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ABSTRACT 
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Doctor of Philosophy 

REAL-TIME COMPUTER GENERATED IMAGERY 

USING STREAM PROCESSING TECHNIQUES 

by Jeffrey Dennis Evemy 

This thesis describes the use of stream processing 
techniques to provide Computer Generated Imagery (CGI) in 
real-time. Two applications of stream processing are 
examined; surface in-fill and texture mapping. 

A novel in-fill algorithm is developed which operates in 
scan-line order directly on the output from a raster scan 
framestore. The algorithm provides in-fill of all bounded 
regions and is compatible with 'wire-frame' images generated 
using conventional graphics processors. A stream processing 
architecture to implement this algorithm is presented which 
is capable of processing each pixel in a single clock cycle 
at video rate. 

Texturing is provided using a two-pass spatial 
transformation technique to map an area of detail onto the 
display. The transformation is implemented in scan-line 
order by a stream processing architecture operating 
directly on the output from the framestore containing the 
source image. 

Because it incorporates a perspective projection, the 
transformation process is non-affine and requires spatially-
variant filtering to prevent aliasing. A novel spatially-
variant filtering algorithm is developed which operates in 
scan-line order and is compatible with the two-pass 
transformation technique. 

A stream processing filtering architecture is presented 
together with refinements necessary to implement the two-
pass algorithm in real-time. A system is described to 
implement both processes concurrently at pixel rates using 
an efficient pipelined architecture. 

Dedicated hardware has been built to implement the surface 
in-fill and texturing systems in real-time, demonstrating 
the usefulness of stream processing techniques for real-time 
CGI applications. 



CHAPTER 1 

TNTRODUCTION 

1.1 BACKGROUND TO COMPUTER GENERATED IMAGERY fCG11 

In recent years the use of a computer to generate 

images directly has become widespread and as a consequence 

Computer Generated Imagery (CGI) has been the subject of 

considerable research. This has resulted in the development 

of a wide range of display architectures and a proliferation 

of algorithms for image generation [SpNe79][FoVa84]. Because 

CGI systems are often used for the representation of three-

dimensional images, these algorithms include methods of line 

drawing, perspective geometry, shading, surface texturing, 

and hidden surface removal. 

An important category of CGI is Real-Time Image 

Generation (RTIG) in which the image is regenerated at a 

sufficient repetition rate to give the illusion of motion. 

This limits the time available to generate each frame of the 

image and reduces the fidelity of RTIG systems when compared 

to non-real-time CGI in which greater realism may be 

achieved at the expense of processing time. 

1.2 REAL TIME IMAGE GENERATION FOR FLIGHT SIMULATION 

Most of the research effort reported in the literature 

has concentrated on flight simulation [Scha83]. More recent 

applications include motion pictures, computer aided design 

and arcade games, and as technology improves it is likely 

that other applications will be found. The research project 

detailed in this thesis has been carried out primarily for 

inclusion as part of a flight simulation system. However, 

the results of this research have broader significance 

because of the central issues which are common to all 



applications of RTIG. 

In flight simulation, the pilot is stimulated by 

visual cues (and possibly aural and motion cues) and in 

comparison with actual flight training in aircraft has the 

advantage of lower training costs and and the ability to 

create controlled situations, including hazardous conditions 

such as engine failure or bad weather. RTIG is a major 

component of modern flight simulation systems and provides 

the main visual cue by generating a simulated view from the 

cockpit. 

For brevity a full account of the development of 

flight simulation systems is not included in this thesis. A 

good account of the historical aspects of flight simulation 

which have lead to the adoption of CGI techniques is given 

by Price [Pric84]. 

1.2.1 OUTLINE OF A RTIG SYSTEM FOR FLIGHT SIMULATION 

RTIG systems are based on the 'projective method' in 

which individual components of the scene are geometrically 

transformed and projected onto the viewing screen. Other 

techniques such as 'Ray-Tracing' [Roth82] and fractal based 

models [Carp82][Mand82] provide realistic images but can not 

currently be implemented in real-time. 

The computational processes required to implement the 

projective method are illustrated in Figure 1.1 below. 

HOST GEOMETRIC DISPLAY 

SYSTEM OPERATlOfsIS HARDWARE 

W (b) (c) 

Figure 1.1 Outline Of RTIG System 
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a - Host System 

This image is represented by abstract objects defined 

by co-ordinate information in three-dimensional 'world' 

space, stored as part of a database on the host computer. 

Conventional Cartesian co-ordinates are used, represented in 

this thesis by the triple (x ,y ,z ) with the z axis 
w w w w 

defined vertically upwards. Real-time constraints limit 

objects to flat polygonal surfaces, represented by the co-

ordinates of the vertices. 

The host computer acts upon responses from the pilot 

to determine the position (p ,p ,p ) and attitude of the 

aircraft (represented by <p ,<p » and <p the angles of 
y z 

rotation about the x ,y , and z axes respectively) using a 

model incorporating flight dynamics and external stimuli. 

This information is used to select potentially visible 

objects from the database which, together with position and 

attitude are passed to the geometric operation stage. 

b - Geometric Operations 

Geometric operations are performed on the 'world' 

objects in order to present an image to the viewer on a two-

dimensional screen. Generally, three procedures are 

required: transformation from world to viewing co-ordinates, 

removal of objects (or parts of objects) which are out of 

view, and perspective projection from three-dimensional 

viewing space onto two-dimensional screen space. 

The transformation of an object from world space to 

viewing space is performed by a series of operations on each 

vertex which may be reduced to a translation followed by a 

single 3 by 3 matrix operation. This operation is 

illustrated overleaf: 



[X ,y ,z ] = [X -p ,y -P ,z -p ] 
y 

a a a 
a^^ a^^ a^^ 
^2X ^ 2 2 ^ 2 3 

3 1 3 2 3 3 

(1.1) 

The values (x ,y ,z ) represent the object co-
V V V 

ordinates in viewing space, (x^,y^,z^) represent the object 

co-ordinates in world space and coefficients a^^ are 

determined from the attitude parameters (ip ,(p , and (p ) . 
>c y z 

Equation (1.1) is not definitive and various 

representations of this operation occur in the literature; 

in particular, homogeneous matrix representation [Roge76] 

may be used (combining translation and transformation as 

single matrix) and the equations determining the 

coefficients depend on the order in which the angles 

and (p̂  are defined. 

A perspective projection is performed to determine the 

two-dimensional screen co-ordinates (x ,y ) at which a point 

in viewing space should appear. For the vertex of an object 

given by (x ,y ,z ) in viewing space the screen co-ordinates 

are given by: 

X = (X /z ) S + S /2 (1.2) 
S V V X X 

y. = S y + Sy / 2 ( 1 . 3 ) 

where S and S represent the size of the screen. 
3c y 

The removal of objects, or parts of objects, which are 

not visible is generally performed by two processes, 

clipping and hidden surface removal. 

Clipping is performed between the transformation and 

perspective projection stages to eliminate objects which are 

outside the screen area. This is generally performed by the 

Sutherland-Hodgeman algorithm [Suth74] determining the 

intersection of polygon edges with a canonical viewing 



volume and is fully described in the literature. 

Hidden surface removal is necessary to remove objects 

or parts of objects occluded by objects nearer to the 

viewer. Many algorithms have been proposed to suit different 

applications. Further discussion is not included here and a 

full review of different techniques is given by Sutherland 

et al. [Suth74]. 

c - Display Hardware 

Finally the resultant two-dimensional co-ordinate 

information is passed to the display hardware for 

representation to the pilot. The image is usually viewed on 

a raster-scan Cathode Ray Tube (CRT) developed as an 

extension of conventional television technology. The use of 

a raster-scan CRT imposes a scan-line order on the display 

process which must generate a serial bit-stream of video 

information. The screen area is represented by an array of 

picture elements or pixels indexed by integer co-ordinates 

(x^,y^), the scan-line being directly related to the y co-

ordinate . 

The process of converting a list of polygon vertices 

to a set of pixels of a specified colour is known as scan-

conversion. Scan-conversion may be implemented in scan-line 

order to provide a direct video output or a bit-mapped pixel 

'framestore' may be used allowing scan-conversion in polygon 

order. 

Often, the display hardware implements image 

enhancement processes such as smooth shading [Gour71], 

texturing (Section 1.3.3 q.v.), and anti-aliasing. 

Aliasing effects are introduced by the three-

dimensional sampling imposed by bit-mapped raster-scan 
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displays [Dubo84]: Two-dimensional spatial sampling (because 

of the discrete pixel array) causes a staircase effect 

(termed 'jaggies') visible at polygon edges. Sampling in the 

time domain (because of the frame period) gives rise to 

artifacts called temporal effects. Aliasing is discussed at 

length by Szabo (see [Scha83]) and as part of the review of 

texture mapping in Section 2.3. 

1.2.2 THE PROBLEM OF COST IN FLIGHT SIMULATION 

The view presented to the pilot must contain 

sufficient realism to be of significant training value. This 

requires not only that the image be generated in real-time 

but that it contain sufficient detail. A considerable data 

processing overhead is necessary to meet these requirements 

and the resulting RTIG system becomes complex and expensive. 

A visual system for a commercial aircraft simulator 

typically costs at least 2 million dollars [Moxo87] with 

military systems costing up to five times this figure. 

Consequently, the cost of this approach to training has 

proved prohibitive for many users, thereby giving an 

opportunity for smaller systems to provide an acceptable 

cost-performance ratio. In contrast, recent developments in 

dedicated display hardware(e.g [AMDQ87][Texa87]) have placed 

RTIG within the reach of personal computer systems. The 

degree of realism offered is not sufficient for serious 

training programmes and features such as anti-aliasing and 

texture mapping have remained beyond the scope of such 

systems. 
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1.2.3 CONTEXT OF THE RESEARCH PROJECT 

The research project described in this thesis was 

undertaken to extend research already completed at the 

Department of Electronics and Computer Science, University 

of Southampton. The results of this research are outlined 

below: 

First, it has been demonstrated that a RTIG system can 

be based on a fixed-point representation of object data and 

flight dynamics [AlZa85]. This allows geometric operations 

to be implemented by a simple microprocessor based system at 

a lower cost than equivalent floating point systems. 

Secondly, two flight simulation systems based on this 

approach have been developed. The first of these was 

designed for lower cost (< £5,000) applications and uses two 

microprocessors (Motorola type MC68000) to implement the 

host system and geometric operations respectively as 

outlined in Figure 1.1. The display hardware is based on a 

double buffered framestore architecture [Evem85] implemented 

using low cost commercially available Graphics Display 

Processors (GDPs) [Math75]. The GDP contains a hardwired 

vector generator [Alia84] which generates lines based on the 

co-ordinate information. A display of 512 by 512 pixels (16 

colours) is supported providing an output conforming to 625 

line CCIR standards [DTIC84] displayed on a conventional 

colour monitor. A working system has been completed capable 

of generating an image composed of over twenty 'wire-frame' 

polygons at frame rate (25 times per second). 
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1.3 SCOPE OF THE THESIS - OBJECTIVES 

The evaluation of all areas of RTIG to provide greater 

realism at lower cost is beyond the scope of this thesis. 

However, the technique of image enhancement by 'post 

processing' the serial bit-stream output from the framestore 

has been investigated. The required 'post processing' 

algorithm is performed in hardware by a 'stream processor'. 

This stream processor is incorporated in the display 

hardware between the framestore and CRT display. 

The objective of this project is to assess the 

usefulness of stream processing as a means of implementing 

low cost RTIG. This includes: 

1). The development of algorithms to support a stream 

processing architecture. 

2). The design of architectures to implement these 

algorithms. 

1.3.1 STREAM PROCESSING 

This approach was first proposed formally by Tenebaum 

[TeneSO] but has been proposed indirectly as part of many 

spatial transformation algorithms (Section 2.3 q.v.). In 

general, video stream processors (VSPs) operate on pixel 

data in the scan-line order imposed by raster scan display 

hardware. This information may then be passed to the display 

device or to a second stream processor either directly or 

via a second framestore. The VSP may be considered as a 

serial emulation of a SIMD (Single Instruction Multiple 

Data) processor array, with the added feature that 

individual processors may use data from other processors 

which are emulated earlier within the frame period. 
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The processing is performed at video rate, e.g. a 512 

by 512 pixel image requires a cycle time of about 100ns. 

Although this implies a performance of only 10 MIPS (IPS = 

Instructions Per Second), the processing bandwidth is many 

times greater as several operations can be performed during 

each cycle. This is possible because the predefined (scan-

line) order of the data allows a pipelined architecture, 

performing a finite number of operations on each pixel 

during a single cycle. 

The main use of VSP techniques has been for image 

processing including edge detection [Ples87], and spatial 

transformations [CaSmSO] (for special effects and to assist 

image recognition). The use of stream processing 

architectures for RTIG has been limited to processes 

directly applicable to a video signal, such as haze effects 

[Hall87]. 

This thesis aims to formulate more complex VSP designs 

based upon algorithms which operate in more than one pass. 

It also proposes the concept of designing algorithms 

specifically for a VSP architecture. 

The usefulness of this design approach is assessed by 

using stream processing techniques to address two areas of 

image enhancement: 

1). Surface in-fill. 

2). Texture mapping. 

In both cases compatibility with the existing system 

at the University of Southampton has been taken into 

account. 
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1.3.2 SURFACE IN-FILL 

An in-filled polygon represents a small increase in 

information content compared to a non in-filled polygon and 

can be evaluated from the same co-ordinate information. This 

information is contained in the framestore and surface in-

fill can be provided by post-processing a non in-filled 

image. 

Direct implementation of conventional in-fill 

algorithms is frustrated by bandwidth limitations between 

the display processor and the framestore. Systems which 

provide real time in-fill usually exploit some form of 

parallelism (e.g. [WalsSO]). 

Algorithms have been proposed which support a stream 

processing architecture [Pavl79][AcWeSl][HaCh85]. These 

algorithms implement simple post-processing but require a 

complex contour description of the region to be in-filled. 

This imposes additional requirements on the original 'wire-

frame' image and precludes the use of simple vector 

generators. Such methods are not compatible with 

commercially available GDPs and do not comply with the low 

cost design philosophy. 

A solution to this problem is sought by using a more 

complex stream processor to provide region in-fill with 

minimum demands on the contour generation algorithm. 
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1.3.3 SURFACE TEXTURING 

As the representation of surface detail becomes more 

intricate, explicit modelling with polygons becomes 

impractical. A better approach is to add synthetic 'texture' 

to selected polygons providing the illusion of finer detail. 

This 'texture' may be periodic (such as the image of a 

ploughed field), random (such as a gravel path) or a 

combination of both. 

An efficient technique, first suggested by Catmul 

[Catm74], is to map a predefined image onto the surface to 

be 'textured'. As an alternative to image mapping a 

predefined texture pattern may be rendered repeatedly over 

the surface, in a fashion similar to that of tiles on a 

floor, this is known as texture tiling. 

The implementation of either image mapping or texture 

tiling in real-time is a formidable task requiring solutions 

to two separate problems, these are outlined below; 

1) Co-ordinate information must be generated such that 

the position of the texture information corresponds to 

the geometric transformation and projection of the 

surface to which the texture is applied. In principle 

this requires that each pixel must undergo individual 

transformation and projection. 

2) The problem of aliasing must be addressed [Crow??]. 

Aliasing arises because the discrete nature of a pixel 

based display implies that the texture pattern must be 

spatially sampled to be represented. The texturing 

system must therefore include some form of filtering 

to reduce the effects of this problem. Flight 

simulation introduces a further problem as it involves 
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a perspective projection. This is a form of non-affine 

transformation which has been shown to require a 

spatially-variant filter function [Heck86] and 

frustrates conventional filtering techniques. 

Many techniques have been proposed in the literature 

which address these issues and will be reviewed in more 

detail in Section 2.3. 

This thesis concentrates on texture generation by 

image mapping. For a flight simulation application the 

region would be a detailed map of an. area of land such as 

the landing area (including runway markings, taxiway detail 

etc.). This region is then presented to the pilot in 

perspective as part of a less detailed image (such as that 

provided by the surface in-fill system outline above). This 

process is illustrated below; 

DETAILED MAP FINAL DISPLAY 

Figure 1.2 RTIG System Using Image Mapping 

The objective is then to implement this system using a 

stream processing architecture to address the problems 

outlined above to provide a more cost-effective solution. 
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1.4 CONTRIBUTIONS OF THE RESEARCH 

The contributions offered by the research detailed in 

this thesis show the potential of stream processing as a 

technique for RTIG. In addition to the identification of the 

shortcomings of existing approaches this includes: 

1) The development of a two-pass surface in-fill 

algorithm which uses a two-pass VSP architecture. This 

algorithm is novel because: 

i) It operates directly on an 8-connected image 

generated by commercially available GDP. 

ii) It provides in-fill by exploiting the vertical 

coherence between successive scan-lines. Only 

one line of storage is required. This is made 

possible by a recursive datapath utilising 

feedback between two separate VSPs. 

2) The development of a image mapping system based on a 

stream processing architecture. Novel features of this 

design include: 

i) A two-pass filter algorithm which provides 

spatially-variant filtering for pixel data 

generated from the application of a non-affine 

transformation matrix. This is performed at a 

cost of one processing cycle per output pixel 

using a pipelined datapath. No additional 

operations are required to perform edge anti-

aliasing and synchronisation with the output 

data stream. 
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ii) The filtering process is implemented by two VSP 

sub-systems separated by an intermediate buffer. 

The first VSP operates at the input data rate 

and the second VSP operates at the output data 

rate. This permits the source texture to be 

defined at a higher resolution than the display 

to which it is mapped. 

iii) The filtering algorithm combines directly with a 

pipelined co-ordinate generation system in which 

a conventional two-pass technique implements the 

required spatial transformation. An efficient 

scan selection algorithm derives the optimum 

scanning order using the attitude and position 

parameters. 

iv) The co-ordinate generation system is designed to 

make use of a proprietary Image Resampling 

Sequencer (IRS) to minimise hardware 

requirements and reduce system cost. 

1.5 ADDITIONAL CONTRTBUTIONS 

The hardware presented in this thesis utilises recent 

advances in Programmable Logic Devices (PLDs). This is 

reflected by the more advanced designs presented in Chapter 

7, implemented more than a year after the system described 

in Chapter 4. In part, this has been due to the acquisition 

of the Programmable Logic Programming Language (PLPL) an 

advanced software development tool for logic compilation. 

PLPL was provided free of charge as a source file (in 

the *C' programming language) to the Department of 

Electronics and Computer Science, University of Southampton 

by Advanced Micro Devices (AMD). PLPL is now installed on 
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the TRICE distributed processing network inside the 

department. 

In addition, device drivers were written to allow the 

use of more complex EPLDs (Eraseable PLDs) produced by IC 

manufacturers ICT and Altera, an example of which is given 

in Appendix I. All of these tasks were performed by the 

author, requiring over four months of the research 

programme. 

1.6 ORGANISATION OF THE THESIS 

Chapter 1 (this chapter) presents a general background 

to RTIG with a particular emphasis on the requirements of 

flight simulation. The need for a relatively low cost system 

is explained together with a brief summary of research 

carried out for this purpose at the University of 

Southampton. The concept of stream processing is introduced 

suggesting two areas in which this may be applied. 

Chapter 2 takes a detailed look at the literature 

published on the relevant aspects of CGI. This is organised 

in three sections covering RTIG display architectures, in-

fill algorithms and texture mapping systems. 

Chapter 3 details the requirements of the 'wire-frame' 

in-fill algorithm and outlining the aspects of a VSP design 

which may be used for this purpose. An algorithm is 

developed and formally presented, together with the 

limitations which it imposes. 

Chapter 4 discusses the function of the VSP blocks 

necessary for a real-time implementation of the in-fill 

algorithm outlined in Chapter 3. This includes a detailed 

description of the hardware implementation of the complete 

in-fill system. 
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Chapter 5 presents results obtained from the surface 

in-fill system and analyses its performance as part of a 

flight simulation system. 

Chapter 6 looks in more detail at the problems of co-

ordinate generation and filter implementation for texture 

mapping. The use of a a VSP architecture to separate the 

filtering process into two passes is suggested and an 

associated algorithm is presented. The generation of mapping 

co-ordinates from the position and attitude parameters is 

described and a scan selection algorithm is developed to 

ensure the most efficient implementation of the two-pass 

transformation process. 

Chapter 7 presents a detailed account of the 

development of hardware to implement the image mapping 

system in real-time. The influence of programmable logic and 

the associated software design tools on the implementation 

is described. A detailed description of the complete system 

is presented in three sections; co-ordinate generation, 

framestore design, and filtering sub-system. 

Chapter—8 analyses the performance of the image 

mapping system. A typical source image is used to 

demonstrate operation in real-time and results are used to 

assess the advantages and possible limitations of the 

system. 

Chapter 9 draws conclusions to the research together 

with suggestions for further work. 
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CHAPTER 2 

LITERATURE REVIEW 

The literature review and critique presented in this 

chapter comprises three sections. The first section 

describes relevant aspects of commercial and academic RTIG 

systems found in the open literature and is intended to 

provide a background to RTIG at system level. Sections two 

and three provide a detailed analysis of published in-fill 

and texture mapping techniques respectively emphasising 

suitability for real-time implementation. 

2.1 REVIEW OF RTIG SYSTEMS 

This section provides an outline of commercial and 

academic RTIG systems designed for flight simulation. A full 

review of all research in this field is beyond the scope of 

this thesis and detail is given only where relevant to the 

goals outlined in chapter 1. In addition, as there is no 

standard method of evaluating the performance of RTIG 

systems this section avoids comparison of complete systems 

and concentrates on the illustration of differing display 

architectures. 

2.1.1 COMMERCIAL RTIG SYSTEMS FOR FLIGHT SIMULATION 

A good review of commercially available RTIG systems 

is given by Schachter [SchaSl][Scha83] although this does 

not provide a detailed account of individual system 

architectures. In general such information is not readily 

available in the open literature and information is often 

limited to performance statistics. Although widely reported 

in aviation magazines (e.g. [Warw87]) these statistics are 

intended for marketing purposes and not only provide little 
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architectural information but are often presented in a 

manner which makes direct comparison with other systems 

difficult. 

It is clear from Schachter's review, however, that 

raster video generation hardware techniques consist of two 

categories. 

First there are systems which generate a video output 

directly from a sorted list of polygon edges intercepting a 

given scan-line. Hidden surface occlusion and edge smoothing 

are also performed at this level using additional priority 

information. Examples of this approach include the GE C-130 

Visual Simulator (General Electric) which can display up to 

600 edges per scan-line, the Singer/Link Digital Image 

Generation System (512 edges per scan-line), and the 

Advanced Technology System's Computrol. 

The other group of simulator systems incorporate a 

framestore at the final stage of image generation. This 

framestore is scanned in scan-line order but allows the 

image to be entered in an arbitrary order. An example of 

this is the CT-5 system (Evans and Sutherland) which 

generates the image in feature rather than scan-line order 

using rectangular areas to partition the processing tasks. A 

more recent review of flight simulator systems [YanJ85] 

indicates that advances in memory technology have resulted 

in greater use of framestore based display hardware. This 

allows the display capability to be limited by image 

complexity and not by the complexity of the 'busiest' 

individual scan-line. 

It was mentioned in the Introduction that a common 

factor of all commercial flight simulator systems is high 

cost. An exception to this is the FOG-M system [ZydaBB] 
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which is priced below $100,000. Although this system was 

developed at the Naval Postgraduate School (USA) it is 

included in this section as the display hardware is a 

commercially available colour graphics workstation (the 

Silicon Graphics IRIS 3120). 

ETHERNET CABLE 

MAGNETIC 
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ODNTROLLER 

MULTIBUS 

FLOATING 

POINT 

AOCOT.IULATOR 

MC68020 

ETHERNET 

CONTROLLER 

FRAMESTORE 
CONTROLLER 

GEOMETRY 
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MEMORY 
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KEYBOARD 
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16MB 

DISK 

COhrmOLLER 

UPDATE 

CONTROLLER 

1024 X 1024 
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DISPLAY 

MEMORY 

DISPLAY COLOUR 

CONTROLLER MAP 

OUTPUT 

Figure 2.1 The IRIS 3120 Workstation. 

The IRIS 3120 (Figure 2.1) incorporates a double 

buffered framestore using a Motorola MC68020 microprocessor 

for system and database control. The MC68020 also provides 

hidden surface removal (using the Painter's algorithm 

[Suth74]); the geometric transformations, however, are 

performed by a pipeline of 12 VLSI 'Geometry Engines' 

[ClarSO][Clar82]. Finally, the resulting polygons are 

coloured according to an algorithm which incorporates the 

angle of the face to an illuminating point source. 

Performance is reported as 1500 to 2000 polygons per frame, 

but it qualifies loosely as a real-time system as an update 

rate of only three to four frames per second is provided. 
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2.1.2 ACADEMIC RTIG SYSTEMS 

Many academic institutions have research projects 

aimed at the development of efficient RTIG systems. Some of 

this research has concentrated on raster-scan display 

architectures and will be discussed in detail in this 

section. Other important projects which address the 

geometric transformation and projection of co-ordinate 

information are not relevant to this thesis and will not be 

included in this analysis. These projects include VLSI 

solutions such as 'MAGIC 1' [Agat86] and 'MAGIC II' [Finc88] 

and multi processor solutions such as the 'CSI processor' 

[Char86]. 

Where possible, the survey is presented in 

chronological order. Some of the most recent additions were 

published during the course of the research reported in 

thesis. 

a - Zone Management Processor [Grim79] 

The Zone Management Processor (ZMP) system was 

developed at the University of Sussex to perform polygon 

scan conversion as part of a multi-processor CGI system. 

Each ZMP handles a separate polygon (4 sides maximum) and 

provides a direct video output, no framestore is required. 

In addition, a ZMP may display more than one polygon per 

frame provided there is no contention chronologically. A 

separate microprocessor system being used to co-ordinate 

data transfers from the host system to individual ZMPs. 

Hidden surface removal is incorporated by merging individual 

ZMP elements with priority according to the painter's 

algorithm. 

Because the framestore is omitted, no horizontal 

quantisation is imposed and horizontal temporal anti-
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aliasing may be incorporated using a faster horizontal clock 

to provide sub-pixel positioning. Vertical temporal anti-

aliasing is also provided, though this is more complex, 

requiring a line buffer to store the intensity values of the 

previous line for interpolation. Anti-aliasing required to 

prevent static effects ('jaggies') may be incorporated using 

gradient information to provide 'soft' (low pass filtered) 

intensity changes at the polygon edges. 

Early systems were based on bit-slice processor design 

communicating with the host via DMA interface [Pric84] 

although future development rests on a VLSI implementation. 

b - BITBLT based architectures 

Bit BLock Transfer (BITBLT) is a technique used to 

enhance the performance of framestore based systems by 

providing fast manipulation of blocks of pixels. An example 

of this approach is the '8 by 8 system' [GuptSl] in which 

the framestore memory is divided into square blocks of 64 (8 

by 8) adjacent pixels which are operated on in parallel. 

Line and character generation is provided by replicating a 

segment several times. Such operations entail problems of 

re-alignment which require shifting, rotation, mirroring and 

transposition of the original block. Originally implemented 

using a microcontroller (AMD type 2901 [AMDM83]) research 

was then directed towards the production of 'smart' memory 

chips incorporating circuitry to assist the alignment 

problem. 

An enhanced and more generalised form of this 

architecture is the DisArray (Distributed processor Array) 

system [Page83] which handles 16 by 16 (256 pixel) arrays in 

parallel. The system incorporates 256 individual processing 
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elements in a SIMD (Single Instruction Multiple Data) 

arrangement such that each processing element handles all 

the pixels in the framestore which occur in that part of the 

block. System control is performed by a 16 bit 

microcontroller (AMD type 29116 [AMDM83]) interpreting 

graphics primitives (termed 'RasterOp's) from the host 

system. 

