

This section forms the final part of the 1literature
review and examines texture mapping techniques published in
the open literature. Before these techniques are discussed
in full, however, an introductory section is included to

highlight the problems associated with texture mapping.

2.3.1 PRINCIPLES OF TEXTURE MAPPING

The process of texture mapping is illustrated in
Figure 2.13 in which the source image (defined in texture
space) is mapped onto a surface in three-dimensional object
space and finally mapped to the destination image (two-

dimensional screen space) by the viewing projection.

MAPPING OBJECT PROJECTION
SPACE

(xy0z0)

Figure 2.13 Texture Mapping Process

For most applications, texture space is two-
dimensional; three-dimensional representations have been
developed [Gard85] but are beyond the scope of this thesis.
Throughout this dissertation texture space will be described
by the pair (u,v) and screen space by the pair (x,y).

The object space representation provides physical
meaning but is often forgotten as the complete mapping may

be represented as one operation:
X,y = f(u,v) (2.2)

If this function is evaluated for each element (or
pixel) of the source image the process is termed direct

mapping. Inverse mapping is defined as the evaluation of the



39
inverse of the function for each pixel in screen space.
Inverse mapping is essential for tiling systems as the
mapping is no longer single valued (viz. as the texture
pattern is repeated each texture element maps to an
arbitrary number of screen pixels).

In general there is not a one-to-one correspondence
between destination and source pixels and the colour value
of each destination pixel must be determined by sampling.
The discrete nature of screen space imposes an upper limit
on the spatial frequencies which may be represented and
unless precautions are taken aliasing is introduced
[Crow77].

The simplest sampling method is to choose the
intensity of the pixel in texture space corresponding to the
co-ordinate resulting from the inverse mapping function.
This is known as point sampling and although it is
computationally cheap (simple data transfer from texture
store to output framestore) the aliasing introduced is
unacceptable [Heck86].

Aliasing can be reduced by the use of more complex
sampling techniques which incorporate filtering to remove
spatial frequency components in texture space which exceed
the Nyquist 1limit [Oppe83]. Filtering techniques are
discussed more fully in the next section but in general
involve convolution (weighted average) of a two-dimensional
filter function with the texture data.

A major difficulty with direct convolution arises
because the mapping process outlined in Figure 2.13
invariably involves a perspective projection. This produces
a mapping function which is non-affine and requires a filter

function which is space-variant (i.e. different for each



40
output pixel). In particular, screen pixels close to the
vanishing point or horizon need a filter function which
spans many texture pixels. This is a severe constraint for
real-time applications in which the number of operations per
output pixel (hence the filter size) are limited.

Thé aliasing problem and filtering techniques are
fundamental to the texture mapping techniques reviewed in

the next section.

2.3.2 REVIEW OF TEXTURE MAPPING SYSTEMS
Many texture mapping algorithms have been proposed,

some have been developed for real-time application whilst
others have image quality as the prime objective. A good
review of current techniques is given by Heckbert [Heck86 ]
and due to the proliferation of individual authors this
section is divided under headings which emphasise features
not necessarily unique to a particular system.

The section concludes with a review of commercially
available Digital Video Effect (DVE) systems designed for

real-time image mapping.

a - Direct Convolution Methods

Filtering may be implemented by direct convolution of
the filter function with intensities of pixels in texture
space. Thus an individual output pixel is determined by
summing all texture pixels after multiplication by the
filter coefficient value at that point.

Sampling theory suggests that the most effective
filtering is achieved by convolution with the sinc function.
The infinite width of this function, however, makes its
implementation unrealizeable and Finite Impulse Response

(FIR) filter functions must be used.



41

In general the two-dimensional filter function is
defined in screen space and inverse mapped into texture
space before convolution with texture data. This is
illustrated in Figure 2.14 where (a) shows a grid
representing an array of pixels in screen space and (b)
shows the area in texture space corresponding to

quadrilateral ABCD.

SCREEN SPACE A TEXTURESPACE o
A B
P Q Q’

Iy poosees
X

@) (b)

Figure 2.14 Filter Footprints In Screen And Texture Space

The area PQRS in (a) is the boundary of an arbitrary
FIR filter used to compute pixel ’‘X’. The corresponding area
P’Q’R’S’ in (b) represents the ’footprint’ of the filter
function in texture space and covers all those pixels
required by the convolution process.

The inverse mapping of the filter function onto
texture space provides a filter realization which is space-
variant and has been shown [FeSk85] to conform with the
principles of sampling theory.

The shape (cross section) of the filter determines the
effectiveness of the filtering operation and in his review
paper Yan [YanJd85] observes that it is also necessary for

adjacent footprints to cover the texture region uniformly.



42

The simplest FIR filter is the box; first applied to
prevent aliasing in the subdivision patch rendering
algorithm developed by Catmul [Catm74]. This algorithm, the
first to map a predefined texture onto an image does not use
direct orrindirect mapping. Instead, the algorithm proceeds
in object space, using surface patches. Patches are created
using a bicubic parametric equation, each patch is then
subdivided until it spans a maximum of four pixels in
texture space. The patch 1is then approximated by a
quadrilateral under which the intensities of the four pixels
are averaged. Finally, all the patches which contribute to a
given output pixel are averaged to provide the resultant
intensity. This operation is equivalent to convolving
texture pixels with a box filter with a footprint equal in
size to that of each output pixel.

A triangular cross section FIR is implemented by Blinn
and Newell [BlNe76]. Inverse mapping is used to map a 2 by 2
pixel area 1in screen space to a quadrilateral in texture
space (similar to the way in which the 3 by 3 area is mapped
to the quadrilateral in Figure 2.14). The intensities of the
texture pixels within the quadrilateral are then averaged
with a weighting proportional to the distance from the
centre of the quadrilateral.

More complex FIR filter shapes have been implemented;
in particular the method of Feibush et al. [FeLC80] which
uses a look-up-table to provide filter coefficients. The
look-up-table is aligned using inverse mapping and differing
filter shapes may be implemented to provide the best results
for a given application.

Other complex filter functions have been reported by

Ganget et al. [GaPC82] and by Greene and Heckbert [GrHe86].



43
Both methods wuse filter functions with circular two-
dimensional representations producing elliptical footprints
in texture space.

These techniques illustrate a trend towards greater
realism 1in CGI and are so computationally intensive that
real-time implementation is not possible. For example, using
a VAX 11/780 minicomputer the method of Greene and Heckbert
takes between one and six hours to generate a single franme.

The computational cost per screen pixel is directly
proportional to the area of the filter footprint in texture
space. Moreover, as this depends on the orientation of the
mapping transformation the convolution may only be

constrained between best and worst case time limits.

b - Prefiltering Techniques
It is possible to pre-filter the texture data off-line

to reduce the number of computations required during the
rendering process. This 1is possible only with static
textures and is termed prefiltering. Two methods of
prefiltering have been proposed; Multiple Table MIP Mapping,
and Summed-Area Table.

Multipie table MIP mapping was first proposed by
Dungan et al. [DuSS78] who suggest that the texture data
should be prefiltered by powers of two in both dimensions.
For example, 1if the original pattern is defined by a 512 by
512 pixel array then lower resolution patterns (256 by 256,
128 by 128, 64 by 64 etc.) are also generated off-line and
may be selected during rendering when the filter footprint
is large.

Many refinements have been proposed: Bolton [Bolt79]
uses intermediate levels prepared off-line by a complex

filter function to provide texture tiling in real-time. Burt



44

[Burt81] proposes a technique called Hierarchical Discrete
Convolution (HDC) implementing a Guassian filter function
using contributions from different filter levels. Williams
[Will83] wuses interpolation to provide intermediate 1levels
as a continuous function of footprint size and promotes the
term MIP (Multum In Pravo - "much in little"). Because pre-
filtering is aligned with the texture axes (u,v) and scaled
equally in u and v, the footprint shape for MIP-MAP
filtering is always square.

An alternative technique, the Summed-Area Table was
developed independently by Crow [Crow84] and by Ferrari and
Sklansky [FeSk84]. Ferrari and Sklansky develop the
technique in a mathematical context showing the equivalence
to discrete convolution, Crow uses a practical approach

giving examples of images created using the technique.

\4

A
v Tluiv2] Tlu2.v2]
A B
vl
Tlulvi] Thuzvi]
C D
— U
ul u2

Figure 2.15 Summed-Area Table Representation

The process is illustrated in Figure 2.15. This shows
part of the Summed-Area Table which has been generated off-
line from the original texture data. The table values T[u,V]
have been calculated for all u and v such that at any point
T[u,v] represents the intensity sum of all the pixels to the
left and below T. Hence T[ul,vl] represents the intensity
sum of all the pixels enclosed by region C. The rectangular

region B represents the filter footprint and the screen



45

pixel intensity is determined by averaging the intensity

over this region given by:

Intensity sum of pixels within region B
Area of region B

Collecting regions A,B,C and D this becomes:

T[u2,v2] = T[ul,v2] - T[u2,vl] + T[ul,vl] (2.3)
(u2 - ul)(vz2 - vi)

To enhance spatial accuracy, fractional values of u and
v can be used by interpolating between adjacent table
entries. Memory requirements are increased between two to
four times depending on image size; for example a 256 by 256
texture pattern having 8 bit intensity values requires 24
bits per table entry. The region B in Figure 2.15 represents
the filter footprint implemented by this technique, 1limited

to a rectangle in texture space.

c - Two-Pass Mappings

In many image mapping applications it is possible to
decompose the two-dimensional transformation process into

two orthogonal one-dimensional passes.

SOURCE INTERMEDIATE DESTINATION
FRAMESTORE FRAMESTORE FR AMESTORE
(89 wy)or Giv)

Figure 2.16 Two-Pass Mapping Technique

As shown in Figure 2.16 each pass implements the
mapping for one co-ordinate only and an additional
framestore is used to store the intermediate image. A
pictorial example showing simple rotation implemented in two

passes is given in Figure 2.17. Part (a) shows the original



46
pattern, (b) shows the intermediate image after mapping u to

X and (c) shows the final image.

<
<
<
- <

N
T™ 7 N/

/
—+u > X ﬁl—' X
@ ® ©

Figure 2.17 Pictorial Example Of Two-Pass Mapping Procedure

This technique was pioneered by Catmul and Smith
[CaSm80] demonstrating the process for affine, perspective,
bilinear and biquadratic (quartic) mappings. Each pass may
be performed in scan-line order and in their paper a streanm
pProcessing architecture is suggested. A further advantage is
that filtering is greatly simplified as only one-dimensional
sampling is required.

A new problem, referred to by Catmul and Smith as the
’bottleneck problem’, is introduced by this technique. a
loss of information occurs whenever the area of the
intermediate image is smaller than that of the destination
image. This is illustrated by representing the simple
rotation matrix by two one-dimensional operators:

1t
(2.4)

0 1/c

Where ¢, s and t represent cos ¢, sin ¢ and tan ¢
respectively, and ¢ is the angle of rotation. The problem
arises as ¢ approaches 90° where the terms t and 1/c tend to
infinity. At this point the first pass has reduced the

source image to a single line and application of the second



47

pass is not possible. The problem can be avoided by scanning
the source framestore by an arbitrary offset of 90° to
optimise the area of the intermediate image. For example, a
rotation of 60° is accomplished most efficiently by
scanning - the  texture framestore to give an apparent
rotation of 90° and application of a matrix giving a
rotation of 60°- 90° = -30°.

Various applications of two pass transformations have
been proposed: Shantz [Shan82] outlines a system performing
linear and second-order mappings in which filtering is
provided by a simple extensions of point sampling. Paeth
[Paet86] reports a rotation only system decomposed into
three one-dimensional passes which do not require additional
filtering.

The resampling interpolation algorithm proposed by
Fant [Fant86] combines the transformation and filtering

operations implementing affine mappings in real-time.

10 COMPARE 1/ SIZEFAC
INPUT ¢J L,OUTPUT
P CYCLE CYCLE ]
INSEG DIFFERENCE OUTSEG
l
v
FACTOR
CURRENT
INPUT » FACTOR * PIXEL SIZEFAC * ACCUMULATOR
PIXEL
NEW OUTPUT
ACCUMULATOR PIXEL VALUE

Figure 2.18 Resampling Interpolation Process



48

The process used by the one-dimensional mapping
algorithm is outlined in Figure 2.18. INSEG and OUTSEG are
fractional pointers to the stream of input and output pixels
respectively. The value SIZEFAC expresses the ratio of
output pixels to input pixels:'and determines how many output
pixels should be generated from an input pixel (SIZEFAC > 1
indicates expansion, SIZEFAC < 1 indicates compression).
Each cycle results in either an input pixel being used up or
an output pixel being generated. A complete scan-line
composing n pixels is processed in a maximum of 2n cycles.
The mapping is direct and additional hardware is required to
position the output stream in the output framestore.

Because all input pixels contributing to a given
output pixel have equal weights, the algorithm implements
filtering equivalent to convolution with a spatially

accurate box cross section filter.

d - Commercial Image Mapping Systems

In recent years image mapping systems have been used
to generate special effects for television broadcasts.
Reviews of these Digital Video Effects (DVE) systems are
provided [BrSE87][HaIn88] but are presented from a
commercial point of view and lack architectural details. The
number of different manufacturers and systems is increasing
continually and for brevity this section describes only the
two market leaders:; the Ampex ADO, and the Quantel
Encore/Mirage systems.

Ampex [Ampe88][HaIn87] pioneered the production of DVE
systems with the introduction of the ADO (Ampex Digital
Optics) 3000 in 1981. Image mapping is implemented using the
two-pass technique ordered to provide a direct video output

(by performing the horizontal pass last). An outline of the



49

ADO-3000 is shown below:

DOUBLE
VERTICAL HORIZONTAL
_— BUFFERED » FR AMESTORES e
FRAMESTORE INTERPOLATOR INTERPOLATOR
4 3
VERTICAL HORIZONTAL
ADDRESS ADDRESS
GENERATCR CONTROL GENERATOR
1 1 i}
HOST SYSTEM
COMPUTER

Figure 2.19 Ampex ADO DVE System

After analog to digital conversion the input signal is
temporarily stored in a 720 (horizontal) by 576 (vertical)
double-buffered framestore. The colour coding format used
within the ADO comprises three 8 bit channels: Luminance (Y)
(sampled at 13.5 MHz), and two colour difference channels
(B-Y, R-Y) (sampled at 6.75 MHz). This coding system is
chosen for compatibility with existing broadcasting
technology and is referred to as 4:2:2 sampling.

One dimensional inverse mapping is implemented by the
horizontal and vertical address generators under the control
of the host system. The horizontal and vertical
interpolators provide filtering by point sampling and
interpolation over a group of eight input pixels, equivalent
to limited size box filtering. The mapping is controlled in
real-time by a pre-programmed set of parameters generated by
the host system, possibilities include special ‘warping’
effects as well as affine and perspective transformations.

Ampex also produce a simpler system; the ADO-1000,
mapping individual fields (not complete frames) with a

reduced vertical resolution of 288 pixels.



50

The Quantel Encore [QETN88] is described as "a three-
dimensional manipulator for flat TV pictures" and provides
full perspective image mapping in real-time onto any flat
surface defined in object space. The Quantel Mirage DVE
system is similar but operates parametrically to provide
image mapping effects on curved surfaces. A block diagram of

the Encore DVE system is shown below:

-

FROM FREEZE TO
ADC — MANIPULATOR COMBINER—+ DAC

BUFFER

CONTROL
COMPUTER

STATION

Figure 2.20 Quantel Encore DVE System

After analog to digital conversion (using the 4:2:2
CCIR standard, see above) the input signal is stored
temporarily in the freeze buffer. The manipulator is a
dedicated hardware system designed to implement the image
mapping. Inverse mapping is used as this generates a signal
which may be passed directly to the combiner without an
additional framestore. Details are not given but filtering
is limited to a compression/expansion ratio of ten,
indicating a 1limited filter footprint similar to the ADO
systenmn.

The combiner is used to merge the output of the
manipulator with other images (from other Encore or Mirage
systems etc.) before the digital to analog conversion stage.
System control is provided by a dedicated minicomputer

system and remote control providing a range of special



51

effects (e.g. solarisation, cropping) in addition to the
image mapping functions.

At the time of writing the ADO-3000 is priced from
$140,000 and the Quantel Encore system is priced from

£90,000.



52
2.4 SUMMARY OF THE LITERATURE REVIEW
The first section of this review examined a range of
display architectures in current use for RTIG. Although
individual approaches differ greatly a common thread is the
need for parallelism to provide the necessary performance.
Indeed the’main factors which distinguish each system is the
way in which the individual tasks are ’‘farmed out’ to
separate processors. For example, the ZMP system distributes
tasks at the polygon model stage whereas the Pixel Planes
system exhibits parallelism at pixel level.
Common to the systems which use horizontal parallelism
is the need for a VLSI solution to consolidate the design, a
factor which is not as important to the modular pipelined

systems.

Section two gave details of the four types of
algorithms used to provide surface in-fill.

The first of these was the Ordered Edge List (OEL)
technique, providing the most direct method of displaying
polygons from co-ordinate information. The processing
overhead required to sort edge intersections can be avoided
if only simple convex shapes are supported. A framestore is
used to buffer the output (unless polygons can be processed
in parallel) and every pixel must be written during the span
filling process. Real-time implementation therefore requires
a high bandwidth between the display hardware and the
framestore, as provided by the span filling architectures
discussed in Section 2.1.2.

Seed fill algorithms use the framestore as the working
memory and require the most framestore operations per pixel
resulting in the slowest operation of the four methods. It

is however, the most commonly used technique for in-filling



53

arbitrary contours.

In principle, parity check in-filling is the simplest
boundary filling technique and may be implemented in scan-
line order at display time. In practice, it is difficult to
avoid the problems caused by quantisation errors without
comprehensive contour interrogation, which increases
framestore input/output overheads and reduces efficiency.

Edge fill algorithms use a modified parity check
algorithm and overcome quantisation errors by providing an
unambiguous contour. The parity check may be implemented at
display time and as only the contour is required, framestore
bandwidth requirements are reduced. Contour generation is
more complex, requiring more processing than normal 1line

drawing algorithms and only supporting polygons.

The final section of this review provided an analysis
of published texture mapping techniques. Central to these
techniques is the spatial filtering necessary to avoid
aliasing, the quality of which depends on the shape and
accuracy of the filter 'footprint' in texture space.

Direct convolution provides the highest quality of
filtering, but for non-affine mappings cannot be implemented
in real-time. Prefiltering of the source image off-line
using MIP-MAP or Summed-Area Tables, decreases the
operations required to render the image and may be
implemented in real-time. The disadvantage, however, is that
the filter shape is distorted as it must be aligned with the
texture space co-ordinate axes.

Alternatively, a two-pass mapping procedure can be
used, simplifying the filtering to a one-dimensional

process. Additional problems, such as the need to decompose



54
the mapping function into two passes and the ’bottleneck’
problem are introduced, although this does not preclude

real-time implementation.



CHAPTER 3
SURFACE IN-FILI, ALGORITHM

This chapter describes an in-fill algorithm which has
been developed to operate on ‘wire-frame’ images generated
by a conventional GDP-framestore architecture. The algorithm
is implemented by a VSP as outlined in Chapter 1 using the

architecture illustrated below:

HOST VECTOR RASTER
‘ GENERATOR FRAMESTORE VSP SCAN
SYSTEM (GDP) DISPLAY

Figure 3.1 Outline Of VSP Based In-Fill System

Features of the in-fill algorithm necessary for VSP
implementation are examined together with the shortcomings
of the existing in-fill techniques discussed in Chapter 2.
Based on these criteria, an algorithm is developed and
explained together with refinements necessary to support
additional features such as colour and interlaced raster-
scan display.

Initial development of the algorithm proceeded using
software routines to simulate rudimentary forms of the
algorithm. Many of the complexities, including the
additional ’‘post-processing’ required to support interlaced
displays were developed during the algorithm implementation
using test software. The techniques used are outlined in
Chapter 4 along with the architectural details of the

implementation.



56
3.1 REQUIREMENTS OF SURFACE IN-FIII, ALGORITHM

The VSP outlined in Figure 3.1 operates on the output
from a conventional raster-scan framestore displaying a bit-
mapped ‘wire-frame’ image. The surface in-fill algorithm
implemented by the VSP must therefore fulfil the criteria
listed below:

1). The algorithm must proceed in scan-line order. This is
necessary as the VSP operates on a conventional
raster-scan framestore to provide a direct video

output.

2). The 1in-fill algorithm should be compatible with the
existing ‘wire-frame’ system described in Chapter 1

which uses a GDP-based vector generation system.

3). The VSP architecture implements the algorithm at pixel
rate, therefore each output pixel must be generated in
a fixed number of machine cycles regardless of image

complexity).

Of the four types of in-fill algorithm reviewed in
Chapter 2, seed fill, parity check and edge fill methods are
applicable to boundaries defined in a framestore.

Seed fill algorithms (e.g. [Smit79][Lieb78][Shan80})
operate in an image-dependent order using the framestore as
a random access data memory. Implementation in scan-line
order is not possible and seed fill algorithms are not
suitable for a VSP based design.

Parity check in-fill [FoVa84] proceeds in scan-line
order and the trivial version (which simply toggles the
output colour at each edge) may be implemented readily by a

VSP. However, the modifications proposed by Pavlidis



57
[Pavl8l], which are necessary to support vertices and
quantization errors interrogate the contour in an arbitrary
fashion and may not be performed in scan-line order.

Edge fill techniques overcome the shortcomings of the
trivial parity check technique by providing an unambiguous
contour allowing in-fill to be provided using simple
hardware [AcWe8l1]. The unambiguous contour is provided by
complex 1line drawing routines (e.g. [HaCh85]) and is not
supported by conventional GDPs.

Extensions of the trivial parity check (including edge
fill) offer the only method of providing in-fill directly in
scan-line order. It is the modifications required to provide
in-fill in all cases which are not compatible with the VSP
design constraints. The objective is then to develop an in-
fill algorithm based on parity check but fulfilling with the
design criteria outlined above.

Because the VSP must perform some form of contour
interrogation a buffer must be included within the VSP
architecture to provide information from pixels on previous
scan-lines. Existing parity check and edge fill techniques
are Dbased solely on analfsis of the contour and do not
exploit connectivity of pixels adjacent to a given run.
Extending the parity check algorithm to exploit the
connectivity or vertical coherence between successive scan-

lines is discussed in the next section.



3.1.1 VERTICAL COHERENCE

Provided that previous 1lines have been in-filled
correctly and edges drawn by the vector generator are at
least eight-connected (this is true for lines drawn by all
proprietary GDPs) then the colour of a run can be determined

from its connectivity to the pixels above.

.................. x.-......--....-....
................. PPPPPPPPP- - « -« v« v v v ..
......... Q000000Q0b - + - -« CR:+ + v+ ¢« v v ..
.SS8SSSSSSSA -+ - - e e €T+ v v evn..

Figure 3.2 Section Of Framestore Showing Vertical Coherence

Figure 3.2 shows two typical line segments S-P and P-T
representing the vertex of a polygon, (using the same
notation as Chapter 2). If the run of pixels b-c has been
correctly in-filled then the run of pixels d-e may readily
be filled as some pixels between d and e are four-connected
to in-filled pixels between b and c. Similarly, the colour
of the run of pixels b-c can be determined from pixels on
scan-line x. These pixels have a colour opposite to that of
the run b-c as they are separated by the horizontal edge
which is at least eight-éonnected to the edges Q and R
defining the run b-c. Pixels on the scan-line containing x,
however, are two scan-lines above run b-c and direct use of
these pixels to determine the colour of run b-c requires a

buffer which is longer than one scan-line.

Figure 3.3 Acute Vertex



59

Furthermore, consider the acute vertex depicted in
Figure 3.3. In this case, correct in-fill can only be
determined by the examination of pixels several lines above.
For example, the colour of pixel c in Figure 3.3 is opposite
to the colour of pixel x (which is four scan-lines above).
Clearly the buffer can not be an arbitrarily defined 1length
as suggested by these examples but must be fixed to the
minimum possible length. This discussion has concentrated on
connectivity between runs separated by edges; the next
section examines the significance of connectivity within the

edge itself.

3.1.2 EDGE PROCESSING

As the colour assigned to a pixel directly below a
vertex (such as c in Figure 3.3) is determined by the pixel
directly above the vertex (in this case x), it follows that
the edges that separate these pixels must be four-connected
vertically. For example, edge P which is directly below x is
four-connected (vertically) to edge R which is directly
above c.

If a parameter is assigned to the vertex (denoted v-
flag) and passed to each edge below, it can be wused to
assist the in-filling of subsequent scan-lines by providing
information on the colour of the run above the vertex (f-
flag denotes the fill value assigned to a particular run).
This is illustrated by Table 3.1 (overleaf) showing values
of the parameters v-flag and f-flag corresponding to the
example shown in Figure 3.4. The value of v-flag is copied
from any edge which is four-connected above, otherwise if
the area above is clear (i.e. contains no edges) then a
value opposite to that of the run above is assigned.

Similarly the value of f-flag is copied from any run which



60

is four-connected above, if the area above 1is completely

bounded by an edge then the value of v-flag is used.

........................... > SR Value of Value of

.......................... PPPPPPPPP- - - v-flag f-flag

.................. 00Q00QQQQ00QQQ- « - - - - - P1 T1 X 0

.......... RRRRRRRRR-b:--8888. -+« « v ... Q1 UO b1l

« TTTTTTTTT: - -C- - - -UUUU: « « ¢ v v v v e v v v R1 Va1 c 1

........ A WWWIW . - - s e e e e e e e e e S 1 WO d1l
Figure 3.4 Table 3.1

Example Of Edge Processing

This procedure also provides correct in-fill for acute
vertices which give rise to non-planar distortion caused by
quantization effects. This is illustrated by Figure 3.4 in
which the run containing pixel ¢ and the isolated run
containing pixel b are both correctly filled as the value of
v-flag for edges Q and R are both derived from edge P and
pixel x.

The value of each flag is determined using
information from the previous scan-line allowing the buffer
to be 1limited to a single scan-line. In addition, the
processing of an edge or a run can be multiplexed in the
time domain as both an edge and a run cannot occur in the

pixel stream simultaneously.

3.1.3 NESTED REGIONS

The arguments presented above do not depend on the
particular value of pixel x and consequently correct in-
filling of nested regions is automatically provided.
Furthermore, although the examples presented have been
restricted to polygons, the process applies to in-filling of
any planar region defined by a boundary which is at least

eight-connected.



3.1.4 AT.GORITHM
An algorithmic description (in a ’Pascal-like’

notation) of this process is given below:

1 BEGIN

2 FOR y = y.top TO y.bottom BY -1 DO

3 BEGIN

4 read.fifo (old.v-flag, old.f-flag)
5 bound := TRUE

6 clear := TRUE

7 FOR x = x.left TO x.right DO

8 BEGIN

9 {PASS 2 : output line y+1 )

10 IF start.edge (x, y+1) THEN

11 read.fifo (old.v-flag, old.f-flaqg)
12 output (old.f-flag)

13 {PASS 1 : process line y }

14 IF edge (%, y) AND clear THEN
15 IF edge (x, y+1) THEN

16 BEGIN

17 v-flag := old.v-flag

18 clear := false

19 END

20 ELSE v-flag := NOT old.f-flag
21 ELSE IF start.run (x, y) THEN
22 BEGIN

23 write.fifo (v-flag, f-flaqg)
24 bound := edge (x, y+1)

25 clear := TRUE

26 END

27 bound := bound AND edge (x, y+1)
28 IF bound THEN

29 f-flag := old.v-flag

30 ELSE f-flag := old.f-flag

31 END

32 write.fifo (v-flag, f-flag)

33 END .

34 END

Algorithm 3.1 Two-Pass Surface In-Fill Algorithm

The algorithm operates in two passes although these
may occur concurrently. The first pass processes the input
pixel stream whilst the second pass provides the in-fill for
the output pixel stream one scan-line above. ’‘Clear’ is used
when an edge is being processed to evaluate v-flag and is
FALSE if there is another edge above (four-connected to) the
edge being processed. ‘Bound’ is used during the processing
of a run and is TRUE only if all the area above the run is

part of an edge. The functions read.fifo and write.fifo



62

operate on a conventional first-in first-out (FIFO) buffer
and allow the asynchronous passing of parameters v-flag and
f-flag from the first pass to the second pass. The functions
at (x, y) are defined from the input pixel stream for scan-

line y as shown below in Table 3.2:

x-1 X edge start.edge start.run
0 0 FALSE FALSE FALSE
0 1 TRUE TRUE FALSE
1 0 FALSE FALSE TRUE
1 1 TRUE FALSE FALSE

Table 3.2 Description Of Functions;
edge, start.edge And start.run
Where a ’1’ denotes that the input pixel is asserted (filled
in the framestore) and a ‘0’ indicates that the input pixel

is negated (not filled in the framestore).

3.2 LIMITATIONS OF THE IN-FILL AILGORITHM

The preceding discussion has been limited to binary
images (each pixel on or off) and has not considered the
effect of the screen boundaries. Modifications to the
algorithm necessary to support these situations are
discussed in this section.

A more severe problem arises when the algorithm is
applied to images displayed using interlaced raster-scan and

this is discussed in Section 3.3.