BITBLT techniques are best suited to interactive CAD 

(Computer Aided Design) applications requiring window 

orientated operations and menu displays. 

c - Pixel Planes [FuchSl][Fuch82] 

Pixel Planes is a VLSI orientated design performing 

calculations with special hardware at each pixel. Only 

display hardware is supported, polygon data being supplied 

(in screen co-ordinate form) from a host system. This 

information is not presented in the normal fashion (a vertex 

list), instead each line (edge) of the polygon is defined by 

the coefficients its equation; in the form: 

f(x,y) = ax + by + c (2.1) 

The equation is evaluated at each pixel which is set 

according to the sign of the result. This process is 

repeated for each edge, the sign being used to eliminate 

pixels which lie outside the polygon. There is no limit on 

the number of edges although these must be presented in 

predetermined order (clockwise or anti-clockwise) and only 

convex polygons are supported. The equation is implemented 

at each pixel in parallel using a 'smart memory 

architecture', a 4 by 4 example of which is outlined in 

Figure 2.2. 
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MULTIPLIER TREE 

Figure 2.2 Pixel Planes Memory Architecture 

The equation is evaluated in two stages such that the 

multiplication is only required for each x and y value and 

not for each pixel and is evaluated by the multiplier trees 

shown above. Only one addition is then required at each 

pixel to evaluate the value of the function. 

d - INMOS transputer graphics systems [Inmo89][Atki88] 

The transputer is a 32-bit microcomputer with internal 

memory and four high speed (up to 20 Mbits/s) serial links 

for communication with other transputers or the outside 

world. Two devices, types T425 and T800 are particularly 

suited to graphics applications and include a configurable 

external memory interface for framestore implementation 

capable of 40 Mbytes/s sustained data rate. Graphics 

primitives [Harr87] are provided based on the BITBLT 

principle outlined in item 'b' above and operate on either 

external or internal memory. 

An additional feature of the T800 is the inclusion of 

a 64-bit floating-point unit, capable of operation at up to 

2.25 Mflops (flops = floating point operations per second). 

This makes the T800 suitable for transformation, projection 
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and clipping as well as scan-conversion and surface 

rendering. 

The transputer is intended for parallel processing 

applications in which different tasks or data are processed 

by separate transputers concurrently. A special programming 

language, 'occam', has been developed to support this 

feature allowing a system to be described as a collection of 

concurrent processes which communicate with each other. 

The main advantage of this approach is flexibility, as 

tasks can be distributed according to the number of 

transputers in a given array. Indeed, no de facto standard 

exists for graphics applications and performance can be 

improved by using a larger network transputers. An upper 

limit is placed on the performance according to how the 

image generating tasks can be distributed. 

An example flight simulation system is described by 

Atkin and Ghee [AtGh88] and is illustrated below in Figure 

2.3. 
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Figure 2.3 Example Of Transputer Based CGI System. 

This system uses nine transputers (type T800) 

implementing the particular tasks indicated in the diagram. 

This configuration is capable of displaying 200 polygons per 

frame at a rate of 17 frames per second. 
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e - Southampton Flight Simulator [AlZa85][AlZa86] 

A CGI system under development at the University of 

Southampton uses a Multiple-Instruction Multiple-Data (MIMD) 

system incorporating 30 microsystems (using 12MHz MC68000 

devices [M0T083]) connected by a global input and a global 

output bus as shown below. 

FROM FLIGHT 

DYNAMICS 

(etc.) 

> DISPLAY 

MICROSYSTEM 

OUTPUT BUS 
CONTROLLER FRAMESTORE 

MICROSYSTEM 

INPUT BUS 
CONTROLLER 

Figure 2.4 Southampton MIMD CGI System 

An important feature of this system is that all co-

transformations are calculated using fixed—point 

arithmetic, increasing system throughput. The workload is 

partitioned between each processor into regions of 

potentially visible polygons. Each global bus is controlled 

by a high speed microcontroller performing all input and 

output operations. Scan-conversion is performed within the 

MIMD array and the Output Bus Controller passes individual 

spans to be filled to the framestore section. 

The framestore section consists of two separate 

filling processors and two framestore memory arrays (512 by 

512 pixels) configured in a double—buffered arrangement. 

Each span is specified by a 40 bit word, this includes the 

scan-line (10 bits), the starting x co-ordinate (10 bits), 

the span length (10 bits), the span colour (8 bits) and two 
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mode bits (used for handshake control). High speed data 

transfer to the framestore memory is provided by 

segmentation of the framestore memory allowing 16 pixels to 

be modified in parallel. Memory control is performed using a 

microcontroller incorporating a writable control store to 

increase system flexibility and allow future development. 

Simulations show that a full system incorporating 30 

microsystems can display approximately 500 polygons per 

frame (40 ms) assuming an average span length of 100 pixels. 

f - Bradford University RTIG System [RhSe88][Serr87] 

The complete RTIG system developed at the University 

of Bradford is based upon a four stage multi-processor 

pipeline in which scan-conversion is implemented by two 

microprocessor systems and a dedicated hardware processor. 

Figure 2.5 shows an outline of this stage, which may be 

divided into two sections; the Polygon Raster Generator 

(PRG) and the Video Display Processor (VDP). 

POLYGON EASTER GENERATOR 

SCAN 
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START 
PROCESSOR 

END 
PROCESSOR 

VIDEO DISPLAY PROCESSOR 

SPAN FRAME 
FILLER BUFFER 

Figure 2.5 Bradford RTIG System 

The PRG uses two microprocessors (Motorola type 

MC68020 [M0T083] running at 16.7 MHz) operating on two 

dimensional polygon vertex information provided by the 

previous stage. 
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First the vertices are sorted in the y direction by 

one processor (the master processor) which also provides 

control of the PRC. Only convex polygons are supported, 

giving a maximum of two intersections between the edges of 

the polygon and each scan-line. 

Next, the X co-ordinate of the left (x-start) and 

right (x-end) intersection for each scan line is calculated 

separately by each processor starting at the top of the 

polygon. The time taken to calculate each intersection pair 

depends upon the gradient of the polygon edges but an 

average of 3 to 4 |j,s has been reported. 

The VDP contains a double buffered framestore memory 

(512 by 512 pixels with 8 data bits per pixel) with 

associated display and arbitration control and a Span 

Filler, designed to draw horizontal lines at high speed. The 

Span Filler performs two functions; clearing the screen (at 

the start of each frame) and drawing the polygons, line by 

line, using the four parameters (x-start, x-end, y and 

colour) received from the PRG. High speed is achieved by 

segmentation of the frame buffer such that 16 pixels may be 

modified in one memory cycle, similar to the Southampton CGI 

system (item 'e' above). The VDP uses a simpler system 

providing individual segment selection using a mapping PROM. 

The VDP can clear the screen in 3.27 ms and a line of 

100 pixels can be filled in 1.4 us. Based upon an average of 

60 lines per polygon and an average line length of 100 

pixels, this gives a filling rate of 476 polygons per frame 

(40 ms). 

The overall performance is limited by the PRG and a 

performance of 200 average polygons per frame is reported. 
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q - Shaded Polygon System [West87] 

The shaded polygon generation system proposed by 

Westmore is a distributed architecture using one processor 

per polygon similar to the ZMP system (item 'a' above). As 

shown in Figure 2.6 the processors are arranged in a 

pipelined linear array which may be extended indefinitely. 

Each processor is connected only to its adjacent neighbours 

overcoming the problem of interconnection between a large 

array of processors encounted on an earlier system 

[Fuss82]. 
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Figure 2.6 Shaded Polygon Processor Array 

Each processor transforms, projects, and scan—converts 

a single triangle which is added to the image generated by 

the previous processor. Synchronisation signals are also 

passed through the array providing a direct video signal 

from the output of the final processor. Colour shading is 

provided by interpolation of colour value along the edges of 

each triangle, known as Gouraud shading [Gour71]. Only 

triangles are supported as Gouraud shading for more complex 

polygons is not invariant under rotation. The operation of 

each processor is divided into three processes according to 

the speed of each operation. 
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Picture rate processes are performed once for each 

frame and include the transformation, perspective 

projection, clipping and scan-conversion of each triangle. A 

list of parameters is generated for each edge pair in order 

of decreasing y, defining the top and bottom y co-ordinate 

(Y TOP and Y BOTTOM), initialisation (colour and x co-

ordinate), and gradient (d(colour)/dy and dx/dy). 

These parameters are passed, via a buffer (for 

synchronisation purposes), to the scan-line section. For 

each scan-line a new set of parameters are generated 

defining the x start and extent, initial colour, colour 

gradient (d(colour)/dx), and priority of the span to be 

displayed. 

Finally, the image is generated by the pixel rate 

section, and merged with the incoming video signal (from the 

previous stage). The pixel rate operations performed by the 

colour interpolator and priority resolver are implemented 

using one-bit accumulators in a skewed parallel arrangement, 

each processor adding a latency of one clock cycle to the 

system. 

A high resolution non-interlaced display (1280 

horizontal by 1024 vertical) is supported and it is 

suggested that up to a million processors could be combined. 

Only simulated results are available and a real-time system 

is planned based on a VLSI implementation. 
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2_!_2 SURFACE IN-FILL TECHNTOTTF.q 

The widespread development of raster scan framestore 

orientated CGI systems has provided a proliferation of 

techniques to provide in-fill. These are widely reported in 

the literature (e.g. [Roge85][Revi85]) and maybe placed 

into four categories: ordered edge list, seed fill, parity 

check and edge fill. 

2.2.1 ORDERED EDGE LIST rOET.t 

This group of algorithms is not attributed to any 

individual author but is treated in general texts (e.g. 

[SpNe79]) as the standard method of scan—converting 

polygons. These algorithms use polygon vertex co-ordinate 

information directly and, in general, this type of algorithm 

proceeds in three stages. 

(i) The co-ordinates of the intersection of each polygon 

edge with the centre of each scan-line are computed. 

The co-ordinates are stored in a list and the 

procedure is repeated for all polygons. 

(ii) The list is then sorted to place the co-ordinates in 

groups in order of increasing y, and in order of 

increasing x within each group. This procedure is 

illustrated by Figure 2.7 (b) which shows the sorted 

edge list for the polygon in Figure 2.7 (a). 

(iii) Finally each group is sorted into adjacent pairs of 

the form(xl,y)(x2,y) for scan-line y and the span of 

pixels having integer values of x between xl and x2 is 

filled (as shown in Figure 2.7 (b)). 
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Figure 2.7 Ordered Edge List Example 

The efficiency of this technique depends upon the 

efficiency of the sorting algorithm. This can be improved by 

combining steps (i) and (ii) and determining the 

intersections in scan-line order. For a convex polygon this 

requires that only two edges need to be considered at any 

one time. The intersections for these two edges can be 

calculated using difference equations using an efficient 

line drawing algorithm (such as [Bres65]) and incorporated 

with the sorting procedure to provide a combined algorithm; 

as employed by many of the RTIG systems described in Section 

2.1 q.V.. 

This method, however cannot be used to scan-convert 

concave polygons as an arbitrary number of edges could be 

present in one scan-line (as demonstrated by scan-lines 4 

and 5 in Figure 2.7). Concave polygons must first be 

decomposed into a structure of convex polygons using a 

suitable algorithm [BrFe79][LaMR83][Scha78] for this more 

efficient sorting algorithm to be used. 
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2.2.2 SEED FTT.T. 

Seed fill is a form of boundary fill algorithm which 

may be used to fill arbitrary shaped areas. This technique 

assumes that a unique region has been defined by a boundary 

which has already been entered into the framestore and that 

a co-ordinate of a pixel which is known to be contained 

within this boundary is given. The operation of this 

algorithm depends upon the properties of the surrounding 

boundary and particularly by the way in which the pixels 

which compose the boundary are connected. The pixels are 

assumed to be square and connectivity of adjacent pixels is 

defined as follows [Rose70]: Two pixels are four-connected 

if they share one of the four possible edges, and two pixels 

are eight-connected if they share an edge or corner. 

• AB-
• • * c 

Figure 2.8 Example Of Connectivity 

Figure 2.8 shows examples of both four-connected and 

eight-connected pixels as part of a 4 x 4 framestore array 

(four scan-lines) of pixels. The convention adopted in this 

and subsequent diagrams is to represent an empty pixel by a 

dot or a lower case letter and a filled pixel by an upper 

case letter. The actual letters which are used have no 

significance but provide a convenient label for text 

references to a particular pixel or area. For example in 

Figure 2.8 pixel A is four-connected to pixel B and pixel B 

is eight-connected to pixel C. 

Conventional line drawing algorithms produce lines 

which are at least eight-connected which guarantees that 

interior and exterior regions can never be four-connected. 
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Several algorithms have been reported to fill four-connected 

regions [Sinit79 ] [Lieb78 ] [CaDe79 ] treating pixels in groups 

called runs (a run is defined as the horizontal row of 

pixels enclosed between two boundary pixels). Successive 

runs are filled at increasing distances from the seed pixel 

until all pixels have been filled. 
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Figure 2.9 Example Of Seed Fill Algorithm 

Figure 2.9 shows an example in which the algorithm is 

progressing upwards from the seed pixel 's' toward the top 

of the contour. After the in-fill of run a-b the filling can 

proceed in two directions, to fill run c—d or run e—f. A co-

ordinate within the run which is not chosen must be stored 

to allow the algorithm to continue after all the area above 

the chosen run has been filled. Hence a stack must be 

created to store pixels which must be re-visited after the 

of a particular section has been completed. 

The speed of the algorithms depend on both the 

structure of the stacking procedures and the shape of the 

bounding contour. Shani [ShanSO] emphasizes the 

correspondence between contour filling and graph traversal 

[Wils72] and exploits this in order to determine the most 

efficient path to traverse all the pixels within a given 

area. Using such techniques the depth of the stack (and 

hence the number of pixels which are visited more than once) 

can be minimized. 
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As the framestore memory is used as a working memory, 

pixels have integer co-ordinates limiting the effectiveness 

of this algorithm. Quantisation errors resulting from the 

contour drawing algorithms can give rise to non-planar 

shapes with isolated regions such as pixel 'a' in Figure 

2.10 which will not be in-filled. 

PPPP 
• Qa • RRR 
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Figure 2.10 Isolated Region Arising From Quantisation Error 

A further disadvantage of seed-fill is the need to 

define an initial interior pixel, particularly as the 

position of this pixel could affect the efficiency of the 

algorithm. Despite these disadvantages, however, seed fill 

offers the most direct method to fill arbitrarily defined 

contours and is implemented within some commercially 

available GDPs [Hita84][AMDQ87]. 

2.2.3 PARITY CHKCK 

Parity check is another technique providing in-fill 

for arbitrarily shaped regions already defined by a contour 

in the framestore memory. 

The algorithm proceeds along a scan-line from left to 

right, and a count is incremented when an edge (part of the 

bounding contour) is encountered. As a run of pixels is 

traversed in-fill is generated if the value of the count 

(the parity) at that point is odd, hence alternate runs are 

in-filled. 
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Figure 2.11 In-Fill By Parity Check 

For example. Figure 2.11 illustrates an area of 

framestore in which the value of the count for each scan-

line is assumed to be initialised (zero) at the start of 

that line. The area below the contour 0-L represents the 

interior of a region and should be in-filled. The runs a-b 

and c-d are both correctly in-filled as the values of the 

count are 1 and 3 respectively (the count is incremented at 

edges Y, U, S and I ). 

This trivial parity check does not work for all cases; 

the run e-f is also filled as the count is incremented by 

edge W and is equal to 1, however, this run should not be 

filled as it lies outside the contour. Pixel W corresponds 

to a vertex and it is possible to remove or mask all 

vertices from the contour before application of the parity 

check algorithm. Pixel M, however, also represents a vertex 

but increments the count correctly. It can be shown [FoVa84] 

that for correct in-filling, any vertex which corresponds to 

a maximum or minimum should not be allowed to increment the 

count. 

Quantisation errors may also give rise to erroneous 

values of the count as two line segments can merge near a 

vertex. For example the two edges marked by pixels X and V 

will only cause the count to be increased by 1 as they are 

four-connected and run g-h will be filled. True detection of 

this event requires interrogation of the framestore after 



36 

the contour has been drawn. Pavlidis [Pavl79][PavlSl] 

proposes several algorithms ranging from the naive parity 

fill to a complex algorithm which copes with the example of 

quantisation error illustrated above. This algorithm 

requires two passes around the complete boundary inspecting 

pixels vertically above and below the contour. This 

information is then used to mask pixels which should not 

increment the count. 

2.2.4 EDGE FTT.T, 

An improvement to the parity check algorithm can be 

made by the use of a special line drawing algorithm to 

provide an unambiguous contour. This combination of parity 

check and line drawing is known as the edge fill or edge 

flag technique. 

The line drawing algorithm uses different integer co-

ordinate systems for scan-lines and vector generation. These 

co-ordinate systems are offset by a y value of one half the 

scan-line interval and all vectors are therefore defined by 

co-ordinates which correspond to the mid-point between two 

scan-lines. Line segments are then represented by one pixel 

per scan-line which is placed at the x co-ordinate at which 

the vector intersects that scan-line. In-fill is then 

performed by a modified parity check which increments the 

count at every pixel which forms part of an edge. 

Figure 2.12 (overleaf) shows a section of framestore 

memory containing vectors drawn by this method on scan—lines 

with y co-ordinates between 2 and 6.The solid lines 

represent the co-ordinate system used for vector generation 

and vertices are denoted by . 
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Figure 2.12 Edge Fill Technique 

It can be seen by inspection that application of the 

modified parity check will provide correct in-fill except 

for the scan-line with y co-ordinate 9. The vertex above 

pixel Q represents a local maximum and because of 

quantisation errors pixel Q forms part of line segments Q-Y 

and Q-0. Pixel Q is visited twice during the line drawing 

process, representing a collision of contour information. To 

ensure correct in-filling the line drawing algorithm must 

avoid potential collisions of contour information (occurring 

when a second pixel is entered into a given framestore 

location). Two methods have been proposed; removing 

(complementing) the original pixel [AcWeSl] or shifting the 

X co-ordinate of the second pixel [HaCh85]. 

Vertices which do not represent maxima or minima in 

the contour are ignored by this process and in-filling is 

unaffected by quantisation errors. This is because the 

offset co-ordinate system ensures that neighbouring pixels 

are on separate scan-lines (e.g. Pixels O and J adjacent to 

the vertex with y co-ordinate 3.5). 
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2.3 TEXTURE MAPPING 

This section forms the final part of the literature 

review and examines texture mapping techniques published in 

the open literature. Before these techniques are discussed 

in full, however, an introductory section is included to 

highlight the problems associated with texture mapping. 

2.3.1 PRINCIPLES OF TEXTURE MAPPING 

The process of texture mapping is illustrated in 

Figure 2.13 in which the source image (defined in texture 

space) is mapped onto a surface in three-dimensional object 

space and finally mapped to the destination image (two-

dimensional screen space) by the viewing projection. 

TEXTURE MAPPING OBJECT PROJECTION SCREEN 
SPACE SPACE SPACE SPACE SPACE SPACE 

(u,v) Cxo,yo2o) (x,y) 

Figure 2.13 Texture Mapping Process 

For most applications, texture space is two-

dimensional; three-dimensional representations have been 

developed [Gard85] but are beyond the scope of this thesis. 

Throughout this dissertation texture space will be described 

by the pair (u,v) and screen space by the pair (x,y). 

The object space representation provides physical 

meaning but is often forgotten as the complete mapping may 

be represented as one operation: 

x,y = f(u,v) ( 2 . 2 ) 

If this function is evaluated for each element (or 

pixel) of the source image the process is termed direct 

mapping. Inverse mapping is defined as the evaluation of the 
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inverse of the function for each pixel in screen space. 

Inverse mapping is essential for tiling systems as the 

mapping is no longer single valued (viz. as the texture 

pattern is repeated each texture element maps to an 

arbitrary number of screen pixels). 

In general there is not a one-to-one correspondence 

between destination and source pixels and the colour value 

of each destination pixel must be determined by sampling. 

The discrete nature of screen space imposes an upper limit 

on the spatial frequencies which may be represented and 

unless precautions are taken aliasing is introduced 

[Crow77]. 

The simplest sampling method is to choose the 

intensity of the pixel in texture space corresponding to the 

co-ordinate resulting from the inverse mapping function. 

This is known as point sampling and although it is 

computationally cheap (simple data transfer from texture 

store to output framestore) the aliasing introduced is 

unacceptable [Heck86]. 

Aliasing can be reduced by the use of more complex 

sampling techniques which incorporate filtering to remove 

spatial frequency components in texture space which exceed 

the Nyquist limit [Oppe83]. Filtering techniques are 

discussed more fully in the next section but in general 

involve convolution (weighted average) of a two-dimensional 

filter function with the texture data. 

A major difficulty with direct convolution arises 

because the mapping process outlined in Figure 2.13 

invariably involves a perspective projection. This produces 

a mapping function which is non-affine and requires a filter 

function which is space-variant (i.e. different for each 
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output pixel). In particular, screen pixels close to the 

vanishing point or horizon need a filter function which 

spans many texture pixels. This is a severe constraint for 

real-time applications in which the number of operations per 

output pixel (hence the filter size) are limited. 

The aliasing problem and filtering techniques are 

fundamental to the texture mapping techniques reviewed in 

the next section. 

2.3.2 REVIEW OF TEXTURE MAPPING SYSTEMS 

Many texture mapping algorithms have been proposed, 

some have been developed for real-time application whilst 

others have image quality as the prime objective. A good 

review of current techniques is given by Heckbert [Heck86] 

and due to the proliferation of individual authors this 

section is divided under headings which emphasise features 

not necessarily unique to a particular system. 

The section concludes with a review of commercially 

available Digital Video Effect (DVE) systems designed for 

real-time image mapping. 

a - Direct Convolution Methods 

Filtering may be implemented by direct convolution of 

the filter function with intensities of pixels in texture 

space. Thus an individual output pixel is determined by 

summing all texture pixels after multiplication by the 

filter coefficient value at that point. 

Sampling theory suggests that the most effective 

filtering is achieved by convolution with the sine function. 

The infinite width of this function, however, makes its 

implementation unrealizeable and Finite Impulse Response 

(FIR) filter functions must be used. 
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In general the two-dimensional filter function is 

defined in screen space and inverse mapped into texture 

space before convolution with texture data. This is 

illustrated in Figure 2.14 where (a) shows a grid 

representing an array of pixels in screen space and (b) 

shows the area in texture space corresponding to 

quadrilateral ABCD. 
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Figure 2.14 Filter Footprints In Screen And Texture Space 

The area PQRS in (a) is the boundary of an arbitrary 

FIR filter used to compute pixel 'X'. The corresponding area 

P'Q'R'S' in (b) represents the 'footprint' of the filter 

function in texture space and covers all those pixels 

required by the convolution process. 

The inverse mapping of the filter function onto 

texture space provides a filter realization which is space-

variant and has been shown [FeSk85] to conform with the 

principles of sampling theory. 

The shape (cross section) of the filter determines the 

effectiveness of the filtering operation and in his review 

paper Yan [YanJ85] observes that it is also necessary for 

adjacent footprints to cover the texture region uniformly. 
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The simplest FIR filter is the box; first applied to 

prevent aliasing in the subdivision patch rendering 

algorithm developed by Catmul [Catm74]. This algorithm, the 

first to map a predefined texture onto an image does not use 

direct or indirect mapping. Instead, the algorithm proceeds 

in object space, using surface patches. Patches are created 

using a bicubic parametric equation, each patch is then 

subdivided until it spans a maximum of four pixels in 

texture space. The patch is then approximated by a 

quadrilateral under which the intensities of the four pixels 

are averaged. Finally, all the patches which contribute to a 

given output pixel are averaged to provide the resultant 

intensity. This operation is equivalent to convolving 

texture pixels with a box filter with a footprint equal in 

size to that of each output pixel. 

A triangular cross section FIR is implemented by Blinn 

and Newell [BlNe76]. Inverse mapping is used to map a 2 by 2 

pixel area in screen space to a quadrilateral in texture 

space (similar to the way in which the 3 by 3 area is mapped 

to the quadrilateral in Figure 2.14). The intensities of the 

texture pixels within the quadrilateral are then averaged 

with a weighting proportional to the distance from the 

centre of the quadrilateral. 

More complex FIR filter shapes have been implemented; 

in particular the method of Feibush et al. [FeLCSO] which 

uses a look-up-table to provide filter coefficients. The 

look-up-table is aligned using inverse mapping and differing 

filter shapes may be implemented to provide the best results 

for a given application. 

Other complex filter functions have been reported by 

Ganget et al. [GaPC82] and by Greene and Heckbert [GrHe86]. 
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Both methods use filter functions with circular two-

dimensional representations producing elliptical footprints 

in texture space. 

These techniques illustrate a trend towards greater 

realism in CGI and are so computationally intensive that 

real-time implementation is not possible. For example, using 

a VAX 11/780 minicomputer the method of Greene and Heckbert 

takes between one and six hours to generate a single frame. 

The computational cost per screen pixel is directly 

proportional to the area of the filter footprint in texture 

space. Moreover, as this depends on the orientation of the 

mapping transformation the convolution may only be 

constrained between best and worst case time limits. 

b - Prefilterina Techniques 

It is possible to pre-filter the texture data off-line 

to reduce the number of computations required during the 

rendering process. This is possible only with static 

textures and is termed prefiltering. Two methods of 

prefiltering have been proposed; Multiple Table MIP Mapping, 

and Summed-Area Table. 

Multiple table MIP mapping was first proposed by 

Dungan et al. [DuSS78] who suggest that the texture data 

should be prefiltered by powers of two in both dimensions. 

For example, if the original pattern is defined by a 512 by 

512 pixel array then lower resolution patterns (256 by 256, 

128 by 128, 64 by 64 etc.) are also generated off-line and 

may be selected during rendering when the filter footprint 

is large. 

Many refinements have been proposed: Bolton [Bolt79] 

uses intermediate levels prepared off-line by a complex 

filter function to provide texture tiling in real-time. Burt 
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[BurtSl] proposes a technique called Hierarchical Discrete 

Convolution (HOC) implementing a Guassian filter function 

using contributions from different filter levels. Williams 

[Will83] uses interpolation to provide intermediate levels 

as a continuous function of footprint size and promotes the 

term MIP (Multum In Pravo - "much in little"). Because pre-

filtering is aligned with the texture axes (u,v) and scaled 

equally in u and v, the footprint shape for MIP-MAP 

filtering is always square. 

An alternative technique, the Summed-Area Table was 

developed independently by Crow [Crow84] and by Ferrari and 

Sklansky [FeSk84]. Ferrari and Sklansky develop the 

technique in a mathematical context showing the equivalence 

to discrete convolution, Crow uses a practical approach 

giving examples of images created using the technique. 

v2 

vl 

T[ul,v2] T[u2,v2] 

A B 

T[ul,vl] 

c D 

T[u2,vl] 

ul u2 

Figure 2.15 Summed-Area Table Representation 

The process is illustrated in Figure 2.15. This shows 

part of the Summed-Area Table which has been generated off-

line from the original texture data. The table values T[u,v] 

have been calculated for all u and v such that at any point 

T[u,v] represents the intensity sum of all the pixels to the 

left and below T. Hence T[ul,vl] represents the intensity 

sum of all the pixels enclosed by region C. The rectangular 

region B represents the filter footprint and the screen 
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pixel intensity is determined by averaging the intensity 

over this region given by: 

Intensity sum of pixels within region B 
Area of region B 

Collecting regions A,B,C and D this becomes: 

Tfu2.v21 - Trul.v21 - Tru2.vn + TFul.vn (2.3) 
(112 - ul) (v2 - vl) 

To enhance spatial accuracy, fractional values of u and 

v can be used by interpolating between adjacent table 

entries. Memory requirements are increased between two to 

four times depending on image size; for example a 256 by 256 

texture pattern having 8 bit intensity values requires 24 

bits per table entry. The region B in Figure 2.15 represents 

the filter footprint implemented by this technique, limited 

to a rectangle in texture space. 

c - Two-Pass Mappings 

In many image mapping applications it is possible to 

decompose the two-dimensional transformation process into 

two orthogonal one-dimensional passes. 

SOURCE INTERMEDIATE DESTINATION 

FRAMESTORE FRAMESTORE FRAMESTORE FRAMESTORE FRAMESTORE FRAMESTORE 

(u,v) (u,>Oor(x,v) (k.y) 

Figure 2.16 Two-Pass Mapping Technique 

As shown in Figure 2.16 each pass implements the 

mapping for one co-ordinate only and an additional 

framestore is used to store the intermediate image. A 

pictorial example showing simple rotation implemented in two 

passes is given in Figure 2.17. Part (a) shows the original 
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pattern, (b) shows the intermediate image after mapping u to 

X and (c) shows the final image. 

t 7 " / 
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Figure 2.17 Pictorial Example Of Two—Pass Mapping Procedure 

This technique was pioneered by Catmul and Smith 

[CaSmSO] demonstrating the process for affine, perspective, 

bilinear and biquadratic (quartic) mappings. Each pass may 

be performed in scan-line order and in their paper a stream 

processing architecture is suggested. A further advantage is 

that filtering is greatly simplified as only one-dimensional 

sampling is required. 