3.2.1 INTERSECTIONS WITH THE SCREEN BOUNDARIES

Several problems arise when the algorithm is applied
at the top, sides, and bottom of screen and the cause of
these problems is discussed overleaf, followed by a summary
of procedures adopted to ensure correct in-filling under

these conditions.



a - Intersections With The Top Of The Screen

The algorithm can not be implemented for the first
scan-line of the display (y = y.top) as no previous scan-
line has been processed (scan-line vy+1 is undefined).
Although scan-line y+1 is defined when processing the second
scan-line the output values old.f-flag and old.v-flag are
not present as the first scan-line has not been processed.
The algorithm can commence on the second scan-line but must
be modified to operate without the in-fill information for
the previous scan-line (v-flag and f-flag). This modified

algorithm is shown below:

1 BEGIN

2 v-flag := FALSE

3 f-flag := FALSE

4 FOR x = x.left TO x.right DO

5 BEGIN

6 {PASS 1 : process scan-line y }
7 IF edge (x, y) THEN

8 IF edge (%, y+1) THEN

9 v-flag := TRUE

10 ELSE

11 IF start.run (x, y) THEN
12 BEGIN

13 write.fifo (v-flag, f-flag)
14 v-flag := FALSE

15 f-flag := edge (x, y+1)
16 END

17 ELSE IF edge (x, y+1) THEN
18 f-flag := TRUE

19 END

20 write.fifo (v-flag, f-flagq)

21 END

22 END

Algorithm 3.2 Special Processing For First Line

The values of f-flag and v-flag for the second scan-
line are thus determined by the presence of a pixel
(detected by edge(x, y+1)) on the first scan-line. Thus the
first scan-line is not processed by the algorithm but is
reserved for use by the system software to place seed pixels
to initiate filling. If a seed pixel is placed above a run,

the f-flag is set and if a seed pixel is placed above an



64

edge, the v-flag is set.

b - Intersections With The Sides Of The Screen

Initial conditions for each scan-line are determined
by the read.fifo operation performed at the start of each
scan-line. during the second pass of the algorithm.
Processing of each scan-line during the first pass is
concluded by a write.fifo operation at the end of each scan-
line.

Therefore the algorithm interprets the left and right
hand sides of the screen (x coordinate = x.left or x.right)
as ’‘virtual’ edges and areas bounded by this edge are

correctly in-filled.

TR
+Q- -
+bQQQ- - .o - .-
+c- -dQQQ- - - - -

Figure 3.5 Intersection Of Line Segment With Screen Boundary

For example, Figure 3.5 shows a line segment which
intersects the 1left hand screen boundary (represented by
’+’) and in-filling of pixel b and subsequent in-filling of
run c¢-d are both correctly'derived from the value of pixel

X.

Figure 3.6 Vertex At Screen Boundary

Figure 3.6 illustrates a problem in adopting a
'virtual edge’ approach. This occurrs when two lines meet or
coalesce at the screen boundary. The area c is assumed to be

in-filled correctly to the opposite value of pixel x but



65

area b is also erroneously filled to the same value as area

c as b is separated from x by edge Q.

c - Intersections With The Bottom Of The Screen

At the bottom of the screen area, the algorithm has
completed the processing of all scan-lines and consequently
no limitations or special considerations are applicable to

edges which intersect this boundary.

Polygons which give rise to conditions (a) and (D)
must be detected by the clipping procedures within the
graphics software. Such ill-conditioned polygons require

additional processing as outlined below:

(1) If two edges of a polygon intersect the 1left-hand
screen boundary, the x co-ordinate of the two points
of intersection is incremented and a line is drawn to

join those two points.

(ii) If two edges of a polygon intersect the right-hand
screen boundary, the x co-ordinate of the two points
of intersection is decremented and a line is drawn to

join those two points.

(iii) If a polygon intersects the top screen boundary, a
single pixel must be drawn as a seed directly above
the area to be in-filled. Furthermore if the vertex of
a polygon is incident on this boundary then a seed

pixel must be placed directly above that vertex.

In practice only a small proportion of all polygons
are likely to be ill-conditioned and although extra software
is required the worst case involves the drawing of a single

extra line. Also, the magnitude of the errors incurred by



' 66

the modification of clipping co-ordinates is comparable to
rounding errors resulting from the geometric transformations

and is unlikely to be detectable by the human eye.

3.2.2 REPRESENTATION OF COLOUR IMAGES

The algorithm operates on a single framestore bit
plane and colour images (represented using separate bit
planes) require an independent VSP for each bit plane. This
allows the representation of 2™ colours, (where n is the
number of bit planes), but regions which share a particular
plane cannot be considered as completely independent and
must not overlap. This imposes a limitation on the way in
which colours may be assigned to model image features. The
effect of this problem may be reduced by a careful choice of
colours combined with a colour palette output mapping stage

and is discussed further at the end of Chapter 4.

3.3 IN-FILIL, OF SYSTEM USING INTERLACED DISPLAY

The CGI system must provide an interlaced output if
relatively low-resolution CCIR compatible [DTIC84] displays
are to be used, 1in order to exploit the greatest possible
vertical resolution. Production of an interlaced output is a
problem for the two-pass algorithm as the algorithm requires
in-fill information relating to the previous scan-line. For
an interlaced picture this information is generated in the
previous field period and, moreover, subsequent scan-lines

are no longer output in true scan-line order.



67

3.3.1 INTERLACE PROVISION BY POST-PROCESSING
A scheme to provide an interlaced output wusing the
surface in-fill algorithm is illustrated in Figure 3.7. The
in-fill algorithm is applied to a non-interlaced signal and
an additional post-processing VSP is included to provide the

required interlaced output.

NON-INTERLACE INTERLACE INTERLACED
SYSTEM SURFACE IN-FILL RECONSTRUCTIO RASTER-SCAN
FRAMESTORE VsP VsSP DISPLAY

Figure 3.7 Interlace Post Processing Scheme

If both odd and even fields are generated from the
framestore simultaneously then the fully interlaced non-in-
filled wire frame image can be reconstructed by selecting
the relevant field. This can be achieved using a two-input
multiplexor with odd and even inputs and a controlling
signal (the field select signal - FIELD) derived from the
framestore. Alternatively if the odd and even bit streams
are logically ORed together the resulting non-interlaced
signal 1is independent of FIELD and identical for both even
and odd fields. For a fully interlaced input of 512 by 512
pixels this signal represents a non-interlaced display of
one half the vertical resolution (i.e. a resolution of 512
by 256 pixels). Although this represents a 1loss of
information the two-pass algorithm can be applied readily to
the resulting signal. The interlace post processing VSP must
then reconstruct the full resolution (interlaced) in-filled
image from a full-resolution interlaced contour and half-
resolution fill information.

Consider Figure 3.8 (a) where AC and BD represent line
segments of a polygon with a vertex above the figure, the

interior of which is assumed to be in-filled. The scan-lines



68

including edges A and B and edges C and D represent the odd
and even inputs respectively. Part (b) represents the value
of f-flag and (c) and (d) the required outputs for odd and
even fields respectively. The letters ’H’ and ‘L’ are used
to denote that the output value is asserted and negated

respectively.

LLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLLLLLLLLLLL
(b)

LLLLLLLLHHHHHHHEHHHHHHHHHHHHHHHHHHHLLLLLLLLLLLL
(c)

LLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLLLLL
(d)

Figure 3.8 Simple Example Of Interlace Reconstruction

Inside and outside the polygon the required output is
simply equal to f-flag and in-fill is trivial. Correct
reconstruction requires correct interpretation of f-flag,
the field signal (FIELD - odd or even), and the bit stream
inputs throughout the edges.

An important feature is that the reconstruction is
essentially one-dimensional and does not depend on whether
the odd line is above or below the even line. This removes
the necessity to distinguish specifically between odd and
even 1lines but only to determine which edge is active for

the required output field.



69

f-flag HHHLLLLLLLLL HHHLLLLLLLLL
0dd line e CAAA e e e AAA. ..
Required output HHHHHHLLLLLL HHHHHHHHHLLL
Even line = ...... BBB-: - - ..-BBB:- - ...
Required output HHHHHHHHHLLL HHHHHHLLLLLL

(a) (b)

Figure 3.9 Comparison Of 0dd And Even Lines

For example with reference to Figure 3.9 it can be
seen that the required output for the odd and even fields of
(a) are equivalent to the required output for the even and
odd fields respectively of (b). Consequently the value of
FIELD is not important except to determine which bit streanm
is active on that line (edges hereafter denoted by ’‘A’) and
which is non-active (denoted by ’N’).

Before the interlace reconstruction is analysed it is
helpful to simplify the problem by categorizing edges .into
smaller groups. An obvious distinction between edges is
whether the edge defines the boundary between runs of
differing value (i.e. different values of f-flag). In the
following discussion, edges which coincide with a change in
f-flag are termed type-1 edges and those with no change

type-0 edges.

Tvpe-1 Edges

This category comprises all edges for which the value
of f-flag changes at the start of the edge. Type-1 edges
clearly define the partition between filled and non-filled
regions on the same scan-line and can be reduced to the four

cases shown below in Figure 3.10.

f-flag LHHHHHHH HLLLLLLL LHHHHHHH HLLLLLLL
Active bit stream -AAA---- -AAA.... ...-AAA. -...AAA.
Non-active bit stream -XXXNNN. -XXXNNN. -NNNXXX- -NNNXXX-
Required output LHHHHHHH HHHHLLLI. LLLLHHHH HHHHHHHL

(a) (b) (c) (d)
Figure 3.10 Examples Of Type 1 Edges



70

The pixels marked ‘X’ are ‘don’t care’ and both four-
connected and eight-connected contours are correctly
interpreted as the start or end of in-fill is determined by
‘A’ only. These four cases are uniquely defined by the
change of f-flag followed by the sequence ’‘AN’ or ’NA’ and

detection and subsequent reconstruction is straightforward.

Type-0 Edges

This group is more more complex and includes polygons
which have collapsed to a single line and vertices which
define an area of local maxima or minima. Single 1lines
require the output value to be asserted during pixels
denoted ‘A’ and to equal the value of f-flag at all other

times (see Figure 3.11 below).

f-flag LLLLLLLL LLLLLLLL HHHHHHHH HHHHHHHH
Active bit stream ---AAA.- -AAA-.-.. -..AAA.. .AAA....
Non-active bit stream NNNX-.... ...XNNN. NNNX--.- ---.XNNN-
Required output LLLHHHLL LHHHLLLL HHHHHHHH HHHHHHHH

(a) (b) (c) (4)

Figure 3.11 Interlace Reconstruction Of Single Lines

Areas of local maxima or minima (assuming only one
maximum or minimum) can be divided further according to
whether the vertex also corresponds to a maximum or minimum
X co-ordinate (i.e. if the two lines are drawn from the
vertex within the same quadrant). Vertices which do not meet
this criterion can be reduced to the four basic cases

outlined in Figure 3.12.

f-flag LLLLLLLLL LLLLLLLLIL. HHHHHHHHH HHHHHHHHH
Active bit stream --AAAA--- AA.-.-AA. . .AAAA... AA...-AA.
Non-active bit stream NNX. .XNN- -XNNNNX-- NNX--XNN- .XNNNNX- -
Required output LLHHHHLILI, HHHHHHHHI, HHHHHHHHH HHLLLLHHH

(a) (b) (c) (d)
Figure 3.12 Interlace Reconstruction Of Simple Type-0 Edges



71
Vertices with two lines within the same quadrant can

be reduced to the eight cases outlined below.

f-flag LLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHH
Active bit strean -AAAA .- .- --AA-AA.. -AAAA.... .-AA.AA..
Non-active bit stream - -NN-NN.-. .NNNN:-.-- ..NN-NN-- -NNNN-...
Required output LHHHHLLLL LLHHHHHLIL HHHHHHHHH HHHHLHHHH
: (a) (b) (c) (d)
f-flag LLLLLLLLL LLLLLLLLIL, HHHHHHHHH HHHHHHHHH
Active bit stream -+ -AAAA.. AA-AA... ...AAAA.. -AA.AA...
Non-active bit stream -NN-NN-.. ...NNNN:.:. NN-NN... ...NNNN..
Required output LLLHHHHLL LHHHHHLLL HHHHHHHHH HHHI.HHHHH

(e) (f) (9) (h)
Figure 3.13 Interlace Reconstruction Of Complex Type-0 Edges

Closer inspection of the type-0 sequences outlined
above show that correct interpretation is not always
possible by simple analysis of pixel sequences. For example
Figure 3.11 (b) representing a single line is
indistinguishable from the sequences at the start of Figure
3.12 (b) and Figure 3.13 (f) yet the output value during
pixel ‘N’ is different. The difference between the pixel
sequence for Figure 3.12 (a) and that at the start of Figure
3.13 (b) depends on there being no gap in the sequence of
pixels ’NNNN’ in Figure 3.13 (b), (should this occur the two
sequences would become indistinguishable). A similar
comparison can be made between Figure 3.11 (d), Figure 3.12
(d) and Figure 3.13 (h) and between Figure 3.12 (c) and the

start of Figure 3.13 (d).

3.3.2 LIMITATIONS OF INTERIACE RECONSTRUCTION

These examples show that correct interlace
reconstruction requires additional information but simple
sequence analysis provides an approximation for interlace
reconstruction.

In general, errors associated with mis-application of

the in-fill algorithm to ambiguous contours results in a



72

catastrophic failure of the in-fill process. This is wholly
unacceptable as complete regions of screen area may be
represented with the wrong colour.

In contrast, errors associated with an approximation
to interlace reconstruction could occur only at type~0 edges
producing an erroneous reconstruction restricted to the
contour itself without affecting the in-fill of large areas.
Sequence analysis provides the most straightforward solution
and this form of image distortion was considered an

acceptable compromise.

3.4 S Y

Three requirements for a VSP implemented surface in-
fill algorithm have been stated; scan-line order,
compatibility, and fixed cycle performance. Application of
these criteria to existing in-fill techniques suggested that
the required algorithm should be an extension of the parity
check method operating solely on the serial bit-stream
output from the framestore. Addition of a buffer within the
VSP allows vertical connectivity to be incorporated but
examples show that a fixed.length buffer is not sufficient
for the processing of vertices. This may be overcome by
assigning a parameter to each vertex which is passed between
successive scan-lines during the processing of each edge.

A surface in-fill algorithm using this process has
been presented which can be applied directly to all planar
'wire-frame’ images defined in a conventional framestore.
The algorithm operates in two passes: During the first pass
parameters are evaluated for each edge (v-flag) and for each
run (f-flag). The second pass provides in-filling using

these parameters to indicate the parity of each edge.



73
Performance of the algorithm at the screen boundaries has
been examined and modifications to the graphics software
necessary to ensure correct operation have been outlined.
The additional problem of generating an interlaced output
has been discussed along with a solution involving an extra
VSP proceésing stage.

With the exception of overlapping polygons (which
result in non-planar regions) correct in-fill is provided
with no modification to the operation of the vector
generator, maintaining compatibility. The algorithm proceeds
in scan-line order using a buffer to store a single previous
scan-line. The final requirement of fixed cycle performance

will be demonstrated in the following chapter.



74
CHAPTER 4

IMPLEMENTATION OF IN-FIIL SYSTEM

This section outlines the development of a VSP-based
system to implement in real-time the surface in-fill
algorithm of Chapter 3. An outline of the complete
CGI display system is given together with design criteria
for compatibility with the existing ‘’wire-frame’ system.
Some of the design methods are then discussed, followed by a
detailed description in two parts of the CGI display system
architecture. The first part describes the framestore and
vector generation hardware including control and interface
circuitry necessary to support in-fill. The design of the
in-fill VSP is described in detail in the second part. The
chapter concludes with a discussion of performance results

and observations.

4.1 DESIGN OVERVIEW

The block diagram of Figure 4.1 represents the
physical layout chosen for the complete CGI display system.
The graphics control section contains the double-buffered
GDP-based ‘wire-frame’ system interfacing to the host
system. It is composed of two PCBs (Printed Circuit Boards);
the main board contains the GDPs and associated control
circuitry and a sub-board for the framestore memory. The VSP
in-fill board is a single separate PCB which implements the
surface 1in-fill algorithm and interlace reconstruction,
returning its output to the graphics control section. This
arrangement is chosen as the final video output circuitry is
on the graphics control board, allowing the system to be
configured to operate in a non-in-filled mode without the

in-fill section. The framestore memory is organised as 512



75

by 512 by 4, providing four colour planes all of which are

in-filled by the VSP section.

I FRAMESTORE I

MEMORY

]

1

i

1

[

; I
; HOST GDP & CONTROL
g SYSTEM CIRCUITRY
|

|

1

i

1

|

]

t

i
i
i
i
i
i
i
;
i
IN-FILL & :
i
i
i
J
i
i
i
i

INTERLACE
PROCESSING
OUTPUT SECTIONS
CIRCUITRY .
o — . T
GRAPHICS CONTROL SECTION VSP IN-FILL BOARD

Figure 4.1 Overview Of CGI System

A 512 by 512 pixel display using the GDP discussed in
Chapter 1 (Thomson type EF9367 [ThSe89]) requires a pixel
clock frequency of 12 MHz. This represents the highest
frequency component within the CGI display system assuming
that the VSP operates on one pixel per timing state. A
synchronous design [WiPr80] based on this clock is used
allowing a modular implementation of the VSP. The cycle time
of 86 ns allows the use of conventional low power Schottky
TTL (LSTTL) [Texa82] devices for most of the design with
FAST (Fairchild Advanced Schottky TTL) [Mull84] TTL devices
for critical sections.

The VSP design is modular and replicated for each
colour plane making this application ideal for ASICs
(Application Specific ICs) [BuGo87]. The anticipated volume
of production and simple design do not justify the use of
gate array or custom VLSI design. An ideal alternative is
the wuse of PALs (Programmable Array Logic) [MoMe86] which
not only reduce component count but allow design

verification using the PALASM logic simulation software



76

[MoMe83]. This approach has also been used to refine the
existing ‘wire-frame’ system and to optimize the design of
the interface and control circuitry.

After the initial design of the VSP architecture had
been completed development proceeded in three stages: First,
simple software was written to simulate the EF9367 vector
generator. Secondly, these results were used to create test
vectors allowing direct simulation of the VSP modules with
the PALASM logic simulator. Finally software was written to
allow controlled images (such as single 1lines, single
vertices, seed pixels and complete polygons) to be output
from the framestore to the prototype system at different
stages during its construction. This included the adaptation
of an existing graphics library and development of software
to allow the image form to be altered dynamically under host
system keyboard control.

An example PALASM source file is given in Appendix II
and circuit schematic diagrams for the complete system are
given in Appendix III. All of the test software was written
in BCPL [RiWS85], a systems implementation language, and has
been described by the author in a previous report [Evem87]

which also contains all of the PALASM source files.

4.2 GRAPHICS CONTROL SECTION

The graphics control section is based on the existing
‘wire-frame’ system described in Chapter 1 incorporating
some design improvements and minor modifications necessary
to support the VSP in-fill board. The existing double-
buffered architecture is outlined first (a detailed
description has already been given by the author

[Evem85]). This is followed by a description of the



77
transparent write modification (necessary to support the in-

fill VSP) and the colour palette output circuitry.

a - Double-Buffered Graphics Architecture

The double-buffered scheme uses two identical GDPs in
conjunction with two framestores as shown in Figure 4.2. One
GDP (e.g. GDP1) in conjunction with its own framestore is
designated as ‘write-only’ allowing its internal hardwired
vector generator to be used at full efficiency whilst the
other (GDP2) is displaying its respective framestore. At the
end of each frame the GDPs switch tasks together allowing
GDP1 to display its filled framestore whilst GDP2 is

designated as 'write-only’.

MPU CONTROL END OF FRAME
BUS l_ REGISTER SIGNAL
| SELECTOR 1 | SELECTOR 2 |
DRAM DRAM
ARRAY GDP GDP ARRAY
1 1 2 2
I — i il
SHIFT SHIFT
REGISTER 1 REGISTER 2
]
CONTROLLER | MUX

VIDEO OUTPUT

Figure 4.2 oOutline Of Double-Buffered Configuration

Both GDPs operate independently but are synchronized
to the same line and frame positions by the controller.
Synchronization is performed by comparing the SYNC signals
from each GDP (the SYNC signal is a composite horizontal and
vertical synchronization signal) and inhibiting one GDP
until the SYNC signals match.

The GDP can operate in one of three modes display,

write and refresh (necessary because of the use of dynamic



78
memory (DRAM)). The mode of operation for each GDP (display
or write only) is selected under software control and
communication between the controller and the software is via
a read/write control register. The control register also
indicates to the graphics software that the ’‘end of frame’
has been reached and the buffers must be swapped.

Dynamic memory (DRAM) [Texa84] is used for framestore
memory as it provides the most attractive technology in
terms of cost and density. In display mode the GDP accesses
the framestore memory in scan-line order and provides
horizontal and vertical synchronization. The access time for
DRAM devices is too great for memory read cycles to access
each pixel individually and the EF9367 GDP is configured to
access the DRAM array as an eight-bit word in display mode.
The shift register 1is used to convert this byte into a
serial-bit stream at the 12 MHz pixel frequency. Each memory
read cycle is implemented as a ‘read-modify-write’ cycle
allowing the entire framestore to be erased during the
display phase. This avoids the need to erase each 1line
segment individually before the next image is drawn.

During write mode the vector generator provides
addresses to enter individual pixels into the framestore
using co-ordinate information transferred from the host
system via internal registers. Eight DRAM devices are
required to allow byte-wide access at display time and
individual access for the vector generator using the
selector.

The GDP was specifically designed for direct use with
DRAM devices and accordingly the memory addresses are output
in two stages. It is necessary that control signals to the

DRAM are synchronized with the address sequencing and an



79
additional address latch is included to provide the
controller with precise control. The address lines to the
DRAM array have a high intrinsic capacitance and series
resistors are used to reduce current impulses when address
values change [Mits82][HaRa84].

Thchontroller generates all the timing necessary for
the memory read and write operations and controls the
loading of the shift register. This shift register has bi-
directional parallel data lines and can be configured to act
as the data source during write operations. The output is
cleared and enabled if a logic zero is required (pull-up
resistors ensure a logic one if the output is not enabled).
This configuration is determined by mode control inputs
generated by the controller.

The controller is a Moore type finite state machine
[LeeS76] which is operated at the dot frequency, each memory
operation taking eight timing states. The mode of operation
is defined by the GDP outputs ALL and BLK (the video
blanking signal) according to Table 4.1 below and
conditional outputs which depend on the mode of operation

are generated separately for each buffer.

MODE BLK ALL
DISPLAY 0 0
WRITE 1 1
REFRESH i 0

Table 4.1 GDP Mode Control Outputs.

The controller circuitry is implemented using three
registered PAL devices (type 16R8). Both fields of each
frame are required by the interlace reconstruction VSP and
the framestore is configured to generate these concurrently,

providing eight serial bit-streams of pixel data. In



80
addition, three synchronizing signals are passed to the in-
fill VSP; vertical synchronization, horizontal

synchronization and the field select signal.

b - Transparent Write Modification

Four colour planes are implemented in the framestore
memory using individual DRAM devices with an internal four-
bit data bus structure. Independent in-filling of each
contour by the VSP requires that they be completely non-
interacting. However, as the vector generator cannot write a
pixel in one colour plane without writing a value into the
other planes and Possibly erasing part of a contour in that
colour plane.

This difficulty is overcome by implementing the write
cycle as a ‘read-modify-write!’ cycle. The value of a
location is read into the shift register and only the colour
plane to be accessed is modified, then the value is written

back to that location.

c - Output Circuitry

The eight-bit outputs from each framestore (four-bits
for each field) are multiplexed to a single output under
software control. The eight-bit data stream is passed to the
in~fill VSP board and to an additional multiplexor activated
by the FIELD signal. This provides a direct four-bit non in-
filled output allowing the graphics control card to operate
without the in-fill VSP board. A similar output is returned
from the in~fill VSP board which includes the in-fill
processing delays and is in phase with the in-filled data
stream. This provides a non in-filled output when the
complete system is configured and the output from the second

multiplexor is disabled. A non in-filled data stream assists



81
debugging and provides flexibility, allowing the in-fill
function to be inhibited for individual colour planes.

The colour palette (Inmos type IMSG170 [InmG89])
allows full software mapping of the corresponding eight
lines via a colour look-up-table (CLUT) to provide a choice
from a palette of possible 256k colours. A CCIR compatible
75 © impedance output is provided [CaTo69] which can be
directl& coupled to an analog RGB monitor. A TTL level

synchronization signal is derived directly from the GDP.

4.3 VSP _IN-FILL_ BOARD

The in-fill board section contains four independent
surface in-fill and interlace reconstruction VSP systems
together with the associated control circuitry and ‘glue’
logic. The implementation of the ’post-processing’ interlace
reconstruction VSP is separate from the surface in-fill VSP
and a discussion of its design is deferred until the end of
this section. An outline of the VSP architecture necessary

to implement the surface in-fill algorithm is given below.

;{ LINE BUFFER

HSYNC
IN MP
VSYNC
+» OUT
sp |
PL vl |F
v v
F FIFO F
Fl |v

Figure 4.3 Outline Of Surface In-Fill VSP Architecture



82

The first pass of the algorithm is implemented by a
straightforward microcontroller (MP - Main Processor) and
associated datapath (PL - Pixel Logic). The inputs from the
framestore are the serial bit stream (logical OR of odd and
even fields) along with frame (VSYNC) and 1line (HSYNC)
synchronizing signals.

The line buffer provides a single scan-line delay and
allows the concurrent implementation of the second pass of
the algorithm on the previous line. The second pass is less
complex and is shown as a single block combining datapath
and controller (SP - Second Pass processor). The FIFO
implements the functions write.fifo and read.fifo described
in Section 3.1.4 allowing the first pass of the algorithm to
communicate f-flag and v-flag to the second pass.

A more detailed analysis of each block is presented in

the following sections.

4.3.1 FIFO

The FIFO function may be implemented directly by any
conventional device supporting a two-bit word and operating
at the required speed. A MSI (Medium Scale Integration) TTL
FIFO device (type 74LS222) is used which provides first-in-
first-out storage of up to 16 four-bit words. The depth of
the buffer places a upper limit of 16 on the maximum number
of edges which can be processed in one scan-line. Expansion
by cascading additional devices is straightforward, but as
this depth is sufficient for the anticipated image
complexity a single device is used.

The 74LS222 FIFO can be written to and read from
asynchronously using two edge-triggered inputs; LDCK and
UNCK respectively. An overriding reset input is provided

(CLR) which may be connected directly to the vertical



83

blanking signal to initialize the FIFO at the start of each
field.

A restriction of this device [Texa81] is that
asynchronous operation is not guaranteed when only one value
is stored in the FIFO. To overcome this an extra value is
stored at the end of each scan-line and retrieved at the end
of the next scan-line, ensuring that any retrieve operation
will always leave at least one value in the FIFO. This
decreases the maximum number of edges which can be processed

in one scan-line from 16 to 15.

4.3.2 SECOND PASS PROCESSOR

The second pass of the surface in-fill algorithm is
simpler than the first pass and the implementation of this
section is discussed first as an introduction to the design
approach.

First the task of the VSP is separated into two
sections; controller and datapath. Referring to Algorithm
3.1 (Section 3.1.4) the objective is to implement the
procedure for each pixel (within the ‘FOR x’ 1loop) in a
single machine cycle. A limited number of additional timing
states are acceptable for each scan-line (within the ‘FOR y’
loop) to initialize parameters. Initialization of the
complete system at the start of each field is synchronized
to the vertical blanking signal and is assumed throughout
this Chapter.

The only data handled during the second pass are the
binary parameters old.f-flag and old.v-flag and the only
operation is simple storage, making the datapath
implementation trivial. The operation of the controller may

then be represented using an Algorithmic State Machine (ASM)



84
chart [Clar73][WiPr80)][Mano84] as shown in Figure 4.4

below.

START

o o

WAIT FOR
START OF LINE

;
NS U
®] 1

UNLOAD FIFO [

y

o

0
- T
TARTEDGE>. |}

®F 11

HOLD V-FLAG
HOLD F-FLAG

o

SL1

Yo

TARTEDGE >——m——-
<G

Figure 4.4 ASM Chart Representing Operation Of SP

Two datapath operations are performed; during state S2
the FIFO is unloaded and values of old.f-flag and old.v-flag
are retrieved, during state S3 the values are held
(providing the function output (old.f-flaqg) implicitly).
State S1 represents a null operation during which the
operation of SP is inhibited, forced by the assertion of the
external input signal SL1 (generated by the central timing
control discussed in Section 4.3.6). The value of start.edge

is derived directly from the pixel bit-stream output from



85

the line buffer according to Table 3.2.

The states are assigned such that the least
significant bit of the state code is zero when a FIFO unload
operation is required simplifying the operation of the
datapath.- Using these assignments the finite state machine
controller and the datapath can be completely implemented

using one 16R8 PAL.