A new problem, referred to by Catmul and Smith as the 

bottleneck problem', is introduced by this technique. A 

loss of information occurs whenever the area of the 

intermediate image is smaller than that of the destination 

image. This is illustrated by representing the simple 

rotation matrix by two one—dimensional operators: 

(2.4) 

Where c, s and t represent cos <p, sin <p and tan tp 

respectively, and (p is the angle of rotation. The problem 

arises as (p approaches 90° where the terms t and 1/c tend to 

infinity. At this point the first pass has reduced the 

source image to a single line and application of the second 

c s c 0 1 t 

-s c -s 1 0 1/c 
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pass is not possible. The problem can be avoided by scanning 

the source framestore by an arbitrary offset of 90° to 

optimise the area of the intermediate image. For example, a 

rotation of 60° is accomplished most efficiently by 

scanning the texture framestore to give an apparent 

rotation of 90° and application of a matrix giving a 

rotation of 60°- 90° = -30°. 

Various applications of two pass transformations have 

been proposed: Shantz [Shan82] outlines a system performing 

linear and second-order mappings in which filtering is 

provided by a simple extensions of point sampling. Paeth 

[Paet86] reports a rotation only system decomposed into 

three one-dimensional passes which do not require additional 

filtering. 

The resampling interpolation algorithm proposed by 

Fant [Fant86] combines the transformation and filtering 

operations implementing affine mappings in real-time. 
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CYCLE 

INPUT 
CYCLE 

NEW OUTPUT 
PIXEL VALUE ACCUMULATOR 

COMPARE 1 / SIZEFAC 1.0 

FACTOR 

DIFFERENCE 

FACTOR • PIXEL 

INSEG OUTSEG 

SIZEFAC * ACCUMULATOR 
CURRENT 

INPUT 
PIXEL 

Figure 2.18 Resampling Interpolation Process 



48 

The process used by the one-dimensional mapping 

algorithm is outlined in Figure 2.18. INSEG and OUTSEG are 

fractional pointers to the stream of input and output pixels 

respectively. The value SIZEFAC expresses the ratio of 

output pixels to input pixels and determines how many output 

pixels should be generated from an input pixel (SIZEFAC > 1 

indicates expansion, SIZEFAC < 1 indicates compression). 

Each cycle results in either an input pixel being used up or 

an output pixel being generated. A complete scan-line 

composing n pixels is processed in a maximum of 2n cycles. 

The mapping is direct and additional hardware is required to 

position the output stream in the output framestore. 

Because all input pixels contributing to a given 

output pixel have equal weights, the algorithm implements 

filtering equivalent to convolution with a spatially 

accurate box cross section filter. 

d - Commercial Image Mapping Systems 

In recent years image mapping systems have been used 

to generate special effects for television broadcasts. 

Reviews of these Digital Video Effects (DVE) systems are 

provided [BrSE87][Haln88] but are presented from a 

commercial point of view and lack architectural details. The 

number of different manufacturers and systems is increasing 

continually and for brevity this section describes only the 

two market leaders; the Ampex ADO, and the Quantel 

Encore/Mirage systems. 

Ampex [Ampe88][Haln87] pioneered the production of DVE 

systems with the introduction of the ADO (Ampex Digital 

Optics) 3000 in 1981. Image mapping is implemented using the 

two-pass technique ordered to provide a direct video output 

(by performing the horizontal pass last). An outline of the 
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Figure 2.19 Ampex ADO DVE System 

After analog to digital conversion the input signal is 

temporarily stored in a 720 (horizontal) by 576 (vertical) 

double-buffered framestore. The colour coding format used 

within the ADO comprises three 8 bit channels: Luminance (Y) 

(sampled at 13.5 MHz), and two colour difference channels 

(B-Y, R-Y) (sampled at 6.75 MHz). This coding system is 

chosen for compatibility with existing broadcasting 

technology and is referred to as 4:2:2 sampling. 

One dimensional inverse mapping is implemented by the 

horizontal and vertical address generators under the control 

of the host system. The horizontal and vertical 

interpolators provide filtering by point sampling and 

interpolation over a group of eight input pixels, equivalent 

to limited size box filtering. The mapping is controlled in 

real-time by a pre-programmed set of parameters generated by 

the host system, possibilities include special 'warping' 

effects as well as affine and perspective transformations. 

Ampex also produce a simpler system; the ADO-1000, 

mapping individual fields (not complete frames) with a 

reduced vertical resolution of 288 pixels. 
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The Quantel Encore [QETN88] is described as "a three-

dimensional manipulator for flat TV pictures" and provides 

full perspective image mapping in real-time onto any flat 

surface defined in object space. The Quantel Mirage DVE 

system is similar but operates parametrically to provide 

image mapping effects on curved surfaces. A block diagram of 

the Encore DVE system is shown below: 
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MANIPULATOR COMBINER 

ADC ' BUFFER 
MANIPULATOR COMBINER 

L 
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CONTROL 
COMPUTER 

STATION 
COMPUTER 

TO 

DAC 

Figure 2.20 Quantel Encore DVE System 

After analog to digital conversion (using the 4:2:2 

CCIR standard, see above) the input signal is stored 

temporarily in the freeze buffer. The manipulator is a 

dedicated hardware system designed to implement the image 

mapping. Inverse mapping is used as this generates a signal 

which may be passed directly to the combiner without an 

additional framestore. Details are not given but filtering 

is limited to a compression/expansion ratio of ten, 

indicating a limited filter footprint similar to the ADO 

system. 

The combiner is used to merge the output of the 

manipulator with other images (from other Encore or Mirage 

systems etc.) before the digital to analog conversion stage. 

System control is provided by a dedicated minicomputer 

system and remote control providing a range of special 
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effects (e.g. solarisation, cropping) in addition to the 

image mapping functions. 

At the time of writing the ADO-3000 is priced from 

$140,000 and the Quantel Encore system is priced from 

£90,000. 
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2.4 SUMMARY OF THE LITERATURE REVIEW 

The first section of this review examined a range of 

display architectures in current use for RTIG. Although 

individual approaches differ greatly a common thread is the 

need for parallelism to provide the necessary performance. 

Indeed the main factors which distinguish each system is the 

way in which the individual tasks are 'farmed out' to 

separate processors. For example, the ZMP system distributes 

tasks at the polygon model stage whereas the Pixel Planes 

system exhibits parallelism at pixel level. 

Common to the systems which use horizontal parallelism 

is the need for a VLSI solution to consolidate the design, a 

factor which is not as important to the modular pipelined 

systems. 

Section two gave details of the four types of 

algorithms used to provide surface in-fill. 

The first of these was the Ordered Edge List (OEL) 

technique, providing the most direct method of displaying 

polygons from co-ordinate information. The processing 

overhead required to sort edge intersections can be avoided 

if only simple convex shapes are supported. A framestore is 

used to buffer the output (unless polygons can be processed 

in parallel) and every pixel must be written during the span 

filling process. Real-time implementation therefore requires 

a high bandwidth between the display hardware and the 

framestore, as provided by the span filling architectures 

discussed in Section 2.1.2. 

Seed fill algorithms use the framestore as the working 

memory and require the most framestore operations per pixel 

resulting in the slowest operation of the four methods. It 

is however, the most commonly used technique for in-filling 
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arbitrary contours. 

In principle, parity check in-filling is the simplest 

boundary filling technique and may be implemented in scan-

line order at display time. In practice, it is difficult to 

avoid the problems caused by quantisation errors without 

comprehensive contour interrogation, which increases 

framestore input/output overheads and reduces efficiency. 

Edge fill algorithms use a modified parity check 

algorithm and overcome quantisation errors by providing an 

unambiguous contour. The parity check may be implemented at 

display time and as only the contour is required, framestore 

bandwidth requirements are reduced. Contour generation is 

more complex, requiring more processing than normal line 

drawing algorithms and only supporting polygons. 

The final section of this review provided an analysis 

of published texture mapping techniques. Central to these 

techniques is the spatial filtering necessary to avoid 

aliasing, the quality of which depends on the shape and 

accuracy of the filter 'footprint' in texture space. 

Direct convolution provides the highest quality of 

filtering, but for non-affine mappings cannot be implemented 

in real-time. Prefiltering of the source image off-line 

using MIP-MAP or Summed-Area Tables, decreases the 

operations required to render the image and may be 

implemented in real-time. The disadvantage, however, is that 

the filter shape is distorted as it must be aligned with the 

texture space co-ordinate axes. 

Alternatively, a two-pass mapping procedure can be 

used, simplifying the filtering to a one-dimensional 

process. Additional problems, such as the need to decompose 
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the mapping function into two passes and the 'bottleneck' 

problem are introduced, although this does not preclude 

real-time implementation. 
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CHAPTER 3 

SURFACE IN-FILL ALGORITHM 

This chapter describes an in-fill algorithm which has 

been developed to operate on 'wire-frame' images generated 

by a conventional GDP-framestore architecture. The algorithm 

is implemented by a VSP as outlined in Chapter 1 using the 

architecture illustrated below: 

HOST 

SYSTEM 

VECTOR 
GENERATOR 

(GDP) 

RASTER 
FRAMESTORE VSP SCAN 

DISPLAY 

Figure 3.1 Outline Of VSP Based In-Fill System 

Features of the in-fill algorithm necessary for VSP 

implementation are examined together with the shortcomings 

of the existing in-fill techniques discussed in Chapter 2. 

Based on these criteria, an algorithm is developed and 

explained together with refinements necessary to support 

additional features such as colour and interlaced raster-

scan display. 

Initial development of the algorithm proceeded using 

software routines to simulate rudimentary forms of the 

algorithm. Many of the complexities, including the 

additional 'post-processing' required to support interlaced 

displays were developed during the algorithm implementation 

using test software. The techniques used are outlined in 

Chapter 4 along with the architectural details of the 

implementation. 
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3.1 REQUIREMENTS OF SURFACE IN-FILL ALGORITHM 

The VSP outlined in Figure 3.1 operates on the output 

from a conventional raster-scan framestore displaying a bit-

mapped 'wire-frame' image. The surface in-fill algorithm 

implemented by the VSP must therefore fulfil the criteria 

listed below: 

1). The algorithm must proceed in scan-line order. This is 

necessary as the VSP operates on a conventional 

raster-scan framestore to provide a direct video 

output. 

2). The in-fill algorithm should be compatible with the 

existing 'wire-frame' system described in Chapter 1 

which uses a GDP-based vector generation system. 

3). The VSP architecture implements the algorithm at pixel 

rate, therefore each output pixel must be generated in 

a fixed number of machine cycles regardless of image 

complexity). 

Of the four types of in-fill algorithm reviewed in 

Chapter 2, seed fill, parity check and edge fill methods are 

applicable to boundaries defined in a framestore. 

Seed fill algorithms (e.g. [Smit79][Lieb78][ShanSO]) 

operate in an image-dependent order using the framestore as 

a random access data memory. Implementation in scan-line 

order is not possible and seed fill algorithms are not 

suitable for a VSP based design. 

Parity check in-fill [FoVa84] proceeds in scan-line 

order and the trivial version (which simply toggles the 

output colour at each edge) may be implemented readily by a 

VSP. However, the modifications proposed by Pavlidis 
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[PavlSl], which are necessary to support vertices and 

quantization errors interrogate the contour in an arbitrary 

fashion and may not be performed in scan-line order. 

Edge fill techniques overcome the shortcomings of the 

trivial parity check technique by providing an unambiguous 

contour allowing in-fill to be provided using simple 

hardware [AcWeSl]. The unambiguous contour is provided by 

complex line drawing routines (e.g. [HaCh85]) and is not 

supported by conventional GDPs. 

Extensions of the trivial parity check (including edge 

fill) offer the only method of providing in-fill directly in 

scan-line order. It is the modifications required to provide 

in-fill in all cases which are not compatible with the VSP 

design constraints. The objective is then to develop an in-

fill algorithm based on parity check but fulfilling with the 

design criteria outlined above. 

Because the VSP must perform some form of contour 

interrogation a buffer must be included within the VSP 

architecture to provide information from pixels on previous 

scan-lines. Existing parity check and edge fill techniques 

are based solely on analysis of the contour and do not 

exploit connectivity of pixels adjacent to a given run. 

Extending the parity check algorithm to exploit the 

connectivity or vertical coherence between successive scan-

lines is discussed in the next section. 
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3.1.1 VERTICAT. COHERENCE 

Provided that previous lines have been in-filled 

correctly and edges drawn by the vector generator are at 

least eight-connected (this is true for lines drawn by all 

proprietary GDPs) then the colour of a run can be determined 

from its connectivity to the pixels above. 

PPPPPPPPP-• 
QQQQQQQQQb cR 

SSSSSSSSSd eT 

Figure 3.2 Section Of Framestore Showing Vertical Coherence 

Figure 3.2 shows two typical line segments S-P and P-T 

representing the vertex of a polygon, (using the same 

notation as Chapter 2). If the run of pixels b-c has been 

correctly in-filled then the run of pixels d-e may readily 

be filled as some pixels between d and e are four-connected 

to in-filled pixels between b and c. Similarly, the colour 

of the run of pixels b-c can be determined from pixels on 

scan-line x. These pixels have a colour opposite to that of 

the run b-c as they are separated by the horizontal edge P 

which is at least eight-connected to the edges Q and R 

defining the run b-c. Pixels on the scan-line containing x, 

however, are two scan-lines above run b-c and direct use of 

these pixels to determine the colour of run b-c requires a 

buffer which is longer than one scan-line. 

P 
QQ • 

• • RRR 
•ScT-• 
U--V-• 

Figure 3.3 Acute Vertex 
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Furthermore, consider the acute vertex depicted in 

Figure 3.3. In this case, correct in-fill can only be 

determined by the examination of pixels several lines above. 

For example, the colour of pixel c in Figure 3.3 is opposite 

to the colour of pixel x (which is four scan-lines above). 

Clearly the buffer can not be an arbitrarily defined length 

as suggested by these examples but must be fixed to the 

minimum possible length. This discussion has concentrated on 

connectivity between runs separated by edges; the next 

section examines the significance of connectivity within the 

edge itself. 

3.1.2 EDGE PROCESSING 

As the colour assigned to a pixel directly below a 

vertex (such as c in Figure 3.3) is determined by the pixel 

directly above the vertex (in this case x), it follows that 

the edges that separate these pixels must be four-connected 

vertically. For example, edge P which is directly below x is 

four-connected (vertically) to edge R which is directly 

above c. 

If a parameter is assigned to the vertex (denoted v-

flag) and passed to each edge below, it can be used to 

assist the in-filling of subsequent scan-lines by providing 

information on the colour of the run above the vertex (f-

flag denotes the fill value assigned to a particular run). 

This is illustrated by Table 3.1 (overleaf) showing values 

of the parameters v-flag and f-flag corresponding to the 

example shown in Figure 3.4. The value of v-flag is copied 

from any edge which is four-connected above, otherwise if 

the area above is clear (i.e. contains no edges) then a 

value opposite to that of the run above is assigned. 

Similarly the value of f-flag is copied from any run which 
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is four-connected above, if the area above is completely 

bounded by an edge then the value of v-flag is used. 

X Value of Value of 
PPPPPPPPP-•• v-flag f-flag 

QQQQQQQQQQQQQ P I T 1 x 0 
RRRRRRRRR-b- -SSSS Q 1 U 0 b 1 

• • ttTTTTTTT . c- - UUUU R 1 V I c 1 
d WWWW S I W O d l 

Figure 3.4 Table 3.1 

Example Of Edge Processing 

This procedure also provides correct in-fill for acute 

vertices which give rise to non-planar distortion caused by 

quantization effects. This is illustrated by Figure 3.4 in 

which the run containing pixel c and the isolated run 

containing pixel b are both correctly filled as the value of 

v-flag for edges Q and R are both derived from edge P and 

pixel X. 

The value of each flag is determined using 

information from the previous scan-line allowing the buffer 

to be limited to a single scan-line. In addition, the 

processing of an edge or a run can be multiplexed in the 

time domain as both an edge and a run cannot occur in the 

pixel stream simultaneously. 

3.1.3 NESTED REGIONS 

The arguments presented above do not depend on the 

particular value of pixel x and consequently correct in-

filling of nested regions is automatically provided. 

Furthermore, although the examples presented have been 

restricted to polygons, the process applies to in-filling of 

any planar region defined by a boundary which is at least 

eight-connected. 
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3.1.4 ALGORITHM 

An algorithmic description (in a 'Pascal-like' 

notation) of this process is given below: 

1 BEGIN 
2 FOR y = y.top TO y.bottom BY -1 DO 
3 BEGIN 
4 read.fifo (old.v-flag, old.f-flag) 
5 bound := TRUE 
6 clear := TRUE 
7 FOR x = x.left TO x.right DO 
8 BEGIN 
9 {PASS 2 : output line y+1 } 
10 IF start.edge (x, y+1) THEN 
11 read.fifo (old.v-flag, old.f-flag) 
12 output (old.f-flag) 
13 {PASS 1 : process line y } 
14 IF edge (x, y) AND clear THEN 
15 IF edge (x, y+1) THEN 
16 BEGIN 
17 v-flag := old.v-flag 
18 clear := false 
19 END 
20 ELSE v-flag := NOT old.f-flag 
21 ELSE IF start.run (x, y) THEN 
22 BEGIN 
23 write.fifo (v-flag, f-flag) 
24 bound := edge (x, y+1) 
25 clear := TRUE 
26 END 
27 bound := bound AND edge (x, y+1) 
28 IF bound THEN 
29 f-flag := old.v-flag 
30 ELSE f-flag := old.f-flag 
31 END 
32 write.fifo (v-flag, f-flag) 
33 END 
34 END 

Algorithm 3.1 Two-Pass Surface In-Fill Algorithm 

The algorithm operates in two passes although these 

may occur concurrently. The first pass processes the input 

pixel stream whilst the second pass provides the in-fill for 

the output pixel stream one scan-line above. 'Clear' is used 

when an edge is being processed to evaluate v-flag and is 

FALSE if there is another edge above (four-connected to) the 

edge being processed. 'Bound' is used during the processing 

of a run and is TRUE only if all the area above the run is 

part of an edge. The functions read.fifo and write.fifo 
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operate on a conventional first-in first-out (FIFO) buffer 

and allow the asynchronous passing of parameters v-flag and 

f-flag from the first pass to the second pass. The functions 

at (x, y) are defined from the input pixel stream for scan-

line y as shown below in Table 3.2: 

x-1 X edge start.edge start.run 

0 0 FALSE FALSE FALSE 
0 1 TRUE TRUE FALSE 
1 0 FALSE FALSE TRUE 
1 1 TRUE FALSE FALSE 

Table 3.2 Description Of Functions; 
edge, start.edge And start.run 

Where a '1' denotes that the input pixel is asserted (filled 

in the framestore) and a '0' indicates that the input pixel 

is negated (not filled in the framestore). 

3.2 LIMITATIONS OF THE IN-FILL ALGORITHM 

The preceding discussion has been limited to binary 

images (each pixel on or off) and has not considered the 

effect of the screen boundaries. Modifications to the 

algorithm necessary to support these situations are 

discussed in this section. 

A more severe problem arises when the algorithm is 

applied to images displayed using interlaced raster-scan and 

this is discussed in Section 3.3. 

3.2.1 INTERSECTIONS WITH THE SCREEN BOUNDARIES 

Several problems arise when the algorithm is applied 

at the top, sides, and bottom of screen and the cause of 

these problems is discussed overleaf, followed by a summary 

of procedures adopted to ensure correct in-filling under 

these conditions. 
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a - Intersections With The Top Of The Screen 

The algorithm can not be implemented for the first 

scan-line of the display (y = y.top) as no previous scan-

line has been processed (scan-line y+l is undefined). 

Although scan-line y+l is defined when processing the second 

scan-line the output values old.f-flag and old.v-flag are 

not present as the first scan-line has not been processed. 

The algorithm can commence on the second scan-line but must 

be modified to operate without the in-fill information for 

the previous scan-line (v-flag and f-flag). This modified 

algorithm is shown below: 

1 BEGIN 
2 v-flag := FALSE 
3 f-flag := FALSE 
4 FOR X = x.left TO x.right DO 
5 BEGIN 
6 {PASS 1 : process scan-line y } 
7 IF edge (x, y) THEN 
8 IF edge (x, y+l) THEN 
9 v-flag := TRUE 
10 ELSE 
11 IF start.run (x, y) THEN 
12 BEGIN 
13 write.fifo (v-flag, f-flag) 
14 v-flag := FALSE 
15 f-flag := edge (x, y+l) 
16 END 
17 ELSE IF edge (x, y+l) THEN 
18 f-flag := TRUE 
19 END 
20 write.fifo (v-flag, f-flag) 
21 END 
22 END 

Algorithm 3.2 Special Processing For First Line 

The values of f-flag and v-flag for the second scan-

line are thus determined by the presence of a pixel 

(detected by edge(x, y+l)) on the first scan-line. Thus the 

first scan-line is not processed by the algorithm but is 

reserved for use by the system software to place seed pixels 

to initiate filling. If a seed pixel is placed above a run, 

the f-flag is set and if a seed pixel is placed above an 
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edge, the v-flag is set. 

b - Intersections With The Sides Of The Screen 

Initial conditions for each scan-line are determined 

by the read.fifo operation performed at the start of each 

scan-line during the second pass of the algorithm. 

Processing of each scan-line during the first pass is 

concluded by a write.fifo operation at the end of each scan-

line . 

Therefore the algorithm interprets the left and right 

hand sides of the screen (x coordinate = x.left or x.right) 

as 'virtual' edges and areas bounded by this edge are 

correctly in-filled. 

+x 
+Q 
+bQQQ 
+c- dQQQ 

Figure 3.5 Intersection Of Line Segment With Screen Boundary 

For example. Figure 3.5 shows a line segment which 

intersects the left hand screen boundary (represented by 

'+') and in-filling of pixel b and subsequent in-filling of 

run c-d are both correctly derived from the value of pixel 

x. 

+ QQQ 
+x••QQQ 
+QQQ••c 
+bQ•••• 
+••QQ•• 
4-' • • ' Q * 

Figure 3.6 Vertex At Screen Boundary 

Figure 3.6 illustrates a problem in adopting a 

'virtual edge' approach. This occurrs when two lines meet or 

coalesce at the screen boundary. The area c is assumed to be 

in-filled correctly to the opposite value of pixel x but 
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area b is also erroneously filled to the same value as area 

c as b is separated from x by edge Q. 

c - Intersections With The Bottom Of The Screen 

At the bottom of the screen area, the algorithm has 

completed the processing of all scan-lines and consequently 

no limitations or special considerations are applicable to 

edges which intersect this boundary. 

Polygons which give rise to conditions (a) and (b) 

must be detected by the clipping procedures within the 

graphics software. Such ill-conditioned polygons require 

additional processing as outlined below: 

(i) If two edges of a polygon intersect the left-hand 

screen boundary, the x co-ordinate of the two points 

of intersection is incremented and a line is drawn to 

join those two points. 

(ii) If two edges of a polygon intersect the right-hand 

screen boundary, the x co-ordinate of the two points 

of intersection is decremented and a line is drawn to 

join those two points. 

(iii) If a polygon intersects the top screen boundary, a 

single pixel must be drawn as a seed directly above 

the area to be in-filled. Furthermore if the vertex of 

a polygon is incident on this boundary then a seed 

pixel must be placed directly above that vertex. 

In practice only a small proportion of all polygons 

are likely to be ill-conditioned and although extra software 

is required the worst case involves the drawing of a single 

extra line. Also, the magnitude of the errors incurred by 
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the modification of clipping co-ordinates is comparable to 

rounding errors resulting from the geometric transformations 

and is unlikely to be detectable by the human eye. 

3.2.2 REPRESENTATION OF COLOUR IMAGES 

The algorithm operates on a single framestore bit 

plane and colour images (represented using separate bit 

planes) require an independent VSP for each bit plane. This 

allows the representation of 2" colours, (where n is the 

number of bit planes), but regions which share a particular 

plane cannot be considered as completely independent and 

must not overlap. This imposes a limitation on the way in 

which colours may be assigned to model image features. The 

effect of this problem may be reduced by a careful choice of 

colours combined with a colour palette output mapping stage 

and is discussed further at the end of Chapter 4. 

3.3 IN-FILL OF SYSTEM USING INTERLACED DISPLAY 

The CGI system must provide an interlaced output if 

relatively low-resolution CCIR compatible [DTIC84] displays 

are to be used, in order to exploit the greatest possible 

vertical resolution. Production of an interlaced output is a 

problem for the two-pass algorithm as the algorithm requires 

in-fill information relating to the previous scan-line. For 

an interlaced picture this information is generated in the 

previous field period and, moreover, subsequent scan-lines 

are no longer output in true scan-line order. 
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3.3.1 INTERLACE PROVISION BY POST-PROCESSING 

A scheme to provide an interlaced output using the 

surface in-fill algorithm is illustrated in Figure 3.7. The 

in-fill algorithm is applied to a non-interlaced signal and 

an additional post-processing VSP is included to provide the 

required interlaced output. 

HOST 
SYSTEM 

FRAMESTORE 

NON-INTERLACEE 
SURFACE IN-FILL 

VSP 

INTERLACE 
RECONSTRUCTION 

VSP 

INTERLACED 
RASTER-SCAN 
DISPLAY 

HOST 
SYSTEM 

FRAMESTORE 

NON-INTERLACEE 
SURFACE IN-FILL 

VSP 

INTERLACE 
RECONSTRUCTION 

VSP 

INTERLACED 
RASTER-SCAN 
DISPLAY 

Figure 3.7 Interlace Post Processing Scheme 

If both odd and even fields are generated from the 

framestore simultaneously then the fully interlaced non-in-

filled wire frame image can be reconstructed by selecting 

the relevant field. This can be achieved using a two-input 

multiplexor with odd and even inputs and a controlling 

signal (the field select signal - FIELD) derived from the 

framestore. Alternatively if the odd and even bit streams 

are logically ORed together the resulting non-interlaced 

signal is independent of FIELD and identical for both even 

and odd fields. For a fully interlaced input of 512 by 512 

pixels this signal represents a non-interlaced display of 

one half the vertical resolution (i.e. a resolution of 512 

by 256 pixels). Although this represents a loss of 

information the two-pass algorithm can be applied readily to 

the resulting signal. The interlace post processing VSP must 

then reconstruct the full resolution (interlaced) in-filled 

image from a full-resolution interlaced contour and half-

resolution fill information. 

Consider Figure 3.8 (a) where AC and BD represent line 

segments of a polygon with a vertex above the figure, the 

interior of which is assumed to be in-filled. The scan-lines 
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including edges A and B and edges C and D represent the odd 

and even inputs respectively. Part (b) represents the value 

of f-flag and (c) and (d) the required outputs for odd and 

even fields respectively. The letters 'H' and 'h' are used 

to denote that the output value is asserted and negated 

respectively. 

AAA BBB 
CCC DDD 

(a) 

LLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLLLLLLLLLLL 
( b ) 

LLLLLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLLLLLLLL 
(c) 

LLLLLHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHLLLLLLLLL 
( d ) 

Figure 3.8 Simple Example Of Interlace Reconstruction 

Inside and outside the polygon the required output is 

simply equal to f-flag and in-fill is trivial. Correct 

reconstruction requires correct interpretation of f-flag, 

the field signal (FIELD - odd or even), and the bit stream 

inputs throughout the edges. 

An important feature is that the reconstruction is 

essentially one-dimensional and does not depend on whether 

the odd line is above or below the even line. This removes 

the necessity to distinguish specifically between odd and 

even lines but only to determine which edge is active for 

the required output field. 
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f-flag HHHLLLLLLLLL HHHLLLLLLLLL 
Odd line • • AAA AAA- • • 
Required output HHHHHHLLLLLL HHHHHHHHHLLL 
Even line BBB- • • • • EBB 
Required output HHHHHHHHHLLL HHHHHHLLLLLL 

(a) (b) 

Figure 3.9 Comparison Of Odd And Even Lines 

For example with reference to Figure 3.9 it can be 

seen that the required output for the odd and even fields of 

(a) are equivalent to the required output for the even and 

odd fields respectively of (b). Consequently the value of 

FIELD is not important except to determine which bit stream 

is active on that line (edges hereafter denoted by 'A') and 

which is non-active (denoted by 'N'). 

Before the interlace reconstruction is analysed it is 

helpful to simplify the problem by categorizing edges into 

smaller groups. An obvious distinction between edges is 

whether the edge defines the boundary between runs of 

differing value (i.e. different values of f-flag). In the 

following discussion, edges which coincide with a change in 

f-flag are termed type-1 edges and those with no change 

type-0 edges. 