4.3.3 MATN PROCESSOR

The main processor (MP) is the controller which
implements the first pass of the surface in-fill algorithm
in conjunction with the datapath PL. Controller MP operates
directly on input scan-line (y) to implement Table 3.2
unloading the FIFO and changing the mode of the datapath
accordingly. Datapath PL wuses the output from the 1line
buffer (scan-line y+1) evaluating Table 3.2 to determine
values of the variables ’bound’, ’‘clear’, f-flag and v-flag.
Referring to Algorithm 3.1 the program flow of the
controller MP depends only on the function values for scan-
line y, i.e. edge(x, V) and start.run(x, y). The program
implemented by MP must also incorporate the special
operation for the first 1line (Algorithm 3.2) and the
additional procedures required between scan-lines. A state
diagram representation of the complete program, providing
single-cycle performance (which may be implemented in a
single 16R8 PAL) is given in Figure 4.5 overleaf, followed

by a description of each state.



FROM ANY STATE WHEN LVB IS TRUE 86

(o]
u

EDGE (ML1 OR ML2 LOW)

o
]

RUN (ML1 OR ML2 LOW)

ML2 HIGH (END OF SCAN-LINE)

(4]
RUN1 E+M END
14
ELOAD

©OWH

R M

Figure 4.5

MP State Diagram



87
STATE O (START)

In this state the system is awaiting the start of the
first line of a field, indicated by the signal ML1.
STATE 12 (WAIT)

Indicates that the processor is awaiting the start of
a subsequent (not first) line and indicates that the main
algorithm has begun. The start and end of a scan-line is
indicated by ML1 and ML2 respectively.

STATES 8,9,3,10,1 (SEDGE,EDGE,FRUN,SRUN,RUN)

These states control the operation of the main
algorithm throughout a single line. EDGE and RUN indicate
the presence of a true or false pixel in the input bit-
stream (EDGE corresponds to a TRUE result for the function
edge(x, Y)). The prefix S indicates that it is the first
pixel of an edge or run (corresponding to start.edge(x, y)
and start.run(x, y)) and changes the mode of the datapath.
The condition start.edge(x, y) is not present in Algorithm
3.1 but is included as the datapath requires one state for
the previous result to be collated. The first pixel of a run
(SRUN) is followed by the loading of the FIFO except during
state FRUN which indicates the start of a run coincident
with the first pixel of the scan-line. The FIFO is also
loaded directly after any edge (states SEDGE or EDGE) if
that pixel is the last pixel in the scan-line (indicated by
ML2 high).

STATES 2,6,7 (EDGE1,RUN1,SRUN1)

These states control the special processing of the
first scan-line and configure the datapath to detect the
presence of a seed pixel above. EDGEl and RUN1 have similar
meanings to their counterparts described above but the

suffix ‘1’ indicates that they relate to the first 1line.



88
Similarly the FIFO is loaded directly after state SRUN1 and
after EDGE1l if ML2 is high. State EDGE1 has a dual role and
is also used at the end of a scan-line (when ML2 is high)
after states RUN1 and SRUN1 allowing the datapath to
calculate f-flag before the FIFO is loaded.
STATE 4 (END)

This state indicates the end of each scan-line loading
the FIFO with the final values of f-flag and v-flag.
STATE 5,14 (CEND,ELOAD)

These states indicate that the end of a scan-line has
been reached immediately after a previous state which loaded
the FIFO. They provide a dummy state in which the datapath
calculétes final values of v-flag and f-flag before the FIFO
is loaded by state END. State CEND directly follows states
SRUN and FRUN allowing time for the datapath to calculate f-
flag. Similarly state ELOAD directly follows states EDGE1,
EDGE and SEDGE when these states have been used to load the
FIFO (as described above) and allows time for the datapath
to calculate v-flag.

STATES 13,11 (DUMMY,EXTRA)
After the processing of every scan-line, a dummy state

(DUMMY) and an extra FIFO load cycle (EXTRA) is executed.



89

4.3.4 PIXEL I1.OGIC DATAPATH

Datapath PL operates on the output from the 1line
buffer (scan-line y+1) using the signals old.f-flag and
old.v-flag and determines the parameters ‘bound’, ’‘clear’,
f-flag and v-flag. The mode of operation is controlled by
controlle} MP via four inputs representing the states
described in the previous section. Datapath PL can also be
implemented wusing a single 16R8 PAL device but requires an
external OR operation as there are insufficient product
terms to evaluate v-flag. The modes of operation are
summarized in Table 4.2 below, where ’*’ denotes a 1logical

AND ‘+’, a logical OR and ’ ’ a logical NOT.

————————— ettt e i A e
STATE INTERNAL FLAGS f-flag OUTPUT v-flag OUTPUT

(FROM MP) |B(bound) C(clear) F \Y%

————————— e Sl et e

START O 1 1 0 A"

RUN 1 B*P 1 F \Y4

EDGE1 2 1 1 F V+P

FRUN 3 B*Pp 1 0 A"

END 4 1 1 F_ _ _ \%

CEND 5 1 1 B*P*OF+ (B+P) *OF \Y

RUN1 6 1 1 F+P 0

SRUN1 7 1 i_ P_ _ _ 1 _ v _

SEDGE 8 1 C*P  |B*P*OF+(B+P)*OF| (C+P)*OV+C*P*OF

EDGE 9 1 C*p F (C+P)*OV+C*P*OF

SRUN 10 B*P 1 F \Y

EXTRA 11 1 1 F \%

WAIT 12 1 1 0 v

DUMMY 13 1 1 0 \Y

ELOAD 14 1 1 F \"

--------- B s e e et A

Table 4.2 Operating Modes Of Datapath PL

P represents the bit stream input and OF and oV
represent the values for old.f-flag and old.v-flag
respectively. Values of F, V,B and C used as inputs to the
table represent results from the previous operation (timing

state).



90

4.3.5 LINE BUFFER

The line buffer is implemented by a shift register
with a length equal to the number of pixels in one scan-
line, i.e. 512 bits. When the design was undertaken (1986)
the only 512-bit devices were constructed using  NMOS
technology and could not support the required operating
speed of 12 MHz. At that time 256-bit bipolar devices were
available [TRWS81], but as two devices would be needed for
each of the eight line buffers (one for each field of each
colour plane) a total of sixteen devices would be required
and the resulting cost of over £576 made their use very
unattractive.

An alternative implementation of the 512 by eight
shift register function at a much lower cost is provided
using two static RAMs (SRAMs) configured to operate in a
double buffered mode. An outline of this circuit is

illustrated in Figure 4.6 below.

& 5
= » SRAM 1 &
5 5
N I SN
& 5
N £ SRAM 2 =
35 5
¥ ¥
ADDRESS AND
CONTROL LOGIC

Figure 4.6 Implementation Of Line Buffer

The SRAM devices (Cypress type CY128-45 [CySe86]) have
an address access time of 45ns and data can be transferred
to or from the latches (FAST type 74F374) within the cycle
time of 86ns. The SRAM address inputs (common to both

devices) are incremented after each cycle and whilst data is



921

being written into one SRAM, data for the previous line is
read from the other SRAM. At the end of each scan-line the
operation of each SRAM is transposed and the address counter
is reset. The address counter and read/write mode control is
provided . by a PAL (type 20X10) with some additional simple
circuitry.

The latches insert two extra delays into the data path
giving a total line buffer delay of 514 bits. Reducing this
to the desired value of 512 bits (by shortening the address
count to 510) is not possible (as the complete 512-bit scan-
line must be stored in the SRAM) and two compensatory delays
must be added to the pixel data not passed through the line
buffer.

4.3.6 CENTRAL TIMING CONTROL

Each in-fill VSP section requires four common control
signals ML1, ML2, SL1, and SL2. These signals are generated
by a PAL (type 16R8) and are derived from the horizontal and
vertical synchronization signals output from the main
graphics control section. ‘

ML1l, ML2, SL1, and SL2 remain high throughout the
horizontal and vertical blanking periods and are low when
processing a normal scan-line. The timing of these signals
at the start and end of an individual scan-line is
illustrated in Figure 4.7 (a) and (b) respectively and
determines the sequencing of MP and SP at this time. ML1 and
ML2 remain high throughout the first scan-line of a field
suspending operation of MP until the line buffer is filled.
Similarly, SL1 and SL2 do not activate SP until the third
scan-line, when MP has completely processed the first scan-

line. In addition to these signals a signal IBLANK is



92

generated to provide video blanking outside the display

window.

Pixel bit-stream LLLLLL--512 bits of data: .LLLLLL
Horizontal Sync Input HHLLLLLLLLL~~~~~~~~~ LLHHHHHHHHHH
ML1 (except first line) HHHHHHLLLLL~ ~ ~ =~ ~ e~ ~ LLLLLLHHHHHH
ML2 (except first line) HHHHHHHLLLL~~~~~~~~~ LLLLLLLHHHHH
SL1 (except first 2 lines) HHHLLLLLLLL~~~~~~~~~ LLLLLLHHHHHH
SL2 (except first 2 lines) HHHHHHHHHLL~~~~~~~~~ LLLLLLLLLHHH

(a) (b)

Figure 4.7 Sequencing Of Timing Control Signals

4.3.7 INTERLACE RECONSTRUCTION

The in-fill VSP system described above operates on the
logical OR of the odd and even fields producing a lower
resolution in-fill signal. An additional VSP stage (IP)
reconstructs the surrounding contour at full resolution

using the arrangement illustrated in Figure 4.8 below.

FIELD: ODD/EVEN >

IP >
ODD FIELD IN LINE BUFFER ouT

EVEN FIELD IN—
¥ = ] ‘l >= 1 _l
TO MP, SP, & PL

Figure 4.8 Interlace Reconstruction System

FROM SP

This process was outlined in Section 3.3 and contour
reconstruction is based on a sequential analysis of both
non-in-filled bit-streams (odd and even field) in
conjunction with the output from SP (representing the value
of f-flag). The output required for all expected input
sequences was given in Figures 3.10 - 3.13 in Section 3.3.1.
Analysis of these figures indicates that the length of a

particular sequence (e.g. ‘AAA’ or ‘NNN’) is wunimportant,



93
moreover, for each figure a state can be assigned to
represent any repetitive unchanged condition. For example, a
single state can represent a non-in-filled run; in which f-
flag, ‘N’ and ‘A’ remain negated for an arbitrary number of
cycles. It can be determined by inspection that seven
independent states are sufficient to represent the decision
flow of each figure, allowing a finite state machine
implementation. These assignments are illustrated below and
overleaf in Figures 4.9 - 4.12 followed by a description of
each state. These figures also show the actual output
generated by the finite state machine indicating the contour
distortion errors consistent with the ambiguities described

in Section 3.3.1.

State assignments 26667777 75553332 23335557 77775552
f-flag LHHHHHHH HLLLLLLIL, LHHHHHHH HLLLLLLL
Active bit stream .AAA-.-- -AAA---- ----AAA. ...-AAA.
Non-active bit stream -XXXNNN- -XXXNNN- -NNNXXX-. -NNNXXX-
Required output LHHHHHHH HHHHLLLIL. LLLLHHHH HHHHHHHL
Actual output LHHHHHHH HHHHLLLI. LLLLHHHH HHHHHHHL

(a) (b) (c) (d)

Figure 4.9 State Assignments Corresponding To Figure 3.10

State assignments 26667777 75553332 23335557 77775552
f-flag LLLLLLLL LLLLLLLYL HHHHHHHH HHHHHHHH
Active bit stream -..-AAA-. -AAA.... ...AAA.. -AAA....
Non-active bit stream NNNX--.: -..XNNN.- NNNX.... -.-XNNN-.
Required output LLLHHHLIL. LHHHLLLI. HHHHHHHH HHHHHHHH
Actual output LLLHHHLL LHHHHHHL. HHHHHHHH HHHHHHHH

(a) (b) (c) ()

Figure 4.10 State Assignments Corresponding To Figure 3.11



‘ 94

State assignments 7224555332 264777552 7775555557 755555457

f-flag LLLLLLLLLL LLLLLLLLL HHHHHHHHHH HHHHHHHHH
Active stream ...AAAA... -AA...AA. ...AAAA... -AA..-AA.
Non-active stream -NNX:.-XNN- .- -XNNNX-.. -NNX.-XNN:- - -XNNNX-. .

Required output

Actual output

LLILHHHHLLIL. LHHHHHHHL HHHHHHHHHH HHHLLLHHH

LLLHHHHLLI, LHHHHHHHL HHHHHHHHHH HHHHHHHHH

(a)

(b)

(c)

(d)

Figure 4.11 State Assignments Corresponding To Figure 3.12

State assignments 2264453322 234435522 755555577 7755555577
f-flag LLLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHHH
Active stream ..AAAA..--- --AA.AA.. -AAAA.--.. .- -AA-AA..
Non-active stream ---NN-NN-: -NNNN:.--- ..NN-NN-- ..NNNN....
Required output LLHEHHHLLLL LLHHHHHLL, HHHHHHHHH HHHHHLHHHH
Actual output LLHHHHLLLI, LLHHLHHLIL, HHHHHHHHH HHHHHHHHHH
(a) (b) (c) (4)
State assignments 2233544522 266755322 777555577 7755544777
f-flag LLLLLLLLLL LLLLLLLLL, HHHHHHHHH HHHHHHHHHH
Active stream ....AAAA.-.- -AA-AA.-. .--AAAA..- --AA-AA...
Non-active stream - -NN:-NN-.. -...NNNN-- -NN.-NN.-. .-..NNNN--
Required output LLLLHHHHLI, LHHHHHLLL HHHHHHHHH HHHHLHHHHH
Actual output LLLLHHHHLI, LHHHHHLLL HHHHHHHHH HHHHHHHHHH

(e)

(£)

(9)

(h)

Figure 4.12 State Assignments Corresponding To Figure 3.13

STATE 2

This

state

(entered when f-flag,

represents

N’ and

negates the video output.

a

IAI

non-in-filled

are

negated)

run

and

STATE 7
Represents an in-filled run and is entered when
f-flag is asserted and both bit streams are negated
and asserts the video output. This state is also

entered when N’ is asserted in cases where in-fill is

required.



95
STATE 3
This state is represents pixels ‘N’ which

require no video output.

STATE 4
This state is entered when both ’A’ and ‘N’ are
asserted providing a method to distinguish between
different type 0 edges and asserting the video output.
STATES 5 AND 6
Entered when ‘A’ 1is asserted. These states
provide intermediate positions during the sequence

detection and generate an asserted video output.

An additional state (STATE 1) is included to provide
blanking outside the display window and the full state
transition diagram is given in Figure 4.13 below. The values
of A’ and /N’ are derived from the odd and even bit-streams
using the FIELD signal.

A = ACTIVE PIXEL INPUT

N = NON-ACTIVE PIXEL INPUT
F=F-FLAG

Figure 4.13 State Transition Table For Processor IP



96

This provides single cycle performance and the states

are assigned such that the most significant bit of the state
number corresponds to the assertion or negation of the video
signal. Two separate finite state machines can be
implemented on a single PAL (type 16R8) allowing the full

system to be implemented using two devices per colour plane.

4.4 SUMMARY

This chapter has described the design of a CGI system
to implement the surface in-fill algorithm of Chapter 3.
This system is composed of two parts; the graphics control
section, and the VSP in-fill sub-systenmn.

The graphics control section uses a double-buffered
framestore, with host system interface and vector generation
provided by a Thomson EF9367 GDP.

The 1in-fill sub-system uses three VSP sections to
implement the in-fill algorithm. The main processor (MP) and
associated datapath implement the first pass of the
algorithm, storing values of v-flag and f-flag in a FIFO
buffer. A second processor (SP) retrieves f-flag and v-flag
from the FIFO and implements the second pass of the in-fill
algorithm. An additional interlace ’‘post-processing’ stage
(using the third processor (IP)) performs interlace
reconstruction according to the edge types discussed in
Chapter 3. Each VSP provides single-cycle per output pixel
performance and is implemented using a finite state machine

operating at pixel rate.



97

CHAPTER 5

ANALYSIS OF IN-FILL, SYSTEM

5.1 RESULTS AND PERFORMANCE

A CGI system providing an implementation of the two-
pass surface in-fill algorithm has been built and tested.
The geometric calculations are performed by a Motorola
m68000 microprocessor based system and vector generation is
implemented with a Thomson EF9367 GDP. The complete CGI
system has been integrated with the flight simulation system
at the Department of Electronics and Computer Science,
Southampton University and provides an image represented by

approximately 25 four-sided polygons.

5.2 OBSERVATIONS AND DISCUSSION

Plates 5I and 5II illustrate images generated by this
system and typically contain hills, a horizon, a runway with
a centre-line and taxi-way, and approximately ten fields.

Performance of the complete CGI system is influenced
by the software overheads required to process ill-
conditioned polygons. This reduces the total number of
polygons which can be represented when compared with the
existing ’wire-frame’ only system and is difficult to assess
as the system must be able to cope with a worst-case image
in which the highest number of ill-conditioned polygons is
anticipated. Extensive use in a real-time application,
however, has demonstrated that reduction of performance due
to the conditioning software is insignificant.

The picture distortion resulting from the processing
of ill-conditioned polygons is not discernible to the un-
aided eye. Contour distortion arising from the interlace

reconstruction is apparent only at the vertices of some



98

polygons particularly when the angle of incidence to the
horizontal is small. An example of this can be seen in Plate
5I at the right of the black polygon near the runway area.

All visual detection and recognition effects involve
memory processes [RoKa76]. Image distortion effects become
more apparent when they are known to exist and are enhanced
when the image is created in a manner which causes the
distortion to be present continually or occur regularly. The
irregular motion and attitude of an airplane gives an image
in which the contour distortion is not readily noticeable
under normal operation.

The major limitation of the system is the inability to
process overlapping polygons which are represented using the
same colour plane. Flight simulation applications allow the
position of objects in ‘world-space’ to be predefined in
order to minimize the likelihood of this event. It is still
possible, particularly at low altitudes, to position the
airplane such that polygons which reduce to single lines
near the horizon can overlap causing in-fill errors. This
could be prevented by removing offending polygons but as
these events are rare and detection is difficult a solution
has not been pursued.

The number of completely independent colours which can
be represented is limited to four, but this has not imposed
a noticeable restriction on the number of different coloured
regions which can be presented. This is due to the support
of nested regions and to the flexibility provided by the
colour palette device, allowing overlapping regions to be
defined in a different colour. An example of this is the
grey runway region; defined using the same image plane as

the hills but assigned with a different colour (the hills



99

overlap the sky whereas the runway region overlaps the
ground).

Despite the various limitations of this technique the
resulting image is rarely impaired and provides a major
improvement in training value when compared to the original

'wire-frame’ image.






101

CHAPTER 6

A VSP-BASED TEXTURE MAPPING ARCHITECTURE

This chapter presents an architecture to provide
texturing by image mapping using a VSP as proposed in
section 1.3. An outline of the proposed texturing system is

shown in Figure 6.1 below:

FROM OTHER
YSP SYSTEMS

SOURCE YSP TO
IMAGE SYSTEM DISPLAY

FROM EXISTING
CGIl SYSTEM

Figure 6.1 Outline Of VSP Based Texturing System

The source image represents the predefined region of
detail to be mapped onto the screen and is defined using the
texture co-ordinate pair (u,v). The framestore containing
the source image is scanned in conventional scan-line order
generating a serial bit—stfeam which is passed to the vVsp
system. The output from the VSP system is then merged with
the video signal representing the existing non-textured
objects of the image to provide the final combined image. A
more complex application might use several image mapping
systems combined at this stage to render additional regions
of high detail. The architectural features of the VSP system
are developed in this chapter; full implementation details
are deferred until Chapter 7.

First, the suitability of existing image mapping
techniques (g.v. Chapter 2) to a VSP architecture is

examined and found to favour a separable (two-pass)



‘ 102

approach. Shortcomings of existing two-pass techniques are
discussed in order to formulate objectives for the proposed
system.

Subsequently a one-dimensional spatially-variant
filtering algorithm is developed to support the two-pass
transformation technique. This is formulated from first
principles and optimized to produce an efficient VSP
implementation.

Finally the process of generating mapping co-ordinates
for each pass of the transformation is described in detail.
These are derived from the position (Px, Py and p:) and
attitude (wx,wy and wz) parameters introduced in section
1.2.1. Special procedures are also presented to solve the
bottleneck problem (Section 2.3.2) introduced by the two-
pass technique.

The filtering algorithm was simulated in a non-real-
time environment using software routines in conjunction with
a test-bed framestore. This system was also used to develop
the scan selection algorithm (Section 6.3.5) and an ‘example
program listing (in the BCPL systems implementation
language) is given in Appendix IV. Full listings of all the
support software are given by the author in a specific

report [Evem89].

6.1 REQUIREMENTS OF VSP-BASED IMAGE MAPPING SYSTEM

The VSP system outlined in Figure 6.1 operates on the
serial bit-stream from the source image framestore generated
in scan-line order. Similarly the output from the VSP system
must be produced in scan-line order and synchronized both
with other systems and with the remainder of the RTIG

system. In addition, filtering must be provided to prevent



103
aliasing. This filtering must be spatially variant because
of the non-affine mapping function. For real-time operation
the filtering process must operate in a predefined number of
cycles regardless of the position or attitude of the source
region.

The effect of the processing order of existing
transformation techniques is discussed first, followed by an

examination of requirements for the filtering process.

6.1.1 REQUIREMENTS IMPOSED ON THE MAPPING ORDER

Clearly the order in which the transformation is
performed will affect the suitability of a particular method
to a VSP implementation. Aside from filtering methodologies,
the texture mapping techniques reviewed in Chapter 2 may be
classified into two groups: single-pass and separable (two-
pass) mappings.

Single-pass methods (e.g. [Bolt79],[FeSk84]) usually
operate using an inverse mapping following a procedure
similar to that shown below:

FOR (each screen scan-line y) DO
FOR (each screen pixel x) DO
BEGIN
Compute u,v = f(x,Y)

Copy Source Pixel{u,v] to Screen Pixel([Xx,Y]
END

AW

Algorithm 6.1 Single-Pass Inverse Mapping Procedure

where f 1is the inverse mapping function expressing the
source co-ordinates (u,v) in terms of the screen co-
ordinates (x,y). Screen co-ordinates are processed in scan-
line order, enabling the output may be passed directly to
the display device, resulting in references to source co-
ordinates (u,v) in an arbitrary order. The operator ‘Copy’

would normally incorporate the filtering operation which



104

must be two-dimensional as the output pixel footprint can
span both u and v values. VSP techniques can not therefore
easily be used to process or filter the source image output
and single-pass mapping methods are inappropriate for a VSP
implementation.

Two-pass mapping techniques (e.g. [CaSm80], [Fant86])
perform the two-dimensional transformation (f) as a sequence
of two orthogonal one-dimensional operations (fl and fz),
each of which leaves one co-ordinate unchanged. This process

is illustrated below:

Pass 1:
1 FOR (each intermediate scan-line u) DO
2 FOR (each intermediate pixel y) DO
3 BEGIN
4 Compute v = f (y,u)
5 Copy Source[u;v] to Intermediate[u,y]
6 END
Pass 2:
1 FOR (each screen scan-line y) DO
2 FOR (each screen pixel x) DO
3 BEGIN
4 Compute u = f (x,Y)
5 Copy Intermedfate[u,y] to Screen[x,y]
6 END

Algorithm 6.2 Two-Pass Inverse Mapping Procedure

The main advantage of this approach is the reduction
of mapping and filtering to one dimension at the cost of an
additional intermediate framestore. A disadvantage is that
texture tiling cannot be implemented because of the non-
linear properties of the intermediate image. At each stage
the output is generated in scan-line order and the input
framestore is accessed scan-line by scan-line. The two-pass
technique is therefore ideally suited to a VSP
implementation, and Catmul and Smith [CaSm80] reported this
feature as an important advantage. An outline of a VSP-based

two-pass mapping system is given overleaf:



105

SOURCE DESTINATION

INTERMEDIATE
IMAGE IMAGE IMAGE

Figure 6.2 Two-Pass Mapping Architecture

In this arrangement two VSP sub-systems T1 and T2 are
used to implement each pass of the mapping. For example,
sub-system T2 evaluates function f. providing the mapping
co-ordinate (u = M, corresponding to output pixel x) and
generates a stream of output intensity pixels in x for the
stream of pixels in u. In these examples the v co-ordinate
is transformed first, (giving an intermediate image with co-

ordinates (u,y)), although the alternative configuration

(with u transformed first) could be used.

6.1.2 FITLTFRING REQUIREMENTS

A one-dimensional filtering algorithm is required to
provide a complete mapping of each source scan-line onto
each destination scan-line without aliasing. This is
illustrated in Figure 6.3 showing a region of the input
pixel stream (in u) mapped onto the output pixel stream (in
X). The filtering process must ensure that the intensity of
each output pixel accurately represents the corresponding

region of the input pixel stream.



106

INPUT PIXEL STREAM l J I [ L I l — U
OUTPUT PIXEL STREAM I I i |' il — X

Figure 6.3 One-Dimensional Filtering Process

Direct convolution can be used but the filter shape
must be spatially-variant to support non-affine mappings.
This approach is employed by Shantz [Shan82] who wuses a
variable width filter to implement 1linear and cubic
interpolation for non-affine (second order) mappings. The
hardware necessary to perform the convolution in real-time
is proportional to the Kkernel size (number of filter
coefficients) and for adequate antialiasing is reported to
be highly complex. Consequently the use of direct
convolution techniques has not been pursued.

Prefiltering techniques have not been reported for
separable transformation techniques. This is because
prefiltering techniques use additional image information
which is prepared off-line. This information cannot be used
directly for the second pass of the transformation and must
be regenerated to correspond to the distorted intermediate
image. The regeneration must be repeated at frame rate
defeating the object of off-line prefiltering.

The resampling interpolation algorithm proposed by
Fant [Fant86] provides a more efficient filtering solution;

as a scan-line of n pixels requires only 2n operations to



107
prevent aliasing. The algorithm generates each output pixel
using a weighted sum of all the input pixel intensities
under the output pixel footprint. Each input pixel intensity
is weighted according to the number of input pixels spanned
by a given output pixel footprint. This process is unique in
that it considers pixels to be rectangular regions of
uniform intensity [FanL86] as opposed to the classical
representation of pixels as point samples on a discrete
grid.

Despite the simplicity of this method the algorithm
has several shortcomings: First, input and output pixels are
processed during separate machine cycles and pipelining
cannot be used to improve efficiency. Hence an output stream
of n pixels generated from an input stream of m pixels
requires a maximum of n + m machine cycles. Secondly, the
stream of output pixels is not synchronized with the
scanning of the intermediate framestore and additional
hardware is necessary to position the output scan-line in
the output pixel stream. Finally, only direct (not inverse)
mapping is supported and additional hardware is required to
provide input image clipping information necessary to
initialize the processing of each scan-line.

An important advantage of Fant’s algorithm, however,
is that boundaries of the source image which are visible 1in
the destination image are automatically filtered against a
null background. This avoids the ‘edge aliasing’ or
staircase pattern which would otherwise be present at the
edges of the source region.

The next section outlines a new filtering technique
extending this basic concept (rectangular pixels of wuniform

intensity) to overcome the shortcomings and to provide a



108

more efficient implementation.

6.2 SPATIALLY VARTIANT FILTERING TECHNIQUE

This section describes a spatially variant filtering
technique developed to be implemented by the VSP sub-systems
Tl and T2 (Figure 6.2) based on the filtering concepts
outlined in the previous section. The first part of this
section develops the filtering algorithm whilst the second
part discusses the architecture necessary for real-time
implementation. For conéistency, all examples and formula
presented in this section refer to the u to x mapping,

although the principles apply equally well to the v to y

mapping.

6.2.1 FITLTERING ALGORITHM

To define the filtering process, first consider the
input to T2 as a continuous intensity function of u, I(u).
Figure 6.4 shows this function for a range of u including
the footprint defined by M and M which maps to the

boundaries of an output pixel in x.

Average intensity —
over footprint
£ A
Z —
=
Z Footprint of
| output pixel x
3 < >
- -
My-1 Mx

u - INPUT STREAM POSITION

Figure 6.4 Continuous Input Intensity Function



109

Assuming that equal weights are applied to all
intensities under the footprint, the required output value
is given by the average intensity A over the interval

where:

A = ==l (6.1)

Applying the same principle to the discrete input data

stream gives (for integer values of M):

M
¥ I{u]éu
u=
A = ———Xr . (6.2)

where I[u] represents the intensity of the input pixel at u
and é6u is unity. 1In the general case M is non-integer and
Equation (6.2) must be modified to include fractional
components. This is illustrated in Figure 6.5 (below) which
shows a section of the input pixel stream from u to wu+r
(where u,u+l...u+r represent the boundaries of input
pixels). The ’‘footprint’ of the output pixel is the region
(A C B) marked by the values Mx and Mx_l. The values P and Q
represent the integer and fractional parts of M respectively
with P __=uand P_=u+ (r-1).

Q

x=1 . X,
u u+l u¥r-1) utr
D Al Cj}jC B
Px-l M x-1 Px M X

Figure 6.5 Section Of Pixel Stream Showing Fractional Parts



110
The summed intensity using Equation (6.2) with values

P and P corresponds to the region D+C+A and must be

>

corrected for the fractional contributions by including B
and excluding D. Using the assumption that each input pixel
represents a rectangular area with uniform intensity
distributions, the required intensity is then:

M

= I[uléu + Q I[P ] - Q__ I[P__ ]

u=M - e
A = o (6.3)

This provides a method to derive the intensity of

output pixel x given the mapping co-ordinates M and M . A

b4

disadvantage, however, is the arbitrary number of input
pixels (and corresponding machine cycles) required to
evaluate the summation. The value of the summation can be
obtained [Crow84][FeSk84] from two indexed operations on a
summed-area table. Although prefiltering off-line is not
possible, a linear summed-area table can be generated
individually for each scan-line in advance. This
prefiltering operation is performed in input pixel space and
may be applied directly to the input pixel stream using (for
sub-system T2) the algorithm shown below:
FOR each scan-line y
BEGIN
Sum := 0
FOR each pixel u
BEGIN
Sum := Sum + I{u]
Store S[u] = Sum

END
END

WO WN -

Algorithm 6.3 Linear Summed-Area Table Generation

The value S{u] is equal to the summed intensity of all

the pixels in the input stream from the start of the scan-



111
line up to and including the uth pixel. Hence for u and u_

(arbitrary values of u):

u
£%I[u]léu = S[u_] - S[u_] (6.4)
u=u1

and using values of I and S Equation (6.3) may be simplified

to:

1
= e e XXXz _xXsX_ (6.5)

Taking advantage of the sequential nature of x and

forming the partial sum K :

K_=S[P_] + QI[P_] (6.6)

Equation (6.5) becomes:
K K
A = =XE____x22 (6.7)

Implementation of Equations (6.6) and (6.7) provides
an intensity corresponding to an average of all the input
pixels contributing to output pixel x. Assuming that the
mapping function is constant over the output pixel this is
equivalent [FeSk84] to continuous convolution with a

spatially-variant box filter spanning the output pixel.




112

6.2.2 FILTERING SUB-SYSTEM ARCHITECTURE

A Dblock diagram of the sub-system T2 necessary to
implement the filtering algorithm is shown in Figure 6.6 and

incorporates two separate VSP sections VSP1 and VSP2.

ul 4[ I LINE BUFFER
VSP 1 H S LINE BUFFER

1

VSP 2 ]

My

Figure 6.6 Filtering Sub-System T2

VSP1 operates sequentially at the clock rate of the
input stream generating the 1linear summed-area table
according to Algorithm 6.3. The values of S[u] and I[u] for
all u are placed in the line buffers S and I by VSP1 for
subsequent wuse by VSP2. These line buffers provide an
efficient mechanism for the random access of pixels by VSP2,
thus providing a separation between the input stream clock
rate (used by VSP1l) and the output stream clock rate (used
by VSP2).

VSP2 implements Equations (6.6) and (6.7) using the
values taken from buffers I and S for each output pixel.
Using a pipelined architecture this reduces to one
multiplication, three additions and one division per output
pixel. Furthermore, only one index is required to access
both 1line buffers and single cycle per output pixel

operation is possible. The values of P (used to address the



113
* line buffers) and Q are provided directly by the mapping
co-ordinate Mx which is assumed to be generated sequentially

in x. The generation of M is discussed in the next section.

6.3 CO~-ORDINATE GENERATION

The mapping co-ordinates My and M_ used by T1 and T2
are obtained directly from the separate mapping functions f.
and f_ as defined in Algorithm 6.2. The derivation of these
functions from the position and attitude parameters
generated by the host system is described in the following

sections.

6.3.1 INVERSE PERSPECTIVE MAPPING

Several derivations of inverse perspective mapping are
reported in the literature (e.g. [West83], [Hour83] and
[Brac87]) but the method presented here uses the position
(px, py and pz) and attitude (aij) parameters already
generated by the host system and introduced 1in Section
1.2.1. This approach is chosen to provide compatibility with
the existing RTIG system (described in Section 1.2.3) which
implements Equations (1.1), (1.2) and (1.3) (reproduced

below for reference):

a11 a12 a13
[leyvlzv] = [Xw_px'yw_py’zw-pz] * 22 %o 9.4 (1.1)
31 32 33
X = (X [z )-Sx + sx/z (1.2)
y=(y /2 )8 + 8 /2 (1.3)
v W b ¥

These equations may be combined eliminating the
viewing space co-ordinates (x,, Yy, and z_ ) to express Xx and

y (the screen co-ordinates) in terms of the position and



114

attitude parameters and the world space co-ordinates (x ,

A4

y_ and zw) as outlined below:

Rearranging (1.2) and (1.3) and expanding (1.1) gives:

S 2x +z
X = =FeemZa-Z (6.8)
2 z
S 2y +z
y = =Ye-o¥olY (6.9)
2 z
x,=a_ (% -p )+ta  (y -p )+a_ (2 -p_ ) (6.10)
Y = alz(Xw-px)+622(Yw-Py)+a32(Zw-pz) (6.11)
z,=a (x-p )+a_ (y -p )+a__(z -p_) (6.12)

Then by substitution:

X = _x.___&&__&2ZEEEZEEEtEE?théEEZEZE:EXliEEfé&tééélEEE:BEl

2 als(xw—px)+a23(yw-py)+a33(zw-pz) (6.13)

y = o, (28,,72,,) (X, 7R ) (2, Ye L ) (Y, TR ) (2R, 1R, ) (2L TR, )

2 a  (x_-p )+a_ (v -p )+a__(z _-p_) (6.14)

Assuming that the region to be textured is defined as
a flat surface on the ground aligned with the world axes the
triple (xw,yw,zw) can be replaced by the source pair (u,v)
with z = 0. Equations (6.13) and (6.14) can then be
simplified and represented using a 3 by 3 homogeneous matrix
([H]) [Roge76] as shown below (where w represents the
homogeneous co-ordinate):

[x,y,w] = [u,v,1] - (6.15)




115

Such that:
h u+h v+h
X = —-LF_.__22_____22 (6.16)
h u+h v+h
=2 33
And:
hlzu + h22v + h32
Yy = ==8——m—eS S eeee=s (6.17)
h u+h v+h
13 23 3
Where:
h =5 (2a +a )/2 -~ (6.18)
h =S (2a_+a_)/2 (6.19)
h31 = -pxhll-pyhzl-pzsx(2a31+a33)/2 (6.20)
h12 = Sy(2a12+a13)/2 (6.21)
h22 = Sy(2a22+a23)/2 (6.22)
h32 = —pxhlz-pyhzz-pzsy(2a32+a33)/2 (6.23)
h13 =a__ (6.24)
h23 =a__ (6.25)
h33 = -pxa13-pya23-pza33 (6.26)
The inverse mapping function ((u,v) = f(x,y)) can be

obtained from the inverse matrix [H] " defined [Ayre74] as
the adjoint matrix (adj[H]) scaled by the determinant(|H]|).
Assuming that [H] is non-singular (i.e |H| is non-zero) the
homogeneous representation allows the scaling factor |H| to
be ignored [Heck86] and the inverse relationship can be

written:

[u,v,q] = [x,Y,1] - (6.27)

O
- 5'Q

Qoo

Where q represents the new homogeneous co-ordinate such

that:

U = —mmmmmmemem (6.28)



116

And:
dx + ey + £
V = ——ece————— (6.29)
gx + hy + 1
Where:

a=h h - (6.30)
22 33 23 32

b=h h - h (6.31)
23 321 21 33

c=h h -h h (6.32)
21 32 22 31

d =h h -h h (6.33)
13 32 12 33

e=h h -h h (6.34)
11 33 13 321

f=h h -h h (6.35)
12 31 11 32

g = hlzhzs—hllhza (6.36)
i3 21 121 =23

i=h h -h h (6.38)

11 22 12 =21

6.3.2 DECOMPOSITION INTO TWO PASSES

Equations (6.28) and (6.29) represent the two-
dimensional inverse mapping function ((u,v) = f(x,y)) which
must be decomposed into two one-dimensional mapping
functions (f, and f,) to be implemented by Algorithm 6.2.

Assuming the v co-ordinate is transformed first the
second pass mapping function (fz) can be implemented
directly using Equation (6.28), hence:

ax + by + ¢
u=M = fz(x,y) = mm————omem- (6.28)
gx + hy + 1

The co-ordinate system (u,y) used to reference the
intermediate framestore is defined as shown in Figure
6.7(a). This convention is chosen such that the point (0,0)

represents the start of the scanning process.



117

u |

(a) (b)

Figure 6.7 Co-Ordinate Axes Representing Intermediate Image

Because the two passes are orthogonal the scanning
order of the intermediate framestore is offset by 90° during
the second pass. Figure 6.7(b) illustrates this showing the
offset axes used as source for the second pass (denoted by
the pair (y’,u’) and shown as fine lines) and the axes (y,u)
used as destination for the first pass (in bold 1lines). 1In
this example the output from the intermediate framestore is
scanned 90° anticlockwise relative to its input, (this
choice 1is arbitrary; the opposite configuration is also
possible)

The first pass mapping is implemented using the u and
y co-ordinate system (i.e. v = fl(y,u)) and inspection of

Figure 6.7 indicates that:
u =S -u’ (6.39)
And y =y’ (6.40)
To determine fl(y,u) it is first necessary to express

x as a function of u by combining Equations (6.28), (6.39)

and (6.40):

S ~u = ————---——— (6.41)



118

Rearranging gives:

{(b-S h) + hu)y + (c-S i) + iu
X = ———e- e e (6.42)
(S, g-a) - 9u
Substituting this into Equation (6.29) provides the
mapping equation for the first pass:

Ay + Bu + C + Dyu
v = My = fl(y,u) = mmeessmom—ss e — e (6.43)

Where:
A = (bd-ae) + Sx(eg—dh) = (bd-ae) - S D (6.44)
B = (di-fqg) (6.45)
C = (cd-af) + S_(fg-di) = (cd-af) - S B (6.46)
D = (dh-eg) (6.47)
E = (bg-ah) (6.48)
F = (cg-ai) (6.49)

6.3.3 CLIPPING

Clipping is necessary to suppress operation when
outside the source image window and is performed using two
criteria: the value of the mapping co-ordinate and the sign
of the dividend and divisor polynomials forming the mapping
function.

The dividend polynomial (denoted f_ ) represents the
trimetric projection of the output image onto the input co-
ordinate system. Moreover, for a given scan-line both fioo
and f__ (dividend polynomials for each pass) are linear
with respect to the pixel stream position, i.e.: For the

first pass,

-—=2P2P_ - A + Du = Constant for scan-line u (6.50)



119

and for the second pass,

———zpel _ 4 (6.51)

The- sign of the dividend therefore contains half the
information required for clipping, provided the input image
is defined on a positive co-ordinate system in which
scanning starts at the origin (0,0).

During the second pass the divisor polynomial (denoted
fZDS) represents the proximity of the viewing window to the
image surface in object space. The sign of the divisor
therefore indicates the polarity of the viewing cone. &
positive divisor is defined as normal; a negative divisor
indicates that the source image lies behind the viewing
point and should be clipped. This process (known as ’Z-
clip’) is optional on some commercial DVE systems (e.q.
[QETN88]) allowing a secondary mirrored image to be
generated when the reverse viewing cone intersects the

source image.

DIVIDEND -VE \F
\

P DIVISOR -VE 1
\-\T

DIVIDEND +VE
DIVISOR -VE P Q.

DIVIDEND -VE
DIVISOR +VE

DIVIDEND +VE '

DIVISOR +VE \E

(a) (b)

Figure 6.8 Example Scene Illustrating Clipping Procedure



120

These factors are summarized in Figure 6.8(a)
(previous page) depicting a typical scene in which the
source 1image is represented by quadrilateral ABCD. The
vertical (v) source axis is shown (RS) separating areas in
which u is positive or negative. A similar boundary (PQ)
between the forward and reverse viewing cones (positive and
negative proximity) is also shown. Straightforward
inspection of the signs of dividend and divisor allows
immediate clipping to the RTQ quadrant. Because this is the
u to x transform, the final clipping operation is to the
broken line EF corresponding to the detectable condition M

<8 .

Interpretation of the first pass mapping divisor
polynomial (denoted leS) is more complex particularly as
f... 1is a function of y (the pixel position) only. To
explain this, consider point T in Figure 6.8(a) at the
intersection of the v axis and the line PQ. PQ represents
the 1line along which the proximity of the source image is
zero, or its distance from the viewing point is infinite,
i.e. on the horizon. All lines parallel to the v axis must
meet at this point which is therefore the vanishing point
for all u as v tends to infinity. Figure 6.8 (b) shows the
same image before the second pass with A’B’C’D’ representing
the corners of the quadrilateral after the first pass.
Because the y co-ordinate is unchanged during the second
pass the vertical position of these points is identical to
that in Figure 6.8.

The horizontal line P’Q’ represents the co-ordinate vy
at which the divisor is zero and v tends to infinity for all

values of u, thus corresponding to the vanishing point T in

Figure 6.8(a). For clipping purposes the image is not



121

defined in the region above this line and the same clipping
criteria can be applied as for the second pass. The special
case arising when line AB is above the vanishing point and

line CD below is discussed Section 6.3.5.

6.3.4 THE BOTTLENECK PROBLEM

As discussed in Chapter 2, [CaSm80], this problem
occurs when the rotational component of the transformation
approaches 90° causing the area of the intermediate image
to shrink to zero. To solve this problem catmul and Smith
propose that the area of the intermediate image be optimized

for four different transformation methods:

perform v to y pass first (as in examples above).

(1)

(ii) - as (i) but scan source framestore with 90° offset.

(iii) perform u to x pass first.

as (iii) but scan source framestore with 90° offset.

(iv)

For case (i) the area of the intermediate image (AINT)
is obtained by first finding the mapping function from the
source to the intermediate.framestore (given by fl'l, the

inverse of Equation (6.43)).

y = fl_l(v,u) = —e—————————— (6.52)
-Du + Ev - A

The length of transformed scan-line u is then given by:
f TS ,u) - f."*(0,u) = —===== - —==--= (6.53)
a v a

where L = C - FS , and M = A - ES .
Y Y



122
The area A is then given by integrating Equation

INT

(6.53) fromu = 0 to S , thus:

INT

Similar expressions can be derived for «cases (ii),
(iii) and (iv) and each must be evaluated and compared
before the optimum scan direction is chosen. Furthermore,
this method does not provide a correct result when the
divisor of Equation (6.52) passes through zero and the
mapping ‘returns from infinity’. Catmul and Smith suggest
that the source image should undergo a clipping operation
before the test or transformation is applied.

Solution of the ’bottleneck problem’ using this
approach is clearly a formidable problem, even at frame
rate. Consequently an alternative method is proposed below,
using the attitude parameters to provide scan direction

selection directly.

6.3.5 SCAN DIRECTION SELECTION ALGORITHM

Throughout this section it is assumed that the v to vy
transform is performed first and that a positive co-ordinate
system (as outlined in Section 6.3.3) is used to assist the
clipping process. All orientations of the transformed region
can then be supported by allowing the source framestore to
be scanned using any of the four possible schemes outlined

overleaf:



u

123

NORTH EAST SOUTH WEST

Figure 6.9 Scanning Directions For Source Framestore

Four more scan direction methods are also possible,
providing mirrored versions of the above. These are not
required for a flight simulation application as the
transformed region is never viewed from below.

To provide a convenient method of reference each scan
direction is labelled with a cardinal point indicating the
relative scanning increments. The ‘north’ direction
corresponds to the ‘normal’ orientation outlined previously.
Inspection of Figure 6.9 provides Table 6.1 showing the
substitution of the source co-ordinate pair (u,v) required

for a particular scan direction.

+ + ===+
| Scan Direction | Source Co-Ordinate Values |
: s=s=s=ssssms=== fmm—mmm—=====—sssssssSSsssss===m=ss +
| north | u v |
e o e +
| east | S - v u |
D e L L e e e tmmm———— ettt et +
| south | S - u S - v |
e fmm————— ettt O +
| west | v S -u |
it Frmmm e P et +

Table 6.1 Source Co-Ordinate Assignments For Scan Directions

Hence, to determine the the coefficients (a to 1)
required to implement the ‘west’ scanning direction, the
substitutions above are applied to Equations (6.28) and

(6.29).



124

Substitution of v = u into (6.28) gives:
Vv = e S = (6.55)

Where the subscript . indicates the original northward

parameter. Similarly, putting S -u = v into Equation (6.29):

Values of a_ to iw can then be inferred by equating
coefficients with Equations (6.28) and (6.29). Similar
procedures can be used to derive a_ to iE and a_ to is and

all four representations are collated in Table 6.2 below:

+ ==—f=====——=—================S======================== +
Scan Direction |

Coeff- +--—---- e e fommmmmmm e et T +
icient | north | east | south | west |

: + + + 4 +
N U U Sl O el Onc S e Pl B Pt S
| b | b | b=e | b=sh-b | b=5sh-e_ |
U oMy _E___N__ . S __UN N foW__ U N_ N
| c | ¢ | c =f | c=8si-c | c=581i-f |
e ———— I 2 FE E N _ _ .S TN N _ W U N N 4
l___f____l__95__-l_ggf_fygEZf__l_féf_528529__1____§Ef_35__-l
| e | e | e=sh-b | e=5Sh-da | e =D |
o ——————— IR . JURPRRE W -, A . U . S S, — JU,. g L . JE T Wt
| £ | £ | f=8i-c | £f=5i-da | f =c |
o T, . FE S, - . S . S, LS TN SR 4% » S . U H . o . S S

Table 6.2 Coefficient Substitutions For Each Scan Direction

The coefficients g, h and i are not included in this
table as they remain unaltered for all scan directions.
These substitutions should be made after Equations (6.30) to

(6.38) have been evaluated and before Equations (6.44) to



125

(6.49) (used to evaluate coefficients A to F for the first
pass).

The substitution requires the optimum scan direction
to be chosen in advance, as outlined below.

Consider the two unit vectors iw and jw in world
space, aligned with the world axes X and Yy, respectively.
The orientation of these vectors in screen space can be
approximated using the attitude parameters only and the
effects of foreshortening can be ignored, except in
positions which involve a high degree of perspective. Using
this approach the position parameters are unimportant and
for convenience the viewing co-ordinate system (xv,yv,zv)
and the world co-ordinate system (xw,yw,zw) can be made
copunctal at the origin. The orientation in screen space can
then be determined using a simple trimetric projection of iw

and j onto the x ,y view plane.

Figure 6.10 Trimetric Projection Of Unit Vectors



126

This process is illustrated in Figure 6.10(a) above
showing a typical orientation of the world axes relative to
the viewing axes (the 2z and z  axes are omitted for
clarity). The projection of iw and jw onto the x ,¥ view
plane (lightly shaded) is marked by projection vectors Pp
and P, (shown more clearly in Figure 6.10(b) showing only
the view plane). Expressions for p, and p, can be taken

directly from Equation (1.1) thus:

p =a i +a_j (6.57)

1 11 v 21" v

P = a i + a j (6°58)

3 12 22"

Where 1i_ and jv indicate unit vectors aligned with the X
and y  axes respectively.

A two-dimensional vector (Vp) is then defined in
screen space representing the alignment of the projected
vectors with the corresponding view plane axes. Vp is formed
by combining the projected vectors p, and P, using a vector
sum such that Vp points vertically upwards when both co-
ordinate systems are aligned. Vector P, already indicates
the alignment of y with the ordinate (yv) but the alignment
of p, with the abscissa (xv) must first be converted to an
alignment with the ordinate by a rotation through 90°. Vp is

then given by:

vV = (a -a )iv + (a11+a22)jv (6.59)

<) iz 22

The magnitude of Vp is not important but its direction
indicates the overall orientation of the source image
relative to the vertical on the viewing screen. The inverse
relationship (the orientation of the screen relative to the
source image ordinate) is obtained by reflecting Vp about

the vertical to form V , the screen orientation vector:



127

V = (a -a 2)iv + (a11+a22)jv (6.60)

The required scanning direction can then be obtained
by finding the cardinal point closest to V using the
si

algorithm outlined below. Where V and V 5 indicate the i

and j components of V respectively.

1 TEST [V | > |V |

s si
2 THEN TEST V ; > 0
3 THEN scan direction is north
4 ELSE scan direction is south
5 ELSE TEST V N > 0

6 THEN scan direction is east
7 ELSE scan direction is west

Algorithm 6.4 Initial Scan Direction Detection Algorithm

This algorithm does not detect cases where the source
region straddles the vanishing point during the first pass
(outlined at the end of Section 6.3.3). This problem is
illustrated in Figure 6.11(a) (cf. Figure 6.8) showing a
typical scene in which the source image is represented by
quadrilateral ABCD. Line PQ represents the horizon and point

T the v axis vanishing point.

(a) (b)

Figure 6.11 Example Scene Illustrating Cusp



128

It is assumed that the source framestore is being
scanned in the northwards direction (determined using
Algorithm 6.4) and the corresponding intermediate image is
shown in Figure 6.11(b). Vertical co-ordinates are not
affected by the second pass and points A’B’C’D’ represent
the source region after the first pass. The line A'’B’ is
inverted and lies above the horizontal line P'Q’
representing v vanishing point co-ordinate. Region A’B’S is
therefore removed by the clipping process and the remaining
region D’C’S contains a cusp at S. Clearly, the resulting
image will be distorted and incomplete and the northward
scanning direction should not be used.

If the vertical co-ordinate of one vanishing point
crosses the source region then the vertical co-ordinate
corresponding to the other vanishing point can not «cross
this region. This is demonstrated in Figure 6.12 where ABCD
represents the source region and V1 and V2 the-two vanishing
points lying on the horizon HH’. The vertical co-ordinates
of V1 and V2 can both lie within the source region only if
part of the region is above the horizon and part below;

which is clearly not possible.

Figure 6.12 Vanishing Points And Source Image



129

Hence, after the application of Algorithm 6.4, if a
cusp occurs in the intermediate image then the closest other
scan direction (to V_) can be chosen without further
testing.

The following procedure can be used to detect the
presence of a cusp in the intermediate image:

First, calculate the vertical (y) co-ordinate of the
relevant vanishing point; the v axis for north and south
directions, the u axis for east or west. The required co-
ordinate (yvp) is then obtained by equating the divisor of

Equation (6.43) to zero giving:

y,. = - F/E

VP

which reduces to:

y S azz/a23 + Sy/2 (6.61)

vP Y

for directions north and south and:

Y =S alz/a13 + Sy/2 (6.62)

vP Y

for directions east and west.

If Y is outside the viewing window (i.e. if Y, > Sy
or yvp < 0), the original scan direction is accepted without
further testing.

Next, the intersections between the line y = Y, and
the screen boundary (x = 0 or Sx) must be computed and
projected onto the source image space. These points are
marked R and S in Figure 6.11(a) and are calculated as

follows:

x = -S-¥B--__% (6.63)



130

y = =N_¥Bo__.X (6.64)

x = SN ___Nvep __.N (6.65)

y = =S-x____m_¥e____X (6.66)

for the right hand screen intersection.

Only one intersection will be on the ground (i.e. 1in
the positive viewing cone) and two of these equations can be
trivially rejected according to the sign of the divisor.

Finally, the source intersection point (xi,yi) is
tested to see if it lies in a region which would cause a
cusp in the intermediate image. In Figure 6.11(a) the
intersection occurs at point R and for a cusp to be
generated R must lie within the KBL quadrant. The particular
test region depends on the original scan direction, whether
the intersection is at the left or right of the screen, and
whether the image is above or below the horizon in screen
space.

The position of the image relative to the horizon is
determined by the attitude parameters indicating whether or
not the viewing plane is upside down with respect to the
world co-ordinate system. Using the arrangement of Figure
6.10 this is determined by calculating the trimetric
projection of the unit vector K (along the world 2z axis)
onto the viewing ordinate (v )- The corresponding value of

y (denoted yk) is given by:

y =a (6.67)



131

Hence the sign of a__ can be used directly to
determine whether the image appears above or below the
horizon.

Sixteen different test regions arise from the
combinations of parameters described above and are
jllustrated below in Figure 6.13 showing the screen for each
particular example. The shaded region represents the source
region and the arrow indicates its orientation. A two letter
key below each example indicates the test region, e.g. LT
means the gquadrant containing the source image and bounded

at the left and top (as in Figure 6.11(a)), other boundaries

are denoted R (right) and B (bottom).

IMAGE BELOW HORIZON IMAGE ABOVE HORIZON

EAST

SOUTHY _

WEST

INTERSECTION ON INTERSECTION ON
LEFT HAND SIDE RIGHT HAND SIDE

Figure 6.13 Sixteen Possible Cusp Generating Conditions



132

A cusp will occur in the intermediate image if the
pair (xi,yi) are within the test region and the alternative
scan direction can be chosen. However, some image distortion
will result when the intermediate image approaches the cusp
point and-a better approximation is made if the test region

is expanded to include a safety margin.

6.3.6 CO-ORDINATE GENERATION IMPLEMENTATION REQUIREMENTS

To provide co-ordinate generation in real-time
Equations (6.28) and (6.43) must be implemented at pixel
rate, generating the mapping co-ordinates required by the
filtering process. A suitable architecture is outlined in

Figure 6.14 below:

DIVIDEND POLYNOMIAL GENERATOR

HOST

SYSTEM M, OR My
DIVISOR POLYNOMIAL GENERATOR

Figure 6.14 Outline Of Co-Ordinate Generation Architecture

The mapping co-ordinate is generated using two
polynomial generators and a divider. The polynomial
generators implement the dividend and divisor of the
equation in scan-line order under control of the host
system. Two of the above systems are required, one for each
pass (generating M_or My) with additional circuitry to
synchronize co-ordinate generation to the scanning of each

framestore.



133

The source framestore must support scan-line access
using any of the four orthogonal directions required to
solve the bottleneck problem. 1In addition, the intermediate
framestore must be configured to provide a 90° offset
between the scan line order of input and output operations.
The desigh of these framestores is discussed in more detail
in the next chapter.

The coefficients (a to i and A to F) are passed from
the host system to the polynomial generators at the start of
each frame. This requires the host system to implement
Equations (6.18)-(6.26), (6.30)-(6.38) and (6.44)-(6.49) at
frame rate. Additionally, the host system must perform the
scan selection procedure (outlined in Section 6.3.5) and
provide the necessary substitutions.

Routines to implement' these equations have been
written in BCPL using the floating point extensions [RiWS85]
to provide adequate dynamic range. No additional hardware
support is required on the development system for
coefficient generation as all of the above procedures can be
completed for worst case copditions (when a cusp is detected
and the scan direction adjusted) in under 10Oms (using an

8MHz 68000 type microprocessor).

6.4 SUMMARY

After a review of existing image mapping techniques
the two-pass transformation method was considered the most
suitable for a VSP implementation. Associated filtering
methods were examined and for a VSP based implementation the
resampling interpolation algorithm proposed by Fant showed
the most promise. However, the existing technique had many
drawbacks, in particular the lack of synchronization of the

input and output streams and the inability to pipeline the



134

input and output operations.

Consequently a spatially-variant filtering algorithm
has been developed to overcome these drawbacks using 1linear
summed-area table prefiltering to provide single-cycle per
output pixel performance. An important advantage is the
separate processing of input and output streams using two
processors; VSP1 and VSP2. The VSP1l processor must operate
at input pixel rate but only requires a single addition
whilst the more complex VSP2 processor operates at output
pixel rate. This feature permits straightforward mapping of
a higher-resolution source image to a lower-resolution
output.

The generation of mapping co-ordinates required by the
filtering algorithm using an inverse perspective mapping
function for each pass was discussed. These functions were
derived from the position and attitude parameters and shown
to be rational polynomials (the quotient of two
polynomials). Clipping procedures based on simple sign and
magnitude comparisons were developed for each pass.

The bottleneck problem reported by Catmul and Smith
has been reviewed together with the solution they proposed.
The complex computational requirements make the technique
unfavourable for real-time implementation and an alternative
solution has been presented. This involves choosing from
four possible source framestore scanning schemes based on
the orientation of the source image relative to the
observer. The orientation is determined using a scan
direction vector which is readily derived from the attitude
parameters. Additional tests are required to avoid a cusp
occurring in the intermediate image and a procedure to

detect and prevent this has also been presented.



135

Finally, a co-ordinate generation architecture was
proposed requiring two polynomial generators and a divider
each capable of operation at pixel rates. The evaluation of
the polynomial coefficients and choice of scan direction are
only required at frame rate and can be implemented by the
host system software.

The framestore architectures are described in the
following chapter, together with a more detailed account of

the filtering and co-ordinate generation systems.



136
CHAPTER 7

IMPLEMENTATION OF TEXTURE MAPPING SYSTEM

This chapter describes a real-time implementation of
the VSP-based texture mapping system presented in Chapter 6.
An overview of the system is presented together with
objectives based upon real-time requirements and
compatibility. This is followed by an outline of the project
describing some of the design tools and development
strategies.

After the overall layout is discussed, implementation
details are presented in three sections; co-ordinate
generation, framestore design and filtering sub-system.
Finally, observations and results are given, to indicate the

performance of the complete system.

7.1 OBJECTIVES AND OVERVIEW

One principal objective of the image mapping system is
that it maintain compatibility with the existing system
described in Chapter 4. To maintain compatibility the output
from the system should be'synchronized with the scanning
process implemented by the GDP, therefore defining a 512
pixel by 512 pixel output resolution.