Tvpe-1 Edges 

This category comprises all edges for which the value 

of f-flag changes at the start of the edge. Type-1 edges 

clearly define the partition between filled and non-filled 

regions on the same scan-line and can be reduced to the four 

cases shown below in Figure 3.10. 

f-flag LHHHHHHH HLLLLLLL LHHHHHHH HLLLLLLL 
Active bit stream AAA AAA AAA AAA 
Non-active bit stream -XXXNNN- XXXNNN- NNNXXX- NNNXXX-
Required output LHHHHHHH HHHHLLLL LLLLHHHH HHHHHHHL 

(a) (b) (c) (d) 

Figure 3.10 Examples Of Type 1 Edges 
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The pixels marked 'X' are 'don't care' and both four-

connected and eight-connected contours are correctly 

interpreted as the start or end of in-fill is determined by 

'A' only. These four cases are uniquely defined by the 

change of f-flag followed by the sequence 'AN' or 'NA' and 

detection and subsequent reconstruction is straightforward. 

Tvpe-0 Edges 

This group is more more complex and includes polygons 

which have collapsed to a single line and vertices which 

define an area of local maxima or minima. Single lines 

require the output value to be asserted during pixels 

denoted 'A' and to equal the value of f-flag at all other 

times (see Figure 3.11 below). 

f-flag LLLLLLLL LLLLLLLL HHHHHHHH HHHHHHHH 
Active bit stream • • AAA- • AAA AAA - - -AAA- - - -
Non-active bit stream NNNX XNNN- NNNX XNNN-
Required output LLLHHHLL LHHHLLLL HHHHHHHH HHHHHHHH 

(a) (b) (c) (d) 

Figure 3.11 Interlace Reconstruction Of Single Lines 

Areas of local maxima or minima (assuming only one 

maximum or minimum) can be divided further according to 

whether the vertex also corresponds to a maximum or minimum 

X co-ordinate (i.e. if the two lines are drawn from the 

vertex within the same quadrant). Vertices which do not meet 

this criterion can be reduced to the four basic cases 

outlined in Figure 3.12. 

f-flag LLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHH 
Active bit stream • -AAAA- - - AA - - - - AA- - -AAAA- - - AA- - AA 
Non-active bit stream NNX- -XNN- •XNNNNX- - NNX- -XNN- •XNNNNX- • 
Required output LLHHHHLLL HHHHHHHHL HHHHHHHHH HHLLLLHHH 

(a) (b) (c) (d) 

Figure 3.12 Interlace Reconstruction Of Simple Type-0 Edges 
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Vertices with two lines within the same quadrant can 

be reduced to the eight cases outlined below. 

f-flag LLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHH 
Active bit stream AAAA AA AA - • AAAA AA AA - • 
Non-active bit stream • NNNN-• -NNNN NN-NN-• NNNN-••• 
Required output LHHHHLLLL LLHHHHHLL HHHHHHHHH HHHHLHHHH 

(a) (b) (c) (d) 

f-flag LLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHH 
Active bit stream • • AAAA- • AA AA AAAA • AA AA - • • 
Non-active bit stream • NN-NN NNNN - • • NN-NN NNNN - -
Required output LLLHHHHLL LHHHHHLLL HHHHHHHHH HHHLHHHHH 

(e) (f) (g) (h) 

Figure 3.13 Interlace Reconstruction Of Complex Type-0 Edges 

Closer inspection of the type-0 sequences outlined 

above show that correct interpretation is not always 

possible by simple analysis of pixel sequences. For example 

Figure 3.11 (b) representing a single line is 

indistinguishable from the sequences at the start of Figure 

3.12 (b) and Figure 3.13 (f) yet the output value during 

pixel 'N' is different. The difference between the pixel 

sequence for Figure 3.12 (a) and that at the start of Figure 

3.13 (b) depends on there being no gap in the sequence of 

pixels 'NNNN' in Figure 3.13 (b), (should this occur the two 

sequences would become indistinguishable). A similar 

comparison can be made between Figure 3.11 (d). Figure 3.12 

(d) and Figure 3.13 (h) and between Figure 3.12 (c) and the 

start of Figure 3.13 (d). 

3.3.2 LIMITATIONS OF INTERLACE RECONSTRUCTION 

These examples show that correct interlace 

reconstruction requires additional information but simple 

sequence analysis provides an approximation for interlace 

reconstruction. 

In general, errors associated with mis-application of 

the in-fill algorithm to ambiguous contours results in a 
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catastrophic failure of the in-fill process. This is wholly 

unacceptable as complete regions of screen area may be 

represented with the wrong colour. 

In contrast, errors associated with an approximation 

to interlace reconstruction could occur only at type-0 edges 

producing an erroneous reconstruction restricted to the 

contour itself without affecting the in-fill of large areas. 

Sequence analysis provides the most straightforward solution 

and this form of image distortion was considered an 

acceptable compromise. 

3.4 SUMMARY 

Three requirements for a VSP implemented surface in-

fill algorithm have been stated; scan-line order, 

compatibility, and fixed cycle performance. Application of 

these criteria to existing in-fill techniques suggested that 

the required algorithm should be an extension of the parity 

check method operating solely on the serial bit-stream 

output from the framestore. Addition of a buffer within the 

VSP allows vertical connectivity to be incorporated but 

examples show that a fixed length buffer is not sufficient 

for the processing of vertices. This may be overcome by 

assigning a parameter to each vertex which is passed between 

successive scan-lines during the processing of each edge. 

A surface in-fill algorithm using this process has 

been presented which can be applied directly to all planar 

'wire-frame' images defined in a conventional framestore. 

The algorithm operates in two passes: During the first pass 

parameters are evaluated for each edge (v-flag) and for each 

run (f-flag). The second pass provides in-filling using 

these parameters to indicate the parity of each edge. 
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Performance of the algorithm at the screen boundaries has 

been examined and modifications to the graphics software 

necessary to ensure correct operation have been outlined. 

The additional problem of generating an interlaced output 

has been discussed along with a solution involving an extra 

VSP processing stage. 

With the exception of overlapping polygons (which 

result in non-planar regions) correct in-fill is provided 

with no modification to the operation of the vector 

generator, maintaining compatibility. The algorithm proceeds 

in scan-line order using a buffer to store a single previous 

scan-line. The final requirement of fixed cycle performance 

will be demonstrated in the following chapter. 
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CHAPTER 4 

IMPLEMENTATION OF IN-FILL SYSTEM 

This section outlines the development of a VSP-based 

system to implement in real-time the surface in-fill 

algorithm of Chapter 3. An outline of the complete 

CGI display system is given together with design criteria 

for compatibility with the existing 'wire-frame' system. 

Some of the design methods are then discussed, followed by a 

detailed description in two parts of the CGI display system 

architecture. The first part describes the framestore and 

vector generation hardware including control and interface 

circuitry necessary to support in-fill. The design of the 

in-fill VSP is described in detail in the second part. The 

chapter concludes with a discussion of performance results 

and observations. 

4.1 DESIGN OVERVIEW 

The block diagram of Figure 4.1 represents the 

physical layout chosen for the complete CGI display system. 

The graphics control section contains the double-buffered 

GDP-based 'wire-frame' system interfacing to the host 

system. It is composed of two PCBs (Printed Circuit Boards); 

the main board contains the GDPs and associated control 

circuitry and a sub-board for the framestore memory. The VSP 

in-fill board is a single separate PCB which implements the 

surface in-fill algorithm and interlace reconstruction, 

returning its output to the graphics control section. This 

arrangement is chosen as the final video output circuitry is 

on the graphics control board, allowing the system to be 

configured to operate in a non-in-filled mode without the 

in-fill section. The framestore memory is organised as 512 
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by 512 by 4, providing four colour planes all of which are 

in-filled by the VSP section. 

H HOST 
SYSTEM 

FRAMESTORE 
MEMORY 

I 
GDP & CONTROL | 

CIRCUITRY 

OUTPUT 
CIRCUITRY 

IN-FILL & 

INTERLACE 

PROCESSING 

SECTIONS 

GRAPHICS CONTROL SECTION VSP IN-FILL BOARD 

Figure 4.1 Overview Of CGI System 

A 512 by 512 pixel display using the GDP discussed in 

Chapter 1 (Thomson type EF9367 [ThSe89]) requires a pixel 

clock frequency of 12 MHz. This represents the highest 

frequency component within the CGI display system assuming 

that the VSP operates on one pixel per timing state. A 

synchronous design [WiPrSO] based on this clock is used 

allowing a modular implementation of the VSP. The cycle time 

of 86 ns allows the use of conventional low power Schottky 

TTL (LSTTL) [Texa82] devices for most of the design with 

FAST (Fairchild Advanced Schottky TTL) [Mull84] TTL devices 

for critical sections. 

The VSP design is modular and replicated for each 

colour plane making this application ideal for ASICs 

(Application Specific ICs) [BuGo87]. The anticipated volume 

of production and simple design do not justify the use of 

gate array or custom VLSI design. An ideal alternative is 

the use of PALs (Programmable Array Logic) [MoMe86] which 

not only reduce component count but allow design 

^^^i^ication using the PALASM logic simulation software 
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[MoMe83]. This approach has also been used to refine the 

existing 'wire-frame' system and to optimize the design of 

the interface and control circuitry. 

After the initial design of the VSP architecture had 

been completed development proceeded in three stages: First, 

simple software was written to simulate the EF9367 vector 

generator. Secondly, these results were used to create test 

vectors allowing direct simulation of the VSP modules with 

the PALASM logic simulator. Finally software was written to 

allow controlled images (such as single lines, single 

vertices, seed pixels and complete polygons) to be output 

from the framestore to the prototype system at different 

stages during its construction. This included the adaptation 

existing graphics library and development of software 

to allow the image form to be altered dynamically under host 

system keyboard control. 

An example PALASM source file is given in Appendix ii 

and circuit schematic diagrams for the complete system are 

given in Appendix III. All of the test software was written 

in BCPL [RiWS85], a systems implementation language, and has 

been described by the author in a previous report [Evem87] 

which also contains all of the PALASM source files. 

4.2 GRAPHICS CONTROL SECTION 

The graphics control section is based on the existing 

system described in Chapter 1 incorporating 

some design improvements and minor modifications necessary 

to support the VSP in-fill board. The existing double-

buffered architecture is outlined first (a detailed 

description has already been given by the author 

[Evem85]). This is followed by a description of the 
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transparent write modification (necessary to support the in-

fill VSP) and the colour palette output circuitry. 

a - Double-Buffered Graphics Architecture 

The double-buffered scheme uses two identical GDPs in 

conjunction with two framestores as shown in Figure 4.2. One 

GDP (e.g. GDPl) in conjunction with its own framestore is 

designated as 'write-only' allowing its internal hardwired 

vector generator to be used at full efficiency whilst the 

other (GDP2) is displaying its respective framestore. At the 

end of each frame the GDPs switch tasks together allowing 

GDPl to display its filled framestore whilst GDP2 is 

designated as 'write-only'. 
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Figure 4.2 Outline Of Double-Buffered Configuration 

Both GDPs operate independently but are synchronized 

to the same line and frame positions by the controller. 

Synchronization is performed by comparing the SYNC signals 

from each GDP (the SYNC signal is a composite horizontal and 

vertical synchronization signal) and inhibiting one GDP 

until the SYNC signals match. 

The GDP can operate in one of three modes display, 

write and refresh (necessary because of the use of dynamic 
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memory (DRAM)). The mode of operation for each GDP (display 

or write only) is selected under software control and 

communication between the controller and the software is via 

a read/write control register. The control register also 

indicates to the graphics software that the 'end of frame' 

has been reached and the buffers must be swapped. 

Dynamic memory (DRAM) [Texa84] is used for framestore 

memory as it provides the most attractive technology in 

terms of cost and density. In display mode the GDP accesses 

the framestore memory in scan-line order and provides 

horizontal and vertical synchronization. The access time for 

DRAM devices is too great for memory read cycles to access 

each pixel individually and the EF9367 GDP is configured to 

access the DRAM array as an eight-bit word in display mode. 

The shift register is used to convert this byte into a 

serial-bit stream at the 12 MHz pixel frequency. Each memory 

read cycle is implemented as a 'read-modify-write' cycle 

allowing the entire framestore to be erased during the 

display phase. This avoids the need to erase each line 

segment individually before the next image is drawn. 

During write mode the vector generator provides 

addresses to enter individual pixels into the framestore 

using co-ordinate information transferred from the host 

system via internal registers. Eight DRAM devices are 

required to allow byte-wide access at display time and 

individual access for the vector generator using the 

selector. 

The GDP was specifically designed for direct use with 

DRAM devices and accordingly the memory addresses are output 

in two stages. It is necessary that control signals to the 

DRAM are synchronized with the address sequencing and an 
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additional address latch is included to provide the 

controller with precise control. The address lines to the 

DRAM array have a high intrinsic capacitance and series 

resistors are used to reduce current impulses when address 

values change [Mits82][HaRa84]. 

The controller generates all the timing necessary for 

the memory read and write operations and controls the 

loading of the shift register. This shift register has bi^ 

directional parallel data lines and can be configured to act 

as the data source during write operations. The output is 

cleared and enabled if a logic zero is required (pull-up 

resistors ensure a logic one if the output is not enabled). 

This configuration is determined by mode control inputs 

generated by the controller. 

The controller is a Moore type finite state machine 

[LeeS76] which is operated at the dot frequency, each memory 

operation taking eight timing states. The mode of operation 

is defined by the GDP outputs ALL and BLK (the video 

blanking signal) according to Table 4.1 below and 

conditional outputs which depend on the mode of operation 

are generated separately for each buffer. 

MODE BLK ALL 

DISPLAY 0 0 
WRITE 1 1 
REFRESH 1 0 

Table 4.1 GDP Mode Control Outputs. 

The controller circuitry is implemented using three 

registered PAL devices (type 16R8). Both fields of each 

frame are required by the interlace reconstruction VSP and 

the framestore is configured to generate these concurrently, 

providing eight serial bit-streams of pixel data. In 
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addition, three synchronizing signals are passed to the in-

fill VSP; vertical synchronization, horizontal 

synchronization and the field select signal. 

b - Transparent Write Mndifinmtinn 

Four colour planes are implemented in the framestore 

memory using individual DRAM devices with an internal four-

bit data bus structure. Independent in-filling of each 

contour by the VSP requires that they be completely non-

interacting. However, as the vector generator cannot write a 

pixel in one colour plane without writing a value into the 

other planes and possibly erasing part of a contour in that 

colour plane. 

This difficulty is overcome by implementing the write 

cycle as a 'read-modify-write' cycle. The value of a 

location is read into the shift register and only the colour 

plane to be accessed is modified, then the value is written 

back to that location. 

C - Output Cirrnifry 

The eight-bit outputs from each framestore (four-bits 

for each field) are multiplexed to a single output under 

software control. The eight-bit data stream is passed to the 

in-fill VSP board and to an additional multiplexor activated 

by the FIELD signal. This provides a direct four-bit non in-

filled output allowing the graphics control card to operate 

without the in-fill VSP board. A similar output is returned 

from the in-fill VSP board which includes the in-fill 

processing delays and is in phase with the in-filled data 

stream. This provides a non in-filled output when the 

complete system is configured and the output from the second 

is disabled. A non in-filled data stream assists 



81 

debugging and provides flexibility, allowing the in-fill 

function to be inhibited for individual colour planes. 

The colour palette (Inmos type IMSG170 [IninG89]) 

allows full software mapping of the corresponding eight 

lines via a colour look-up-table (GLUT) to provide a choice 

from a palette of possible 256k colours. A CCIR compatible 

75 n impedance output is provided [CaTo69] which can be 

directly coupled to an analog RGB monitor. A TTL level 

synchronization signal is derived directly from the GDP. 

4.3 VSP IN-FILL BOARD 

The in-fill board section contains four independent 

surface in-fill and interlace reconstruction VSP systems 

together with the associated control circuitry and 'glue' 

logic. The implementation of the 'post-processing' interlace 

reconstruction VSP is separate from the surface in-fill VSP 

and a discussion of its design is deferred until the end of 

this section. An outline of the VSP architecture necessary 

to implement the surface in-fill algorithm is given below. 

HSYNC 

VSYNC-

> OUT 

LINE BUFFER 

FIFO 

MP 

PL 

SP 

Figure 4.3 Outline Of Surface In-Fill VSP Architecture 
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The first pass of the algorithm is implemented by a 

straightforward microcontroller (MP - Main Processor) and 

associated datapath (PL - Pixel Logic). The inputs from the 

framestore are the serial bit stream (logical OR of odd and 

even fields) along with frame (VSYNC) and line (HSYNC) 

synchronizing signals. 

The line buffer provides a single scan-line delay and 

allows the concurrent implementation of the second pass of 

the algorithm on the previous line. The second pass is less 

complex and is shown as a single block combining datapath 

and controller (SP - Second Pass processor). The FIFO 

implements the functions write.fifo and read.fifo described 

in Section 3.1.4 allowing the first pass of the algorithm to 

communicate f-flag and v-flag to the second pass. 

A more detailed analysis of each block is presented in 

the following sections. 

4.3.1 FIFO 

The FIFO function may be implemented directly by any 

conventional device supporting a two-bit word and operating 

at the required speed. A MSI (Medium Scale Integration) TTL 

FIFO device (type 74LS222) is used which provides first-in-

first-out storage of up to 16 four-bit words. The depth of 

the buffer places a upper limit of 16 on the maximum number 

of edges which can be processed in one scan-line. Expansion 

by cascading additional devices is straightforward, but as 

this depth is sufficient for the anticipated image 

complexity a single device is used. 

The 74LS222 FIFO can be written to and read from 

asynchronously using two edge-triggered inputs; LDCK and 

UNCK respectively. An overriding reset input is provided 

(CLR) which may be connected directly to the vertical 
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blanking signal to initialize the FIFO at the start of each 

field. 

A restriction of this device [TexaSl] is that 

asynchronous operation is not guaranteed when only one value 

is stored in the FIFO. To overcome this an extra value is 

stored at the end of each scan-line and retrieved at the end 

of the next scan-line, ensuring that any retrieve operation 

will always leave at least one value in the FIFO. This 

decreases the maximum number of edges which can be processed 

in one scan-line from 16 to 15. 

4.3.2 SECOND PASS PROCESSOR 

The second pass of the surface in-fill algorithm is 

simpler than the first pass and the implementation of this 

section is discussed first as an introduction to the design 

approach. 

First the task of the VSP is separated into two 

sections; controller and datapath. Referring to Algorithm 

3.1 (Section 3.1.4) the objective is to implement the 

procedure for each pixel (within the 'FOR x' loop) in a 

single machine cycle. A limited number of additional timing 

states are acceptable for each scan-line (within the 'FOR y' 

loop) to initialize parameters. Initialization of the 

complete system at the start of each field is synchronized 

to the vertical blanking signal and is assumed throughout 

this Chapter. 

The only data handled during the second pass are the 

binary parameters old.f-flag and old.v-flag and the only 

operation is simple storage, making the datapath 

implementation trivial. The operation of the controller may 

then be represented using an Algorithmic State Machine (ASM) 
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chart [Clar73][WiPrSO)][Mano84] as shown in Figure 4 .4 

below. 

START 

SLl 

SLl 

TARTEDGE 

SLl ^ 

^ 0 

ITARTfDGE 

UNLOAD FIFO 

HOLD V-FLAG 
HOLD F-FLAG 

WAIT FOR 
START OF UNE 

Figure 4.4 ASM Chart Representing Operation Of SP 

Two datapath operations are performed; during state S2 

the FIFO is unloaded and values of old.f-flag and old.v-flag 

are retrieved, during state S3 the values are held 

(providing the function output(old.f-flag) implicitly). 

State SI represents a null operation during which the 

operation of SP is inhibited, forced by the assertion of the 

external input signal SLl (generated by the central timing 

control discussed in Section 4.3.6). The value of start.edge 

is derived directly from the pixel bit-stream output from 
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the line buffer according to Table 3.2. 

The states are assigned such that the least 

significant bit of the state code is zero when a FIFO unload 

operation is required simplifying the operation of the 

datapath. Using these assignments the finite state machine 

controller and the datapath can be completely implemented 

using one 16R8 PAL. 

4.3.3 MAIN PROnKSSnP 

The main processor (MP) is the controller which 

implements the first pass of the surface in-fill algorithm 

in conjunction with the datapath PL. Controller MP operates 

directly on input scan-line (y) to implement Table 3.2 

unloading the FIFO and changing the mode of the datapath 

accordingly. Datapath PL uses the output from the line 

buffer (scan-line y+l) evaluating Table 3.2 to determine 

values of the variables 'bound', 'clear', f-flag and v-flag. 

Referring to Algorithm 3.1 the program flow of the 

controller MP depends only on the function values for scan-

line y, i.e. edge(x, y) and start.run(x, y). The program 

implemented by MP must also incorporate the special 

operation for the first line (Algorithm 3.2) and the 

additional procedures required between scan-lines. A state 

diagram representation of the complete program, providing 

single-cycle performance (which may be implemented in a 

single 16R8 PAL) is given in Figure 4.5 overleaf, followed 

by a description of each state. 
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MP State Diagram 



87 

STATE 0 (START) 

In this state the system is awaiting the start of the 

first line of a field, indicated by the signal MLl. 

STATE 12 (WAIT) 

Indicates that the processor is awaiting the start of 

a subsequent (not first) line and indicates that the main 

algorithm has begun. The start and end of a scan-line is 

indicated by MLl and ML2 respectively. 

STATES 8,9,3,10,1 (SEDGE,EDGE,FRUN,SRUN,RUN) 

These states control the operation of the main 

algorithm throughout a single line. EDGE and RUN indicate 

the presence of a true or false pixel in the input bit-

stream (EDGE corresponds to a TRUE result for the function 

edge(x, y)). The prefix S indicates that it is the first 

pixel of an edge or run (corresponding to start.edge(x, y) 

and start.run(x, y)) and changes the mode of the datapath. 

The condition start.edge(x, y) is not present in Algorithm 

3.1 but is included as the datapath requires one state for 

the previous result to be collated. The first pixel of a run 

(SRUN) is followed by the loading of the FIFO except during 

state FRUN which indicates the start of a run coincident 

with the first pixel of the scan-line. The FIFO is also 

loaded directly after any edge (states SEDGE or EDGE) if 

that pixel is the last pixel in the scan-line (indicated by 

ML2 high). 

STATES 2,6,7 (EDGEl,RUNl,SRUNl) 

These states control the special processing of the 

first scan-line and configure the datapath to detect the 

presence of a seed pixel above. EDGEl and RUNl have similar 

meanings to their counterparts described above but the 

suffix '1' indicates that they relate to the first line. 
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Similarly the FIFO is loaded directly after state SRUNl and 

after EDGEl if ML2 is high. State EDGEl has a dual role and 

is also used at the end of a scan-line (when ML2 is high) 

after states RUNl and SRUNl allowing the datapath to 

calculate f-flag before the FIFO is loaded. 

STATE 4 (END) 

"̂ his state indicates the end of each scan—line loading 

the FIFO with the final values of f-flag and v-flag. 

STATE 5,14 (CEND,ELOAD) 

These states indicate that the end of a scan—line has 

been reached immediately after a previous state which loaded 

the FIFO. They provide a dummy state in which the datapath 

calculates final values of v-flag and f-flag before the FIFO 

is loaded by state END. State CEND directly follows states 

SRUN and FRUN allowing time for the datapath to calculate f-

flag. Similarly state ELOAD directly follows states EDGEl, 

EDGE and SEDGE when these states have been used to load the 

FIFO (as described above) and allows time for the datapath 

to calculate v-flag. 

STATES 13,11 (DUMMY,EXTRA) 

After the processing of every scan—line, a dummy state 

(DUMMY) and an extra FIFO load cycle (EXTRA) is executed. 
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4.3.4 PIXEL LOGIC DATAPATH 

Datapath PL operates on the output from the line 

buffer (scan-line y+1) using the signals old.f-flag and 

old.v-flag and determines the parameters 'bound', 'clear', 

f-flag and v-flag. The mode of operation is controlled by 

controller MP via four inputs representing the states 

described in the previous section. Datapath PL can also be 

implemented using a single 16R8 PAL device but requires an 

external OR operation as there are insufficient product 

terms to evaluate v-flag. The modes of operation are 

summarized in Table 4.2 below, where '*' denotes a logical 

AND ' +', a logical OR and ' ' a logical NOT • 

STATE INTERNAL FLAGS f-flag OUTPUT V-flag OUTPUT 
(FROM MP) B(bound) C(clear) F V 

START 0 1 1 0 V 
RUN 1 B*P 1 F V 
EDGEl 2 1 1 F V+P 
FRUN 3 B*P 1 0 V 
END 4 1 1 F V 
CEND 5 1 1 B*P*OF+(B+P)*OF V 
RUNl 6 1 1 F+P 0 
SRUNl 7 1 1_ P_ _ _ V 
SEDGE 8 1 C*P B*P*OF+(B+P)*OF (C+P)*OV+C*P*OF 
EDGE 9 1 C*P F (C+P)*OV+C*P*OF 
SRUN 10 B*P 1 F V 
EXTRA 11 1 1 F V 
WAIT 12 1 1 0 V 
DUMMY 13 1 1 0 V 
ELOAD 14 1 1 F V 

Table 4.2 Operating Modes Of Datapath PL 

P represents the bit stream input and OF and OV 

represent the values for old.f-flag and old.v-flag 

respectively. Values of F, V,B and C used as inputs to the 

table represent results from the previous operation (timing 

state). 
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4.3.5 LINE BUFFER 

The line buffer is implemented by a shift register 

with a length equal to the number of pixels in one scan-

line, i.e. 512 bits. When the design was undertaken (1986) 

the only 512-bit devices were constructed using NMOS 

technology and could not support the required operating 

speed of 12 MHz. At that time 256-bit bipolar devices were 

available [TRWS81], but as two devices would be needed for 

each of the eight line buffers (one for each field of each 

colour plane) a total of sixteen devices would be required 

and the resulting cost of over £576 made their use very 

unattractive. 

An alternative implementation of the 512 by eight 

shift register function at a much lower cost is provided 

using two static RAMs (SRAMs) configured to operate in a 

double buffered mode. An outline of this circuit is 

illustrated in Figure 4.6 below. 

SRAM 1 

SRAM 2 

ADDRESS AND 
CONTROL LOGIC 

Figure 4.6 Implementation Of Line Buffer 

The SRAM devices (Cypress type CY128-45 [CySe86]) have 

an address access time of 45ns and data can be transferred 

to or from the latches (FAST type 74F374) within the cycle 

time of 86ns. The SRAM address inputs (common to both 

devices) are incremented after each cycle and whilst data is 
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being written into one SRAM, data for the previous line is 

read from the other SRAM. At the end of each scan-line the 

operation of each SRAM is transposed and the address counter 

is reset. The address counter and read/write mode control is 

provided by a PAL (type 20X10) with some additional simple 

circuitry. 

The latches insert two extra delays into the data path 

giving a total line buffer delay of 514 bits. Reducing this 

to the desired value of 512 bits (by shortening the address 

count to 510) is not possible (as the complete 512-bit scan-

line must be stored in the SRAM) and two compensatory delays 

must be added to the pixel data not passed through the line 

buffer. 

4.3.6 CENTRAL TIMING CONTRnT, 

Each in-fill VSP section requires four common control 

signals MLl, ML2, SLl, and SL2. These signals are generated 

by a PAL (type 16R8) and are derived from the horizontal and 

vertical synchronization signals output from the main 

graphics control section. 

MLl, ML2, SLl, and SL2 remain high throughout the 

horizontal and vertical blanking periods and are low when 

processing a normal scan-line. The timing of these signals 

at the start and end of an individual scan-line is 

illustrated in Figure 4.7 (a) and (b) respectively and 

determines the sequencing of MP and SP at this time. MLl and 

ML2 remain high throughout the first scan-line of a field 

suspending operation of MP until the line buffer is filled. 

Similarly, SLl and SL2 do not activate SP until the third 

scan-line, when MP has completely processed the first scan-

line. In addition to these signals a signal IBLANK is 
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generated to provide video blanking outside the display 

window. 

Pixel bit-stream LLLLLL-512 bits of data- LLLLLL 
Horizontal Sync Input HHLLLLLLLLL LLHHHHHHHHHH 
MLl (except first line) HHHHHHLLLLL LLLLLLHHHHHH 
ML2 (except first line) HHHHHHHLLLL LLLLLLLHHHHH 
SLl (except first 2 lines) HHHLLLLLLLL LLLLLLHHHHHH 
SL2 (except first 2 lines) HHHHHHHHHLL LLLLLLLLLHHH 

(a) (b) 

Figure 4.7 Sequencing Of Timing Control Signals 

4.3.7 INTERLACE RECONSTRUCTION 

The in-fill VSP system described above operates on the 

logical OR of the odd and even fields producing a lower 

resolution in-fill signal. An additional VSP stage (IP) 

reconstructs the surrounding contour at full resolution 

using the arrangement illustrated in Figure 4.8 below. 