A disadvantage of the GDP is that the display window
occupies less than 56% of the available frame period. A VSP
system using this timing would be extremely inefficient, but
by increasing the pixel rate from 12MHz to 15MHz it is
possible to scan a 512 by 512 display in 17.5ms. Allowing a
14% margin for control and synchronization overheads it is
possible to implement both passes of the image
transformation in a single frame period. However, an

additional dual-buffered framestore is required to provide



137

output synchronization. Clearly this is an acceptable
compromise as both passes can then be implemented using the
same transformation and filtering sub-systen, reducing
hardware requirements.

A feature of the filtering algorithm developed in
Chapter 6 is the ability to map a higher-resolution image to
a lower-resolution output. This is exploited by supporting a
1024 by 1024 pixel source image, generating a fourfold
increase in source bandwidth and necessitates a parallel
architecture to implement VSPi. 1In addition, two filtering
datapaths are necessary for the first pass as the number of
scan-lines is doubled. No additional bandwidth requirements
are placed on the co-ordinate generation hardware if
adjacent scan-lines are processed in pairs using the same
mapping co-ordinates. The effect of this approximation will
only be noticeable in areas of high magnification and is
discussed again at the end of this chapter.

Colour images can clearly be implemented using three
image planes representing red, green and blue components.
Only the filtering datapath needs to be triplicated as the
co-ordinate generation is common to each plane. However, to
speed the development process and reduce the project cost
(in particular the framestore memory requirements) the
demonstration prototype is a monochrome system.

Finally, the number of grey levels supported was
determined by the memory devices used for the framestores.
Suitable devices use a byte-wide architecture suggesting
that a four-bit or eight-bit pixel data structure is most
efficient. Early simulations indicated that sixteen grey
levels were sufficient to show the fidelity of the filtering

process and a four-bit pixel representation was chosen.



138

The development of the image mapping system was
completed using a 68000-based microcomputer (Atari 1040ST
workstation) as the host system interfacing to a rack
containing the system PCBs (Plates 7I and 7II). This system,
together with a 512 by 512 pixel framestore was also used to
simulate the operation of the filtering and mapping
algorithms.

The hardware implementation was designed in two
stages. Initially, a simpler system was constructed, using a
512 by 512 pixel image for source and destination. A single
polynomial generator was used capable of implementing affine
and second order (quadratic) mapping functions. Operating in
real-time this system proved the design of the filtering
datapath and polynomial generator. Subsequently the complete
system was implemented, requiring the expansion of the
framestores and the development of the divider circuitry.

In order to increase the compactness of the complete
system, extensive use of EPLDs (Erasable Programmable Logic
Devices) has been made throughout the design. The PLPL
software (Section 1.5 g.v.) brovides a powerful design tool
[AMDP87], particularly for designing finite state machines.
Furthermore, comprehensive simulation is supported allowing
the designs to be evaluated before implementation. This
feature was particularly important during the design of the
framestore controllers and datapaths.

To simplify the descriptions given in this chapter,
finer details have been omitted from the diagrams. 1In
addition ‘’glue’ 1logic and pipeline registers required to
synchronize different datapaths have also been omitted. The
full circuitry is given in Appendix VI and an example PLPL

source file can be found in Appendix VII. A more



139

comprehensive description of the complete system has also
been provided [Evem89]. This includes circuit diagrams, full
PLPL source files for all the devices and program listings
for the system support software.

The physical 1layout chosen for the image mapping

system is shown below in Figure 7.1.

BOARD I BOARD I BO%RD}H ................. BOARDIV
"""""""""""" ST T SYSTEM CONTROL BUS . N
[ <& > : . 41
CONTROL : CONTROL : CONTROL : CONTROL
: : g DIVIDEND
: ‘ I LINE BUFFER }— :
vses -’!—f_—‘_, CLIPPING : % GENERATOR
SOURCE M : CONTROL 33 DIVISOR
FRAMESTORE : —»{5 LINE TBUFFER b e GENERATOR
: Ly VSP2 —
: : ! OUTPUT OUTPUT
: T LINE BUFFER }— : —
INTERMEDIATE Ul vset f IR vSP2 : FRAMESTORE :
FRAMESTORE : ¥ TINE BUFFER }— : :
f

Figure 7.1 Outline Of Image Mapping System

The complete system is implemented using four wire-
wrapped circuit boards. Each board communicates directly
with its neighbour, and control and synchronization is
effected using a global system control bus. In addition
boards I and IV have a host system interface and each
framestore connects to the filtering datapath using a common
input bus and common output bus, allowing operation for both
passes.

The operation of the complete system is described in
the following three sections; co-ordinate generation,

filtering sub-system and framestore design.



140
7.2 CO-ORDINATE GENERATION
An important design factor of the co-ordinate
generation system is the resolution used to represent the
mapping co-ordinate. An advantage of image mapping is that
the co-ordinate accuracy is required only within the source
region and accurate operation outside the clipping window is
not important. Conversely, the spatial accuracy provided by
texture tiling systems must be maintained over the entire
screen area, requiring substantial hardware resources (e.g.
the 24-bit implementation reported by Lopez [Lope87]).
A spatial resolution of 14 bits is clearly sufficient
for this application, providing four fractional bits for a
1024 by 1024 pixel image. Additional bits are required to
ensure that accuracy is maintained and both overflow and
underflow must be handled correctly. A 16-bit floating-point
format is chosen to implement the division and equation
coefficients are prescaled to fully exploit the 16-bit
output range of a fixed-point polynomial generator. This

system is shown below, followed by a detailed description of

MANTISSA
MANTISSA
FLOAT
TO M
EXPONENT
FIX
—
MANTISSA

|, JCLIPPING

each section.

DIVIDEND

DIVISOR rSCALE REGISTER

EXPONENT CONTROL

IRS

EXPONENT

SIGN BITS

Figure 7.2 Co-Ordinate Generation System.



141
7.2.1 POLYNOMIAL, GENERATION

The polynomial generator must implement the dividend
and divisor of Equations (6.28) and (6.43) in scan-line
order at pixel rate (15MHz). Apart from the numerator of the
first pass mapping function (which includes a second order
term) each polynomial is a linear equation in terms of the
two scanning co-ordinates (pixel position and scan-line).
The predefined scanning order allows an efficient
implementation of each equation using difference equations
[Spie71] requiring a pipelined structure of adders and
accumulators. A floating-point system is hardware intensive
[Gos180] but ensures that resolution is maintained over a
wide range of coefficient values. A fixed-point
implementation is simpler but requires greater care to
provide the desired resolution and prevent problems caused
by overflow and underflow.

A deciding factor in the choice of a fixed-point
implementation was the availability of a VLSI device
specifically designed for this purpose. This device (an
Image Resampling Sequencer (IRS) TRW type TMC2301 [TRWI87])
provides a 17-bit (ie-bit and sign bit) output representing
the most significant bits of an internal 32-bit accumulator.
The IRS is capable of implementing a second-order polynomial
using difference equations at 18MHz, thus supporting the
gquadratic term of the first pass mapping function. The
polynomial is implemented for all destination co-ordinates

in scan line order using a nested algorithm [ElWe87]:

1 FOR each scan-line i (i_ < i< imax)
2 FOR each pixel j (jmin <3< jmax)
3 Output = Pi? + Qj2 + Rij + 8i + Tj + U

Algorithm 7.1 IRS Polynomial Implementation.



142

The equation coefficients (P to U) can be loaded at
frame rate by the host system and parameters i ,i

min :max' J:m:i.x-n

and jmax may be configured to support destination image
sizes up to 4096 by 4096 pixels. The 32-bit internal
structure ensures sufficient accuracy providing the output
value uses the optimum dynamic range of the 16-bit output.
This is guaranteed by prescaling the equation coefficients
before 1loading the IRS, also providing protection against
overflow and underflow conditions. The prescaling algorithm

which is implemented as part of the host system software is

outlined below:

1 Max.poly = 0

2 Scale.value = 0

3 FOR each corner of window

4 Val.poly := |Value of polynomial |
5 IF (Val.poly > Max.poly)

6 THEN Max.poly := Val.poly

7 TEST (Max.poly > Max.IRS)

8 THEN WHILE (Max.poly > Max.IRS)

9 Max.poly := Max.poly / 2

10 Coefficients := Coefficients / 2
11 Scale.value := Scale.value + 1
12 ELSE WHILE (Max.poly < Max.IRS / 2)
13 Max.poly := Max.poly * 2

14 Coefficients := Coefficients * 2
15 Scale.value := Scale.value - 1

Algorithm 7.2 IRS Coefficient Scaling Procedure.

Where ‘Max.IRS’ represents the maximum output value
supported by the 1IRS and the use of the ‘Scale.value’
parameter is described in the next section. In practice, the
scaling process is more readily implemented while the
coefficients are in floating-point format, the divide (or
multiply) and test process being replaced by a decrement (or
increment) and test operation on the exponent.

The fixed-point output from the polynomial generators
must be converted to floating-point format before passing to

the divider. This process is implemented by two 900-gate



143

equivalent EPLDs [Alte88] configured to provide the required
shifting operations. The 16-bit fixed-point value is then
represented as a 15-bit mantissa with a four-bit exponent.
Two out-of-range (OOR) signals are also generated indicating
when either polynomial is negative or zero; this information
is used by the clipping controller described in Section
7.2.3.

synchronization of the co-ordinate generation process
is performed by a single PAL (type 22V10) controlling the
IRS. At the start of each pass each IRS is initialized and
operation commences after the first scan-line has been
prefiltered by VSP1l (indicated by the co-ordinate request
input (C_REQ) from the system control bus). The 1IRS
generates two synchronizing signals indicating the end of a
scan-line (END) and the end of a frame (DONE). END is wused
by the controller to generate a signal (IRS_VALID)
indicating to the divider that the polynomial data is valid.
DONE is used to initiate the second pass (at the end of the
first pass) or to halt the system (at the end of the second
pass). Corresponding signais (PASS & /PASS_INIT) are also
generated indicating which pass is active and to initialize
each pass. These signals are output to the system control
bus to synchronize the operation of the complete system. The
values of PASS and DONE are also available to the host

system and are defined as follows:

Fm————— Fom———— T bt Dl +
| PASS | DONE | Condition
o Fom———— o e +
0 0 System performing first pass
0 1 First pass completed
1 0 System performing second pass
1 1 Second pass completed

tmm———— mm———— e E e +

Table 7.1 Definition Of Signals PASS And DONE.



144

7.2.2 DIVIDER
Many architectures have been proposed to perfornm
floating-point division and a good review is given by
Gosling [Gos180]. Traditional techniques use an algorithmic
approach and do not provide single cycle performance. For
lé-bit apélications, however, it is possible to implement
division of mantissz (the exponents are simply subtracted)
using a reciprocal look-up-table followed by a parallel
multiplier. This approach has been implemented successfully
by Lok [LokY83] who gives a detailed account of suitable
look-up-table architectures. In particular, the size of the
table may be reduced by using linear interpolation to
process the 1least significant bits of the divisor. The
architecture chosen for this application is based on this

principle and illustrated below:

MSBs ROM 16
/
/
13 8k X 16
/\ 15
A
15 LSBs
2 yd
ROM 4
va 512X 8
7
MSBs

Figure 7.3 Reciprocal Look-Up-Table.



145

The upper 13 bits of the divisor mantissa are used to
address an 8192 entry reciprocal table providing a 16-bit
result. The remaining two bits are used to select an offset
value which is subtracted from the 16-bit result. The offset
is chosen from a sub-table selected using the 7 most
significant bits of the divisor. Simulation results
indicated that this provides 15-bit accuracy over the
complete input range. The simulation program, written in the
/c’ programming language [KeRi78], was also used to generate
the table values and a listing is given in Appendix V.

The 15-bit multiplication required to complete the
division process is implemented using a 16-bit parallel
multiplier (IDT +type 1IDT7217L-25 [IDTM85]) capable of
operation at pixel rates. The output datapath from this
device is limited to 16 bits and is configured to provide
the most significant word. Because the inputs are normalized
this always contains the 14-bit information necessary for
co-ordinate generation.

The exponent is calculated by subtracting the divisor
exponent from the dividend exponent using a four-bit adder
(the subtrahend is generated in two’s complement form). A
further addition stage is implemented to include the six-bit
signed output from the scaling register. This register is
loaded by the host system and contains the difference
between the dividend and divisor scale factors determined by
Algorithm 7.2.

As both the reciprocal generation and multiplication
stages implement a rounding process, care is needed to
minimize errors. The method used is ‘Add 1’ rounding
[Gos180] where a 1 is added to the most significant of the

bits to be stripped off prior to truncation. This is



146
incorporated in the reciprocal table generation program and

provided directly by the multiplier.

7.2.3 CLIPPING CONTROL

The floating-point output from the divider must be
converted into the 14-bit mapping co-ordinate output
required by VSP2. Two 900-gate equivalent EPLDs provide the
required shifting operations and clipping control is
implemented by a finite state machine using an additional
EPLD (type 18CV8 [PEEL89]).

The clipping controller uses the OOR signals
(generated when the polynomials are negative or zero) and
the exponent value to determine when the co-ordinate is
outside the source window. When the polynomials are
positive, the exponent value indicates whether the clipped
co-ordinate 1lies to the left (assuming a horizontal scan-
line) or the right of the source image. Since a positive co-
ordinate system is used, the default condition at the start
of each scan-line is that the mapping co-ordinate lies to
the left of the source window. These factors are summarized

by the state transition diagram of Figure 7.4 below:

INSIDE
SOURCE
WINDOW

EXPONENT OUT OF RANGE
+ MANTISSA OUT OF RANGE

MANTISSA IN RANGE
* EXPONENT IN RANGE

LEFT OF
SOURCE
WINDOW

RIGHT OF
SOURCE
WINDOW

START OF

SCAN-LINE MANTISSA IN RANGE

* EXPONENT TOO BIG

Figure 7.4 Clipping Controller State Transition Diagram.



147

The two bits required to represent these states are

assigned such that each indicates the left of range (LOR)

and right of range (ROR) conditions directly. These signals

are used by the two co-ordinate shifting EPLDs to provide

default values of the mapping co-ordinates outside the

source window. This 1is necessary

for VSP2 to prevent

aliasing at the edges of the source region as described in

Section 7.4.2.

A major advantage of this clipping procedure is that

valid co-ordinate values are not
polynomial is negative or zero.

hardware requirements as negative
supported by the format converters

division by zero can be undefined.

required when either
This greatly reduces
numbers need not be

or the divider, and



148

7.3 FRAMESTORE DESIGN

This section describes the construction of each of the
three framestores. The required features are summarized
briefly below, followed by a detailed discussion of each

framestore.

1. Source Framestore.

Storage: 1024 by 1024 four bit pixels (% Mbyte).
Input: From host system, off-line.
Output: In scan-line order in any of four

directions at 15MHz. Two scan-lines output
in parallel, each scan-line providing two

pixels per in parallel.

2. Intermediate Framestore.

Storage: 1024 by 512 four-bit pixels (% Mbyte).

Input: From two VSP2s in scan-line order at
15MHz; adjacent 512 pixel scan-lines input
in parallel.

Output: In scan-line order at 90° offset to input
scanning scheme. Pairs of pixels from each
1024 bit scan-line output in parallel at

15MHz.

3.0utput Framestore
Storage: 512 by 512 four-bit pixels; double

buffered to allow simultaneous loading and

display.
Input: From one VSP2 in scan-line order at 15MHz.
Output: In scan-line order with interlace to
display device at 12MHz. Scanning

procedure synchronized with GDP based-

system.



149
7.3.1 SOURCE FRAMESTORE

As outlined above this framestore must provide
parallel output of four pixels to support the required
bandwidth. Therefore the 1024 by 1024 pixel array is
addressed as a 512 by 512 array of ‘quads’. Each quad is a
l6-bit mémory location representing four adjacent pixels

arranged as shown below:

P1 P2

e et

P3 P4

Fomm— et

Figure 7.5 Arrangement Of Four Pixel Quad.

Where the labels P1 to P4 provide a convenient 1label
for each pixel. All four pixels (the complete quad) are
output simultaneously generating two parallel 1024-bit scan-
lines (with adjacent pixels output in pairs).

The 15MHz output bandwidth implies a memory access
time of approximately 50ns (allowing a reasonable margin for
data setup and address settling). At the time of
construction (1988) large geometry (> 64k bits) memory
devices with suitable access times were not available. As
the cost of implementing a large memory array using smaller
devices was prohibitive it was decided to implement the
array using slower memory accessed in parallel. This limits
the number of 1locations accessible in each vertical or
horizontal scan-line to 256, suggesting a two by two
grouping of adjacent quads as outlined below (the labels Q1

to Q4 are for textual reference).



150

pmmm et

Figure 7.6 Grouping Of Adjacent Quads.

During a scan sequence, two quads will be required for
each memory access (two clock cycles). The pair of quads
selected for a particular access depends on the scan
direction but are always adjacent; hence quads 1 and 3
(similarly 2 and 4) are never required together. Non-
adjacent quads may therefore share a common data bus

allowing the memory organization shown below:

QUAD 1 QUAD 3
CROSSBAR
64k X 16 64k X 16
\
L
X 1}) 4X 16 MODULE
32k X 8) 32k X 8) )
>
4 X 4-BIT
QUAD 2 QUAD 4 PIXEL
CROSSBAR STREAMS
64k X 16 64k X 16
N N\
X 1\6 4X Yo MODULE
32k X 8) 32k X 8) )

Figure 7.7 Source Framestore Architecture.



151

The quads forming the framestore memory are physically
separated into four 64k by 16-bit sections. Each section
comprises four 32k by 8-bit SRAM devices (NEC type .
uPD43256C-10L [NECM87]). These devices have an access time
of 100ns allowing a sufficient margin for a memory cycle
time of two clock pefiods (133ns). The output enable feature
(/OE) is used to allow two 32k byte devices to be addressed
as a 64k byte block: the chip enable (/CE) feature
implements the quad select (/Ql to /Q4) function. The quad
selection pair depends on the scan direction and on the
particular scan-line, alternating between different pairs on
adjacent scan-lines. The selection process is summarized

below in Table 7.1.

+ + +
SCAN LSB OF SCAN-LINE COUNT
DIRECTION 0 | 1
t + t +
| NORTH | Q1 ->Q2 | Q4 -> Q3 |
tommm tomo e Fom e —————— +
|  EAST | Q1 ->04 | Q2 ->03 |
e R et e e L +
| SOUTH | Q2 -> Q1 | Q3 -> Q4 |
o e ———— Fomm e ———— +
|  WEST | 04 ->01 | @3 -> Q2 |
t==== t====s====== t============ +

Table 7.2 Quad Selection Table.

The scan direction corresponds to the definitions
given in Chapter 5 and the symbol ‘->’ indicates the order
in which the quads should be output. For example, when the
scan direction is south and the scan count LSB is 0 quads 2
and 1 are selected but quad 2 should appear in the data
stream before quad 1. The output order is determined by
enabling the output of the appropriate datapath.

The quad selection pair toggles at the end of each
scan-line and initial selection (for the first scan-line)

depends only on the scan direction. Correct sequencing of



152

the quad selection, therefore, does not require explicit
generation of the LSB of the scan-line count. This is shown
clearly in Table 7.2; the quad selection output Q3 can be
interpreted as the LSB of the scan-line count.

The: 256 by 256 array of quads are addressed using
eight horizontal and eight vertical scanning addresses. The
sequencing and hierarchy of these addresses is determined by

the scan direction as given below by Table 7.3.

t==== t : === ===+
| | VERTICAL ADDRESSING | HORIZONTAL ADDRESSING |
Fom—mm————— Fomm e —— S E e e T e +
SCAN COUNT COUNT
DIRECTION| HIERARCHY | DIRECTION | HIERARCHY | DIRECTION
+= + + + + ===+
| NORTH |  MOST | UPWARDS | LEAST | UPWARDS |
Fmm———————— tmm—— e to—— e tomm e ——— o ————— +
| EAST | LEAST | UPWARDS |  MOST | DOWNWARDS |
tomm e ——— fom— - tom————————— Fom Fommr e ——— +
| SOUTH |  MOST | DOWNWARDS | LEAST | DOWNWARDS |
Fmm———————— Fom e Fom———————— trmmm e tmmm— e +
| WEST | LEAST | DOWNWARDS | MOST | UPWARDS |
+ + + } t +

Table 7.3 Source Framestore Address Sequencing.

The addresses, quad selection and datapath control are
all implemented using a single 900-gate equivalent EPLD. The
datapaths are implementgd using the same devices and perform
two functions. First they provide individual quad selection
and ordering for each output cycle as described above.
Secondly, a crossbar switch is implemented, routing the
outputs P1 to P4 to the output stream according to the scan

direction as outlined below.



153

+ + + +
|OUTPUT FOR SCAN-LINE 1 | OUTPUT FOR SCAN-LINE 2 |
SCAN  Hmmmemmm e o e +
DIRECTION FIRST SECOND FIRST SECOND
PIXEL PIXEL PIXEL PIXEL
+ + + t==s======== } +
| NORTH | P1 | P2 | P3 | P4 |
tomm—————— Formm——————— Fommm——— e tomm e ——— Fommm e +
| EAST | P2 | P4 | P1 | P3 |
tomm————— Fomm——e e Fomm Fomm——————— R +
| sourH | P4 | P3 | P2 | P1 |
Fomm——————— Fommm e Rl tomm— e fommm e ——— +
| WEST | P3 | P1 | P4 | P2 |
Fom——————— Fom—— et tmmme e Fomm e +

Table 7.4 Datapath Crossbar Operation.

The loading of the framestore from the host system is
straightforward as the control and datapath EPLDs allow host
system access. However, as the array locations are not
memory-mapped additional registers are used to provide 16-
bit data access and address generation. The host systenm
interface, combined with the complicated quad addressing
scheme make the loading process slow; a typical test pattern
taking between 20 and 30 seconds to 1load. Although this
could be improved by incorporating a dedicated loading (or
DMA) controller, as this process is performed off-line, no

other solution has been pursued.

7.3.2 INTERMEDIATE FRAMESTORE

Although the bandwidth and scanning requirements are
less severe compared with the source framestore, the
intermediate framestore must support retrieval and storage
at pixel rates. 1In addition to the write control circuitry,
this requires a bi-directional datapath using a different
format for input and output pixel streams. Store or retrieve
operation is selected according to the system control bus
signal PASS, and scanning operation is initialized by the

signal /PASS_INIT.



154

The 1024 by 512 pixel array is implemented using four

64k by eight-bit memory units (two SRAM devices each)
allowing a group of eight pixels to be addressed in
parallel. The assignment of the four memory units (denoted
RAM1 to RAM4) to each of the eight pixels is shown below,
where LSN and MSN indicate the least and most significant

nybble of a particular memory byte respectively.

tommm—————— Fom———————— +
| RAM1 LSN | RAM2 LSN |
fmmm——————— Fmmmm—————— +
| RAM1 MSN | RAM2 MSN |
Fomm e ————— Fommm—————— +
| RAM3 LSN | RAM4 LSN |
tom fomm———————— +
| RAM3 MSN | RAM4 MSN |
Fomm e ———— fmmm—————— +

Figure 7.8 Organization Of Eight Pixel Memory Block.

This block represents a portion of the complete
framestore memory defined as 512 pixels horizontally by 1024
pixels vertically. Therefore an array of 256 by 256 blocks
is required to implement the complete framestore, allowing
two cycles for each block access to conform with the SRAM
timing requirements. The .selection of a particular RAM
device is summarized below and depends on the least
significant bit of the scan-line count and the store or

retrieve operation being performed.

+

+
+

OPERATION LSB OF SCAT-LINE COUNT
0 1

+—._ p—
| STORING
Gt ——————

| RETRIEVING
+== ==t+====== + +

—_—
!
|
I
I
I
I
I
I
I
I
|
1
I

—_——
t
I
|
I
I
i
1
!
i
I
I
I
]

+

Table 7.5 Intermediate Framestore RAM Selection.

Inspection of Table 7.5 indicates that RAM1 and RAM4

(similarly RAM2 and RAM3) are never accessed simultaneously



155

allowing a common data bus to be used. The corresponding
organization of the complete framestore is shown below in
Figure 7.9. Furthermore, if +the RAM select signals are
derived directly (by swapping at the end of each scan-line),
the least significant bit of the scan-line count is given by

the selection signal RAM4.

RAM 1 RAM 4
E .
g 64k X 8 1SN 64k X 8 LSN 8 B
INPUT g < OUTPUT
——i E_' p——ee
STREAM & @X X 5 PIXEL 1
1 5 32k X 8) 32k X 8) =
E MSN MSN 3
RAM 2 RAM 3
e
; L 5oL
o 64k X 8 LSN 64k X 8 LSN| &
INPUT | & 5 | |ouTeUT
—
STREAM & (X X 5 PIXEL 2
2 £ 32k X 8) 32k X 8) E ]
2 MSN MSN| ©

Figure 7.9 Intermediate Framestore Architecture.

Incoming data is generated by two VSP2 processors and
is received as two parallel streams of 512 bits per scan-
line. Each stream is processed by a separate datapath
(implemented using an EPLD type 18CV8) operating according

to Table 7.6 below:

+ + + +
LSB | INPUT FROM STREAM 1 | INPUT FROM STREAM 2 |
OF o o e +

SCAN-LINE FIRST SECOND FIRST SECOND

COUNT PIXEL PIXEL PIXEL PIXEL

+ + ====t==== +== t +

| 0 | RAM1 LSN | RAM2 LSN | RAM1 MSN | RAM2 MSN |

Fomm e ———— - tomm———————— fom————————— tomm——————— +

| 1 | RAM3 LSN | RAM4 LSN | RAM3 MSN | RAM4 MSN |

+ + + t t == }

Table 7.6 Operation Of Intermediate Framestore Input



156

Outgoing data is generated as a single stream of pixel
pairs representing part of each 1024 pixel scan-line. The
operation of the output datapath is summarized below and may
be implemented using two octal latches controlled as shown

in Figure 7.9.

+ + : :

LSB | OUTPUT DURING CYCLE 1 | OUTPUT DURING CYCLE 2 |

OF S R et e L +
SCAN-LINE FIRST SECOND FIRST SECOND

COUNT PIXEL PIXEL PIXEL PIXEL

} + =+ t===== 4 +
| 0 | RAM2 LSN | RAM2 MSN | RAM4 LSN | RAM4 MSN |
Frm———————— e —————— Fommm e Fmm——————— Fm————————— +
| 1 | RAM1 LSN | RAM1 MSN | RAM3 LSN | RAM3 MSN |
+ + + + + +

Table 7.7 Operation Of Intermediate Framestore Datapath

The controller (implemented using a 18CV8 type EPLD)
provides all memory access signals for both read and write
operation and a single 900-gate equivalent EPLD is used to
address the 256 by 256 block array. This generates row and
column addresses according to Table 7.8 below, providing a

90° offset between storing and retrieving operations.

+ + + +
| | ROW ADDRESSING | COLUMN ADDRESSING |
o ————— R ikl e ettt +
OPERATION COUNT COUNT
HIERARCHY | DIRECTION | HIERARCHY | DIRECTION

+ + + + +
| STORING | MOST | UPWARDS | LEAST | UPWARDS |
o ———— D Fmmm— e tmmm——————— oo +
| RETRIEVING | LEAST | UPWARDS |  MOST | DOWNWARDS |
+ + + t + +

Table 7.8 Intermediate Framestore Address Sequencing.



157

7.3.3 OUTPUT FRAMESTORE

The output framestore provides synchronization of the
image mapping process with the display process and requires
a double-buffered arrangement to allow simultaneous access.
only 512 by 512 pixel storage is required and input and
output operations are performed using the same scan-line
order. An advantage of this feature is that DRAM can be used
to provide storage as addressing can be defined to ensure
that refresh requirements are not violated.

Each bit plane is implemented using a 64k by 4 DRAM
(Hitachi type HM50464P-12 [HitM88]) requiring only four
devices for each framestore. This part is particularly
suitable as memory access can be implemented in four clock
cycles and the corresponding parallel access is conveniently
matched with the four-bit datapath. The full bandwidth can
therefore be supported using a four-bit shift register to
provide input and output for each bit plane.

The complete double-buffered output framestore
architecture is outlined below consisting of the memory
array, arbitration logic, and separate address generation

and memory control for the input and output sections.

LOADING o ™ DISPLAY
COUNTERS S DRAM ARRAY 1 2 COUNTERS
C g ‘ \ = 5
PIXEL INPUT SHIFT OUTPUT SHIFT
INPUT REGISTER REGISTER > TO DISPLAY
D_VALID
INPUT DRAM ARRAY 2

ARBITRATION CONTROL LOGIC

Figure 7.10 Output Framestore Architecture.



158

Output addresses are generated using two PAL devices
(type 20X10) providing separate horizontal (line) and
vertical (frame) outputs. Operating from a 12MHz clock these
devices provide interlaced scanning using timing parameters
identical to those provided by the EF9367 GDP. An additional
PALL (type 16R8) is used to generate an accompanying SYNC
signal which may be used to synchronize the image mapping
output with the surface in-fill system described in Chapter
4. A multiplexor is included to provide the correct address
format required by the DRAM and a 16R4 PAL device is used to
generate memory timing and shift register control signals.

Input address generation is provided by two EPLDs
(types EP600 and 18CV8) configured to operate as counters in
conjunction with a multiplexor to support the DRAM
addressing format. An additional PAL (type 22V10) controls
the counters and input shift registers and generates the
memory timing and control signals. Loading operation is
controlled by a signal (data valid - D_VALID) accompanying
the input pixel stream to provide synchronization with the
image mapping system. An additional input selects the
appropriate pass, allowing the output from either pass to be
displayed. After the loading operation is completed, the
counters continue to operate providing refresh cycles until
the framestores are swapped.

Arbitration logic is provided by a finite state
machine implemented using an EPLD (type 18CV8) operating at
3MHz. All timing clocks used throughout the image mapping
system are derived from a master 60MHz crystal oscillator.
This provides three timing clocks at frequencies of 15MHz,
12MHz and 3MHz, used by the image mapping system, display

counters and arbitration logic respectively. The rising edge



159

of the 3MHz clock is synchronized with a rising edge of each
of the other clocks allowing the arbitration finite state
machine to interface directly with both 12MHz and 15MHz
circuitry.

In the absence of any external synchronization the
output framestore is free-running and the complete image
mapping system is initialized by the arbitration controller.
Additionally, if the 1loading of the framestore is not
finished when the display of the previous frame is completed
the buffers are not swapped and the previous frame is
repeated. This feature proved useful during the development
stage as the output image is displayed continuously even
after the image mapping process 1is interrupted, allowing

observations and adjustments to be made.



160

7.4 FILTERING SUB-SYSTEM

This section describes the design of processors VSP1
and VSP2 used to implement the filtering algorithm described
in Section 6.2. The architecture used is based on the
outline given in Figure 6.6 g.v. and is described in two
sections: prefiltering (VSP1 and line buffers) and the
filtering datapath (VSP2).

An important feature of this application is that all
the values (pixel intensity and co-ordinate values) are
positive numbers and it is not necessary to process signed
values. This greatly simplifies the design of the arithmetic

units required to implement the filtering equations.

7.4.1 SUM-TABLE PREFILTER CIRCUITRY

Prefiltering is provided by VSP1 which generates a
linear summed-area table from the input pixel stream using
Algorithm 6.3. VSPl is implemented using the architecture

outlined below: -

S TABLE
INCREMENTING -
REGISTER 10 14 oUTPUT
CARRY
INPUT
STREAM an)
RN + $
Yo+ - S 6
INPUT
STREAM
2 4

Figure 7.11 Architecture Of VSPIl.



161

The last table entry is generated by summing 1024
four-bit pixels and a 14-bit representation is required to
support the maximum possible result. The lower six bits are
generated using conventional adders (type ACT283[RCAA88]) to
add the incoming bit stream (augend) to the existing result
(addend). The upper bits are generated using a ten-bit
incrementing register (PAL type 22V10) performing an
increment operation when the carry output from the six lower
bits is asserted. The latch and the incrementing register
are cleared at the start of each input scan-line, ensuring
that the first entry in the summed-area table is zero.

The augend is generated from the sum of both input
pixel streams; these represent adjacent pixels which are
output from the framestore in parallel. This circuitry
therefore generates a 512 entry sumned-area table
representing the sum of pairs of pixels from the 1024 pixel
input strean. This approach relaxes the bandwidth
requirements on VSP1l and the line buffers and in addition,
halves the number of line buffer locations.

The full 1024 pixel resolution is restored at the

output of the line buffer using the circuit outlined below:

14
S BUFFER 14 5 BUFFER
4 + > OUTPUT
AND 7 OFFSET
I BUFFER GENERATOR 4 _, I BUFFER
4 " OUTPUT
MAP[9-1] MAP[0]

MAP[9-0]

Figure 7.12 Line Buffer oOutput Adjustment.



162
The multiplexor allows the appropriate pixel value to
be chosen from the I buffer according to the least
significant mapping co-ordinate (MAP_P[0]). MAP_P[O0] is also
used to generate an offset value (S_OFF) which is added to
the S buffer output to provide the required summed-area
table value. S OFF is equal to zero for even mapping co-
ordinates and equal to the first pixel of the pair output
from the I buffer for odd mapping co-ordinates. The
multiplexor and offset generator are implemented using a
single PAL (type 20Gl0 [CySe89]) and the offset is added to
the S buffer value using a conventional four-bit adder and
an additional ten-bit incrementer (PAL 22V10).
The 1line buffer must support two 4-bit I buffers and
the 14-bit S buffer, a total requirement of 22 bits. A
suitable implementation is provided using three 8-bit wide
memory devices providing 24-bit storage. A double buffered
arrangement is required to separate input and output
operations and six devices are required in total. A 2k by 8
SRAM (Inmos type 1IMS1433[InmM87]) was chosen for this
application as the fast access time of 45ns supports single
cycle operation. A nine-bit address must be generated to
allow the buffer to be 1loaded in the correct order,
implemented using a single PAL (type 22V10).
The control of the line buffers is implemented by a
finite state machine (also using a 22V10 PAL) which provides
memory timing signals and supervises the double-buffered

operation.



163
7.4.2 FILTERING DATAPATH

The first operation performed by VSP2 is the
generation of the partial sum given by Equation (6.6)
followed by the subtraction of the previous value, giving
the numerator of Equation (6.7). Both operations are

implemented using the architecture outlined below:

PARTIAL SUM
14

s ;s  PARTIAL
o DIFFERENCE
&

8 3
[t
Q-ﬁ?—+

Figure 7.13 Partial Sum Difference Generation.

The four-bit by four-bit multiplication is readily
implemented using a look-up table and the result is added to
the 14-bit S buffer output to generate an 18-bit partial
sum. The difference value for successive cycles is obtained
from an 18-bit subtractor. The partial sum value is applied
directly to the minuend input and the previous (latched)
partial sum value to the subtrahend input. The subtractor is
implemented using conventional four bit adders (type F283
[Mullg4]) using a two’s complement representation for the
subtrahend.

A similar process is used to generate the denominator

of Equation (6.7) (the footprint size) using the combined



164
co-ordinates MAP P and MAP_Q. The footprint is only required
to four-bit accuracy but has a dynamic range of up to 14-
bits, therefore a simple four-bit floating-point
representation is used to represent the footprint size. The
four-bit mantissa and four-bit exponent can be generated
from the fixed-point footprint value using a single 22V10
PAL.

To prevent edge aliasing correct filtering operation
must be maintained when entering or leaving the source
window. At these points the MAP_P co-ordinates default to
the end points of the line buffers. This provides a correct
partial sum at the leading edge of the source window as S[0]
is defined as zero. However, the last entry in the summed
area table contains the sum of all preceding pixels
excluding the last pixel itself. An error can occur at the
trailing edge of the source window because the default value
outside the source window should contain the sum of all the
pixels in the source scan-line.

This can be avoided by making the last two entries in
the summed area table equal, i.e. by making the last pixel
in each source scan-line zero. This reduces the source
region to 1023 by 1023 pixels but is considered an
acceptable solution to thig problem.

However, the footprint value is not maintained when
entering or leaving the source window as it is derived from
the clipped mapping co-ordinate. A solution to this problem
is made by approximating the footprints either side of the
source window by extrapolation. This is implemented by
controlling the length of a pipeline register forming part
of the footprint datapath.

The exponent is used to shift the partial sum



165
difference value to align it with the footprint mantissa,
implicitly cancelling and rounding the numerator and
denominator of Equation (6.7). This operation is performed
using two 22V10 type PAL devices and is illustrated in
Figure 7.14 below. An additional PAL (type 22v10) is

included to implement ’‘aAdd 17 rounding before the division.

= ) DIVIDER
PARTIAL SUM _ 18 E I iy = o LOOK
DIFFERENCE E 6 & 5
g 2 UP OUTPUT
> & ABE [ PIXEL
4 STREAM
FOOTPRINT l
EXPONENT ]
512 X 8
FOOTPRINT
MANTISSA

4

Figure 7.14 Footprint Division Architecture.

The advantage of this approach is that the division
is performed on two five-bit numbers, allowing a complete
implementation at pixel rate using a single look-up table.
The look-up table is implemented using a 512 by 8 registered
PROM and includes the radd 1’ rounding feature to minimize
errors. The special case arising when the footprint is zero
is processed by replacing the filtered pixel by the direct
point-sampled equivalent (from the T buffer). Since the
footprint is zero this provides an accurate representation

of the pixel intensity.



166
7.5 SUMMARY

This chapter has described an architecture to
implement the filtering algorithm and co-ordinate generation
process presented in Chapter 6.

The co-ordinate generation system implements Equations
(6.28) éﬁd (6.43) at pixel rate using two polynomial
generators and a divider. A l6-bit floating-point
representation ensures sufficient accuracy and is used for
the division operation. The polynomial generators, however,
have been implemented in fixed-point arithmetic for reasons
of efficiency using a proprietary VLSI device and accuracy
has been maintained by software scaling. The divider is
implemented using a reciprocal look-up table followed by a
parallel multiplier, together with a finite state machine to
provide clipping control.

A parallel architecture is used to implement the
source and intermediate framestores as memory access times
are too slow for pixel rate operation. The datapath and
addressing schemes required for each framestore are
implemented efficiently using complex EPLDs to allow scan
direction to be controlled by the host system. A double-
buffered arrangement is used for the output framestore, in
order to utilize the available bandwidth more efficiently. A
15MHz clock is sufficient for a single VSP system to
implement both passes in sequence at frame rate, and the
output framestore provides synchronization with the display
process.
| The filtering sub-system is implemented using an
arrangement of pipelined arithmetic units, the design of
which is simplified because only positive numbers are

supported. Additionally, the multiplication and division



167

operations required by the filtering algorithm have been

implemented directly using look-up tables.






169
CHAPTER 8

ANALYSIS OF IMAGE MAPPING SYSTEM

8.1 PERFORMANCE OF IMAGE MAPPING SYSTEM

A real-time CGI system to provide texturing by image
mapping hés been built and tested. Aliasing is significantly
reduced using an implementation of the spatially-variant
filtering algorithm developed in Chapter 6. The system is
controlled by a 68000-based host computer providing full
software support for the requirements outlined in Chapters 6
and 7. This includes coefficient derivation from attitude
and position parameters, polynomial scaling and solution of
the bottleneck problem.

The complete system is capable of rendering a 1024 by
1024 source image in full perspective, onto a 512 by 512
display at frame rate. Monochrome images are represented
using 16 grey scales and the output format is compatible
with an existing CGI system described in Chapter 4. The co-
ordinate generation hardware implements 14 floating-point
operations per pixel, giving a performance bandwidth
equivalent to 210 Mflops. The filtering sub-system performs
five operations per output pixel and one operation per
input pixel, a total of 5.5 million operations per frame
(equivalent to 137 MIPS).

These figures indicate the high bandwidth supported by
this architecture, although the system clock frequency of
15MHz allows the use of conventional TTL devices. 1In
addition, the extensive use of EPLDs provides an efficient
hardware implementation; the complete system occupies a

board area of only 500mm by 250mm.



170

8.2 OBSERVATIONS AND DESCRIPTION OF PLATES

Plate 8I illustrates a typical source image used to
evaluate system performance and generate the following
plates. It contains a chess board pattern, a cross hatch
pattern and two grey scale digitized images captured using a
camera.

Plates 8III and 8IV show a typical view of the source
image in perspective, Plate 8III has the filtering inhibited
and Plate 8IV has the filtering enabled. The effects of the
filtering are clear, particularly over the cross hatched
area and at the edges of the source region. Plate 8II shows
the intermediate image generated after the first pass.

Plates 8V to 8VIII illustrate similar filtered and
non-filtered images of a highly expanded and contracted
source region. These images clearly demonstrate the accuracy
of the perspective qualities of the mapping function. Again
the advantages of the filtering are obvious but some fringes
are noticeable on the cross hatched portion of the expanded
image. For the shrunken image the filtering process is very
successful and aliasing is prevented without excessive
blurring.

Plate B8IX shows an example of extreme magnification,
illustrating an undesirable effect. The jagged edges are not
due to aliasing artifacts, pbut to the distortion of
individual pixels caused by quantization effects of the two-
pass transformation. This distortion could be reduced by
generating separate mapping co-ordinates for the scan-lines
processed in parallel during the first pass. This could be
achieved using linear interpolation but at best would only

halve the size of the edge steps, and has not been pursued.



171

Plate 8X illustrates an image which is scanned using

an alternative direction because the initial scan direction

created a cusp in the intermediate image. Plate 8XI shows

the intermediate image containing the cusp and Plate 8XII
shows the distorted image generated from Plate 8XI.

Fiﬁally Plates 8XIII and 8XIV are taken using an

exposure time of 1/8 second and clearly demonstrate the

real-time operation of the system.
























179

CHAPTER 9

CONCLUSIONS

A summary and discussion of the complete research
project is given in this chapter. This is followed by

suggestions for further work and final remarks.

9.1 SUMMARY AND DISCUSSION OF RESULTS

The main objective of this project (as outlined in
Chapter 1) was to assess the usefulness of stream processing
as a means of implementing real-time image generation,

requiring:

1). The development of algorithms appropriate to a Video
Stream Processing (VSP) architecture.
2). The design of the VSP architecture to implement the

algorithms.

Specifically, these objectives have been applied to
two areas of image enhancement; surface in-fill and texture
mapping.

A survey of existing in-fill techniques showed that
most require a high bandwidth between the host system and
the framestore. Alternative methods which provide in-fill by
’post processing’ require complex contour generation
techniques and are not compatible with conventional vector
generation hardware.

Consequently a surface in-fill algorithm has been
developed which can be applied to any 8-connected region and
is compatible with proprietary graphics processors. The
algorithm operates in scan-line order using two passes and
can be implemented using a VSP architecture.

Restrictions are imposed on the way in which polygons



180

should intersect the screen boundaries and additional
processing is required to ensure correct operation. This is
incorporated in the graphics software and results show that
the effect on performance is negligible.

The: algorithm does not support interlaced output
directly and an additional VSP section was developed to
support this feature. The additional VSP provides an
interlaced output but under certain conditions the original
contour is distorted. In practice, the effects of the
distortion are not readily noticeable and a better solution
has not been pursued.

The algorithm is implemented in hardware using a VSP
architecture capable of processing each pixel in a single
clock cycle. For a 512 by 512 image a clock frequency of
12MHz 1is required allowing the VSP to be implemented using
conventional TTL devices.

In comparison with conventional in-fill techniques
the VSP system reduces the bandwidth requirements between
the host system and the framestore. For example, a typical
image composed of 20 square regions each 60 by 60 pixels
requires 3600 framestore memory accesses to provide in-fill
explicitly, compared to 240 accesses using the VSP system.
At a frame refresh rate of 25Hz the corresponding bandwidths
are 1.8MHz and 120kHz respectively.

This low bandwidth is within the range of conventional
low-cost GDPs and a image generation system based on this
architecture has been built and tested. The VSP-based system
is capable of rendering an image composed of 25 in-filled
polygons at frame rate and has been successfully
incorporated with a low-cost flight simulation system in

commercial use.



181

The second part of this thesis has described the
application of VSP techniques to provide texturing by means
of image mapping. A survey of current image mapping
techniques indicates that a two-pass spatial transformation
is suitable for a VSP implementation but that existing
filtering. techniques could be improved to provide more
efficient anti-aliasing.

A filtering algorithm has been developed allowing
spatially-variant filtering to be implemented directly as
part of the transformation process. Two VSP systems are
required to implement the filtering process: The first VSP
provides prefiltering of the incoming pixel stream by
generating a linear summed-area table for each scan-line.
The second VSP uses the prefiltered data to implement the
spatially-variant filter providing single-cycle per output
pixel performance. The input and output pixel streams are
processed separately allowing differing resolutions to be
supported. This feature is exploited by the hardware
implementation described in Chapter 7 which maps a 1024 by
1024 pixel source image to a 512 by 512 pixel display.

Mapping co-ordinates are generated at pixel rate to
provide real-time operation and an efficient hardware
implementation has been developed using a pipelined
architecture.

A fundamental problem associated with two-pass
transformation is the bottleneck problem, which must be
solved at frame rate to select the optimum scanning scheme
for the source framestore. An efficient scan selection
algorithm has been developed which uses the attitude
parameters to select an initial scan direction and performs

tests to avoid an additional problem caused by the occurance



182
of a cusp in the intermediate image. This algorithm is
implemented at frame rate by the host system software and
additional hardware is not required.

However, results show that in certain circumstances
none of the four scanning schemes prevent loss of
informatibn and minor distortion of the image can occur. In
practice, these conditions are rare and the corresponding
distortion is insignificant; a possible improvement is
suggested in the next section.

A real-time implementation of the image mapping system
has been built and tested using simulated attitude and
position parameters. An important advantage of the VSP
architecture is the efficient hardware implementation, this
is enhanced by the extensive use of PLDs and the complete
system occupies a board area of only 250mm by 500mm.

The most important advantage of the VSP architecture
is the high performance provided by the pipelined
architecture. The circuitry operates at 15MHz and is
implemented wusing conventional TTL type devices. The
performance of the co-ordinate generation is equivalent to
210Mflops, and the filtering system effectively operates at
137 MIPS.

Although the system has not been integrated with an
existing image generation system, results indicate that
image quality is sufficient to give the illusion of motion
over the surface region. The increase in image fidelity
resulting from the filtering is clear, and a particular
advantage of the filtering algorithm is the removal of
aliasing artifacts from the edges of the source region.

The main limitation of the image mapping system is the

jagged appearance of the image at positions of high



183
magnification, occurring when the viewpoint’is positioned
close to the ground. This places an upper limit on the
feature size which should be represented by a single pixel

in the source region.

9.2 FURTHER RESEARCH

The main disadvantage of the in-fill system is the
inability to process overlapping regions. Extensive use of
the in-fill system indicate that four bit planes places an
upper limit on image fidelity of about 30 polygons. This
could be improved by increasing the number of bit planes,
but as image complexity increases the advantage of automatic
in-fill is less obvious. This is because the average screen
size of each polygon will fall and the overheads of the in-
fill system become comparable to the extra bandwidth
required to provide in-fill explicitly. Since the project
was completed, advances in GDP design (e.q.
[Texa87]1[AMDQ87][Hita84][ThSe89]) overcome the bandwidth
problem using VLSI technology. Consequently, further work on
this project is unlikely.

Conversely, apart from the obvious extensions to
support colour and integrate with the flight simulation
systen, the image mapping system offers considerable
potential. Several possibilities exist for further research

and some suggestions are given below.

1). Because of the fixed number of product terns
implemented by currently available EPLDs it 1is not
possible to minimize the arithmetic units. A more
efficient implementation, therefore, could be provided
if other forms of ASIC devices were used, such as

programmable [Xili87] or dedicated gate arrays.

-



2).

3).

ay.

184

A Dbetter solution to the bottleneck problem may be
found by allowing the order of the passes to be
interchanged, therefore increasing the number of
scanning options to eight. This would require a more
complex output framestore and additional selection
procedures, but could offer a small improvement in

image fidelity.

The image mapping system has been developed to map
static images which have been 1loaded off-line. The
addition of a double buffered source framestore would
allow changing images, also generated in real-time, to
be mapped onto the viewing screen. This dynamic
texturing could be used to represent such features as
waves on a sea or lake or windswept crops.
Alternatively, a finite number of separate images
could be loaded off-line, allowing different regions
to be displayed according to the position of the
viewer. This would be particularly useful for a system

incorporating several image mapping systemns.

The image mapping system has demonstrated the
application of a VSP architecture to two-dimensional
spatial transformations. A more ambitious objective
would be to apply the VSP architecture and filtering
process to more complex separable transformations, for
example, the three-dimensional image manipulation

algorithm proposed by Robertson [Robe87].



185

9.3 CONCLUSIONS AND FINAL REMARKS

This thesis has promoted the use of stream processing
techniques, (hitherto used only for simple effects), as a
method to provide real-time image generation. Two specific

applications have been evaluated, surface in-fill and image

mapping.

The surface 1in-fill system overcomes bandwidth
limitations between the host system and output framestore
but processing restrictions make it less attractive as image
complexity increases. It has been demonstrated, as a
practical method, to provide an efficient image enhancement

technique for images containing less than 30 polygons.

The image mapping system provides an efficient
implementation of perspective spatial transforms in real-
time. The VSP architecture supports a spatially-variant
filtering algorithm providing effective anti-aliasing,
particularly on shrunken images. The main disadvantage is
the Jjagged effect evident on highly magnified images,
although this is acceptable 'if the feature size is small. As
outlined in item 3 of the previous section, inclusion of a
double buffered source framestore allows the mapping of an
arbitrary video input. Although originally intended for a
flight simulation application this feature makes the system
ideally suited to broader digital video effects

applications.

An underlying advantage of both VSP applications is
the efficient hardware solution, arising from the extensive
use of pipelining techniques. VSP architectures exploit the

scan-line order of raster scan displays and it is probable



186
that other image enhancement features could be implemented
using this approach. As it is likely that raster scan
techniques will continue to dominate display systems for
many years, the author hopes that research into VSP

techniques will be continued.



[AcWeS81]

[Agat86]

[Alia84]

[Alte88]

[AlZa85]

[AlZa86]

[AMDMS83 ]

[AMDP87]

[ AMDQ87 ]

[Ampe88]

[AtGh88]

[Atki88]

[Ayre74]

[B1Ne76]

[Bolt79]

187

REFERENCES

Ackland B.D. and Weste N.H. (1981): "The Edge Flag

A}gorithm - A Fill Method For Raster Scan
Displays", IEEE Trans. on Computers, c-30, pp 41-
48.

Agate M., Finch H.R., Garel A.A., Grimsdale R.L.,
Lister P.F. and Simmonds A.C. (1986): "A Multiple
Application Graphics Integrated Circuit - MAGIC",
Eurographics’ 86, pp 67-77.

Alia G., Martinelli E. and Tani N. (1984): "“An
Approach To The Design Of Hardware Curve
Generators For Graphic Displays", Eurographics

84, Amsterdam, Holland, pp 377-386.

(1988): "User Configurable Logic Data Book",
Altera Corporation, California, USA.

Allerton D.J. and Zaluska E.J. (1985): "Computer
Image Generation In Real Time", Int. Conf.
electronic Displays, London, UK.

Allerton D.J. and Zaluska E.J. (1986): "A Multi-
Processor Approach To Image Generation", IEE Int.
Conf. Simulators, Warwick, UK.

(1983): "Bipolar Microprocessor Logic And
Interface (1983 Data Book)", AMD Inc., California,
USA.

(1987): "pProgrammable Logic Handbook /Databook
1987", AMD Inc., California, USA. pp 2-35 - 2-42.

(1987): "ouad Pixel Dataflow Manager (QPDM)
Am95C60", Technical Manual (Revision B), AMD Inc.,
California, USA.

(1988): "ADO The Ultimate In Digital Special
Effects", Technical Brochure, Ampex Corporation
Video Systems Division, California, USA.

Atkin P. and Ghee S. (1988): "A Transputer Based
Multi-User Flight Simulator", Technical note 36,
Inmos Ltd., Bristol, UK.

Atkin P. and Packer J. (1988): "High Performance
Graphics With The IMS T800", Technical note 37,
Inmos Ltd., Bristol, UK.

Ayres F. (1974): "Matrices", McGraw-Hill, New
York, USA.

Blinn J.F.and Newell M.E. (1976): "Texture And
Reflection In Computer Generated Images", Comm.
ACM, 19-10, pp 542-547.

Bolton M.J.P. (1979): "The Production Of Surface
Textures In Real-Time Computer Generated Imagery",
D.Phil. Thesis, University Of Sussex, UK.



[Brac87]

[Bres65]

[BrFe79]

[BrSE87]

[BuGo87]

[Burts8l]

[CaDe79]

[Carp82]

[CaSm80 ]

[Catm74]

[CaTo69]

[Char86]

[Clar73]

[Clar80]

[Clar82]

188

Braccini C. and Marino G. (1987): "Fast
Geometrical Manipulations Of Digital Images",
Computer Graphics and Image Processing, 13, pp
127-141.

Bresenham J.E. (1965): "Algorithm For Computer
Control Of A Digital Plotter", IBM System Journal,
4,pp 25-30.

Brassel K.E. and Fegeas R. (1979): "An Algorithm
For Shading Regions On Vector Display Devices",
Computer Graphics (Proc. SIGGRAPH ‘79), 13, pp
126-133.

(1987): Broadcast Systems Engineering, October
1987 Supplement, Link House Publications Ltd.,
Croydon, UK, pp 3-15.

Bursky D. and Goodenough F.(1987): Feature -
Application Specific ICs, Electronic Design, 35-38
(April), pp 13-43.

Burt P.J. (1981): "Fast Filter Transforms For
Image Processing", Computer Graphics And Image
Processing, 16, pp 20-51.

Caspers B.E. and Denes P.B. (1979): "An
Interactive Terminal For The Design of
Advertisements", Bell Systems Technical Journal,
pp 2189-2216.

Carpenter L., Fournier A. and Fussell D. (1982):
"Computer Rendering of Stochastic Models",
Communications Of The ACM, 25-7, pp 371-384.

Catmul E. and Smith A.R. (1980): "3D
Transformations Of Images In Scan-Line Order",
Proc. SIGGRAPH *80, Published as Computer

Graphics, 14-3, pp 279-286.

Catmull E. (1974): "A Subdivision Algorithm For
Computer Display Of Curved Surfaces", PhD Thesis,
University of Utah, USA.

carnt P.S. and Townsend G.B. (1969): "Colour
Telvision, Volume 2%, Iliffe Books Ltd., London,
UK.

Charot F. and Rousee F. (1986): "CSI: A Processor
For Image Synthesis", Eurographics’86, pp 79-91.

Clare C.R. (1973): "Designing Logic Systems Using
State Machines", McGraw-Hill, New York, USA.

Clark J.H. (1980): “Structuring 2 VLSI System
Architecture", LAMBDA, 1-2, pp 25-30.

Clark J.H. (1982): "The Geometry Engine: A Visi
Geometry System For Graphics", Computer Graphics,
16-3, pp 349-355.



[Crow77]

[Crow84 ]

[CySe86]

[CySe89]

[DTIC84]

[Dubo84 ]

[DuSS78]

[ElWe87]

[Evem85 ]

[Evem87]

[Evem89]

[Fant86]

[FanL86 ]

[FeSk84]

[FeSk85]

189

Crow F.C. (1977): "The Aljasing Problem In
Computer Generated Shaded Images", Comm. ACM, 20,
pp 799-805.

Crow F.C. (1984): "Summed-Area Tables For Texture
Mapping", Computer Graphics (Proc. SIGGRAPH ’84),
18-3, pp 207-212.

(1986): "CMOS Data Book", Cypress Semiconductor,
San Jose, USA.

(1989): "CMOS BiCMOS Data Book", cypress
Semiconductor, California, USA, pp 4-33 - 4-51.

(1984): "Specification Of Television Standards For
625-Line System Transmission 1In The United
Kingdom", Radio Regulatory Division, Department Of
Trade And Industry, London, UK.

Dubois E. (1984): "The Sampling And Reconstruction
Of Time-vVarying Imagery", Rapport technique de
1/INRS-Télécommunications 83-84, Québec, Canada.

Dungan W., Stenger A. and Sutty G. (1978):
"Texture Tile Considerations For Raster Graphics",
Computer Graphics (Proc, SIGGRAPH ’78), 12-3, pp
130-134.

Eldon J. and Wegnher R. (1987): "Using The TMC2301
Image Resampling Sequencer", TP-37, TRW Inc.,
California, USA.

Evemy J.D. (1985): "Real Time Computer Graphics",
MSc Dissertation, University oOf Southampton,
Southampton, UK.

Evemy J.D. (1987): "Real-Time Computer Generated
Imagery Using Stream Processing Techniques",
Transfer Mini-Thesis, University Of Southampton,
Southampton, UK.

Evemy J.D. (1989): "Real-Time Image Mapping
System", Reference Manual, University of
Southampton, Southampton, UK.

Fant K.M. (1986): "A Nonaliasing, Real-Time
Spatial Transform Technique", IEEE Computer
Graphics And Applications, January, pp 71-80.

Fant K.M. (1986): Letters to the Editor, IEEE
Computer Graphics And Applications, July, pp 3-8.

Ferrari L.A. and Sklansky J. (1984): "A Fast
Recursive Algorithm For Binary-Valued Two-
Dimensional Filters", Computer Vision, Graphics
And Image Processing, 26-3, pp 292-302.

Ferrari L.A. and Sklansky J. (1985): "A Note On
Duhamel Integrals And Running Average Filters",
Computer Vision, Graphics And Image Processing,
29, pp 358-360.



[FeLC80]

[Finc88]

[Fovasg4]

[Fuch81l]

[Fuch82]

[Fuss82]

[GaPC82]

[Gard85]

[Gos1l80]

[Gour71]

[GrHe86]

[Grim79]

[Gupt81l]

[HaCh85 ]

190

Feibush E.A., Levoy M. and Cook R.L. (1980):
"Synthetic Texturing Using Digital Filters",
Computer Graphics (Proc.SIGGRAPH ‘80), 14-3 pp
294-301.

Finch H.R., Agate M., Garel A.A., Lister P.F. and
Grimsdale R.L. (1988): "A Multiple Application
Graphics Integrated Circuit - MAGIC II", Advances
in Computer Graphics Hardware II, Springer-Verlag.

Foley J.D. and Van Dam A. (1984): "Fundamentals Of
Interactive Computer Graphics". Addison Wesley,
Reading, USA.