FIELD: ODD/EVEN-

ODD FIELD IN-
EVEN FIELD OUT 

TO MP, SP, & PL FROM SP 

LINE BUFFER 

Figure 4.8 Interlace Reconstruction System 

This process was outlined in Section 3.3 and contour 

reconstruction is based on a sequential analysis of both 

non-in-filled bit-streams (odd and even field) in 

conjunction with the output from SP (representing the value 

of f-flag). The output required for all expected input 

sequences was given in Figures 3.10 - 3.13 in Section 3.3.1. 

Analysis of these figures indicates that the length of a 

particular sequence (e.g. 'AAA' or 'NNN') is unimportant, 
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moreover, for each figure a state can be assigned to 

represent any repetitive unchanged condition. For example, a 

single state can represent a non-in-filled run; in which f-

flag, 'N' and 'K' remain negated for an arbitrary number of 

cycles. It can be determined by inspection that seven 

independent states are sufficient to represent the decision 

flow of each figure, allowing a finite state machine 

implementation. These assignments are illustrated below and 

overleaf in Figures 4.9 - 4.12 followed by a description of 

each state. These figures also show the actual output 

generated by the finite state machine indicating the contour 

distortion errors consistent with the ambiguities described 

in Section 3.3.1. 

State assignments 26667777 75553332 23335557 77775552 

f-flag LHHHHHHH HLLLLLLL LHHHHHHH HLLLLLLL 
Active bit stream -AAA AAA AAA AAA-
Non-active bit stream XXXNNN- XXXNNN- -NNNXXX- NNNXXX-
Reguired output LHHHHHHH HHHHLLLL LLLLHHHH HHHHHHHL 

Actual output LHHHHHHH HHHHLLLL LLLLHHHH HHHHHHHL 
(a) (b) (c) (d) 

Figure 4.9 State Assignments Corresponding To Figure 3.10 

State assignments 26667777 75553332 23335557 77775552 

f-flag LLLLLLLL LLLLLLLL HHHHHHHH HHHHHHHH 
Active bit stream • • AAA • AAA AAA • AAA • • • 
Non-active bit stream NNNX XNNN • NNNX XNNN • 
Required output LLLHHHLL LHHHLLLL HHHHHHHH HHHHHHHH 

Actual output LLLHHHLL LHHHHHHL HHHHHHHH HHHHHHHH 
(a) (b) (c) (d) 

Figure 4.10 State Assignments Corresponding To Figure 3.11 
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State assignments 7224555332 264777552 7775555557 755555457 

f-flag LLLLLLLLLL LLLLLLLLL HHHHHHHHHH HHHHHHHHH 
Active stream •• AAAA-•• -AA-• AA- •• AAAA-•• AA •-AA-
Non-active stream •NNX••XNN• ••XNNNX•• •NNX••XNN• ••XNNNX•• 
Required output LLLHHHHLLL LHHHHHHHL HHHHHHHHHH HHHLLLHHH 

Actual output LLLHHHHLLL LHHHHHHHL HHHHHHHHHH HHHHHHHHH 
(a) (b) (c) (d) 

Figure 4.11 State Assignments Corresponding To Figure 3.12 

State assignments 2264453322 234435522 755555577 7755555577 

f-flag LLLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHHH 
Active stream • - AAAA AA - AA - • - AAAA AA - AA -
Non—active stream •••NN•NN•• •NNNN NN•NN•• ••NNNN - -
Required output LLHHHHLLLL LLHHHHHLL HHHHHHHHH HHHHHLHHHH 

Actual output LLHHHHLLLL LLHHLHHLL HHHHHHHHH HHHHHHHHHH 
(a) (b) (c) (d) 

State assignments 2233544522 266755322 777555577 7755544777 

f-flag LLLLLLLLLL LLLLLLLLL HHHHHHHHH HHHHHHHHHH 
Active stream • • • AAAA - • AA AA AAAA • • - AA - AA -
Non-active stream • NN NN NNNN - • NN NN NNNN-
Required output LLLLHHHHLL LHHHHHLLL HHHHHHHHH HHHHLHHHHH 

Actual output LLLLHHHHLL LHHHHHLLL HHHHHHHHH HHHHHHHHHH 
(e) (f) (g) (h) 

Figure 4.12 State Assignments Corresponding To Figure 3.13 

STATE 2 

This state represents a non-in-filled run 

(entered when f-flag, 'N' and 'A' are negated) and 

negates the video output. 

STATE 7 

Represents an in-filled run and is entered when 

f-flag is asserted and both bit streams are negated 

and asserts the video output. This state is also 

entered when 'N' is asserted in cases where in-fill is 

required. 
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STATE 3 

This state is represents pixels 'N' which 

require no video output. 

STATE 4 

This state is entered when both 'K' and 'N' are 

asserted providing a method to distinguish between 

different type 0 edges and asserting the video output. 

STATES 5 AND 6 

Entered when 'K' is asserted. These states 

provide intermediate positions during the sequence 

detection and generate an asserted video output. 

An additional state (STATE 1) is included to provide 

blanking outside the display window and the full state 

transition diagram is given in Figure 4.13 below. The values 

of 'A' and 'N' are derived from the odd and even bit-streams 

using the FIELD signal. 

A = A C T ^ t PIXEL INPUT 
N = NON-ACTIVE PIXEL INPUT 
F = F-FLAG 

(F+NH AN 

Figure 4.13 State Transition Table For Processor IP 
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This provides single cycle performance and the states 

are assigned such that the most significant bit of the state 

number corresponds to the assertion or negation of the video 

signal. Two separate finite state machines can be 

implemented on a single PAL (type 16R8) allowing the full 

system to be implemented using two devices per colour plane. 

4.4 SUMMARY 

This chapter has described the design of a CGI system 

to implement the surface in-fill algorithm of Chapter 3. 

This system is composed of two parts; the graphics control 

section, and the VSP in-fill sub-system. 

The graphics control section uses a double-buffered 

framestore, with host system interface and vector generation 

provided by a Thomson EF9367 GDP. 

The in-fill sub-system uses three VSP sections to 

implement the in-fill algorithm. The main processor (MP) and 

associated datapath implement the first pass of the 

algorithm, storing values of v-flag and f-flag in a FIFO 

buffer. A second processor (SP) retrieves f-flag and v-flag 

from the FIFO and implements the second pass of the in-fill 

algorithm. An additional interlace 'post-processing' stage 

(using the third processor (IP)) performs interlace 

reconstruction according to the edge types discussed in 

Chapter 3. Each VSP provides single-cycle per output pixel 

performance and is implemented using a finite state machine 

operating at pixel rate. 
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CHAPTER 5 

ANALYSIS OF IN-FILL SYSTEM 

5.1 RESULTS AND PERFORMANCE 

A CGI system providing an implementation of the two-

pass surface in-fill algorithm has been built and tested. 

The geometric calculations are performed by a Motorola 

m68000 microprocessor based system and vector generation is 

implemented with a Thomson EF9367 GDP. The complete CGI 

system has been integrated with the flight simulation system 

at the Department of Electronics and Computer Science, 

Southampton University and provides an image represented by 

approximately 25 four-sided polygons. 

5.2 OBSERVATIONS AND DISCUSSION 

Plates 51 and 511 illustrate images generated by this 

system and typically contain hills, a horizon, a runway with 

a centre-line and taxi-way, and approximately ten fields. 

Performance of the complete CGI system is influenced 

by the software overheads required to process ill-

conditioned polygons. This reduces the total number of 

polygons which can be represented when compared with the 

existing 'wire-frame' only system and is difficult to assess 

as the system must be able to cope with a worst-case image 

in which the highest number of ill-conditioned polygons is 

anticipated. Extensive use in a real-time application, 

however, has demonstrated that reduction of performance due 

to the conditioning software is insignificant. 

The picture distortion resulting from the processing 

of ill-conditioned polygons is not discernible to the un-

aided eye. Contour distortion arising from the interlace 

reconstruction is apparent only at the vertices of some 
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polygons particularly when the angle of incidence to the 

horizontal is small. An example of this can be seen in Plate 

51 at the right of the black polygon near the runway area. 

All visual detection and recognition effects involve 

memory processes [RoKa76]. Image distortion effects become 

more apparent when they are known to exist and are enhanced 

when the image is created in a manner which causes the 

distortion to be present continually or occur regularly. The 

irregular motion and attitude of an airplane gives an image 

in which the contour distortion is not readily noticeable 

under normal operation. 

The major limitation of the system is the inability to 

process overlapping polygons which are represented using the 

same colour plane. Flight simulation applications allow the 

position of objects in 'world—space' to be predefined in 

order to minimize the likelihood of this event. It is still 

possible, particularly at low altitudes, to position the 

airplane such that polygons which reduce to single lines 

near the horizon can overlap causing in-fill errors. This 

could be prevented by removing offending polygons but as 

these events are rare and detection is difficult a solution 

has not been pursued. 

The number of completely independent colours which can 

be represented is limited to four, but this has not imposed 

a noticeable restriction on the number of different coloured 

regions which can be presented. This is due to the support 

of nested regions and to the flexibility provided by the 

colour palette device, allowing overlapping regions to be 

defined in a different colour. An example of this is the 

grey runway region; defined using the same image plane as 

the hills but assigned with a different colour (the hills 
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overlap the sky whereas the runway region overlaps the 

ground). 

Despite the various limitations of this technique the 

resulting image is rarely impaired and provides a major 

improvement in training value when compared to the original 

'wire-frame' image. 
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Plate 51 

Plate 511 
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CHAPTER fi 

A VSP-BASgP TEXTURE MAPPING ARCHITECTURE 

This chapter presents an architecture to provide 

texturing by image mapping using a VSP as proposed in 

section 1.3. An outline of the proposed texturing system is 

shown in Figure 6.1 below: 

FROM OTHER 
VSP SYSTEMS 

SOURCE VSP 

IMAGE SYSTEM '( + TO 

DISPLAY 

FROM EXISTING 
CGI SYSTEM 

Figure 6.1 Outline Of VSP Based Texturing System 

The source image represents the predefined region of 

detail to be mapped onto the screen and is defined using the 

texture co-ordinate pair (u,v). The framestore containing 

the source image is scanned in conventional scan-line order 

generating a serial bit-stream which is passed to the VSP 

system. The output from the VSP system is then merged with 

the video signal representing the existing non-textured 

objects of the image to provide the final combined image. A 

more complex application might use several image mapping 

systems combined at this stage to render additional regions 

of high detail. The architectural features of the VSP system 

are developed in this chapter; full implementation details 

are deferred until Chapter 7. 

First, the suitability of existing image mapping 

technigues (g.v. Chapter 2) to a VSP architecture is 

examined and found to favour a separable (two-pass) 
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approach. Shortcomings of existing two-pass techniques are 

discussed in order to formulate objectives for the proposed 

system. 

Subsequently a one-dimensional spatially-variant 

filtering algorithm is developed to support the two-pass 

transformation technique. This is formulated from first 

principles and optimized to produce an efficient VSP 

implementation. 

Finally the process of generating mapping co-ordinates 

for each pass of the transformation is described in detail. 

These are derived from the position (p«, Py and ) ="3 

attitude and <p,) parameters introduced In section 

1.2.1. special^ procedures are also presented to solve the 

bottleneck problem (Section 2.3.2) introduced by the two-

pass technique. 

The filtering algorithm was simulated in a non-real-

time environment using software routines in conjunction with 

a test-bed framestore. This system was also used to develop 

the scan selection algorithm (Section 6.3.5) and an example 

program listing (in the. BCPL systems implementation 

language) is given in Appendix IV. Full listings of all the 

support software are given by the author in a specific 

report [Evem89]. 

A 1 RKOUIREMENTS OF VSP-BASED IMAGE MAPPING SYSTEM 

The VSP system outlined in Figure 6.1 operates on the 

serial bit-stream from the source image framestore generated 

in scan-line order. Similarly the output from the VSP system 

must be produced In scan-line order and synchronized both 

with other systems and with the remainder of the RTIG 

system. In addition, filtering must be provided to prevent 
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aliasing. This filtering must be spatially variant because 

of the non-affine mapping function. For real-time operation 

the filtering process must operate in a predefined number of 

cycles regardless of the position or attitude of the source 

region. 

The effect of the processing order of existing 

transformation techniques is discussed first, followed by an 

examination of requirements for the filtering process. 

6.1.1 REQUIREMENTS IMPOSED ON THE MAPPING ORDER 

Clearly the order in which the transformation is 

performed will affect the suitability of a particular method 

to a VSP implementation. Aside from filtering methodologies, 

the texture mapping techniques reviewed in Chapter 2 may be 

classified into two groups: single-pass and separable (two-

pass) mappings. 

Single-pass methods (e.g. [Bolt79],[FeSk84]) usually 

operate using an inverse mapping following a procedure 

similar to that shown below: 

1 FOR (each screen scan-line y) DO 
2 FOR (each screen pixel x) DO 
3 BEGIN 
4 Compute u,v = f(x,y) 
5 Copy Source Pixel[u,v] to Screen Pixel[x,y] 
6 END 

Algorithm 6.1 Single-Pass Inverse Mapping Procedure 

where f is the inverse mapping function expressing the 

source co-ordinates (u,v) in terms of the screen co-

ordinates (x,y). Screen co-ordinates are processed in scan-

line order, enabling the output may be passed directly to 

the display device, resulting in references to source co-

ordinates (u,v) in an arbitrary order. The operator 'Copy' 

would normally incorporate the filtering operation which 
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must be two-dimensional as the output pixel footprint can 

span both u and v values. VSP techniques can not therefore 

easily be used to process or filter the source image output 

and single-pass mapping methods are inappropriate for a VSP 

implementation. 

Two-pass mapping techniques (e.g. [CaSmSO], [Fant86]) 

perform the two-dimensional transformation (f) as a sequence 

of two orthogonal one-dimensional operations (f^ and f^), 

each of which leaves one co-ordinate unchanged. This process 

is illustrated below: 

Pass 1: 
1 FOR (each intermediate scan-line u) DO 
2 FOR (each intermediate pixel y) DO 
3 BEGIN 
4 Compute v = f (y,u) 
5 Copy Source[u^v] to Intermediate[u,y] 
6 END 

Pass 2: 
1 FOR (each screen scan-line y) DO 
2 FOR (each screen pixel x) DO 
3 BEGIN 
4 Compute n = f (x,y) 
5 Copy Intermediate[u,y] to Screen[x,y] 
6 END 

Algorithm 6.2 Two-Pass Inverse Mapping Procedure 

The main advantage of this approach is the reduction 

of mapping and filtering to one dimension at the cost of an 

additional intermediate framestore. A disadvantage is that 

texture tiling cannot be implemented because of the non-

linear properties of the intermediate image. At each stage 

the output is generated in scan-line order and the input 

framestore is accessed scan-line by scan-line. The two-pass 

technique is therefore ideally suited to a VSP 

implementation, and Catmul and Smith [CaSmSO] reported this 

feature as an important advantage. An outline of a VSP-based 

two-pass mapping system is given overleaf: 
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T2 
INTERMEDIATE 

IMAGE 

SOURCE 

IMAGE 

DESTINATION 

IMAGE 

Figure 6.2 Two-Pass Mapping Architecture 

In this arrangement two VSP sub-systems T1 and T2 are 

used to implement each pass of the mapping. For example, 

sub-system T2 evaluates function f^ providing the mapping 

co-ordinate (u = corresponding to output pixel x) and 

generates a stream of output intensity pixels in x for the 

stream of pixels in u. In these examples the v co-ordinate 

is transformed first, (giving an intermediate image with co-

ordinates (u,y)), although the alternative configuration 

(with u transformed first) could be used. 

6.1.2 FILTERING REQUIREMENTS 

A one-dimensional filtering algorithm is required to 

provide a complete mapping of each source scan-line onto 

each destination scan-line, without aliasing. This is 

illustrated in Figure 6.3 showing a region of the input 

pixel stream (in u) mapped onto the output pixel stream (in 

x). The filtering process must ensure that the intensity of 

each output pixel accurately represents the corresponding 

region of the input pixel stream. 
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INPUT PIXEL STREAM 

OUTPUT PIXEL STREAM 

n 
n 

Figure 6.3 One-Dimensional Filtering Process 

Direct convolution can be used but the filter shape 

must be spatially-variant to support non-affine mappings. 

This approach is employed by Shantz [Shan82] who uses a 

variable width filter to implement linear and cubic 

interpolation for non-affine (second order) mappings. The 

hardware necessary to perform the convolution in real-time 

is proportional to the kernel size (number of filter 

coefficients) and for adequate antialiasing is reported to 

be highly complex. Consequently the use of direct 

convolution techniques has not been pursued. 

Prefiltering techniques have not been reported for 

separable transformation techniques. This is because 

prefiltering techniques use additional image information 

which is prepared off-line. This information cannot be used 

directly for the second pass of the transformation and must 

be regenerated to correspond to the distorted intermediate 

image. The regeneration must be repeated at frame rate 

defeating the object of off-line prefiltering. 

The resampling interpolation algorithm proposed by 

Fant [Fant86] provides a more efficient filtering solution; 

as a scan-line of n pixels requires only 2n operations to 
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prevent aliasing. The algorithm generates each output pixel 

using a weighted sum of all the input pixel intensities 

under the output pixel footprint. Each input pixel intensity 

is weighted according to the number of input pixels spanned 

by a given output pixel footprint. This process is unique in 

that it considers pixels to be rectangular regions of 

uniform intensity [FanL86] as opposed to the classical 

representation of pixels as point samples on a discrete 

grid. 

Despite the simplicity of this method the algorithm 

has several shortcomings: First, input and output pixels are 

processed during separate machine cycles and pipelining 

cannot be used to improve efficiency. Hence an output stream 

of n pixels generated from an input stream of m pixels 

requires a maximum of n + m machine cycles. Secondly, the 

stream of output pixels is not synchronized with the 

scanning of the intermediate framestore and additional 

hardware is necessary to position the output scan-line in 

the output pixel stream. Finally, only direct (not inverse) 

mapping is supported and additional hardware is required to 

provide input image clipping information necessary to 

initialize the processing of each scan-line. 

An important advantage of Fant's algorithm, however, 

is that boundaries of the source image which are visible in 

the destination image are automatically filtered against a 

null background. This avoids the 'edge aliasing' or 

staircase pattern which would otherwise be present at the 

edges of the source region. 

The next section outlines a new filtering technique 

extending this basic concept (rectangular pixels of uniform 

intensity) to overcome the shortcomings and to provide a 
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more efficient implementation, 

6.2 SPATIALLY VARIANT FILTERING TECHNIQUE 

This section describes a spatially variant filtering 

technique developed to be implemented by the VSP sub-systems 

T1 and (Figure 6.2) based on the filtering concepts 

outlined in the previous section. The first part of this 

section develops the filtering algorithm whilst the second 

part discusses the architecture necessary for real-time 

implementation. For consistency, all examples and formulae 

presented in this section refer to the u to x mapping, 

although the principles apply equally well to the v to y 

mapping. 

6.2.1 FILTERING ALGORITHM 

To define the filtering process, first consider the 

input to T2 as a continuous intensity function of u, I(u). 

Figure 6.4 shows this function for a range of u including 

the footprint defined by M and M which maps to the 

boundaries of an output pixel in x. 

i " 

Average intensity 
over footprint 

Footprint of 
output pixel X 

M V- M 
X - 1 X 

u - INPUT STREAM POSITION 

Figure 6.4 Continuous Input Intensity Function 
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Assuming that equal weights are applied to all 

intensities under the footprint, the required output value 

is given by the average intensity A over the interval 

where: 

PM 

M 
I(u)•du 

M - M 
(6.1) 

Applying the same principle to the discrete input data 

stream gives (for integer values of M): 

M 
I[u]5u 

u=M 

M - M 

( 6 . 2 ) 

where I[u] represents the intensity of the input pixel at u 

and 6u is unity. In the general case M is non-integer and 

Equation (6.2) must be modified to include fractional 

components. This is illustrated in Figure 6.5 (below) which 

shows a section of the input pixel stream from u to u+r 

(where u,u+l...u+r represent the boundaries of input 

pixels). The 'footprint' of the output pixel is the region 

(A C B) marked by the values M and M . The values P and Q 
\ / ^ ^ a. 

represent the integer and fractional parts of M respectively 

with P = u and P = u + (r-1) 
3C— ]_ >C 

x-1 

u+1 

D A 

x - l 
M x-l 

u-Ki-1) u+r 

B 

M 

Figure 6.5 Section Of Pixel Stream Showing Fractional Parts 
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The summed intensity using Equation (6.2) with values 

and corresponds to the region D+C+A and must be 

corrected for the fractional contributions by including B 

and excluding D. Using the assumption that each input pixel 

represents a rectangular area with uniform intensity 

distributions, the required intensity is then: 

M 
S"" I[u]5u + Q l[P ] - Q I[P ] 

u=M ^ ^ 
1 _ 

M - M 
(6.3) 

>c— a. 

This provides a method to derive the intensity of 

output pixel x given the mapping co-ordinates M and M . A 
>c >c—2. 

disadvantage, however, is the arbitrary number of input 

pixels (and corresponding machine cycles) required to 

evaluate the summation. The value of the summation can be 

obtained [Crow84][FeSk84] from two indexed operations on a 

summed-area table. Although prefiltering off-line is not 

possible, a linear summed-area table can be generated 

individually for each scan-line in advance. This 

prefiltering operation is performed in input pixel space and 

may be applied directly to the input pixel stream using (for 

sub-system T2) the algorithm shown below: 

1 FOR each scan-line y 
2 BEGIN 
3 Sum := 0 
4 FOR each pixel u 
5 BEGIN 
6 Sum := Sum + I[u] 
7 Store S[u] = Sum 
8 END 
9 END 

Algorithm 6.3 Linear Summed-Area Table Generation 

The value S[u] is equal to the summed intensity of all 

the pixels in the input stream from the start of the scan-
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line up to and including the uth pixel. Hence for u and u 
3. 2 

(arbitrary values of u): 

u 
S^I[u]6u = S[u ] - S[u ] (6.4) 

u=u 

and using values of I and S Equation (6.3) may be simplified 

to: 

S[P ] - S[P ] + Q I[P 3 - Q I[P ] 
A ^ (6.5) 

M - M 
>c >c — ]_ 

Taking advantage of the sequential nature of x and 

forming the partial sum K : 

K = S[P ] + Q I[P ] (6.6) 
>c yc X X ' 

Equation (6.5) becomes: 

K - K 
A = —— ——— (6.7) 

M - M 
>C 1 

Implementation of Equations (6.6) and (6.7) provides 

an intensity corresponding to an average of all the input 

pixels contributing to output pixel x. Assuming that the 

mapping function is constant over the output pixel this is 

equivalent [FeSk84] to continuous convolution with a 

spatially-variant box filter spanning the output pixel. 
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6.2.2 FILTERING SUB-SYSTEM ARCHITECTURE 

A block diagram of the sub-system T2 necessary to 

implement the filtering algorithm is shown in Figure 6.6 and 

incorporates two separate VSP sections VSPl and VSP2. 

tu] 

VSP 1 

I LINE BUFFER 

S LINE BUFFER 

VSP 2 tx] 

M. 

Figure 6.6 Filtering Sub-System T2 

VSPl operates seguentially at the clock rate of the 

input stream generating the linear summed-area table 

according to Algorithm 6.3. The values of S[u] and I[u] for 

all u are placed in the line buffers S and I by VSPl for 

subsequent use by VSP2. These line buffers provide an 

efficient mechanism for the random access of pixels by VSP2, 

thus providing a separation between the input stream clock 

rate (used by VSPl) and the output stream clock rate (used 

by VSP2). 

VSP2 implements Equations (6.6) and (6.7) using the 

values taken from buffers I and S for each output pixel. 

Using a pipelined architecture this reduces to one 

multiplication, three additions and one division per output 

pixel. Furthermore, only one index is required to access 

both line buffers and single cycle per output pixel 

operation is possible. The values of P (used to address the 
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"• line buffers) and Q are provided directly by the mapping 

co-ordinate M which is assumed to be generated sequentially 

in X. The generation of M is discussed in the next section. 

6.3 CO-ORDINATE GENERATION 

The mapping co-ordinates M and used by T1 and T2 

are obtained directly from the separate mapping functions f^ 

and as defined in Algorithm 6.2. The derivation of these 

functions from the position and attitude parameters 

generated by the host system is described in the following 

sections. 

6.3.1 INVERSE PERSPECTIVE MAPPING 

Several derivations of inverse perspective mapping are 

reported in the literature (e.g. [West83], [Hour83] and 

[Brac87]) but the method presented here uses the position 

(p , p and p ) and attitude (a ) parameters already 
at y z i j 

generated by the host system and introduced in Section 

1.2.1. This approach is chosen to provide compatibility with 

the existing RTIG system (described in Section 1.2.3) which 

implements Equations (1.1), (1.2) and (1.3) (reproduced 

below for reference): 

[X ,y ,z ] = [X -p ,y -p ,z -p ] 
V V V w > c w y w z 21 _ 2 2 

3 1 3 2 

(1.1) 

X = (X /z ) S + s /2 (1.2) 

y = (y /z ) s + s /2 
V V y y 

(1.3) 

These equations may be combined eliminating the 

viewing space co-ordinates (x , y^ and z^) to express x and 

y (the screen co-ordinates) in terms of the position and 
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attitude parameters and the world space co-ordinates (x , 

y and z ) as outlined below: 

Rearranging (1.2) and (1.3) and expanding (1.1) gives: 

2x +z 

2 z 
^ _ X V V ( 6 . 8 ) 

S 2y +z 
y = -y. Y z 

2 z 
(6.9) 

Then by substitution: 

(6.10) 

(6.11) 

(6.12) 

S (2a +a )(X -p )+(2a +a )(y -p )+(2a +a )(z -p ) 
11 13 w >c 21 23 W y 31 33 W Z 

2 ai3(x_-P=)+a=,(y_-Pr)+a33(z_-P.) (6.13) 

S (2a +a )(x -p )+(2a +a )(y -p )+(2a +a )(z -p ) 
_ y 1 2 1 3 W X 2 2 2 3 w y 3 2 3 3 W z 

(6.14) 

Assuming that the region to be textured is defined as 

a flat surface on the ground aligned with the world axes the 

triple (x ,y ,z ) can be replaced by the source pair (u,v) 

with z^ = 0. Equations (6.13) and (6.14) can then be 

simplified and represented using a 3 by 3 homogeneous matrix 

([H]) [Roge76] as shown below (where w represents the 

homogeneous co-ordinate): 

[x,y,w] = [u,v,l] . 
h h 
h' 
ĥ "̂  h^^ ĥ =̂  

3 1 3 2 3 3 

(6.15) 
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Such that: 

And: 

h u + h V + h 
13. 21 : 

h u + h V + h 

h u + h V + h 
1 2 2 2 3 2 

h u + h V + h 
3.3 2 3 3 3 

(6.16) 

(6.17) 

Where: 

h = S (2a +a )/2 
1 1 X 1 1 1 3 

h = S (2a +a )/2 
2 1 X 2 1 2 3 

h = —p h —p h —p S (2a +a )/2 
3 1 X 1 1 y 2 1 z X 3 1 3 3 

h = S (2a +a )/2 
1 2 y 1 2 1 3 

h = S (2a +a )/2 
2 2 y 2 2 2 3 

h = —p h —p h —p S (2a +a )/2 
3 2 X 1 2 2 2 Z y 3 2 3 3 

h = a 
1 3 1 3 

h = a 
2 3 2 3 

h = -p a - p a - p a 
3 3 sc 1 3 y 2 3 z 3 3 

(6.18) 

(6.19) 

( 6 . 2 0 ) 

(6.21) 

( 6 . 2 2 ) 

(6.23) 

(6.24) 

(6.25) 

( 6 . 2 6 ) 

The inverse mapping function ((u,v) = f(x,y)) can be 

obtained from the inverse matrix [H]~^ defined [Ayre74] as 

the adjoint matrix (adj[H]) scaled by the determinant(|H|). 

Assuming that [H] is non-singular (i.e |H| is non-zero) the 

homogeneous representation allows the scaling factor |H| to 

be ignored [Heck86] and the inverse relationship can be 

written: 

[u,v,q] = [x,y,l] 
a d g 
b e h 
c f i 

(6.27) 

Where q represents the new homogeneous co-ordinate such 

that: 

ax + by + c 

gx + hy + i 
( 6 . 2 8 ) 
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dx + ey + f 
V" = (6 • 29) 

gx + hy + i 

Where: 

a = h h -h h (6.30) 
22 33 23 32 

b = h h -h h (6.31) 
23 3X ZX 33 

c = h h - h h (6.32) 
23. 32 22 31 

d = h h - h h (6.33) 
3.3 32 3.2 33 

e = h h —h h (6.34) 
13. 33 13 31 

f = h h -h h (6.35) 
12 31 11 32 

g = h h -h h (6.36) 
3.223 13.23 

h = h h - h h (6.37) 
3.3 23. 3.3. 23 

i = h h -h h (6.38) 
XX 22 X 2 2 X 

6.3.2 DECOMPOSITION INTO TWO PASSES 

Equations (6.28) and (6.29) represent the two-

dimensional inverse mapping function ((u,v) = f(x,y)) which 

must be decomposed into two one-dimensional mapping 

functions (f^ and f^) to be implemented by Algorithm 6.2. 