Fuchs H. and Poulton J. (1981): "Pixel-Planes: A
VLSI-Oriented Design For A  Raster Graphics
Engine", VLSI design, Third quarter, pp 20-28.

Fuchs H., Poulton J., Paeth A. and Bell A. (1981):
"Developing Pixel-Planes, A Smart Memory-Based
Raster Graphics System", Proc. of the Conf. on
Advanced Research in VLSI 1982, pp 137-146.

Fussell D. (1982): "A VLSI-Oriented Architecture
For Real-Time Raster Display Of Shaded Polygons",
Proc. of Graphics Interface ‘82, pp 373-380.

Gagnet M., Perny D. and Coueignoux P. (1982):
"Perspective Mapping of Planar Textures",
Eurographics /82, pp 52-71.

Gardner G.Y. (1985): "Visual Simulation of
Clouds", Proc. ACM SIGGRAPH ‘85, 19-3, pp 297-303.

Gosling J.B. (1980): "Design Of Arithmetic Units

For Digital Computers", The Macmillan Press Ltd.,
Loondon, UK.

Gouraud H. (1971): "Continuous Shading Of Curved
Surfaces", IEEE Trans. Computers, c-20-6, pp 623-
628.

Greene N. and Heckbert P.S (1986): "Creating
Raster Omnimax Images From Multiple Perspective
Views Using The Elliptical Weighted Average
Filter", IEEE CG&A 6-6 pp 21-27.

Grimsdale R.L., Hadjiaslanis A.A. and Willis P.J.
(1979): "Zone Management Processor: A Module For
Generating Surfaces In Raster-Scan Colour
Displays", Computers and Digital Techniques, 2-1,
pp 20-25.

Gupta S., Sproull R.F. and Sutherland I.E. (1981):
"a VLSI Architecture For Updating Raster-Scan
Displays", Computer Graphics, 15-3, pp 333-340.

Harary 1I. and Chlamtac M. (1985): "Filling
Algorithm (SXPW) Using Contour For Raster Scan",
Proc. 14th conv. of Electrical and Electronic
Engineers in Israel, pp 4.4.5/1-4.



[HaIng7]

[HaIngs]

[Hall87]

[HaRa84]

[Harrs7]

[Heck86 ]

[Hita84]

[HitM88]

[Hours3 ]

[ IDTM85]

[INmG89]

[ InmM87 ]

[ Inmo89 ]

[KeRi78]

[LaMR83]

[LeeS76 ]

191

(1987): "Hardware Feature: Digital Video Effects",
Broadcast Hardware International, The Hardware
Magazine Company Ltd., Reading, UK, August 1987,
pp 15-38.

(1988): "Hardware Special Feature: Television
Graphics And Paint Systems", Broadcast Hardware

International, The Hardware Magazine Company Ltd.,
Maidenhead, UK, October 1988, pp 35-76.

Halls G.A. (1987): "Video Post-Processing System",
Undergraduate Project Report, Dept. of Electronics
and Computer Science, University of Southampton.

Hastings C. and Rajpat S. (1984): "Improving Your
Memory With ’S700-Family MOS Drivers", AN-117,
Systems Designs Handbook, Monolithic Memories,
Santa Clara, USA, pp 10.3 - 10-11.

Harriman G. (1987): "Notes On Graphics Support And
Performance Improvements On The IMS T80OO",
Technical note 26, Inmos Ltd., Bristol, UK.

Heckbert P.S. (1986): "Survey Of Texture Mapping",
IEEE CG&A, November, pp 56-67.

Hitachi (1984): "Hitachi HD63484 ATRTC Advanced
CRT Controller User’s Manual", Hitachi (UK) Ltd.,
Harrow, Uk.

(1988): "“Hitachi IC Memory Data Book", Hitachi
(UK) Ltd., Harrow, UK.

Hourcade J.C. and Nicolas A. (1983): "Inverse
Perspective Mapping In Scanline Order Onto Non-

Planar Quadrilaterals", Eurographics ‘83, Zagreb,
Jugoslavija, pp 309-319.

(1985): "IDT7216L/IDT7217L 16 X 16 Bit Parallel
CMOS Multiplier Data Sheet", Integrated Device
Technology Inc., California, USA.
(1989): "The Graphics Databook", First
Inmos Ltd., Bristol, UK.

edition,

(1987): "IMS1433 CMOS High Performance 2k X 8
Static RAM Data Sheet", Inmos Ltd., Bristol, UK.

(1989): "The Transputer Databook", First edition,
Inmos Ltd., Bristol, UK.

Kernighan B.W. and Ritchie D.M. (1978): "The C
Programming Language", Prentice-Hall 1Inc., New
Jersey, USA.

Lane J.M., Magedson R., and Rarick M. (1983): "An
Algorithm For Filling Regions On Graphics Display

Devices", ACM Trans. Graphics, July pp 192-196.

Lee S.C. (1976): "Digital Circuits
Design", Prentice-Hall, New Jersey, USA.

And Logic



[Lieb78]

[LokY83]

[Lope87]

[Mand82]

[Mano84]

[Math75]

[MoMe83]

[MoMe86 ]

[MOTO83]

[Moxo087]

[Mits82]

[Mulls4)

[NECM87)

[Oppe83]

[Paet86]

[QETNSS ]

[Page83]

[Pav179]

192

Lieberman K.
Book", Proc.
116.

(1978):
SIGGRAPH

"How To Colour In A Colouring
r78, IEEE CG&A, 12, pp 11l1-

Lok Y.F. (1983):
Imagery System For Flight Simulators",
Thesis, University of Sussex, UK.

"A Real-Time Computer Generated
D.Phil.

Lopez J.M. (1987): "Real-Time Texture Synthesis In
Computer Generated Imagery", D.Phil. Thesis,
University of Sussex, UK.

Mandelbrot B.B.
Nature", Freeman,

(1982): "The Fractal Geometry Of
San Francisco, USA.

Mano M.M. (1984): Prentice-Hall

Inc., New Jersey,

"Digital Design",
USA.

Matherat p, (1975):
Scan Graphic Display",
181-186.

"A Chip For Low-Cost Raster-
Proc. SIGGRAPH ‘75, USA, pp

(1983):
Monolithic Memories,

"pAL (Programmable Array Logic) Handbook",
Santa Clara, USA.

(1986): "PAL/PLE Device - Programmable Logic Array
Handbook", Monolithic Memories, Santa Clara, USA.
(1983): "16-Bit Microprocessors Data Manual",
Revision September 1983 - B012B, Motorola
(Schweiz) AG, Schlieren, Switzerland.

Moxon J. (1987): "yisuals For All", Flight
International, 131, pp 39-43.

(1982): "Memory Dvelopement Approaches", LSI Data

Book, Mitsubishi Electric, Tokyo, Japan, pp 15-5 -
15- 85.

(1984): "Mullard Technical Handbook 4 - FAST TTL
Digital Ics", Mullard, London, UK.

(1987): "Data Book Memory Products 1987",
Electronics (Europe) GmbH, Dlisseldorf, FDR.

NEC

Oppenheim A.V., Willsky A.S.
"Signals And Systems",
USA.

and Young I.T (1983):
Prentice-Hall, New Jersey,

Paeth A.W (1986):
Raster Rotation",

"A Fast Algorithm For General
Graphics Interface /86 pp77-8l.

(1988): "Quantel Encore Technical Notes", Quantel,
California, USA.

Page I. (1983): “DlsArray' A 16 X 16 RasterOp
Processor", Eurographics’83, Zagreb, Jugoslaviija,
PP 367-381.

Pavlidis T. (1979): "Filling Algorithms For Raster

Graphics", Computer Graphics And Image Processing,
10, pp 126-141.



[Pav18l]

[ PEEL89 ]

[Ples87]

[Pric84]

[RCAA8S ]

[Revi85]

[RhSe88]

[RiWS85]

[Robe87 ]

[RoKa76]

[Roge76]

[Roges5 ]

[Rose70]

[Roth82]

[Scha78]

[Scha81]

193

Pavlidis T. (1981)): "Contour Filling In Raster
Graphics", Computer Graphics, August, pp 29-36.

(1989): "PEEL 18CV8 CMOS Programmable Electrically
Erasable Logic Device Data Sheet", International
CMOS Technology Inc., California, USA.

(1987): "PDSP16401 2-Dimensional Edge Detector
Data Sheet", Plessey Semiconductors Ltd., Swindon,
UK.

Price S.M. (1984): "A Visual System For A Flight
Simulator Using Computer-Generated Images", D.Phil
Thesis, University Of Sussex.

(1988): "Advanced CMOS Logic ICs Data Book", SSD-
283A, GE Corporation, New Jersey, USA.

Reviczky J. (1985): "Filling Algorithms In
Computer Graphics", Tanulmanyok, Magyar Tudomanyos
Akaédmia, Budapest, Hungary.

Rhodes R.L. and Serra L.
Conversion System For Real-Time Graphics", Proc.
Int. Conf. on Parallel Processing for Computer
Vision and Display, Leeds, UK.

(1988): "A Scan

Richards M. and Whitby-Strevens C, (1985): "BCPL
The Language And Its Compiler", Cambridge
University Press, Cambridge, UK.

Robertson P.K. (1987): "Fast Perspective Views Of
Images Using One-Dimensional Operations", IEEE
Computer Graphics And Applications, February, pp
47-56.

Rosenfield A. and Kak A.C.

(1976): "Digital

Picture Processing", Acadenmic Press, New York,
USA.

Rogers D.E. and Adams J.A. (1976): "Mathematical
Elaments For Computer Graphics", McGraw-Hill, New
York, USA.

Rogers D.E. (1985): "Procedural Elements For

Computer Graphics", McGraw-Hill, New York, USA.

Rosenfield A. (1970): "“Connectivity In Digital
Pictures", Jounal ACM, 17, pp 146-160.

Roth S.D (1982): "Ray Casting For Modelling
Solids", Computer Graphics And Image Processing,
18-2, pp 109-144.

Schachter B.J. (1978): "Decomposition Of Polygons
Into Convex Sets", IEEE Trans. Computers C-27, pp
1078-1082.

Schachter B.J. (1981): "Computer Image Generation
For Flight Simulation", IEEE Computer Graphics and
Applications, October, pp 29-68.



[Scha83]

[Serr87]

[Shan80 ]

[Shan82)

[Smit79]

[Spie71]

[SpNe79]

[Suth74]

[Tene80 ]

[ThSes89]

[Texa81]

[Texa82]

[Texa84]
[Texa87]
[ TRWS81 ]
[ TRWIS7 ]

[Wals80]

Ltd.,

194

Schachter B.J. (1983): “"Computer Image
Generation", Wiley, New York, USA.

Serra L. (1987): "“A Multiprocessor System For
Real-Time Image Generation", PhD Thesis,
University of Bradford, UK.

Shani U. (1980): "Filling Regions In Binary Raster
Images - A Graph Theoretic Approach", Proc.
SIGGRAPH ‘80, pp 321-327.

Shantz M.(1982): "Two-Pass Warp Algorithm", Proc.

Soc. Photo Optical Instrument Engineers, pp 160-
164.

Smith A.R. (1979): "Tint Fill", Computer Graphics
(Proc. SOGGRAPH ‘79), 13 pp 276-283.

Spiegel M.R. (1971): "Ccalculus of Finite
Differences And Differential Equations", McGraw-
Hill, New York, USA.

Sproull R. F. and Newman W. M. (1979):
"Principles Of Interactive Computer Graphics",

McGraw-Hill, New York, USA.

Sutherland I.E., Sproull R.F. and Schumacker R.A.
(1974): "A Characterization Of Ten Hidden-Surface
Algorithms", Computing Surveys, 6-1, pp 1-55.

"yideo Stream Processors: A

Tenebaum J.M. (1980):

cost-Effective Computational Architecture For
Image Processing", Project 7864, SR
International, California, USA.

(1989): "Graphic Processors Databook", First
edition, DBGRAPHICST/1, SGS-Thomson Micro-

electronics, Milano, Italy.

(1981): "The Bipolar Microcomputer Comonents Data
Book For Design Engineers", Texas Instruents
Incorportated, Dallas, USA.

(1982): "The TTL Data Book For Design Engineers",
Texas Instruments (Deutschland) GmBH, Freising,
FDR.

(1984): "“MOS LSI TMS4416 DRAM Data Sheet", Texas

Instruments Incorporated. Dallas USA.

(1987): "TMS 34010 Users Guide", Texas Instruments
Bedford, UK.

(1981): "TDC1005J And TDC1006J Shift Register Data
Sheet", TRW LSI Products, Calafornia, USA.

(1987): "TMC2301 CMOS Image Resampling Sequencer",
Data Sheet, TRW Inc., California, USA.

Walsby A.M. (1980): "Fast Colour Paster Graphics
Using An Array Processor", Eurographics 80.



[Warw87]

[West83]

[West87]

[Will83]

[Wils72]

[WiPrso]

[Xi1i87]

[Yand85]

[Zyda88]

195

Warwick G. (1987): "Towards Total Simulation",
Flight International, 131, pp 42-52.

Westmore R.J. (1983): "Real-Time Texture Synthesis
In Computer Generated Imagery", D.Phil. Thesis,
University of Sussex, UK, pp 29-42.

Westmore R.J. (1987): "Real-Time Shaded Colour
Polygon Generation System", IEEE Proc. 134-E-1, pp
31-38.

Williams L. (1983): "pyramidal Parametrics",
Computer Graphics (Proc. SIGGRAPH ’83), 17-3, pp
1-11.

Wilson R.J. (1972): "Introduction To Graph
Theory", Longman Scientific and Technical, Harlow,
UK.

Winkel D. and Prosser F. (1980): "The Art Of

Digital Design", Prentice-Hall Inc., New Jersey,
USA.

(1987): "The Programmable Gate Array Design
Handbook", First edition, Xilinix Inc.,

California, USA.

Yan J. (1985): "Advances In Computer-Generated
Imagery For Flight Simulation", IEEE Computer
Graphics and Applications, 5-8, pp 37-51.

Zyda M.J., McGhee R.B., Ross R.S., Smith D.B. and
Streyle D.G. (1988): "Flight Simulators For Under
$100,000", IEEE computer Graphics and
Applications, January, pp 19-27.



196

PUBLICATIONS

Paper 1 : "Real-Time Scan-Line In-Fill"

Refereed paper presented at Eurographics ‘87 in August
at Amsterdam, Holland, and published as proceedings, pp 209-

220.

Paper 2 : "Real-Time Computer Generated Animation"

Presented at ISBT ‘87 (International Symposium on
Broadcasting Technology) in September at Beijing, People’s

Republic of China, and published as proceedings, pp 581-590.

Paper 3 : "Video-Rate, Spatially Variant

Filtering Technigue Using Stream Processing Architecture"

Refereed paper published in IEE Electronics Letters,

Volume 24, Number 25, (December 1988) pp 1580-1581.

Paper 4 : "A Stream Processing Architecture For Real-Time

Implementation Of Perspective Spatial Transformations"

Refereed paper presented at the IEE Third
International Conference on Image Processing and its
Applications in July 1989 at Warwick, England, and published

as proceedings, pp 482-486.



APPENDIX T

This section contains an example PLPL database written
by the author. The database is defined as an ASCII file
exactly in the format given in this listing. This particular

listing supports the ICT PEEL18CV8 EPLD.



"Database for PEEL 18CV8 jde 9-2-88

Pin Types:

CLOCK = dedicated clock

CLK_INPUT = clock and input

INPUT = input

OUTPUT = output

BREG = buried registers

I0 = input or output; i.e., with feedback
VCC,GND = power,ground pins

Output Types:

0 programmable
active LOW
active HIGH

1
2

o

The I/O0 macrocell assignments are as follows :-

A = Active low or active high output
B = Registered or combinatorial output
C = Combinatorial or registered feedback
D = I/0 pin or logic array feedback
"
12696 20 20 36 "<# of fuses>

<# of pins>
<physical # of pins>
<# of inputs to AND array>"
1 CLK INPUT 01 20 "pin #, pin type,
true and complement array input line"
0000
# combinatorial -1
@ "@ symbol used to terminate definition for this pin"
2 INPUT 4 5 2 0

O00O00O
# combinatorial -1
@

3 INPUT 8 9 2 0O
00000
# combinatorial -1
e

4 INPUT 12 13 2 O
0 00O
# combinatorial -1
@

5 INPUT 16 17 2 O
0 00O
# combinatorial -1
@

6 INPUT 20 21 2 O
O 00O
# combinatorial -1
@

7 INPUT 24 25 2 0O
0 00O
# combinatorial -1
e

8 INPUT 28 29 2 0
0 00O

# combinatorial -1

e



9 INPUT 32 33 2 O
0 00O
# combinatorial -1
@

10 GND @

11 INPUT 2 3 2 O
0000
# combinatorial -1

e

12 I0 34 35 0 0 "x1 x2 x3 x4 (as for other pins)
<feedback source> <output type>"

"Feedback source indicates where feedback is being taken:

e.g.; in a registered part,
HIGH or LOW Q output of the

feeback can come from
register.

Feedback Source: 0 = HIGH_FDBK

: 1 = LOW_FDBK
: 2 = NO_FDBK
: 3 = CORRECT_ FDBK

8 2016 "# of product terms
starting at 1ink

1 2556 1 2592 1 2628 "¢ of
# of

# of

(PT),

address 2016"

enable PTs starting at 2556
sync preset PTs at 2592
async reset PTs at 2628

--> architecture fuses marked by # with choices marked by +
e.g: combinatorial/registered fuse for I_O pin 12 is at
2693 and combinatorial mode is selected by resetting
the fuse to 0 and reglstered mode is selected by

setting the fuse to 1

in the JEDEC map.

If no feature is specified, then the first (leftmost)

option is selected as

default"

"A" # ACTIVE HIGH 2692 0 + ACTIVE LOW 2692 1
"B" # COM 2693 0 + REG 2693 1

"Cc" # FEED COM 2694 1 + FEED_REG 2694 0

"D" # DEFAULT D 2695 0 + FEED_PIN 2695 1

e

13 I0 30 31 0 O

8 1728

1 2520 1 2592 1 2628

# ACTIVE_HIGH 2688 0 + ACTIVE_LOW 2688 1
# COM 2689 0 + REG 2689 1
# FEED COM 2690 1 + FEED_REG 2690 O
# DEFAULT D 2691 0 + FEED_PIN 2691 1
@
14 10 26 27 0 O
8 1440

1 2484 1 2592 1 2628

# ACTIVE HIGH 2684 0 + ACTIVE_LOW 2684 1

# COM 2685 0 + REG 2685 1

# FEED_COM 2686 1 + FEED_REG 2686 0
# DEFAULT D 2687 0 + FEED_PIN 2687 1

@



15 I0 22 23 0 0

[ ) [

O @ e e 3 00 \O (D Hx e He 00 00 (D H: e I W [8¢]

wnN

8

00 O) @D = s I

N @ e s S N

1152

1 2448 1 2592 1 2628

ACTIVE_HIGH 2680 0 + ACTIVE_LOW 2680
COM 2681 0 + REG 2681 1

FEED_COM 2682 1 + FEED_REG 2682 0
DEFAULT D 2683 0 + FEED PIN 2683 1

IO 18 19 0 O
864

1 2412 1 2592 1 2628

ACTIVE_HIGH 2676 0 + ACTIVE LOW 2676
COM 2677 0 + REG 2677 1

FEED _COM 2678 1 + FEED REG 2678 0
DEFAULT D 2679 0 + FEED PIN 2679 1

I0 14 15 0 O
576

1l 2376 1 2592 1 2628

ACTIVE_HIGH 2672 0 + ACTIVE_LOW 2672
COM 2673 0 + REG 2673 1

FEED COM 2674 1 + FEED REG 2674 0
DEFAULT D 2675 0 + FEED PIN 2675 1

I0O 1011 00
288

1 2340 1 2592 1 2628

ACTIVE_HIGH 2668 0 + ACTIVE LOW 2668
COM 2669 0 + REG 2669 1

FEED_COM 2670 1 + FEED_REG 2670 0
DEFAULT_D 2671 0 + FEED_PIN 2671 1

I0O6 700
0

1 2304 1 2592 1 2628

ACTIVE_HIGH 2664 0 + ACTIVE_LOW 2664
COM 2665 0 + REG 2665 1

FEED_COM 2666 1 + FEED_REG 2666 O
DEFAULT D 2667 0 + FEED _PIN 2667 1

vce @



APPENDIX TT

This section contains the PALASM source file for the
MP main processor PAL part of the in-fill VSP. For brevity

simulation vectors are not included.



PAL16R8

MP1 JEFF EVEMY
MATN PROCESSOR

SOUTHAMPTON UNIVERSITY

CLK NC LVB ML1 ML2 LPA LPB NC PC GND

OE PD R1 R2 FL /S3 /S2 /S1 /SO vCC

;

’

4

S0 :=/S3%/S2*S0*/R1 */LVB* /ML1 ;STATES 1 AND 3 R1 AND ML1 LOW
+/S2*S1*/S0* /LVB*/R1%*/ML1 ;STATES A AND 2 R1 AND ML1 LOW
+S3*S2%/S1*/S0* /LVB*/R1*/ML1 ;STATE C R1 AND ML1 LOW
+/S3*/S2*S0*/LVB*ML1 sSTATES 1 AND 3 ML1 HIGH
+S3*/S2%S1*/S0* /LVB*ML1 ;STATE A ML1 HIGH
+S3%/52%/S1*R1* /LVB* /ML ;STATES 8 AND 9 R1 HIGH AND ML1 LOW
+/S3%S2%/S1*/S0*/LVB ;STATE 4
+53%/52*S1*S0*/LVB ;:STATE B

S1:=/S3%/S2%/S0* /LVB* /MLA sSTATES 0 AND 2 ML1 LOW
+83*82%/S1%/S0*/LVB*/R1*/ML1 ;STATE C R1 AND ML1 LOW
+S3*/S2% /S1* /LVB* /R1* /ML1 ;STATES 8 AND 9 R1 AND ML1 LOW
+S83%/S2%/S1* /LVB*ML1 ;STATES 8 AND 9 ML1 HIGH
+/S3*S2*S1*/LVB ;STATES 6 AND 7
+/S3*/S2*S1*/SO*ML1 */ML2*/LVB; STATE 2 ML1 HIGH AND ML2 LOW
+/S3*S2%/S1*/S0* /LVB ;STATE 4

S2:=83*/S1%* /LVB*ML1 ;STATES 8 9 C AND D ML1 HIGH
+/S2*S1%/S0*/LVB*ML1 ;STATES 2 AND A ML1 HIGH
+/83%/S2*S0* /LVB*ML1 ;STATES 1 AND 3 ML1 HIGH
+/S3%S2%381*/LVB*/R1*/ML1 ;STATES 6 AND 7 R1 AND ML1 LOW
+/S3%/S2*/S0*/LVB*/R1*/ML1 - ;STATES 0 AND 2 R1 AND ML1 LOW
+32%/S1*S0* /LVB ;STATES 5 AND D
+53%/52%S1*50*/LVB ;STATE B
+S3*S52*S1*/S0*/LVB ;STATE E

S3:=/S3*%/S2*S0* /LVB*R1*/ML] ;STATES 1 AND 3 R1 HIGH AND ML1 LOW
+8S3%S2%/S1*/S0*/LVB*R1*/M,1 ;STATE C R1 HIGH AND ML1 LOW
+83*%/S2%351*/S0* /LVB¥R1*/ML1 ;STATE A R1 HIGH AND ML1 LOW
+S3*S2%/351%* /LVB*ML/1 ;STATES C AND D ML1 HIGH
+/S3%/S2*S1*/S0*ML1*/ML2*/LVB;STATE 2 ML1 HIGH AND ML2 LOW
+S3%/S2*/51*/LVB ;STATES 8 AND 9
+/83%82%/S1*/S0*/LVB ;STATE 4
+S3%/S2%31*S0*/LVB ;STATE B

/FL:=/S2*31*S0 ;STATES 3 AND B
+/S83*%/51*30 ;STATES 1 AND 5
+S3%52* /30 ;STATES E AND C
+/S3*/S2*/3S1* /S0 ;STATE 0
+/83%S2%351* /S0 ;STATE 6
+S3%/S2%*/S1*/ML1 ;STATES 8 AND 9 ML1 LOW
+/S3*/S2*S1%*/S0* /ML1 ;STATE 2 ML1 LOW
+/S3*/S2*S1 % /SO*ML2 ;STATE 2 ML2 HIGH

/R2:=LPA*LPB ;R2 LOW IF LPA AND LPB HIGH

/R1:=/R2 ;R1 = R2 DELAYED BY 1

/PD:=/PC ;PD = PC DELAYED BY 1

IT - 1



APPENDIX TII

The complete circuit of the surface in-fill CGI system
is given in this appendix. Three separate diagrams are

included, corresponding to each of the three circuit boards.



II1

1

 JEs-a
7] T =P
g gy ] P a——— by v
Ate] K4 { WO [N Aoy o
i (X < —) G-
a3 & 4 v8 “e R
3! x9 sy (R Ll oe N H
a2l PO ™[ em 2ot >0
U ogmE—a . B : )
a3 {36 [ oK v mal I lebsl lols bzl b a
vl e s > & Z O E P 8 C n.:vo’tn
" T = on masSx e RASIX
1 ~ -—] OO 41 [3 RASIX
asfm 5 £F8367 IC1e L”S ox LSESBB x 6|5 wx
ol £ BaDD | alg = L= —onx RS TSN RASOX @f 7 aBX
Y] L {4 pt B ALY 3 s
a4 o DAz e é : by M Ia e e t T2 oax 12{ {11 aex
x =, e f g hex Iy oo 44| 113 axx
nis 3 o gl g2 N ST e AT 3 x x aix 38| 145 voe
] BAS rfredt o Badrry Aix % 3 g casax 101 fhe SiX
384 o s 706 v oelx L gA0X il
= 2 E =t cz e
el | = w7 I vz 24| {23 2x
v snc > X = on 51 ;s s 5458 co%l & o
ol | T 4.3 i ., CAsx 28| 2 aox
LaBX LI T T 11 B Rarx3t| 2 ax
w2io P ¥ Tz=xmiobroex
4 o oo | 830X AND OR GATE ARRAY ooyl iR oo
A SN LATOY BRI a) px 38| 137 Eax
] BooEnEs
=3 81 AL LDO RD = gé:é :gm
Yoy 12 {13 |14 {15 46 ];7 119 19
-4 K |4 ap Ay a2 D1 B IS
J - et Py oms- L * *Béﬁg' 3 I %o o o =
= c SEEE e v .
b’
» 3 v 3w gum £13-8
ol 4 4 B g guv = £)E
o Dim pi= 116 T r—izj
1K T VoL, T T 200 o0 vee
=l e [T ——i 2 =0 S 0
13: 770 L= AR
= ve i&1ve [N Y m ¢ 5
- 15 x3 "3 Dlne N s @ﬁ
3 33| LPo x Us A& M S { 0 oe
ol B on WUl il
W 18 R B B Ay epd o pels oy b be niRoED
A VI Sy Passy
as Slap > & P4 B C] psyy 4f b
(%4 LAt :: Ay 1 Ji v 2 o s aY B IS ﬁ:v
; wor T - oz 1112 erazgy = L. L5Se538 nr gl as
‘ o s ) o e € 7{E &:;,gv 3g2 r s Oy v:v:v:v:wvzvrw :;v:f 13 v
ol ' asY A v pcY
vaa lis g ¢ L2 oFuro BRI Fre) BE e 2 =l k& Lele) E ZJ» 2 18 7 B2
s e Bl w 16 i BaDs 53 ba N b liE e 3 g “‘:"“,'g:;‘"'
" % e Az i3 M i a3y i il a2 S B 6
walr wy & 18 =B k- o ‘P_S_.—-emv B x| = oe
w2 7 4 s oy 2| 27 caspy
mle 3 14 o EOREY hr3t s X OF 2 on ylbl , s s 58EE €y 2| 2 Aoy
= (o tas 8 13 41 11 LAEY T T 1111 - Eor R 3 v
: g E coy ; ’;‘! o=y
ta. o 4 RASTY
moria AR 12 12 oy oD AND OR GATE ARRAY Gy ¥ :VE:
— wo 35 sy BLatod Bumxy - o W o ]
2 5o zhend|mlisz lice ] o
o [ TR Ty w12} el 'y - ey sl i3 27
R e s RD 3 £ s o
ol e R ey o . e
Be n - 3 14 {1 g B 18 {19
il SEES En T
T . T - )
: R SEEB 5B
o OF
s AN} g ‘———E
IfEY
STugmy o 108
J IC1 ” 47 on
$TancBM 17 2?5""3*8‘,’ o Porodie = = e i
o k Y 3
o 27 : o—4 Db ot R ==
AEONT (15 m:gvg g: ’g*w s= —=
Dax ai NES n =
=T |1 xR D ik Dyoddlioe b oaig =—crm =]
Dy + i o5 2 —_—
o {13 gwiol—- ) 34 5.; . xib £ 14
p @Y oif| py oAl a1 : 1~ ‘:
2 o> O o v on &3 [ = =
v | T 1T |13 =3 E
L l 12 r = g E
e ' Fieie = =
13 [+-§ 2 3 5
kol
>
a &= 2 >
LS . __n_r pr
.y o = 4
. 5 w e 3
e 2
: la sl |3 s ©
ow .
c o 7 5 RAPSD
N 8 g R0 TS 12l ] L—{ﬁ
¢l 3 wxdg ORE §
= ’ 3 ;
r O - B [ =
I FIBD
@ o= { E
v 2] e, = ﬂﬁ
poy C 3 1ce €2
1 =T &
N 1c12 v NS B g
B Lo, plip ool z Y4 ‘!
| -
—— vy Jlyy oy fi¥ H o) se 5 o r QE
v EXagl: 1A = 19w 4 Ll
EXU 2/5 8743 43 DCFAS OW DXFOENT SIE Bos gl b S ge Ne
7 IT-A = 1 (0 oaits s 28 |0e oy Pe §
om e IO otx o ’SL_ s s Rls PS
N o—E 16 = e 23l (D re
o x$ e LAEY L 1
s i} 17 2 w2l (24 g
s == oy PIGRE H
[ o P el ax oy oty E(or g s ]l -
= 21 Sx 50 X *l o 5 o 8.5
\ HOLX ND
EX 22/0LQ04] 43 EXTFAE LW SALDER SIE - =
b =% - 8
ANIVERSITY OF SOUTenPTON
DEPARTYENT OF E ESTRONITS A COMAUTER SCIDEY
W TITLE:  DUA BFTER CRAPMITS (mals)
T B NOi | 48786 APPROVALS 33
SEET, 4 OF g Db R MK | 272/0
REXCAZ FL Er S13084 O-&D«
EIRESTORY, A0 986 | ISSD.

Graphics Board




2

I1I1

+assi

‘0

BIGYNY fAdU TN
XZOEHE VNS AYIOR

M/a1LY
uva

AL

£ YA

a LD ¥ IR
MW/6Y \ON B D5t

16V X) SINeMS) W48 MU P3UTL

HUSMUNE 0 ALISHIAIN

XZ0ETS ::ONIMVYO

pazls [ =1 21 2231
1] of | il gz 1] gz ol o 61
LR e wlom  »|P P T | 8 3 .4 e T
.guuubkﬂ e, e 1244 “ un&..m;q.uu._hx:u a’y : uw._uk::
Werf wnl dE T e g Ee i iy
E) T '
] i
b—s. b—2
o 9|
[ - o J ¥, -
k % % % % 3 % % %
TR v EGEDIEDY: % ERGYELLY .55

ey

m 4eap quap 13 Hm aBap ﬁ T m 1532 353
L1 o 5Kl a2 ), 9ian NS 2 K Ha Y Hig &y R 1] 25K 28K
Rl giwaang | [kcuiana] [gue Bckaann ) wpekaang | [gEeuaans | [REeHEaN
an 4 o0 2 cear 4 se31 & 1 =]
< 2 au_nu.u‘nm nnu‘uuus‘Wm u-. 12 _u».nsum unwuus4«nm 2 uunsw_‘v ¥2:4949%
’ h g4 o qY + LELE (2
A T T
an® (=11 1 viat . €01 y 21
gl daif 4 gi[us] g2y sl il s gili1] @ 51 L
su YD gD A WDl »|[PY YO |gx33 «[P ¥ 4 .Bcau“LE
s 12 |agy 4|10 (>3] L] O o) o €ers 1o Pl Rl
9 4 3 8 H 43 2 9 4 28 £ ] H 38
¥ ) Tl 87} T BB (! & (4
£ A
b 3
b— : —| 2
o
T ‘ N — 1
» n % B x x x x x x > x T
* BRazanz; bagigR:ze "™ BAAZAREA CeRIpRPiE T
seet || oene |3 |avne i (Mlesee |3 |omne |3 IEEE
2Ly s M3 Gk Hg ol B2 Kl 2EK U F -1 o] 12 gy tlg vy gyl
Brakn | |kythuann | (gRCMAanD | [MySuaaud | (ghteaasn )| [htHaans | [uteaske | [petwaand
(P18 (=T o [IFT- o % 1 b
uuuuus‘um nneun‘sa‘_uw* unm-u“.usum muuﬁswm 23 ss«vm 79Y39¢7 I¥IL mutuumavm
* i I T L LI 3 9 » f:: » T
P ik G S T T
xiv L i 1 1 )
v
Xy
xyy
xav B

Framestore Memory

(10f2)



Jcie-0

=2 Sl?x.ﬁijpk

RM

{411

I1T

3

- 0 e e e e

10

(= ]

Ics SPu"FE>L

P1E6RB

e

ji=bg

D

Ol > PLER4

c2

1c20

I1C14

B3ZNB38K8a

e,
Bo8E3KBA

»LE,
LELEELE

- b -
_’m
=i
i [ [ |

P16RA

axg— 1]

AVERY ALYD HO ONVY
1 1
LI e

e

Fo,

mMp

cH-c
e
s sp DY

icae

ICe-A
LBy Ao oW
1cs-8

g__- o s

by i w]w]
AVEEY 3UiYD HO ONY
R

3 T,
deddu:oq sl
@

&

e L a,
AVEY 3LYD HO ONV =
il T ]
]nnvmu~-¢1

a 82

In-Fi1ll Board

\\\\\\\\

23923992973

A3 BrkM

oleoy0199292%

S

7l

w
b

i

AVHEY HOX HC ONY

~

8¢,

.].;[..l.\].,]..] [ 1

1C4-D |

Ic1-8

5 B3

3
-

g8 B33

e



APPENDIX IV

The implementation of the scan selection algorithm
given in this section 1is written in the BCPL systems
implementation language. This listing forms part of the host
system software used to support the image mapping system in

real-time.



Iv - 1

GET "\headers\libhdr"

MANIFEST

$

SOURCE. SIZE = 512.0 // Source size from IRS viewpoint

NORTH =0 /] Normal scan direction

SOUTH =2 // Upside down

EAST =1 /] 90 degrees clockwise

WEST =3 // 90 degrees anticlockwise

HARGIN = 128.0 // Cusp margin around source image

LEFT.BOUNDARY = 0.0 #- MERGIN // Left hand cusp detection limit

RIGHT.BOUNDARY = 512.0 #+ MARGIN // Right hand cusp detection limit

TOP. BOUNDARY = 0.0 #- MARGIN // Top cusp detection limit

BOTTOM.BOUNDARY = 512.0 #+ MARGIN /] Bottom cusp detection limit

UPSIDE. DOWN =8 // Upside down flag (bit 2 = 1)

gIGHT.WAY.UP =0 // Right way up flag (bit 2 = 0)
)

/| qlobals

GLOBAL

$(

all :gq + 40 // aij coefficients

al2 1 qgg + 41

al3 :qg + 42

a2l tgg+ 43

a22 P qgg + 44

a23 1 gg+ 45

231 2 gg + 46

a32 1qg + 47

233 :gg + 48

c.a 1 qq+ 60 // a - 1 coefficients

c.b 1 gg 6l

c.c 1gqt 62

c.d 199+ 63

c.e 1 gq + 64

c.f 1gqt65

c.g 1gg + 66

c.h 1 gg 67

c.i :gg + 68

%)



Iv - 2

AND adjust.direction(scan.direction) BE // Adjusts a - i for scan direction

$(
LET a,b,c,d,e,f = 2,2,2,2,2,? // Temporary storage for new values
SWITCHON scan.direction INTO
3
CASE NORTH: RETURN // No adjustment necessary
CA?E EAST: /] kdjust for eastward position
(

a=cd ‘ J/a=>d

b:=c.e /] b=>e

¢ :=c.f /] c=>f

d := c.q #* SOURCE.SIZE #- c.a /] d->q.5-a

e := ¢.h §* SOURCE.SIZE #- c.b //e=>h§-b

f :=c.i #* SOURCE.SIIE #- c.c //e=>1.8-¢

)

ENDCASE
CASE SOUTH: // Adjust for southward position

o

a := C.q #* SOURCE.SIZE #- c.a /] a=>q.5-a

b := c.h #% SOURCE.SIZE #- c.b //b=>hS8-b

¢ := c.i #* SOURCE.SIZE §- c.c /] c->1.8-¢

d := c.g #* SOURCE.SIZE §- c.d //d->q.8-4d

e := c.h #* SOURCE.SIIE §- c.e //e->hS-e

g := c.i #* SOURCE.SIIE §- c.f /] e->1i8-f

)

ENDCASE
CASE WEST: // kdjust for westward position

$(

a = C.g ¥* SOURCE.SIZE #- c.d //a=>g.5-4d

b := c.h #* SOURCE.SIZE #- c.e //b=>hS-e

€ := c.1 #* SOURCE.SIZE #- c.f //c->1i8-f

d:=rc.a /] d-=>a

e :=c.b //e-=>b

fi=cc /] f=>¢

)

ENDCASE
$)
c.a:=a // Restore a coefficient value
c.b:=b // Restore b coefficient value
c.c:i:=¢ // Restore ¢ coefficient value
c.d:=4 // Restore d coefficient value
c.ei=e // Restore e coefficient value
c.f = f // Restore f coefficient value

§)



AND find.direction() = VALOF // Returns required scan direction
$(
LET d = cardinal(a2l #- al2,a22 #+ all)
// First quess

LET v.vp = ? // v value of vanishing point

LET prx.1,prx.r = 2,? // Left and right proximity values
LET xi,yi = 2,2 /] Associated screen intersections
LET flag = 4 /| Lower 2 bits represent N,S,E & W

TEST (d = E&ST) | (d = WEST)
THEN v.vp := SOURCE.SIZE #* (al2 §/ al3 #+ 0.5)
// E or W; Compute x vanishing point
ELSE v.vp := SOURCE.SIZE #* (a22 #/ a23 #+ 0.5)
// Nor §; Compute y vanishing point
TEST 232 #< 0.0

THEN flag |{:= UPSIDE.DOWN // Image upside down
ELSE flag |:= RIGHT.WAY.UP // Image right way up
IF (v.vp #> 0.0) & (v.vp #< SOURCE.SIZE)

THEN // %ithin bounds

$(

prx.1 := c.h # v.vp #+ c.i // Compute proximity of screen edges

pry.r := ¢.g #* SOURCE.SIZE #+ pry.l1

IF pry.1 §> 0.0 // Left hand screen intersection
THEN // on ground
${ // First compute source co-ordinates

¥l = (c.b #* v.vp #4 c.c) #/ prx.l
yi = (c.e #* v.vp #+ c.f) #/ prx.l
SW%TCHON flag INTO
(
CASE (NORTH + RIGHT.WAY.UP):
CASE (EAST + UPSIDE.DOWN ):
IF (xi #> LEFT.BOUNDARY) & (yi #> TOP.BOUNDARY)
// Cusp ¥ithin image (left,top)
THEN RESULTIS cardinal2(a2l #- 212,222 #+ all)
// Return alternative scan direction
ENDCASE // End of left, top
CASE (WEST + RIGHT.WAY.UP):
CASE (NORTE + UPSIDE.DOWN ):
IF (xi #> LEPT.BOUNDARY) & (yi #< BOTTOM.BOUNDARY)
// Cusp within image (left,bottom)
THEN RESULTIS cardinal2(a2l §- ai2,a22 #+ all)
// Return alternative scan direction
ENDCASE // End of left,bottom
CASE (EAST + RIGHT.WAY.UP):
CASE ({SOUTH + UPSIDE.DOWN ):
IF (xi #< RIGHT.BOUNDARY) & (yi #> TOP.BOUNDARY)
// Cusp within image (right,top)
THEN BESULTIS cardinal2(a2l #- al2,a22 §+ all)
// Return alternative scan direction
ENDCASE // End of right,top
CASE (SOUTH + RIGHT.WAY.UP):
CASE (WEST + UPSIDE.DOWN ):
IF (xi #< RIGHT.BOUNDARY) & (yi #< BOTTON.BOUNDARY)
// Cusp within image (right,bottonm)
THEN RESULTIS cardinal2(a2l #- al2,a22 #+ all)
// Return alternative scan direction
ENDCASE // End of right,bottom
$) // End of left intersection CASE
$) // End of IF left hand intersection



)

IF pry.r #> 0.0 // Right hand screen intersection
THEN // on ground
$( // First compute source co-ordinates

xi := (c.a #* SOURCE.SIIE #+ c.b #* v.vp #+ c.c) #/ prx.r
yi := (c.d #* SOURCE.SIZE #+ c.e #* v.vp #+ c.f) #/ pry.r
SWITCHON flag INTO
$(
CASE (WEST + RIGHT.WAY.UP):
CASE (SOUTH + UPSIDE.DOWN ):
IF (xi #> LEFT.BOUNDARY) & (yi #> TOP.BOUNDERY)
// Cusp ¥ithin image (left,top)
THEN RESULTIS cardinal2(a2l #- al2,a22 §+ all)
/] Return alternative scan direction
ENDCASE // End of left,top
CALSE (SOUTH + RIGHT.WAY.UP):
CASE (EAST + UPSIDE.DOWN ):
IF (xi #> LEFT.BOUNDARY) & (yi #< BOTTOM.BOUNDARY)
// Cusp within image (left,bottom)
THEN RESULTIS cardinal2(a2l #- ai2,a22 §+ all)
/] Return alternative scan direction
ENDCASE // End of left, bottonm
CASE {(NORTH + RIGHT.WAY.UP):
CASE (WEST + UPSIDE.DOWN ):
IF (xi #< RIGHT.BOUNDARY) & (yi #> TOP.BOUNDARY)
// Cusp ¥ithin image (right,top)
THEN RESULTIS cardinal2(a2l #- al2,222 #+ all)
// Return alternative scan direction
ENDCASE // End of right,top
CESE (EAST + RIGHT.WAY.UP):
CASE (NORTH + UPSIDE.DOWN ):
IF (xi #< RIGHT.BOUNDARY) & (yi #< BOTTOM.BOUNDARY)
// Cusp within image (right,bottom)
THEN RESULTIS cardinal2{a2l §- 212,222 #+ all)
// Return alternative scan direction

ENDCASE // End of right,botton
$) // End of right intersection CASE
$) /] End of IF right hand intersection
$) // End of IF within bounds
RESULTIS d /] Mo problem; return original quess

Iv



AND cardinal(i,j) = VELOF
§(
TEST mod(3) #> mod(i)
THEN
TEST § > 0
THEN RESULTIS NORTH
ELSE RESULTIS SOUTH
ELSE
TESTi f 0
THEN RESULTIS EAST
‘ ELSE RESULTIS WEST
)

AND cardinal2(i,j) = VALOF
$(
TEST mod(j) #< mod(i)
THEN
TEST § £> 0
THEN RESULTIS NORTH
ELSE RESULTIS SOUTH
ELSE
TEST 1 # 0
THEN RESULTIS EAST
; ELSE RESULTIS WEST
)

AND quadrant(i,j) = VALOF
$(
TEST § £> 0
THEN
TEST 1 > 0
THEN RESULTIS O
ELSE RESULTIS 3
ELSE
TEST i #> 0
THEN RESULTIS 1
ELSE RESULTIS 2
$)

// Peturns cardinal direction of
/] vector (i,3)

// ¥hether i or j largest

// 3 largest; north or south

// Upper or lower half

// Upper half; northward direction
// Lover half; southward direction
// 1 largest; east or west

/] Left or right half

// Right half; eastward direction
/] Left half; westward direction

// Returns second closest cardinal
// direction to vector (i,3)

// Whether i or j largest

// J smallest; north or south

// Upper or lower half

// Upper balf; northward direction
/[ Lower half; southward direction
// 1 smallest; east or west

// Left or right half

// Right half; eastward direction
// Left half; westward direction

// Returns quadrant of vector (i,j)

// J +ve; upper half

/] Left or right half

// Right half; quadrant 0
// Left half; quadrant 3
/] J -ve: lower half

// Left or right half

// Right half; quadrant 1
// Left half; quadrant 2

IV - 5



APPENDIX V

The program 1listed in this appendix is wused to
generate the 1look-up-table values for the reciprocal
datapath and is written in the C programming 1language. The
program also reports the accuracy of the table output by
comparison with a high precision result obtained by direct

division.



* %
* RECIPROCAL TESTING AND GENERATING ROUTINE <<RECIP.C>> *
X %
* Calculates exact reciprocal and compares with estimate *
% calculated using difference table with constant seqments *
% %

*********************i****i*i*ii**i*****i******************i**i*************/
#include "\headers\stdio.h"

fdefine MAYINT 0¥10000
#define MAY LUT 0X2000L
fdefine ONE 13 0%¥80000000L

unsigned long int divide();

main()

{

FILE *out file,*diff file;

unsigned long int number,reciprocal,mantissa,y,mask;
unsigned long int recip 13,mant 13,slope,selection,rec;
int exponent,exp 13,exp,difference;

int err 1,err 2,err 3,i;

if((out_file=fopen("diff.asc","s"))==NULL)
{
printf(™\nCannot create result file: diff.asc");
exit(0);

)
1f((diff file=fopen("diff.rom","+b"))==NULL)
{
printf(™\nCannot create result file: diff.rom");
exit(0);
)
printf("\nEnter number of bits for difference table selection > ");
scanf("id",&selection);
err 1=0;
err 2=0;
err_3=0;
for (number=1;number <M2XINT;number++) /* for each number */
{
pantissa=number;
for(exponent=0;mantissa<(KAXINT/2);mantissa=pzntissa<<1)
eyponent+t; /* normzlise number */
exp_l3=exponent;
exp=exponent;
mantissa=mantissa & OX7FFF; /* strip off top bit */

/% first calculate evact (16 bit) reciprocal */
/****i****i*iii*********i*ii*i*****ii*i*i*ii****iii*ii**ii*********i********/

reciprocal=0L;
if (mantissa==0)
exponent++;
else
reciprocal=divide(mantissa | 0%8000) & OXFFFF;
/* calculate 17 bit reciprocal #/
reciprocal={reciprocal+i}>>1; /* include rounding in 16 bit result */



............

/% now calculate 13 bit reciprocal */
/******t*******************ii******i*****ii****i***i*i*i*i*ii*iii***ii*i**i*/

mant_13=mantissa>>2; /* strip off two lower bits */
recip 13=0L;
if (mant 13==0)

exp_13+4;
else

recip 13=ONE 13/(mant 13 | 0¥2000) & OX1FFFF;

/% calculate 13 bit reciprocal */

recip 13=(recip 13+1)»1; /* include rounding in 13 bit result #/

/*************************i***i****i*********ii**i************i******i******/

/* now calculate slope %/
/****************i****************i**i*******i****i****i**i*i*i**i*i**i*****/

y=pantissa | 0X8000; /* replace leading one */
mask=(1<¢{15-selection))-1; /* mask for lower bits */
if ({mantissa & mask)==0) /% start of nev segment */
{
x=x>>(15-selection); /* number of bits left = selection #/
%=(¥<<1) 4 1; /* place at centre of region */
=Y % ¥ /% square ¥ */
slope=divide(x); /* slope = 1/x squared */
if (number>0X7FFF)

fprintf(out file,"\nSegment %X slope = X",
nantissa>>(15-selection),
slope>>(24-2*selection));
for(i=0;i<4;1+4)
putc((char)((((slope * 1)>>({27-2%selection}}+1)>>1),diff file);

difference=slope * (mantissa & 3); /* celculate difference #/
difference=difference>>(27-24selection); /* re align #/
difference=(difference + 1)>>1; /% round */
/*
if(difference!=0)
printf(™ny squared = $X\tslope = $Xitdifference = $X",x,slope,difference);
*/
/*************ii****i**i*ii********i*i*i*i*****ii******ii***i*ii****i*ii**ii/

/% now correct with difference table : */
/***i*********i***i**ii**i***iii***ii*ii****ii*ii**i*iii*i*i*i****i******i**/

if (recip 13==0 & difference!=0)
exp 13--;
rec=(recip 13 - difference) & OXFFFF;
difference = (int)((reciprocal<<l)-rec)/2;
if (difference!=0)
{
err_1+4;
difference=difference/2;
if(difference!=0)
{
err 2++;
difference=difference/2;
if(difference!=0)
err 3++;
}



/*
printf("\nN = 5% R =

1.%4X E %2d Rec 13 = 1.%4X E %2d R13 =

1.44X D = 34",

number ,reciprocal<<l,exponent,recip 13 ,exp_13,rec,difference);

*/

)
prlntf("\n\t\t\tError Report");
prlntf("‘n\tErrors in Bit 0

d",err 1);

= %5
printf("\n\tErrors in Bit 1 = §-54",err - 2);
= -5

printf{"\n\tErrors in Bit 2
fclose(out file);

fclose(diff file);

printf("\nll done");

getchar();

getchar();

exit(0);

}

unsigned long int divide(divisor)
unsigned long int divisor;

unsigned long int dividend,quotient;

dividend = OL - divisor;

quotient = (dividend/divisor) + 1L;
return(quotient);

}

d",err 3);

/* divides into 1 0000 0000 B */

/* one divisor subtracted */
/* divide and add one */



APPENDIX VI

The complete circuit of the real-time image mapping
system is given in this appendix. Seven separate diagrams
are included; corresponding to each of the three
framestores, VSP1 and VSP2 sub-systems, the polynomial

generator and the divider circuitry.
























APPENDIX VITI

This section provides an example PLPL source file to
illustrate the design process. The source file given is for

the 22V10 PAL used to implement the IRS controller.



VII

DEVICE IRS Controller (P22Vi0) "Polynomial generator controller"
PIN
CLK15 =1 (CLK_INPUT) "5 MHz input"
/Init =2 (INPUT combinatorial) "Initialisation”
IRS End =3 (INPUT combinatorial) "Divisor end of line"
C request =4 (INPUT combinatorial) "Coordinate request"
/Done =5 (INPUT combinatorial) "Pass completed"
/Sys_Init =23 (OUTPUT registered active_low) "System initialization
/Pass_Init =22 (OUTPUT reqistered active lov) "Pass initialization"
Divisor Init = 21  (OUTPUT registered active high) "Divisor init"
/IRS valla =20 (OUTPUT registered active low) "IRS data valid"
/Divisor _Noop =19 (OUTPUT registered active lo¥) "Divisor mo operation"
Pass =15 (OUTPUT registered active high) "Pass; 0 = Passl"
5{0:2] = 18:16 (OUTPUT reqlstered active_high) "Internal states"
/0ld_init =14  (OUTPUT registered active lov) "Old value of Init"
DEFINE
Start = /Init * 014 init, "Start at falling edge of Init"
Finish = Done * /Pass Init, "End of pass"
Passl = /Pass, "First pass"
New_Pass = Finish # Passl, "Request for mext pass"
Initialize = Start + New Pass, "Start of nev pass"
Running = /Pass_Init, "State machine operating"
Request 1 = Divisor_ Inlt * C_request * /Pass Init,

"Request flrst line"

"State asignments”

IRS Init = #B000, "Initialize state 1"

IRS ¥ait 1 = §B001, "Wait for IRS data line 1"

valid = §B010, "alid data stream"

End 2 = §B011, "2 states before end"

End 1 = §B100, "1 state before end"

IRS Wit = §B101 "Wait for IRS data"

BECIN

B T Control Terms =------e=m-mmecmcecmmmcaeaane "

PRESFT (Divisor Inlt,/Dl»lsor _Noop,

/Sys_Init, Pass Init,Pass,

IRS Valid,S] [2: 0]

/01d Inlt) = 0; "No preset term"
RESET(Divisor_Init, /Divisor Noop,

/Sys_Init,Pass_Init,Pass,

IRS Valid,S[2:0],

/0ld Init) = 0; "No reset term"
ENABLE(Divisor Inlt,/Dlvlsor _Noop,

/Sys_Init,Pass _Init,Pass,

IRS Valid,S[2: 0]

/Ola_Init); "Always enabled"
Moo e System Initialization --=meeeceecmoonoomnoaaas "
0ld_init = Init; "To detect falling edge"
F (Start) "t falling edge"

THEN Sys Init = 1; "Initialize system, one timing state"

1



IF (Initialize)
THEN Pass Init = 1;

VII

"At start of either pass"
"Initialize pass, one timing state"

ELSE Pass = Pass; "Store pass value"
IF (New_Pass)
THEN Pass =1; "pass = Pass 2"
Mooooes - --- IRS Initialization -----===s====--=-mcn-ommooes "

IF (Initialize + Divisor_Init)
THEN IF (Request 1)
TEEN Divisor_Init = 0;
ELSE Divisor_Init = 1;

IF (Running)
THEN CASE (S[2:01)
BEGIN
IRS_Init)
IF (Divisor Init)

THEN §{2:0] = IRS_Init;
ELSE §[2:0] = IRS Wait_1;

IRS Wait 1)

512:0] = Valid;
Valid)
BEGIN
IRS valid  =1;
IF (IRS_End)
TREN S{2:0] = End 2;
ELSE $[2:0] = Valid;
END;
End_2)
BECIN
IRS valid = 1;
5{2:0] = End 1;
END;
End 1)
BEGIN
812:0] = IRS Wait;
Divisor Noop = 1;
END;
IRS Wait)
IF (C Request)
THEN
8[2:0] = Valid;
ELSE
BEGIN
§(2:0] = IRS_Wait;
Divisor_Noop = 1;
END;
END;

nStart of operation"

"Requesting first line"

"Start IRS"

"IRS initialized until first C req"

------------------------- State Machine Operation ==-=---=-=----s-=ooommonst

"State asignments"

"IRS initialized"

"Stay in state"

"zit for first line of data"
"Go to valid data state"
"Data valid"

"end of line approaching”

"Count down"
"yait for end of line"

"Data still valid"
"Count_Down"

"Wait for start of line"
"Hold IRS"

"Requesting next line"
"alid data state"

"Wait for C Request"
"Hold IRS"

"End of CASE statement"



VII - 3

TEST VECTORS

IN CLK15;

IN Init,C request,IRS End,Done;

OUT Pass,Pass_Init;

OUT Sys_Init,Divisor Init,Divisor Noop,IRS Valid;

BEGIN
1"

C req Done Pass Init  Divisor IRS
CLK Init End Pass Sys Init  Noop valid
s=== = === eo—s—s==cr=rzs==-=zo==x "
c 1 Y¥xX%x X X ¥ X X X;"Start initialisation "
¢ 00X XX L H B B L L;"Initialization "
c 00XX L L L H L L;"#ait for C request "
c 00%¥0 L L L E L L;"Wait for C request "
¢ 00X0 L L L H L L;"Wait for C_request "
¢ 00X0 L L L H L L;"Wait for C request "
¢c 00X0 L L L H L L;"Wait for C request "
c 00X0 L L L H L L;"Wait for C_request "
c 00%X¥0 L L L H L L;"Wait for C_request "
Mecmmmomem e Generate a ling ---m-m==--ecemmccmmocooccnocooon "
¢ 00XO0 L L L H L L;"Waiting "
c 01X0 L L L L L L;"Start the line "
c 0X00 L L L L L L;"Wait for end signal "
¢c 0Y0O0O L L L L L L;"Wait for end signal "
¢c 0X¥X00 L L L L L B;"Wait for end signal "
¢C 0X00 L L L L L H;"wait for end signal "
¢ 0X¥10 L L L L L B;"End of line "
¢c 00X0 L L L L L B;"Wait for next C req "
Mmoo cee Generate next line -----=s-scmemcmccccomomonooaan "
¢ 00XO0O L L L L H L;"waiting "
¢ 00X0 L L L L i L;"Waiting "
¢ 0100 L L L L L L;"Start the line "
¢ 0X¥00 L L L L L H;"Wait for end signal "
C 0X¥00 L L L L L B;"Wait for end signal "
¢ 0X¥X00 L L L L L H;"Wait for end signal "
¢ 0X00 L L L L L B;"wait for end signal "
¢ 0X10 L L L L L B;"End of line "
¢ 00XO0 L L L L L H;"Wait for nmext Creq "
Momoooeoocooom oo Start Second Pass -----r==---------om-oeoomconen "
¢ 0YX¥x¥1 B H L E X L;"Initialization "
c 00XX B L L H L L;"Wait for C request "
c 00X¥X B L L H L L;"Wait for C request "
c 00XX E L L H L L;"Wait for C request "
c 00XX B L L H L L;"Wait for C request "
c 00XX B L L H L L;"Wait for C request "
c 00XX¥ B L L H L L;"#ait for C_request "
c 00XX B L L H L L;"Wait for C_request "
e DL E e I L EEE Generate a line ==se===mmmwe-mmomomooocoooooooon "
¢ 00XX H L L H L L;"Waiting "
¢ 01 XX B L L L L L;"Start the line "
¢ 0X0Y¥ H L L L L L;"Wait for end signal "
¢ 0XY¥O0X¥ B L L L L L;"Wait for end signal "
¢ 0X0Y¥ BH L L L L H;"Wait for end signal "
¢c 0YO0X B L L L L B;"Wait for end signal "
¢ 0X1X¥ H L L L L B;"End of line "
c 00XZX B L L L L B;"Wait for next C req "



=== -l -l -l -l - -]

[ an = el - L~ B = ]

Generate next line

[andll =l aa B -l ol "l il =l -

=l = -l ca N el ol -]

[ean il =l cxn i cuu o B o e B < Sl < < ]

L:"Waiting "
L;"Waiting "
L;"Start the line "
H;"Wait for end signal "
B;"Wait for end signal "
H;"Wait for end signal "
B;"Wait for end signal "
H;"End of line "

B;"Wait for next C req "
—==M

]
1

VII

4