Assuming the v co-ordinate is transformed first the 

second pass mapping function (f^) can be implemented 

directly using Equation (6.28), hence: 

ax + by + c 
u = M = f (x,y) (6.28) 

^ gx + hy + i 

The co-ordinate system (u,y) used to reference the 

intermediate framestore is defined as shown in Figure 

6.7(a). This convention is chosen such that the point (0,0) 

represents the start of the scanning process. 
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(a) (b) 

Figure 6.7 Co-Ordinate Axes Representing Intermediate Image 

Because the two passes are orthogonal the scanning 

order of the intermediate framestore is offset by 90° during 

the second pass. Figure 6.7(b) illustrates this showing the 

offset axes used as source for the second pass (denoted by 

the pair (y',u') and shown as fine lines) and the axes (y,u) 

used as destination for the first pass (in bold lines). In 

this example the output from the intermediate framestore is 

scanned 90° anticlockwise relative to its input, (this 

choice is arbitrary; the opposite configuration is also 

possible) 

The first pass mapping is implemented using the u and 

y co-ordinate system (i.e. v = f^(y,u)) and inspection of 

Figure 6.7 indicates that: 

And 

u = S -u' 

y = y' 

(6.39) 

(6.40) 

To determine f^(y,u) it is first necessary to express 

x as a function of u by combining Equations (6.28), (6.39) 

and (6.40): 

ax + by + c 

gx + hy + i 
S -u (6.41) 
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Rearranging gives: 

{(b-S h) + hu}y + (c-S i) + iu 
x (6.42) 

(S^g-a) - gu 

Substituting this into Equation (6.29) provides the 

mapping equation for the first pass: 

Ay + Bu + C + Dyu 
V = M = f (y,u) = ——— — — — — — (6.43) 

V ^ Ey + F 

Where: 

A = (bd-ae) + S (eg-dh) = (bd-ae) - S^D (6.44) 

B = (di-fg) (6.45) 

C = (cd-af) + S (fg-di) = (cd-af) - S^B (6.46) 

D = (dh-eg) (6.47) 

E = (bg-ah) (6.48) 

F = (cg-ai) (6.49) 

6.3.3 CLIPPING 

Clipping is necessary to suppress operation when 

outside the source image window and is performed using two 

criteria: the value of the mapping co-ordinate and the sign 

of the dividend and divisor polynomials forming the mapping 

function. 

The dividend polynomial (denoted represents the 

trimetric projection of the output image onto the input co-

ordinate system. Moreover, for a given scan-line both f 

and f (dividend polynomials for each pass) are linear 

with respect to the pixel stream position, i.e.: For the 

first pass, 

5(f ) 
-22- = A + Du = Constant for scan-line u (6.50) 
5y 
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and for the second pass. 

f(f=22) = a 

fix 
(6.51) 

The sign of the dividend therefore contains half the 

information required for clipping, provided the input image 

is defined on a positive co-ordinate system in which 

scanning starts at the origin (0,0). 

During the second pass the divisor polynomial (denoted 

f r e p r e s e n t s the proximity of the viewing window to the 

image surface in object space. The sign of the divisor 

therefore indicates the polarity of the viewing cone. A 

positive divisor is defined as normal; a negative divisor 

indicates that the source image lies behind the viewing 

point and should be clipped. This process (known as 'Z-

clip') is optional on some commercial DVE systems (e.g. 

[QETN88]) allowing a secondary mirrored image to be 

generated when the reverse viewing cone intersects the 

source image. 

DIVIDEND -VE \ p / g 

p DIVISOR -VE 'i y / 

\ T y / DIVIDEND 'VE 

" - — D I V I S O R -VE F Q' 

DIVIDEND -VE / \ 

DIVISOR -VE \ 

Q' 

DIVIDEND -VE / \ 

DIVISOR -VE \ F 
C 

A' 

^ DIVIDEND »VE " D' 

DIVISOR »VE \E 

(a) (b) 

Figure 6.8 Example Scene Illustrating Clipping Procedure 
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These factors are summarized in Figure 6.8(a) 

(previous page) depicting a typical scene in which the 

source image is represented by quadrilateral ABCD. The 

vertical (v) source axis is shown (RS) separating areas in 

which u is positive or negative. A similar boundary (PQ) 

between the forward and reverse viewing cones (positive and 

negative proximity) is also shown. Straightforward 

inspection of the signs of dividend and divisor allows 

immediate clipping to the RTQ quadrant. Because this is the 

u to X transform, the final clipping operation is to the 

broken line EF corresponding to the detectable condition M 

< S . 

Interpretation of the first pass mapping divisor 

polynomial (denoted /^^^) is more complex particularly as 

is a function of y (the pixel position) only. To 

explain this, consider point T in Figure 6.8(a) at the 

intersection of the v axis and the line PQ. PQ represents 

the line along which the proximity of the source image is 

zero, or its distance from the viewing point is infinite, 

i.e. on the horizon. All lines parallel to the v axis must 

meet at this point which is therefore the vanishing point 

for all u as V tends to infinity. Figure 6.8 (b) shows the 

same image before the second pass with A'B'C'D' representing 

the corners of the quadrilateral after the first pass. 

Because the y co-ordinate is unchanged during the second 

pass the vertical position of these points is identical to 

that in Figure 6.8. 

The horizontal line P'Q' represents the co-ordinate y 

at which the divisor is zero and v tends to infinity for all 

values of u, thus corresponding to the vanishing point T in 

Figure 6.8(a). For clipping purposes the image is not 
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defined in the region above this line and the same clipping 

criteria can be applied as for the second pass. The special 

case arising when line AB is above the vanishing point and 

line CD below is discussed Section 6.3.5. 

6.3.4 THK BOTTLENF.nK PROBLEM 

As discussed in Chapter 2, [CaSmSO], this problem 

occurs when the rotational component of the transformation 

approaches ±90° causing the area of the intermediate image 

to shrink to zero. To solve this problem Catmul and Smith 

propose that the area of the intermediate image be optimized 

for four different transformation methods: 

(i) - perform v to y pass first (as in examples above), 

(ii) - as (i) but scan source framestore with 90° offset. 

(iii) - perform u to x pass first. 

(iv) - as (iii) but scan source framestore with 90° offset. 

For case (i) the area of the intermediate image (A^^^) 

is obtained by first finding the mapping function from the 

source to the intermediate.framestore (given by , the 

inverse of Equation (6.43)). 

Bu — Fv + C 
y = f ~^(v,u) (6.52) 

^ -Du + Ev - A 

The length of transformed scan-line u is then given by: 

Bu + C Bu + L 
f -^(S ,u) - f "^(0,u) (6.53) 
3- y ^ Du + A Du + M 

where L = C - FS , and M = A - ES . 
y y 
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The area is then given by integrating Equation 

(6.53) from u = 0 to S , thus: 

A 
INT 

BU + C — — — — — — — 

0 Du + A 

S Bu + L 
——————#du 

0 Du + M 

(CD-BA).{ln(S D+A)/A} - (LD-BM)•ln{(S D+M)/M} 
(6.54) 

0"= 

Similar expressions can be derived for cases (ii), 

(iii) and (iv) and each must be evaluated and compared 

before the optimum scan direction is chosen. Furthermore, 

this method does not provide a correct result when the 

divisor of Equation (6.52) passes through zero and the 

mapping 'returns from infinity'. Catmul and Smith suggest 

that the source image should undergo a clipping operation 

before the test or transformation is applied. 

Solution of the 'bottleneck problem' using this 

approach is clearly a formidable problem, even at frame 

rate. Consequently an alternative method is proposed below, 

using the attitude parameters to provide scan direction 

selection directly. 

6.3.5 SCAN DIRECTION SELECTION ALGORITHM 

Throughout this section it is assumed that the v to y 

transform is performed first and that a positive co-ordinate 

system (as outlined in Section 6.3.3) is used to assist the 

clipping process. All orientations of the transformed region 

can then be supported by allowing the source framestore to 

be scanned using any of the four possible schemes outlined 

overleaf: 
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^ V 

NORTH EAST 

V ^ 

SOUTH WEST 

Figure 6.9 Scanning Directions For Source Framestore 

Four more scan direction methods are also possible, 

providing mirrored versions of the above. These are not 

required for a flight simulation application as the 

transformed region is never viewed from below. 

To provide a convenient method of reference each scan 

direction is labelled with a cardinal point indicating the 

relative scanning increments. The 'north' direction 

corresponds to the 'normal' orientation outlined previously. 

Inspection of Figure 6.9 provides Table 6.1 showing the 

substitution of the source co-ordinate pair (u,v) required 

for a particular scan direction. 

1 Scan Direction 1 Source Co-Ordinate Values 

1 north 1 u v 

1 east 1 S^- v u 

1 south 1 S - u S - v 

1 west v S - u 

Table 6.1 Source Co-Ordinate Assignments For Scan Directions 

Hence, to determine the the coefficients (a to i) 

required to implement the 'west' scanning direction, the 

substitutions above are applied to Equations (6.28) and 

(6.29). 
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Substitution of v = u into (6.28) gives: 

a X + b y + c 
V — — ̂— — — (6*55) 

g X + h y + i 

Where the subscript ' i n d i c a t e s the original northward 

parameter. Similarly, putting S -u = v into Equation (6.29): 

d X + e y + f 
.. / c N N N 

^ q x + h y + i 
N N N 

( S g - d )x+ ( S h - e ) y + ( S i - f ) 
2-2 iJ — 2 — - - (6.56) 

g X + h y + i 
N N N 

Values of a to i can then be inferred by equating 
W W 

coefficients with Equations (6.28) and (6.29). Similar 

procedures can be used to derive a^ to i^ and a^ to i^ and 

all four representations are collated in Table 6.2 below: 

+ = = = = = = = = + = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = + 

I Scan Direction | 
Coeff- + 1- 1- 1- H 
icient | north | east | south | west j 

I = i i I I 
H 1 1 1 1 
I b I b I b = e | b = S h - b | b = S h - e 

N E N S U N N ' W X J N N H 1 1 1 1 
c c = f I c = S i -c | c = S i - f 
N E N I S U N N ' v j u n n ' 4 1 1 1 1 

I d I d I d = S g -a | d = S g - d | d = a | 
N E N S V ' N N ' W N ' 4 1 1 — 1 1 T 

I e I e | e = S h - b | e = S h - d | e = b j 
_j j N j E N j S 2 I 12 2 |. 
I f I f | f = S i - c | f = S i - d I f = c I 

N E V N N S V N N , W N , 

Table 6.2 Coefficient Substitutions For Each Scan Direction 

The coefficients g, h and i are not included in this 

table as they remain unaltered for all scan directions. 

These substitutions should be made after Equations (6.30) to 

(6.38) have been evaluated and before Equations (6.44) to 
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(6.49) (used to evaluate coefficients A to F for the first 

pass). 

The substitution requires the optimum scan direction 

to be chosen in advance, as outlined below. 

Consider the two unit vectors i and j in world 
w w 

space, aligned with the world axes x and y respectively. 

The orientation of these vectors in screen space can be 

approximated using the attitude parameters only and the 

effects of foreshortening can be ignored, except in 

positions which involve a high degree of perspective. Using 

this approach the position parameters are unimportant and 

for convenience the viewing co-ordinate system (x^,y^,z^) 

and the world co-ordinate system (x^,y^,z^) can be made 

copunctal at the origin. The orientation in screen space can 

then be determined using a simple trimetric projection of i^ 

and j onto the x ,y view plane. 

Figure 6.10 Trimetric Projection Of Unit Vectors 
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This process is illustrated in Figure 6.10(a) above 

showing a typical orientation of the world axes relative to 

the viewing axes (the and axes are omitted for 

clarity). The projection of i^ and onto the x^,y^ view 

plane (lightly shaded) is marked by projection vectors 

and (shown more clearly in Figure 6.10(b) showing only 

the view plane). Expressions for p^ and p^ can be taken 

directly from Equation (1.1) thus: 

p. -

p = a i + a j (6.58) 

Where i and j^ indicate unit vectors aligned with the x 

and y axes respectively. 

A two-dimensional vector (V^) is then defined in 

screen space representing the alignment of the projected 

vectors with the corresponding view plane axes. is formed 

by combining the projected vectors p^ and p^ using a vector 

sum such that points vertically upwards when both co-

ordinate systems are aligned. Vector p^ already indicates 

the alignment of y^ with the ordinate (y^) but the alignment 

of p^ with the abscissa (x^) must first be converted to an 

alignment with the ordinate by a rotation through 90°. is 

then given by: 

(6.59) 
3.2 21 V ' 

V = (a, )i^ + 

The magnitude of is not important but its direction 

indicates the overall orientation of the source image 

relative to the vertical on the viewing screen. The inverse 

relationship (the orientation of the screen relative to the 

source image ordinate) is obtained by reflecting about 

the vertical to form V , the screen orientation vector: 



V = (a -a )i + (a +a )j 
s 2X 12 V 11 22 V 
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( 6 . 6 0 ) 

The required scanning direction can then be obtained 

by finding the cardinal point closest to V using the 

algorithm outlined below. Where V and V indicate the i 
s i . s j 

and j components of V respectively. 

1 

2 

3 
4 
5 

6 
7 

TEST 

THEN TEST V 

s ± 

> 0 

THEN scan direction is north 
ELSE scan direction is south 

ELSE TEST V > 0 
s ± 

THEN scan direction is east 
ELSE scan direction is west 

Algorithm 6.4 Initial Scan Direction Detection Algorithm 

This algorithm does not detect cases where the source 

region straddles the vanishing point during the first pass 

(outlined at the end of Section 6.3.3). This problem is 

illustrated in Figure 6.11(a) (cf. Figure 6.8) showing a 

typical scene in which the source image is represented by 

quadrilateral ABCD. Line PQ represents the horizon and point 

T the V axis vanishing point. 

A 

\ ^ 
C 

\ N 
D 

F 

A' 
F 

F 

D' 

(a) (b) 

Figure 6.11 Example Scene Illustrating Cusp 
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It is assumed that the source framestore is being 

scanned in the northwards direction (determined using 

Algorithm 6.4) and the corresponding intermediate image is 

shown in Figure 6.11(b). Vertical co-ordinates are not 

affected by the second pass and points A'B'C'D' represent 

the source region after the first pass. The line A'B' is 

inverted and lies above the horizontal line P'Q' 

representing v vanishing point co-ordinate. Region A'B'S is 

therefore removed by the clipping process and the remaining 

region D'C'S contains a cusp at S. Clearly, the resulting 

image will be distorted and incomplete and the northward 

scanning direction should not be used. 

If the vertical co-ordinate of one vanishing point 

crosses the souroe region then the vertical co-ordinate 

corresponding to the other vanishing point can not cross 

this region. This is demonstrated in Figure 6.12 where ABCD 

represents the source region and VI and V2 the two vanishing 

points lying on the horizon HH'. The vertical co-ordinates 

of VI and V2 can both lie within the source region only if 

part of the region is above the horizon and part below; 

which is clearly not possible. 

Figure 6.12 Vanishing Points And Source Image 
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Hence, after the application of Algorithm 6.4, if a 

cusp occurs in the intermediate image then the closest other 

scan direction (to V ) can be chosen without further 

testing. 

The following procedure can be used to detect the 

presence of a cusp in the intermediate image: 

First, calculate the vertical (y) co-ordinate of the 

relevant vanishing point; the v axis for north and south 

directions, the u axis for east or west. The required co-

ordinate (y ) is then obtained by equating the divisor of 

Equation (6.43) to zero giving: 

y - - F/E 

which reduces to: 

y = S a /a + S /2 (6.61) 
vp y 22 2 3 y 

for directions north and south and: 

y = S a /a + S /2 (6.62) 
v p y 3 . 2 1 3 y 

for directions east and west. 

If y is outside the viewing window (i.e. if y > S 
vp vp y 

or y < 0), the original scan direction is accepted without 

further testing. 

Next, the intersections between the line y = y and 

the screen boundary (x = 0 or S ) must be computed and 

projected onto the source image space. These points are 

marked R and S in Figure 6.11(a) and are calculated as 

follows: 
b y + c 

X = -2_-e 2 (6.63) 
h y + 1 

N v p 1 
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e y + f 
y = — E — — — (6.64) 
^ h y + i 

N V p N 

for the left hand screen intersection and; 

a S + b y + c 
= -2-5 U-YE 2 (6.65) x 

^ g S + h y + i 
N >C N vp N 

d S + e y + f 
y = ——————————————— (6.66) 
^ g S + h y + i 

N 3« N v p N 

for the right hand screen intersection. 

Only one intersection will be on the ground (i.e. in 

the positive viewing cone) and two of these equations can be 

trivially rejected according to the sign of the divisor. 

Finally, the source intersection point (x^,y^) is 

tested to see if it lies in a region which would cause a 

cusp in the intermediate image. In Figure 6.11(a) the 

intersection occurs at point R and for a cusp to be 

generated R must lie within the KBL quadrant. The particular 

test region depends on the original scan direction, whether 

the intersection is at the left or right of the screen, and 

whether the image is above or below the horizon in screen 

space. 

The position of the image relative to the horizon is 

determined by the attitude parameters indicating whether or 

not the viewing plane is upside down with respect to the 

world co-ordinate system. Using the arrangement of Figure 

6.10 this is determined by calculating the trimetric 

projection of the unit vector k (along the world z axis) 

onto the viewing ordinate (y ). The corresponding value of 

y (denoted y^) is given by: 

y = a (6.67) 
Ic 3 2 
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Hence the sign of a can be used directly to 
3 2 

determine whether the image appears above or below the 

horizon. 

Sixteen different test regions arise from the 

combinations of parameters described above and are 

illustrated below in Figure 6.13 showing the screen for each 

particular example. The shaded region represents the source 

region and the arrow indicates its orientation. A two letter 

key below each example indicates the test region, e.g. LT 

means the quadrant containing the source image and bounded 

at the left and top (as in Figure 6.11(a)), other boundaries 

are denoted R (right) and B (bottom). 

IMAGE BELOW HORIZON 

NORTH 

IMAGE ABOVE HORIZON 

EAST 

SOUTH 

TOST 

t ! - 1 
t 

T 
INTERSECTION ON 
LEFT HAND SIDE 

INTERSECTION ON 
RIGHT HAND SIDE 

Figure 6.13 Sixteen Possible Cusp Generating Conditions 
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A cusp will occur in the intermediate image if the 

pair (x^,y^) are within the test region and the alternative 

scan direction can be chosen. However, some image distortion 

will result when the intermediate image approaches the cusp 

point and a better approximation is made if the test region 

is expanded to include a safety margin. 

6.3.6 CO-ORDINATE GENERATION IMPLEMENTATION REQUIREMENTS 

To provide co-ordinate generation in real-time 

Equations (6.28) and (6.43) must be implemented at pixel 

rate, generating the mapping co-ordinates required by the 

filtering process. A suitable architecture is outlined in 

Figure 6.14 below: 

HOST 

SYSTEM 

HOST 

SYSTEM 

DIVIDEND POLYNOMIAL GENERATOR 

HOST 

SYSTEM 

DIVIDEND POLYNOMIAL GENERATOR 

HOST 

SYSTEM 

HOST 

SYSTEM 
DIVISOR POLYNOMIAL GENERATOR 

HOST 

SYSTEM 
DIVISOR POLYNOMIAL GENERATOR 

HOST 

SYSTEM OR M 

Figure 6.14 Outline Of Co-Ordinate Generation Architecture 

The mapping co-ordinate is generated using two 

polynomial generators and a divider. The polynomial 

generators implement the dividend and divisor of the 

equation in scan-line order under control of the host 

system. Two of the above systems are required, one for each 

pass (generating M or M ) with additional circuitry to 

synchronize co-ordinate generation to the scanning of each 

framestore. 



133 

The source framestore must support scan-line access 

using any of the four orthogonal directions required to 

solve the bottleneck problem. In addition, the intermediate 

framestore must be configured to provide a 90° offset 

between the scan line order of input and output operations. 

The design of these framestores is discussed in more detail 

in the next chapter. 

The coefficients (a to i and A to F) are passed from 

the host system to the polynomial generators at the start of 

each frame. This requires the host system to implement 

Equations (6.18)-(6.26) , (6.30)-(6.38) and (6.44)-(6.49) at 

frame rate. Additionally, the host system must perform the 

scan selection procedure (outlined in Section 6.3.5) and 

provide the necessary substitutions. 

Routines to implement these equations have been 

written in BCPL using the floating point extensions [RiWS85] 

to provide adequate dynamic range. No additional hardware 

support is required on the development system for 

coefficient generation as all of the above procedures can be 

completed for worst case conditions (when a cusp is detected 

and the scan direction adjusted) in under 10ms (using an 

8MHz 68000 type microprocessor). 

6•4 SUMMARY 

After a review of existing image mapping techniques 

the two-pass transformation method was considered the most 

suitable for a VSP implementation. Associated filtering 

methods were examined and for a VSP based implementation the 

resampling interpolation algorithm proposed by Fant showed 

the most promise. However, the existing technique had many 

drawbacks, in particular the lack of synchronization of the 

input and output streams and the inability to pipeline the 
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input and output operations. 

Consequently a spatially-variant filtering algorithm 

has been developed to overcome these drawbacks using linear 

summed-area table prefiltering to provide single-cycle per 

output pixel performance. An important advantage is the 

separate processing of input and output streams using two 

processors; VSPl and VSP2. The VSPl processor must operate 

at input pixel rate but only requires a single addition 

whilst the more complex VSP2 processor operates at output 

pixel rate. This feature permits straightforward mapping of 

a higher-resolution source image to a lower-resolution 

output. 

The generation of mapping co-ordinates required by the 

filtering algorithm using an inverse perspective mapping 

function for each pass was discussed. These functions were 

derived from the position and attitude parameters and shown 

to be rational polynomials (the quotient of two 

polynomials). Clipping procedures based on simple sign and 

magnitude comparisons were developed for each pass. 

The bottleneck problem reported by Catmul and Smith 

has been reviewed together with the solution they proposed. 

The complex computational requirements make the technique 

unfavourable for real-time implementation and an alternative 

solution has been presented. This involves choosing from 

four possible source framestore scanning schemes based on 

the orientation of the source image relative to the 

observer. The orientation is determined using a scan 

direction vector which is readily derived from the attitude 

parameters. Additional tests are required to avoid a cusp 

occurring in the intermediate image and a procedure to 

detect and prevent this has also been presented. 
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Finally, a co-ordinate generation architecture was 

proposed requiring two polynomial generators and a divider 

each capable of operation at pixel rates. The evaluation of 

the polynomial coefficients and choice of scan direction are 

only required at frame rate and can be implemented by the 

host system software. 

The framestore architectures are described in the 

following chapter, together with a more detailed account of 

the filtering and co-ordinate generation systems. 
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CHAPTER 7 

IMPLEMENTATION OF TEXTURE MAPPING SYSTEM 

This chapter describes a real-time implementation of 

the VSP-based texture mapping system presented in Chapter 6. 

An overview of the system is presented together with 

objectives based upon real-time requirements and 

compatibility. This is followed by an outline of the project 

describing some of the design tools and development 

strategies. 

After the overall layout is discussed, implementation 

details are presented in three sections; co-ordinate 

generation, framestore design and filtering sub-system. 

Finally, observations and results are given, to indicate the 

performance of the complete system. 

7.1 OBJECTIVES AND OVERVIEW 

One principal objective of the image mapping system is 

that it maintain compatibility with the existing system 

described in Chapter 4. To maintain compatibility the output 

from the system should be synchronized with the scanning 

process implemented by the GDP, therefore defining a 512 

pixel by 512 pixel output resolution. 

A disadvantage of the GDP is that the display window 

occupies less than 56% of the available frame period. A VSP 

system using this timing would be extremely inefficient, but 

by increasing the pixel rate from 12MHz to 15MHz it is 

possible to scan a 512 by 512 display in 17.5ms. Allowing a 

14% margin for control and synchronization overheads it is 

possible to implement both passes of the image 

transformation in a single frame period. However, an 

additional dual-buffered framestore is required to provide 
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output synchronization. Clearly this is an acceptable 

compromise as both passes can then be implemented using the 

same transformation and filtering sub-system, reducing 

hardware requirements. 

A feature of the filtering algorithm developed in 

Chapter 6 is the ability to map a higher—resolution image to 

a lower-resolution output. This is exploited by supporting a 

1024 by 1024 pixel source image, generating a fourfold 

increase in source bandwidth and necessitates a parallel 

architecture to implement VSPl. In addition, two filtering 

datapaths are necessary for the first pass as the number of 

scan—lines is doubled. No additional bandwidth requirements 

are placed on the co-ordinate generation hardware if 

adjacent scan-lines are processed in pairs using the same 

mapping co-ordinates. The effect of this approximation will 

only be noticeable in areas of high magnification and is 

discussed again at the end of this chapter. 

Colour images can clearly be implemented using three 

image planes representing red, green and blue components. 

Only the filtering datapath needs to be triplicated as the 

co-ordinate generation is common to each plane. However, to 

speed the development process and reduce the project cost 

(in particular the framestore memory requirements) the 

demonstration prototype is a monochrome system. 

Finally, the number of grey levels supported was 

determined by the memory devices used for the framestores. 

Suitable devices use a byte-wide architecture suggesting 

that a four-bit or eight-bit pixel data structure is most 

G^ficient. Early simulations indicated that sixteen grey 

levels were sufficient to show the fidelity of the filtering 

process and a four-bit pixel representation was chosen. 
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The development of the image mapping system was 

completed using a 68000-based microcomputer (Atari 1040ST 

workstation) as the host system interfacing to a rack 

containing the system PCBs (Plates 71 and 711). This system, 

together with a 512 by 512 pixel framestore was also used to 

simulate the operation of the filtering and mapping 

algorithms. 

The hardware implementation was designed in two 

stages. Initially, a simpler system was constructed, using a 

512 by 512 pixel image for source and destination. A single 

polynomial generator was used capable of implementing affine 

and second order (quadratic) mapping functions. Operating in 

real-time this system proved the design of the filtering 

datapath and polynomial generator. Subsequently the complete 

system was implemented, requiring the expansion of the 

framestores and the development of the divider circuitry. 

In order to increase the compactness of the complete 

system, extensive use of EPLDs (Erasable Programmable Logic 

Devices) has been made throughout the design. The PLPL 

software (Section 1.5 q.v.) provides a powerful design tool 

[AMDP87], particularly for designing finite state machines. 

Furthermore, comprehensive simulation is supported allowing 

the designs to be evaluated before implementation. This 

feature was particularly important during the design of the 

framestore controllers and datapaths. 

To simplify the descriptions given in this chapter, 

finer details have been omitted from the diagrams. In 

addition 'glue' logic and pipeline registers required to 

synchronize different datapaths have also been omitted. The 

full circuitry is given in Appendix VI and an example PLPL 

source file can be found in Appendix VII. A more 
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comprehensive description of the complete system has also 

been provided [Evem89]. This includes circuit diagrams, full 

PLPL source files for all the devices and program listings 

for the system support software. 

The physical layout chosen for the image mapping 

system is shown below in Figure 7.1. 

BOARD I BOARD 11 BOARD 111 BOARD IV 
SYSTEM CONTROL BUS 

>11 LINE BUFFER 

OUTPUT 

1 LINE BUFFER 

• I s LINE BUFFER 

V S P l 

V S P l 

CONTROL OONTROL CONTROL 

DIVISOR 
GENERATOR 

DIVIDEND 
GENERATOR 

CLIPPING 

CONTROL 

VSP2 

VSF2 
FRAMESTORE 

OUTPUT 

FRAMESTORE 

SOURCE 

INTERMEDIATE 

FRAMESTORE 

UT 
*• 

Figure 7.1 Outline Of Image Mapping System 

The complete system is implemented using four wire-

wrapped circuit boards. Each board communicates directly 

with its neighbour, and control and synchronization is 

effected using a global system control bus. In addition 

boards I and IV have a host system interface and each 

framestore connects to the filtering datapath using a common 

input bus and common output bus, allowing operation for both 

passes. 

The operation of the complete system is described in 

the following three sections; co-ordinate generation, 

filtering sub-system and framestore design. 



140 

7•2 CO-ORDINATE GENERATION 

An important design factor of the co-ordinate 

generation system is the resolution used to represent the 

mapping co-ordinate. An advantage of image mapping is that 

the co-ordinate accuracy is required only within the source 

region and accurate operation outside the clipping window is 

not important. Conversely, the spatial accuracy provided by 

texture tiling systems must be maintained over the entire 

screen area, requiring substantial hardware resources (e.g. 

the 24-bit implementation reported by Lopez [Lope87]). 

A spatial resolution of 14 bits is clearly sufficient 

for this application, providing four fractional bits for a 

1024 by 1024 pixel image. Additional bits are required to 

ensure that accuracy is maintained and both overflow and 

underflow must be handled correctly. A 16-bit floating-point 

format is chosen to implement the division and equation 

coefficients are prescaled to fully exploit the 16-bit 

output range of a fixed-point polynomial generator. This 

system is shown below, followed by a detailed description of 

each section. 
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Figure 7.2 Co-Ordinate Generation System. 
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7.2.1 POLYNOMIAL GENERATION 

The polynomial generator must implement the dividend 

and divisor of Equations (6.28) and (6.43) in scan-line 

order at pixel rate (15MHz). Apart from the numerator of the 

first pass mapping function (which includes a second order 

term) each polynomial is a linear equation in terms of the 

two scanning co-ordinates (pixel position and scan-line). 

The predefined scanning order allows an efficient 

implementation of each equation using difference equations 

[SpieVl] requiring a pipelined structure of adders and 

accumulators. A floating-point system is hardware intensive 

[GoslSO] but ensures that resolution is maintained over a 

wide range of coefficient values. A fixed-point 

implementation is simpler but requires greater care to 

provide the desired resolution and prevent problems caused 

by overflow and underflow. 

A deciding factor in the choice of a fixed-point 

implementation was the availability of a VLSI device 

specifically designed for this purpose. This device (an 

Image Resampling Sequencer (IRS) TRW type TMC2301 [TRWI87]) 

provides a 17-bit (16-bit and sign bit) output representing 

the most significant bits of an internal 32-bit accumulator. 

The IRS is capable of implementing a second-order polynomial 

using difference equations at 18MHz, thus supporting the 

quadratic term of the first pass mapping function. The 

polynomial is implemented for all destination co-ordinates 

in scan line order using a nested algorithm [ElWe87]: 

1 FOR each scan-line i (i < i < i ) 
m i n xne i^c 

2 FOR each pixel j (j < j < j ) 
*• m ± n x n a > c 

3 Output = Pi2 + Qj: + Rij + Si + Tj + U 

Algorithm 7.1 IRS Polynomial Implementation. 
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The equation coefficients (P to U) can be loaded at 

frame rate by the host system and parameters i ,i ,j 
J n ± n m a a e m ± n 

and may be configured to support destination image 

sizes up to 4096 by 4096 pixels. The 32-bit internal 

structure ensures sufficient accuracy providing the output 

value uses the optimum dynamic range of the 16-bit output. 

This is guaranteed by prescaling the equation coefficients 

before loading the IRS, also providing protection against 

overflow and underflow conditions. The prescaling algorithm 

which is implemented as part of the host system software is 

outlined below: 

1 Max.poly = 0 
2 Scale.value = 0 
3 FOR each corner of window 
4 Val.poly := |Value of polynomial] 
5 IF (Val.poly > Max.poly) 
6 THEN Max.poly := Val.poly 
7 TEST (Max.poly > Max.IRS) 
8 THEN WHILE (Max.poly > Max.IRS) 
9 Max.poly := Max.poly / 2 
10 Coefficients := Coefficients / 2 
11 Scale.value := Scale.value + 1 
12 ELSE WHILE (Max.poly < Max.IRS / 2) 
13 Max.poly := Max.poly * 2 
14 Coefficients := Coefficients * 2 
15 Scale.value := Scale.value - 1 

Algorithm 7.2 IRS Coefficient Scaling Procedure. 

Where 'Max.IRS' represents the maximum output value 

supported by the IRS and the use of the 'Scale.value' 

parameter is described in the next section. In practice, the 

scaling process is more readily implemented while the 

coefficients are in floating-point format, the divide (or 

multiply) and test process being replaced by a decrement (or 

increment) and test operation on the exponent. 

The fixed-point output from the polynomial generators 

must be converted to floating-point format before passing to 

the divider. This process is implemented by two 900-gate 
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equivalent EPLDs [Alte88] configured to provide the required 

shifting operations. The 16-bit fixed-point value is then 

represented as a 15-bit mantissa with a four-bit exponent. 

Two out-of-range (OOR) signals are also generated indicating 

when either polynomial is negative or zero; this information 

is used by the clipping controller described in Section 

7.2.3. 

Synchronization of the co-ordinate generation process 

is performed by a single PAL (type 22V10) controlling the 

IRS. At the start of each pass each IRS is initialized and 

operation commences after the first scan-line has been 

prefiltered by VSPl (indicated by the co-ordinate request 

input (C_REQ) from the system control bus). The IRS 

generates two synchronizing signals indicating the end of a 

scan-line (END) and the end of a frame (DONE). END is used 

by the controller to generate a signal (IRSVALID) 

indicating to the divider that the polynomial data is valid. 

DONE is used to initiate the second pass (at the end of the 

first pass) or to halt the system (at the end of the second 

pass). Corresponding signals (PASS & /PASS_INIT) are also 

generated indicating which pass is active and to initialize 

each pass. These signals are output to the system control 

bus to synchronize the operation of the complete system. The 

values of PASS and DONE are also available to the host 

system and are defined as follows: 

PASS 1 DONE 1 Condition 

0 
0 
1 
1 

0 
1 
0 
1 

System performing first pass 
First pass completed 
System performing second pass 
Second pass completed 

Table 7.1 Definition Of Signals PASS And DONE. 
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7.2.2 DIVTnEP 

Many architectures have been proposed to perform 

floating-point division and a good review is given by 

Gosling [GoslSO]. Traditional techniques use an algorithmic 

approach and do not provide single cycle performance. For 

16-bit applications, however, it is possible to implement 

division of mantissas (the exponents are simply subtracted) 

using a reciprocal look-up-table followed by a parallel 

multiplier. This approach has been implemented successfully 

by Lok [LokY83] who gives a detailed account of suitable 

look-up-table architectures. In particular, the size of the 

table may be reduced by using linear interpolation to 

process the least significant bits of the divisor. The 

architecture chosen for this application is based on this 

principle and illustrated below: 

MSBs 

LSBs 

MSBs 

8k X 16 

ROM 

512 X 8 

ROM 

Figure 7.3 Reciprocal Look-Up-Table. 
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The upper 13 bits of the divisor mantissa are used to 

address an 8192 entry reciprocal table providing a 16-bit 

result. The remaining two bits are used to select an offset 

value which is subtracted from the 16-bit result. The offset 

is chosen from a sub-table selected using the 7 most 

significant bits of the divisor. Simulation results 

indicated that this provides 15-bit accuracy over the 

complete input range. The simulation program, written in the 

' C programming language [KeRi78], was also used to generate 

the table values and a listing is given in Appendix V. 

The 15-bit multiplication required to complete the 

division process is implemented using a 16-bit parallel 

multiplier (IDT type IDT7217L-25 [IDTM85]) capable of 

operation at pixel rates. The output datapath from this 

device is limited to 16 bits and is configured to provide 

the most significant word. Because the inputs are normalized 

this always contains the 14-bit information necessary for 

co-ordinate generation. 

The exponent is calculated by subtracting the divisor 

exponent from the dividend exponent using a four-bit adder 

(the subtrahend is generated in two's complement form). A 

further addition stage is implemented to include the six-bit 

signed output from the scaling register. This register is 

loaded by the host system and contains the difference 

between the dividend and divisor scale factors determined by 

Algorithm 7.2. 

As both the reciprocal generation and multiplication 

stages implement a rounding process, care is needed to 

minimize errors. The method used is 'Add 1' rounding 

[Gosl80] where a 1 is added to the most significant of the 

bits to be stripped off prior to truncation. This is 
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incorporated in the reciprocal table generation program and 

provided directly by the multiplier. 

7.2.3 CLIPPING CONTROL 

The floating-point output from the divider must be 

converted into the 14-bit mapping co-ordinate output 

reguired by VSP2. Two 900-gate eguivalent EPLDs provide the 

reguired shifting operations and clipping control is 

implemented by a finite state machine using an additional 

EPLD (type 18CV8 [PEEL89]). 

The clipping controller uses the OOR signals 

(generated when the polynomials are negative or zero) and 

the exponent value to determine when the co-ordinate is 

outside the source window. When the polynomials are 

positive, the exponent value indicates whether the clipped 

co-ordinate lies to the left (assuming a horizontal scan-

line) or the right of the source image. Since a positive co-

ordinate system is used, the default condition at the start 

of each scan-line is that the mapping co-ordinate lies to 

the left of the source window. These factors are summarized 

by the state transition diagram of Figure 7.4 below: 

MANTISSA IN RANGE 
• EXPONENT IN RANGE 

START OF # L b t 1 U f 

•M SOURCE 
SCAN-UNE \ WINDOW 

EXPONENT OUT OF RANGE 
MANTISSA OUT OF RANGE 

INSIDE 
SOURCE 

WINDOW 

RIGHT OF 
M SOURCE 

WINDOW MANTISSA IN RANGE 
» EXPONENT TOO BIG 

Figure 7.4 Clipping Controller State Transition Diagram 



147 

The two bits required to represent these states are 

assigned such that each indicates the left of range (LOR) 

and right of range (ROR) conditions directly. These signals 

are used by the two co-ordinate shifting EPLDs to provide 

default values of the mapping co-ordinates outside the 

source window. This is necessary for VSP2 to prevent 

aliasing at the edges of the source region as described in 

Section 7.4.2. 

A major advantage of this clipping procedure is that 

valid co-ordinate values are not required when either 

polynomial is negative or zero. This greatly reduces 

hardware requirements as negative numbers need not be 

supported by the format converters or the divider, and 

division by zero can be undefined. 



148 

7.3 FRAMESTORE DESIGN 

This section describes the construction of each of the 

three framestores. The required features are summarized 

briefly below, followed by a detailed discussion of each 

framestore. 

1. Source Framestore. 

Storage: 1024 by 1024 four bit pixels (% Mbyte). 

Input: From host system, off-line. 

Output: In scan-line order in any of four 

directions at 15MHz. Two scan-lines output 

in parallel, each scan-line providing two 

pixels per in parallel. 

2. Intermediate Framestore. 

Storage: 1024 by 512 four-bit pixels (% Mbyte). 

Input: From two VSP2s in scan-line order at 

15MHz; adjacent 512 pixel scan-lines input 

in parallel. 

Output: In scan-line order at 90° offset to input 

scanning scheme. Pairs of pixels from each 

1024 bit scan-line output in parallel at 

15MHz. 

3.Output Framestore 

Storage: 512 by 512 four-bit pixels; double 

buffered to allow simultaneous loading and 

display. 

Input: From one VSP2 in scan-line order at 15MHz. 

Output: In scan-line order with interlace to 

display device at 12MHz. Scanning 

procedure synchronized with GDP based-

system. 
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7.3.1 SOURCE FRAMESTORE 

As outlined above this framestore must provide 

parallel output of four pixels to support the required 

bandwidth. Therefore the 1024 by 1024 pixel array is 

addressed as a 512 by 512 array of 'quads'. Each quad is a 

16-bit memory location representing four adjacent pixels 

arranged as shown below: 

PI P2 

P3 P4 

-j- ̂  ^ ^ ^ —»»—»^ 

Figure 7.5 Arrangement Of Four Pixel Quad. 

Where the labels PI to P4 provide a convenient label 

for each pixel. All four pixels (the complete quad) are 

output simultaneously generating two parallel 1024-bit scan-

lines (with adjacent pixels output in pairs). 

The 15MHz output bandwidth implies a memory access 

time of approximately 50ns (allowing a reasonable margin for 

data setup and address settling). At the time of 

construction (1988) large geometry (> 64k bits) memory 

devices with suitable access times were not available. As 

the cost of implementing a large memory array using smaller 

devices was prohibitive it was decided to implement the 

array using slower memory accessed in parallel. This limits 

the number of locations accessible in each vertical or 

horizontal scan-line to 256, suggesting a two by two 

grouping of adjacent quads as outlined below (the labels Q1 

to Q4 are for textual reference). 
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Q1 Q2 

Q4 Q3 

Figure 7.6 Grouping Of Adjacent Quads. 

During a scan sequence, two quads will be required for 

each memory access (two clock cycles). The pair of quads 

selected for a particular access depends on the scan 

direction but are always adjacent; hence quads 1 and 3 

(similarly 2 and 4) are never required together. Non-

adjacent quads may therefore share a common data bus 

allowing the memory organization shown below; 

QUAD 1 QUAD 3 

64k X 16 64k X 16 

(4X 

32k X 8) 

\ 
16 

(4X 

32k X 8) 

CROSSBAR 

MODULE 

1 

QUAD 2 QUAD 4 

64k X 16 64k X 16 

(4X 

32k X 8) 
16 

(4X 

32k X 8) 

A 16 

CROSSBAR 

MODULE 

2 

4 X 4-BIT 
PIXEL 

STREAMS 

Figure 7.7 Source Framestore Architecture. 
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The quads forming the framestore memory are physically 

separated into four 64k by 16-bit sections. Each section 

comprises four 32k by 8-bit SRAM devices (NEC type 

M.PD43256C-10L [NECM87]). These devices have an access time 

of 100ns allowing a sufficient margin for a memory cycle 

time of two clock periods (133ns). The output enable feature 

(/OE) is used to allow two 32k byte devices to be addressed 

as a 64k byte block; the chip enable (/CE) feature 

implements the quad select (/Ql to /Q4) function. The quad 

selection pair depends on the scan direction and on the 

particular scan-line, alternating between different pairs on 

adjacent scan-lines. The selection process is summarized 

below in Table 7.1. 

SCAN 
DIRECTION 

LSB OF SCAN-
0 1 

-LINE COUNT 
1 

NORTH 1 Ql -> Q2 1 Q4 -> Q3 

EAST 1 Ql -> Q4 1 Q2 -> Q3 

SOUTH 1 Q2 -> Ql 1 Q3 -> Q4 

WEST 1 Q4 -> Ql 1 Q3 -> Q2 

Table 7.2 Quad Selection Table. 

The scan direction corresponds to the definitions 

given in Chapter 5 and the symbol indicates the order 

in which the quads should be output. For example, when the 

scan direction is south and the scan count LSB is 0 quads 2 

and 1 are selected but quad 2 should appear in the data 

stream before quad 1. The output order is determined by 

enabling the output of the appropriate datapath. 

The quad selection pair toggles at the end of each 

scan-line and initial selection (for the first scan-line) 

depends only on the scan direction. Correct sequencing of 
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the quad selection, therefore, does not require explicit 

generation of the LSB of the scan-line count. This is shown 

clearly in Table 7.2; the quad selection output Q3 can be 

interpreted as the LSB of the scan-line count. 

The 256 by 256 array of quads are addressed using 

eight horizontal and eight vertical scanning addresses. The 

sequencing and hierarchy of these addresses is determined by 

the scan direction as given below by Table 7.3. 

+= I 
+ -

+ 

-T" + + 
I VERTICAL ADDRESSING | HORIZONTAL ADDRESSING | -+ + + 

SCAN COUNT COUNT 
DIRECTION HIERARCHY DIRECTION HIERARCHY DIRECTION 

I NORTH I 
4 — —— 
I EAST I 

- I 1 - -

I SOUTH I 

I WEST I 
-f=====:=====-|-= 

MOST 

LEAST 

MOST 

I UPWARDS I 
.-l—— 1-. 

I UPWARDS I 
- H h -

I DOWNWARDS | 
1 —— 1 —— 

LEAST I DOWNWARDS | MOST 
=========+===========+=======: 

LEAST 

MOST 

LEAST 

I UPWARDS I 

I DOWNWARDS | —+ 

1 DOWNWARDS | 
•H H 
I UPWARDS I 

= + = = = = = = = = = = = + 

Table 7.3 Source Framestore Address Sequencing. 

The addresses, quad selection and datapath control are 

all implemented using a single 900-gate equivalent EPLD. The 

datapaths are implemented using the same devices and perform 

two functions. First they provide individual quad selection 

and ordering for each output cycle as described above. 

Secondly, a crossbar switch is implemented, routing the 

outputs PI to P4 to the output stream according to the scan 

direction as outlined below. 
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jOUTPUT FOR SCAN-LINE 1 | OUTPUT FOR SCAN-LINE 2 I 

DIRECTION 

+ = = = = = = = = = + = 

FIRST 
PIXEL 

SECOND 
PIXEL 

FIRST 
PIXEL 

SECOND 
PIXEL 

I NORTH I PI I P2 I P3 I P4 I 

I EAST I P2 I P4 I PI P3 I 

I SOUTH I P4 I P3 I P2 PI 1 

I WEST I P3 I PI I P4 I P2 I + - - + + + + + 

Table 7.4 Datapath Crossbar Operation. 

The loading of the framestore from the host system is 

straightforward as the control and datapath EPLDs allow host 

system access. However, as the array locations are not 

memory-mapped additional registers are used to provide 16-

bit data access and address generation. The host system 

combined with the complicated quad addressing 

scheme make the loading process slow; a typical test pattern 

taking between 20 and 30 seconds to load. Although this 

could be improved by incorporating a dedicated loading (or 

DMA) controller, as this process is performed off-line, no 

other solution has been pursued. 

7.3.2 INTERMEDIATE FRAMESTORE 

Although the bandwidth and scanning requirements are 

less severe compared with the source framestore, the 

intermediate framestore must support retrieval and storage 

at pixel rates. In addition to the write control circuitry, 

this requires a bi-directional datapath using a different 

format for input and output pixel streams. Store or retrieve 

operation is selected according to the system control bus 

signal PASS, and scanning operation is initialized by the 

signal /PASS INIT. 
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The 1024 by 512 pixel array is implemented using four 

64k by eight-bit memory units (two SRAM devices each) 

allowing a group of eight pixels to be addressed in 

parallel. The assignment of the four memory units (denoted 

RAMI to RAM4) to each of the eight pixels is shown below, 

where LSN and MSN indicate the least and most significant 

nybble of a particular memory byte respectively. 

H— — 1--. — — h 
I RAMI LSN I RAM2 LSN | 
4 1 — H 
I RAMI MSN I RAM2 MSN | 

- I — 1 H 

I RAM3 LSN I RAM4 LSN | 
4 — — 1———— i-
I RAM3 MSN I RAM4 MSN | 

Figure 7.8 Organization Of Eight Pixel Memory Block. 

This block represents a portion of the complete 

framestore memory defined as 512 pixels horizontally by 1024 

pixels vertically. Therefore an array of 256 by 256 blocks 

is required to implement the complete framestore, allowing 

two cycles for each block access to conform with the SRAM 

timing requirements. The selection of a particular RAM 

device is summarized below and depends on the least 

significant bit of the scan-line count and the store or 

retrieve operation being performed. 

OPERATION LSB OF SCAN-LINE COUNT 
0 I 1 

+ = = = = = = = = = = = + = = = = = = = = = = = = = + = = = = = = = = = = = = = + 

STORING 1 RAMI & RAM2 1 RAM3 & RAM4 

RETRIEVING| RAMI & RAM3 1 RAM2 & RAM4 
4—— — — — 1 ——— 1 ————— — 
I RETRIEVING] RAMI & RAM3 | RAM2 & RAM4 | 
+ = = = = = = = = = = = + = = = = = = = = = = = = = + = = = = = = = = = = = = = + 

Table 7.5 Intermediate Framestore RAM Selection. 

Inspection of Table 7.5 indicates that RAMI and RAM4 

(similarly RAM2 and RAM3) are never accessed simultaneously 
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allowing a common data bus to be used. The corresponding 

organization of the complete framestore is shown below in 

Figure 7.9. Furthermore, if the RAM select signals are 

derived directly (by swapping at the end of each scan-line), 

the least significant bit of the scan-line count is given by 

the selection signal RAM4. 

INPUT 

STREAM 
1 

RAM 1 

64k X 8 

32k X 8) 

LSN 

MSN 

X 

INPUT 

STREAM] 
2 

RAM 2 

64k X 8 

(2X 
32k X 8) 

LSN 

MSN 

RAM 4 

1 64k X 8 LSN 1 
(2X 

32k X 8) 1 
MSN 

RAM 3 

64k X 8 LSN 

(2X 
32k X 8) 

MSN MSN 

OUTPUT —• 

PIXEL 1 

OUTPUT 

PIXEL 2 

Figure 7.9 Intermediate Framestore Architecture. 

Incoming data is generated by two VSP2 processors and 

is received as two parallel streams of 512 bits per scan-

line. Each stream is processed by a separate datapath 

(implemented using an EPLD type 18CV8) operating according 

to Table 7.6 below: 

+ = = = = = = = = = = = + = = = = = = = = = = = = = = = = = = = = = = + = = = = = = = = = = = = = = = = = = = = = = = + 

LSB 1 INPUT FROM STREAM 1 | INPUT FROM STREAM 2 \ 
OF + + + 

SCAN-LINE 
COUNT 

FIRST 
PIXEL 

SECOND 
PIXEL 

FIRST 
PIXEL 

SECOND 
PIXEL 

=+= + = = = = = = = = 

I 0 
H — 

I 1 I RAM3 LSN I RAM4 LSN | RAM3 MSN | RAM4 ME 

Table 7.6 Operation Of Intermediate Framestore Input 

0 j RAMI LSN I RAM2 LSN \ RAMI MSN | RAM2 MSN | 
1 1 1 1 1-

1 I RAM3 LSN I RAM4 LSN | RAM3 MSN | RAM4 MSN | 
= = = = = = = + = = = = = = = 
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Outgoing data is generated as a single stream of pixel 

pairs representing part of each 1024 pixel scan-line. The 

operation of the output datapath is summarized below and may 

be implemented using two octal latches controlled as shown 

in Figure 7.9. 

LSB I OUTPUT DURING CYCLE 1 OUTPUT DURING CYCLE 2 I 
OF + 

SCAN-LINE 
COUNT 

FIRST 
PIXEL 

SECOND FIRST SECOND 
PIXEL PIXEL 1 PIXEL 

I 0 I RAM2 LSN | RAM2 MSN | RAM4 LSN | RAM4 MSN I 

I 1 I RAMI LSN I RAMI MSN | RAM3 LSN | RAM3 MSN I 
+ ======+===========+===========+==========+============+ 

Table 7.7 Operation Of Intermediate Framestore Datapath 

The controller (implemented using a 18CV8 type EPLD) 

provides all memory access signals for both read and write 

operation and a single 900-gate equivalent EPLD is used to 

address the 256 by 256 block array. This generates row and 

column addresses according to Table 7.8 below, providing a 

90 offset between storing and retrieving operations. 

I I ROW ADDRESSING I COLUMN ADDRESSING I 

OPERATION COUNT COUNT 
HIERARCHY DIRECTION HIERARCHY DIRECTION 

I STORING I MOST | UPWARDS j LEAST j UPWARDS j 

I RETRIEVING I LEAST | UPWARDS | MOST | DOWNWARDS I 
+ = = = = = = = = = = + = = = = = = = = = = = + = = = = = = = = = = = + = = = = = = = = = = = + = = = = = = = = = = = + 

Table 7.8 Intermediate Framestore Address Sequencing. 
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7.3.3 OUTPUT FRAMESTORE 

The output framestore provides synchronization of the 

image mapping process with the display process and requires 

a double-buffered arrangement to allow simultaneous access. 

Only 512 by 512 pixel storage is required and input and 

output operations are performed using the same scan-line 

order. An advantage of this feature is that DRAM can be used 

to provide storage as addressing can be defined to ensure 

that refresh requirements are not violated. 

Each bit plane is implemented using a 64k by 4 DRAM 

(Hitachi type HM50464P-12 [HitM88]) requiring only four 

devices for each framestore. This part is particularly 

suitable as memory access can be implemented in four clock 

cycles and the corresponding parallel access is conveniently 

matched with the four-bit datapath. The full bandwidth can 

therefore be supported using a four-bit shift register to 

provide input and output for each bit plane. 

The complete double-buffered output framestore 

architecture is outlined below consisting of the memory 

array, arbitration logic, and separate address generation 

and memory control for the input and output sections. 

PDCEL 
+- TO DISPLAY 

INPUT 

D_VALID 
INPUT 

DISPLAY 
COUNTERS 

LOADING 
COUNTERS 

INPUT SHIFT 
REGISTER 

OUTPUT SHIFT 
REGISTER 

DRAM ARRAY 2 

DRAM ARRAY 1 

ARBITRATION CONTROL LOGIC 

Figure 7.10 Output Framestore Architecture. 
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Output addresses are generated using two PAL devices 

(type 20X10) providing separate horizontal (line) and 

vertical (frame) outputs. Operating from a l2MHz clock these 

devices provide interlaced scanning using timing parameters 

identical to those provided by the EF9367 GDP. An additional 

PAL (type 16R8) is used to generate an accompanying SYNC 

signal which may be used to synchronize the image mapping 

output with the surface in-fill system described in Chapter 

4. A multiplexor is included to provide the correct address 

format required by the DRAM and a 16R4 PAL device is used to 

generate memory timing and shift register control signals. 

Input address generation is provided by two EPLDs 

(types EP600 and 18CV8) configured to operate as counters in 

conjunction with a multiplexor to support the DRAM 

addressing format. An additional PAL (type 22V10) controls 

the counters and input shift registers and generates the 

memory timing and control signals. Loading operation is 

controlled by a signal (data valid — D_VALID) accompanying 

the input pixel stream to provide synchronization with the 

image mapping system. An additional input selects the 

appropriate pass, allowing the output from either pass to be 

displayed. After the loading operation is completed, the 

counters continue to operate providing refresh cycles until 

the framestores are swapped. 

Arbitration logic is provided by a finite state 

machine implemented using an EPLD (type 18CV8) operating at 

3MHz. All timing clocks used throughout the image mapping 

system are derived from a master 60MHz crystal oscillator. 

This provides three timing clocks at frequencies of 15MHz, 

12MHz and 3MHz, used by the image mapping system, display 

counters and arbitration logic respectively. The rising edge 
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of the 3MHz clock is synchronized with a rising edge of each 

of the other clocks allowing the arbitration finite state 

machine to interface directly with both 12MHz and 15MHz 

circuitry. 

In the absence of any external synchronization the 

output framestore is free-running and the complete image 

mapping system is initialized by the arbitration controller. 

Additionally, if the loading of the framestore is not 

finished when the display of the previous frame is completed 

the buffers are not swapped and the previous frame is 

repeated. This feature proved useful during the development 

stage as the output image is displayed continuously even 

after the image mapping process is interrupted, allowing 

observations and adjustments to be made. 
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7.4 FILTERING SUB-SYSTEM 

This section describes the design of processors VSPl 

and VSP2 used to implement the filtering algorithm described 

in Section 6.2. The architecture used is based on the 

outline given in Figure 6.6 q.v. and is described in two 

sections: prefiltering (VSPl and line buffers) and the 

filtering datapath (VSP2). 

An important feature of this application is that all 

the values (pixel intensity and co-ordinate values) are 

positive numbers and it is not necessary to process signed 

values. This greatly simplifies the design of the arithmetic 

units required to implement the filtering equations. 

7.4.1 SUM-TABLE PREFILTER CIRCUITRY 

Prefiltering is provided by VSPl which generates a 

linear summed-area table from the input pixel stream using 

Algorithm 6.3. VSPl is implemented using the architecture 

outlined below: 

i n p u t 
s t r e a m 

i n p u t _ 
s t r e a m 

2 

i n c r e m e n t i n g 
r e g i s t e r 

c a r r y 

+ § 

s t a b l e 

10 14 o u t p u t 

Figure 7.11 Architecture Of VSPl. 
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The last table entry is generated by summing 1024 

four-bit pixels and a 14-bit representation is required to 

support the maximum possible result. The lower six bits are 

generated using conventional adders (type ACT283[RCAA88]) to 

add the incoming bit stream (augend) to the existing result 

(addend). The upper bits are generated using a ten-bit 

incrementing register (PAL type 22V10) performing an 

increment operation when the carry output from the six lower 

bits is asserted. The latch and the incrementing register 

are cleared at the start of each input scan-line, ensuring 

that the first entry in the summed-area table is zero. 

The augend is generated from the sum of both input 

pixel streams; these represent adjacent pixels which are 

output from the framestore in parallel. This circuitry 

therefore generates a 512 entry summed-area table 

representing the sum of pairs of pixels from the 1024 pixel 

input stream. This approach relaxes the bandwidth 

requirements on VSPl and the line buffers and in addition, 

halves the number of line buffer locations. 

The full 1024 pixel resolution is restored at the 

output of the line buffer using the circuit outlined below; 

14 s BUFFER 
^OUTPUT 

1 BUFFER 
OUTPUT 

MAH9-1] 

MAPC9-0] 

GENERATOR 

OFFSET 

S BUFFER 

I BUFFER 

AND 

Figure 7.12 Line Buffer Output Adjustment. 



162 

The multiplexor allows the appropriate pixel value to 

be chosen from the I buffer according to the least 

significant mapping co-ordinate (MAP_P[0]). MAP_P[0] is also 

used to generate an offset value (S OFF) which is added to 

the S buffer output to provide the required suramed-area 

table value. S_OFF is equal to zero for even mapping co-

ordinates and equal to the first pixel of the pair output 

from the I buffer for odd mapping co-ordinates. The 

multiplexor and offset generator are implemented using a 

single PAL (type 20G10 [CySe89]) and the offset is added to 

the S buffer value using a conventional four-bit adder and 

an additional ten-bit incrementer (PAL 22V10). 

The line buffer must support two 4-bit I buffers and 

the 14-bit S buffer, a total requirement of 22 bits. A 

suitable implementation is provided using three 8-bit wide 

memory devices providing 24-bit storage. A double buffered 

arrangement is required to separate input and output 

operations and six devices are required in total. A 2k by 8 

SRAM (Inmos type IMS1433[InmM87]) was chosen for this 

application as the fast access time of 45ns supports single 

cycle operation. A nine—bit address must be generated to 

allow the buffer to be loaded in the correct order, 

implemented using a single PAL (type 22V10). 

The control of the line buffers is implemented by a 

finite state machine (also using a 22V10 PAL) which provides 

memory timing signals and supervises the double-buffered 

operation. 
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7.4.2 FILTERING DATAPATH 

The first operation performed by VSP2 is the 

generation of the partial sum given by Equation (6.6) 

followed by the subtraction of the previous value, giving 

the numerator of Equation (6.7). Both operations are 

implemented using the architecture outlined below: 

14 

+ + 18 

PARTIAL SUM 

PARTIAL 
> SUM 

DIFFERENCE 

Figure 7.13 Partial Sum Difference Generation. 

The four-bit by four-bit multiplication is readily 

implemented using a look-up table and the result is added to 

the 14-bit S buffer output to generate an 18-bit partial 

sum. The difference value for successive cycles is obtained 

from an 18-bit subtracter. The partial sum value is applied 

directly to the minuend input and the previous (latched) 

partial sum value to the subtrahend input. The subtracter is 

implemented using conventional four bit adders (type F283 

[Mull84]) using a two's complement representation for the 

subtrahend. 

A similar process is used to generate the denominator 

of Equation (6.7) (the footprint size) using the combined 
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co-ordinates MAP_P and MAP_Q. The footprint is only required 

to four-bit accuracy but has a dynamic range of up to 14-

bits, therefore a simple four-bit floating-point 

representation is used to represent the footprint size. The 

four-bit mantissa and four-bit exponent can be generated 

from the fixed-point footprint value using a single 22V10 

PAL. 

To prevent edge aliasing correct filtering operation 

must be maintained when entering or leaving the source 

window. At these points the MAP_P co-ordinates default to 

the end points of the line buffers. This provides a correct 

partial sum at the leading edge of the source window as S[0] 

is defined as zero. However, the last entry in the summed 

area table contains the sum of all preceding pixels 

excluding the last pixel itself. An error can occur at the 

trailing edge of the source window because the default value 

outside the source window should contain the sum of all the 

pixels in the source scan-line. 

This can be avoided by making the last two entries in 

the summed area table equal, i.e. by making the last pixel 

in each source scan-line zero. This reduces the source 

region to 1023 by 1023 pixels but is considered an 

acceptable solution to this problem. 

However, the footprint value is not maintained when 

entering or leaving the source window as it is derived from 

the clipped mapping co-ordinate. A solution to this problem 

is made by approximating the footprints either side of the 

source window by extrapolation. This is implemented by 

controlling the length of a pipeline register forming part 

of the footprint datapath. 

The exponent is used to shift the partial sum 
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difference value to align it with the footprint mantissa, 

implicitly cancelling and rounding the numerator and 

denominator of Equation (6.7). This operation is performed 

using two 22V10 type PAL devices and is illustrated in 

Figure 7.14 below. An additional PAL (type 22V10) is 

included to implement 'Add 1' rounding before the division. 

p a r t i a l s u m 
d i f f e r e n c e 

f o o t p r i n t 
e x p o n e n t 

18 

H O 
% 
e p 

• e z 
6 p o 

c 

d i v i d e r 

l o o k 

512X8 

o u t p u t 
> p i x e l 

s t r e a m 

f o o t p r i n t _ _ _ _ _ 
m a n t i s s a 4 

Figure 7.14 Footprint Division Architecture. 

The advantage of this approach is that the division 

is performed on two five-bit numbers, allowing a complete 

implementation at pixel rate using a single look-up table. 

The look-up table is implemented using a 512 by 8 registered 

PROM and includes the 'add 1' rounding feature to minimize 

errors. The special case arising when the footprint is zero 

is processed by replacing the filtered pixel by the direct 

point-sampled equivalent (from the I buffer). Since the 

footprint is zero this provides an accurate representation 

of the pixel intensity. 
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7.5 SUMMARY 

This chapter has described an architecture to 

implement the filtering algorithm and co-ordinate generation 

process presented in Chapter 6. 

The co-ordinate generation system implements Equations 

(6.28) and (6.43) at pixel rate using two polynomial 

generators and a divider. A 16-bit floating-point 

representation ensures sufficient accuracy and is used for 

the division operation. The polynomial generators, however, 

have been implemented in fixed-point arithmetic for reasons 

of efficiency using a proprietary VLSI device and accuracy 

has been maintained by software scaling. The divider is 

implemented using a reciprocal look-up table followed by a 

parallel multiplier, together with a finite state machine to 

provide clipping control. 

A parallel architecture is used to implement the 

source and intermediate framestores as memory access times 

are too slow for pixel rate operation. The datapath and 

addressing schemes required for each framestore are 

implemented efficiently using complex EPLDs to allow scan 

direction to be controlled by the host system. A double-

buffered arrangement is used for the output framestore, in 

order to utilize the available bandwidth more efficiently. A 

15MHz clock is sufficient for a single VSP system to 

implement both passes in sequence at frame rate, and the 

output framestore provides synchronization with the display 

process. 

The filtering sub-system is implemented using an 

arrangement of pipelined arithmetic units, the design of 

which is simplified because only positive numbers are 

supported. Additionally, the multiplication and division 
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operations required by the filtering algorithm have been 

implemented directly using look-up tables. 
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CHAPTER 8 

ANALYSIS OF IMAGE MAPPING SYSTEM 

8.1 PERFORMANCE OF IMAGE MAPPING SYSTEM 

A real-time CGI system to provide texturing by image 

mapping has been built and tested. Aliasing is significantly 

reduced using an implementation of the spatially-variant 

filtering algorithm developed in Chapter 6. The system is 

controlled by a 68000-based host computer providing full 

software support for the requirements outlined in Chapters 6 

and 7. This includes coefficient derivation from attitude 

and position parameters, polynomial scaling and solution of 

the bottleneck problem. 

The complete system is capable of rendering a 1024 by 

1024 source image in full perspective, onto a 512 by 512 

display at frame rate. Monochrome images are represented 

using 16 grey scales and the output format is compatible 

with an existing CGI system described in Chapter 4. The co-

ordinate generation hardware implements 14 floating-point 

operations per pixel, giving a performance bandwidth 

equivalent to 210 Mflops. The filtering sub-system performs 

five operations per output pixel and one operation per 

input pixel, a total of 5.5 million operations per frame 

(equivalent to 137 MIPS). 

These figures indicate the high bandwidth supported by 

this architecture, although the system clock frequency of 

15MHz allows the use of conventional TTL devices. In 

addition, the extensive use of EPLDs provides an efficient 

hardware implementation; the complete system occupies a 

board area of only 500mm by 250mm. 
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8.2 OBSERVATIONS AND DESCRIPTION OF PLATES 

Plate 81 illustrates a typical source image used to 

evaluate system performance and generate the following 

plates. It contains a chess board pattern, a cross hatch 

pattern and two grey scale digitized images captured using a 

camera. 

Plates Bill and 8IV show a typical view of the source 

image in perspective, Plate 8III has the filtering inhibited 

and Plate 8IV has the filtering enabled. The effects of the 

filtering are clear, particularly over the cross hatched 

area and at the edges of the source region. Plate 811 shows 

the intermediate image generated after the first pass. 

Plates 8V to 8VIII illustrate similar filtered and 

non-filtered images of a highly expanded and contracted 

source region. These images clearly demonstrate the accuracy 

of the perspective qualities of the mapping function. Again 

the advantages of the filtering are obvious but some fringes 

are noticeable on the cross hatched portion of the expanded 

image. For the shrunken image the filtering process is very 

successful and aliasing is prevented without excessive 

blurring. 

Plate 8IX shows an example of extreme magnification, 

illustrating an undesirable effect. The jagged edges are not 

due to aliasing artifacts, but to the distortion of 

individual pixels caused by quantization effects of the two-

pass transformation. This distortion could be reduced by 

generating separate mapping co-ordinates for the scan-lines 

processed in parallel during the first pass. This could be 

achieved using linear interpolation but at best would only 

halve the size of the edge steps, and has not been pursued. 
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Plate 8X illustrates an image which is scanned using 

an alternative direction because the initial scan direction 

created a cusp in the intermediate image. Plate 8X1 shows 

the intermediate image containing the cusp and Plate 8XII 

shows the distorted image generated from Plate 8X1. 

Finally Plates 8XIII and 8XIV are taken using an 

exposure time of 1/8 second and clearly demonstrate the 

real-time operation of the system. 
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PLATE 81 Source Image 
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PLATE 811 Intermediate Image 
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*tr 
PLATE 8III Final Image Without Filtering 

PLATE 8IV Final Image With Filtering 
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PLATE V Shrunken Image Without Filtering 

PLATE VI Shrunken Image With Filtering 
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/ // 

PLATE VII Expanded Image Without Filtering 

/ I// 

PLATE VIII Expanded Image With Filtering 
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PLATE IX Highly Magnified Image 

PLATE X Image Scanned Using Alternative Scan Direction 
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PLATE XI Intermediate Image Containing Cusp 

PLATE XII Resulting Final Image 



178 

PLATE XIII 1/8 Second Exposure Showing Motion 

PLATE XIV 1/8 Second Exposure Showing Motion 
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CHAPTER 9 

CONCLUSIONS 

A summary and discussion of the complete research 

project is given in this chapter. This is followed by 

suggestions for further work and final remarks. 

9.1 SUMMARY AND DISCUSSION OF RESULTS 

The main objective of this project (as outlined in 

Chapter 1) was to assess the usefulness of stream processing 

as a means of implementing real-time image generation, 

requiring: 

1). The development of algorithms appropriate to a Video 

Stream Processing (VSP) architecture. 

2). The design of the VSP architecture to implement the 

algorithms. 

Specifically, these objectives have been applied to 

two areas of image enhancement; surface in-fill and texture 

mapping. 

A survey of existing in-fill techniques showed that 

most require a high bandwidth between the host system and 

the framestore. Alternative methods which provide in-fill by 

'post processing' require complex contour generation 

techniques and are not compatible with conventional vector 

generation hardware. 

Consequently a surface in-fill algorithm has been 

developed which can be applied to any 8-connected region and 

is compatible with proprietary graphics processors. The 

algorithm operates in scan-line order using two passes and 

can be implemented using a VSP architecture. 

Restrictions are imposed on the way in which polygons 
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should intersect the screen boundaries and additional 

processing is required to ensure correct operation. This is 

incorporated in the graphics software and results show that 

the effect on performance is negligible. 

The algorithm does not support interlaced output 

directly and an additional VSP section was developed to 

support this feature. The additional VSP provides an 

interlaced output but under certain conditions the original 

contour is distorted. In practice, the effects of the 

distortion are not readily noticeable and a better solution 

has not been pursued. 

The algorithm is implemented in hardware using a VSP 

architecture capable of processing each pixel in a single 

clock cycle. For a 512 by 512 image a clock frequency of 

12MHz is required allowing the VSP to be implemented using 

conventional TTL devices. 

In comparison with conventional in-fill techniques 

the VSP system reduces the bandwidth requirements between 

the host system and the framestore. For example, a typical 

image composed of 20 square regions each 60 by 60 pixels 

requires 3600 framestore memory accesses to provide in-fill 

explicitly, compared to 240 accesses using the VSP system. 

At a frame refresh rate of 25Hz the corresponding bandwidths 

are 1.8MHz and 120kHz respectively. 

This low bandwidth is within the range of conventional 

low-cost GDPs and a image generation system based on this 

architecture has been built and tested. The VSP-based system 

is capable of rendering an image composed of 25 in-filled 

polygons at frame rate and has been successfully 

incorporated with a low-cost flight simulation system in 

commercial use. 
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The second part of this thesis has described the 

application of VSP techniques to provide texturing by means 

of image mapping. A survey of current image mapping 

techniques indicates that a two-pass spatial transformation 

is suitable for a VSP implementation but that existing 

filtering techniques could be improved to provide more 

efficient anti-aliasing. 

A filtering algorithm has been developed allowing 

spatially-variant filtering to be implemented directly as 

part of the transformation process. Two VSP systems are 

required to implement the filtering process: The first VSP 

provides prefiltering of the incoming pixel stream by 

generating a linear summed-area table for each scan-line. 

The second VSP uses the prefiltered data to implement the 

spatially-variant filter providing single-cycle per output 

pixel performance. The input and output pixel streams are 

processed separately allowing differing resolutions to be 

supported. This feature is exploited by the hardware 

implementation described in Chapter 7 which maps a 1024 by 

1024 pixel source image to a 512 by 512 pixel display. 

Mapping co-ordinates are generated at pixel rate to 

provide real-time operation and an efficient hardware 

implementation has been developed using a pipelined 

architecture. 

A fundamental problem associated with two-pass 

transformation is the bottleneck problem, which must be 

solved at frame rate to select the optimum scanning scheme 

for the source framestore. An efficient scan selection 

algorithm has been developed which uses the attitude 

parameters to select an initial scan direction and performs 

tests to avoid an additional problem caused by the occurance 
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of a cusp in the intermediate image. This algorithm is 

implemented at frame rate by the host system software and 

additional hardware is not required. 

However, results show that in certain circumstances 

none of the four scanning schemes prevent loss of 

information and minor distortion of the image can occur. In 

practice, these conditions are rare and the corresponding 

distortion is insignificant; a possible improvement is 

suggested in the next section. 

A real-time implementation of the image mapping system 

has been built and tested using simulated attitude and 

position parameters. An important advantage of the VSP 

architecture is the efficient hardware implementation, this 

is enhanced by the extensive use of PLDs and the complete 

system occupies a board area of only 250mm by 500mm. 

The most important advantage of the VSP architecture 

is the high performance provided by the pipelined 

architecture. The circuitry operates at 15MHz and is 

implemented using conventional TTL type devices. The 

performance of the co-ordinate generation is equivalent to 

210Mflops, and the filtering system effectively operates at 

137 MIPS. 

Although the system has not been integrated with an 

existing image generation system, results indicate that 

image quality is sufficient to give the illusion of motion 

over the surface region. The increase in image fidelity 

resulting from the filtering is clear, and a particular 

advantage of the filtering algorithm is the removal of 

aliasing artifacts from the edges of the source region. 

The main limitation of the image mapping system is the 

jagged appearance of the image at positions of high 
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magnification, occurring when the viewpoint is positioned 

close to the ground. This places an upper limit on the 

feature size which should be represented by a single pixel 

in the source region. 

9.2 FURTHER RESEARCH 

The main disadvantage of the in-fill system is the 

inability to process overlapping regions. Extensive use of 

the in-fill system indicate that four bit planes places an 

upper limit on image fidelity of about 30 polygons. This 

could be improved by increasing the number of bit planes, 

but as image complexity increases the advantage of automatic 

in-fill is less obvious. This is because the average screen 

size of each polygon will fall and the overheads of the in-

fill system become comparable to the extra bandwidth 

reguired to provide in-fill explicitly. Since the project 

was completed, advances in GDP design (e.g. 

[Texas?][AMDQ87][Hita84][ThSe89]) overcome the bandwidth 

problem using VLSI technology. Conseguently, further work on 

this project is unlikely. 

Conversely, apart from the obvious extensions to 

support colour and integrate with the flight simulation 

system, the image mapping system offers considerable 

potential. Several possibilities exist for further research 

and some suggestions are given below. 

1). Because of the fixed number of product terms 

implemented by currently available EPLDs it is not 

possible to minimize the arithmetic units. A more 

efficient implementation, therefore, could be provided 

if other forms of ASIC devices were used, such as 

programmable [Xili87] or dedicated gate arrays. 
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2). A better solution to the bottleneck problem may be 

found by allowing the order of the passes to be 

interchanged, therefore increasing the number of 

scanning options to eight. This would require a more 

complex output framestore and additional selection 

procedures, but could offer a small improvement in 

image fidelity. 

3). The image mapping system has been developed to map 

static images which have been loaded off-line. The 

addition of a double buffered source framestore would 

allow changing images, also generated in real-time, to 

be mapped onto the viewing screen. This dynamic 

texturing could be used to represent such features as 

waves on a sea or lake or windswept crops. 

Alternatively, a finite number of separate images 

could be loaded off-line, allowing different regions 

to be displayed according to the position of the 

viewer. This would be particularly useful for a system 

incorporating several image mapping systems. 

4). The image mapping system has demonstrated the 

application of a VSP architecture to two-dimensional 

spatial transformations. A more ambitious objective 

would be to apply the VSP architecture and filtering 

process to more complex separable transformations, for 

example, the three-dimensional image manipulation 

algorithm proposed by Robertson [Robe87]. 
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9.3 CONCLUSIONS AND FINAL REMARKS 

This thesis has promoted the use of stream processing 

techniques, (hitherto used only for simple effects), as a 

method to provide real-time image generation. Two specific 

applications have been evaluated, surface in-fill and image 

mapping. 

The surface in-fill system overcomes bandwidth 

limitations between the host system and output framestore 

but processing restrictions make it less attractive as image 

complexity increases. It has been demonstrated, as a 

practical method, to provide an efficient image enhancement 

technique for images containing less than 30 polygons. 

The image mapping system provides an efficient 

implementation of perspective spatial transforms in real-

time. The VSP architecture supports a spatially-variant 

filtering algorithm providing effective anti-aliasing, 

particularly on shrunken images. The main disadvantage is 

the jagged effect evident on highly magnified images, 

although this is acceptable if the feature size is small. As 

outlined in item 3 of the previous section, inclusion of a 

double buffered source framestore allows the mapping of an 

arbitrary video input. Although originally intended for a 

flight simulation application this feature makes the system 

ideally suited to broader digital video effects 

applications. 

An underlying advantage of both VSP applications is 

the efficient hardware solution, arising from the extensive 

use of pipelining techniques. VSP architectures exploit the 

scan-line order of raster scan displays and it is probable 
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that other image enhancement features could be implemented 

using this approach. As it is likely that raster scan 

techniques will continue to dominate display systems for 

many years, the author hopes that research into VSP 

techniques will be continued. 
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APPENDIX I 

This section contains an example PLPL database written 

by the author. The database is defined as an ASCII file 

exactly in the format given in this listing. This particular 

listing supports the ICT PEEL18CV8 EPLD. 



I - 1 

"Database for PEEL 18CV8 jde 9-2-88 

Pin Types: 
CLOCK = dedicated clock 
CLK_INPUT = clock and input 
INPUT = input 
OUTPUT = output 
BREG = buried registers 
10 = input or output; i.e., with feedback 
VCC,GND = power,ground pins 

Output Types: 
0 = programmable 
1 = active LOW 
2 = active HIGH 

The I/O macrocell assignments are as follows :-
A = Active low or active high output 
B = Registered or combinatorial output 
C = Combinatorial or registered feedback 
D = I/O pin or logic array feedback 

It 

12696 20 20 36 "<# of fuses> 
<# of pins> 
<physical # of pins> 
<§ of inputs to AND array>" 

1 CLK_INPUT 0 1 2 0 "pin #, pin type, 
true and complement array input line" 

0 0 0 0 
# combinatorial -1 
@ "@ symbol used to terminate definition for this pin" 

2 INPUT 4 5 2 0 
0 0 0 0 
# combinatorial -1 @ 

3 INPUT 8 9 2 0 
0 0 0 0 
# combinatorial -1 

4 INPUT 12 13 2 0 
0 0 0 0 
# combinatorial -1 @ 

5 INPUT 16 17 2 0 
0 0 0 0 
§ combinatorial -1 @ 

6 INPUT 20 21 2 0 
0 0 0 0 
# combinatorial -1 @ 

7 INPUT 24 25 2 0 
0 0 0 0 
# combinatorial -1 

8 INPUT 28 29 2 0 
0 0 0 0 
# combinatorial -1 



1 - 2 

9 INPUT 32 33 2 0 
0 0 0 0 
# combinatorial -1 

10 GND @ 
11 INPUT 2 3 2 0 

0 0 0 0 
# combinatorial -1 
§ 

12 10 34 35 0 0 "xl x2 x3 x4 (as for other pins) 
<feedback source> <output type>" 

"Feedback source indicates where feedback is being taken: 
e.g.; in a registered part, feeback can come from 
HIGH or LOW Q output of the register. 
Feedback Source: 0 = HIGH FDBK 

: 1 = LOW_FDBK 
: 2 = NO_FDBK 
: 3 = CORRECT_FDBK 

II 

8 2016 "# of product terms (PT), 
starting at link address 2016" 

1 2556 1 2592 1 2628 "# of enable PTs starting at 2556 
# of sync preset PTs at 2592 
# of async reset PTs at 2628 

— > architecture fuses marked by # with choices marked by + 
e.g: combinatorial/registered fuse for I_0 pin 12 is at 

2693 and combinatorial mode is selected by resetting 
the fuse to 0 and registered mode is selected by 
setting the fuse to 1 in the JEDEC map. 
If no feature is specified, then the first (leftmost) 
option is selected as default" 

"A" # ACTIVE_HIGH 2692 0 + ACTIVE_LOW 2692 1 
"B" # COM 2693 0 + REG 2693 1 
"C" # FEED_COM 2 694 1 + FEED_REG 2694 0 
"D" # DEFAULT_D 2695 0 + FEED_PIN 2 695 1 

13 10 30 31 0 0 
8 1728 
1 2520 1 2592 1 2628 

# ACTIVE_HIGH 2688 0 + ACTIVE_LOW 2 688 1 
# COM 2689 0 + REG 2689 1 
# FEED_COM 2690 1 + FEED_REG 2690 0 
# DEFAULT_D 2691 0 + FEED_PIN 2691 1 @ 

14 10 26 27 0 0 
8 1440 
1 2484 1 2592 1 2628 

# ACTIVE_HIGH 2684 0 + ACTIVE_LOW 2684 1 
# COM 2685 0 + REG 2685 1 
# FEED_COM 2 686 1 + FEED_REG 268 6 0 
# DEFAULT_D 2687 0 + FEED_PIN 2687 1 
@ 



1 - 3 

15 10 22 23 0 0 
8 1152 
1 2448 1 2592 1 2628 

# ACTIVE_HIGH 2680 0 + ACTIVE_LOW 2680 1 
# COM 2681 0 + REG 2681 1 
# FEED_COM 2682 1 + FEED_REG 2682 0 
# DEFAULT D 2683 0 + FEED PIN 2683 1 @ 

16 10 18 19 0 0 
8 864 
1 2412 1 2592 1 2628 

# ACTIVE_HIGH 2676 0 + ACTIVE_LOW 2676 1 
# COM 2677 0 + REG 2677 1 
# FEED_COM 2678 1 + FEED_REG 2678 0 
# DEFAULT D 2679 0 + FEED PIN 2679 1 @ 

17 10 14 15 0 0 
8 576 
1 2376 1 2592 1 2628 

# ACTIVE_HIGH 2672 0 + ACTIVE_LOW 2672 1 
# COM 2673 0 + REG 2673 1 
# FEED_COM 2674 1 + FEED_REG 2674 0 
# DEFAULT D 2675 0 + FEED PIN 2675 1 
@ 

18 10 10 11 0 0 
8 288 
1 2340 1 2592 1 2628 

# ACTIVE_HIGH 2668 0 + ACTIVE_LOW 2 668 1 
# COM 2669 0 + REG 2669 1 
# FEED_COM 2670 1 + FEED_REG 2670 0 
# DEFAULT D 2671 0 + FEED PIN 2671 1 

19 10 6 7 0 0 
8 0 
1 2304 1 2592 1 2628 

# ACTIVE_HIGH 2664 0 + ACTIVE_L0W 2664 1 
# COM 2665 0 + REG 2665 1 
# FEED_C0M 2666 1 + FEED_REG 2666 0 
# DEFAULT D 2667 0 + FEED PIN 2667 1 

20 VCC @ 
$ 



APPENDIX II 

This section contains the PALASM source file for the 

MP main processor PAL part of the in-fill VSP. For brevity 

simulation vectors are not included. 



II - 1 

PALI 6R8 
MP1 
MAIN PROCESSOR 
SOUTHAMPT® UNIVERSITY 
CLK NC LVB ML1 ML2 LPA LPB NC PC (2® 
OE PD R1 R2 FL /S3 /S2 /SI /SO VOC 

JEFF EVEMY 

SO:=/S3*/S2*S0*/R1•/LVB*/ML1 
+/S2*S1*/S0*/LVB*/R1*/ML1 
+S3*S2*/S1 */S0*/LVB*/R1 */l4L1 
+/S3*/S2*S0*/LVB*ML1 
+S3*/S2*S1 */S0*/LVB*I4L1 
+S3*/S2*/S1*R1*/LVB*/ML1 
+/S3*S2*/S1*/SO*/LVB 
+S3*/S2*S1•SO*/LVB 

SI :=/S3*/S2*/S0*/LVB*/ML1 
+S3*S2*/S1 */S0*/LVB*/R1 */l4L1 
+S3*/S2*/S1•/LVB*/R1*/ML1 
+S3*/S2*/S1•/LVB*ML1 
+/S3*S2*S1*/LVB 
+/S3*/S2*S1 */S0*ML1 */i4L2*/LVB 

STATES 1 AND 3 R1 AND ML1 LOW 
STATES A AND 2 R1 AND ML1 LOW 
STATE C R1 AND ML1 LOW 
STATES 1 AND 3 ML1 HIGH 
STATE A ML1 HIGH 
STATES 8 AND 9 R1 HIGH AND ML1 
STATE 4 
STATE B 

STATES 0 AND 2 ML1 LOW 
STATE C R1 AND ML1 LOW 
STATES 8 AND 9 R1 AND ML1 LOW 
STATES 8 AND 9 ML1 HIGH 
STATES 6 AND 7 
STATE 2 ML1 HIGH AND ML2 LOW 

LOW 

+/S3*S2*/S1*/S0*/LVB ;STATE 4 

S2:=S3*/S1*/LVB*ML1 ;STATES 8 9 C AND D ML1 HIGH 
+/S2*S1 */S0*/LVB%1 ;STATES 2 AND A ML1 HIGH 
+/S3*/S2*S0*/LVB*ML1 ;STATES 1 AND 3 ML1 HIGH 
+/S3*S2*S1*/LVB*/R1*/ML1 ;STATES 6 AND 7 R1 AND ML1 LOW 
+/S3*/S2*/S0*/LVB*/R1*/ML1 ;STATES 0 AND 2 R1 AND ML1 LOW 
+S2*/S1*SO*/LVB ;STATES 5 AND D 
+S3*/S2*S1*SO*/LVB ;STATE B 
+S3*S2*S1*/SO*/LVB ;STATE E 

S3: =/S3*/S2*S0*/LVB*R1 */l«IL1 ;STATES 1 AND 3 R1 HIGH AND ML1 LOW 
+S3*S2*/S1 */S0*/LVB*Rl*/ML1 
+S3*/S2*S1 */S0*/LVB*R1 */l4L1 
+S3*S2*/S1*/LVB*ML1 

;STATE C R1 HIGH AND ML1 LOW 
; STATE A R1 HIGH AND ML1 LOW 
;STATES C AND D ML1 HIGH 

+/S3*/S2*S1*/S0*ML1*/ML2*/LVB;STATE 2 ML1 HIGH AND ML2 LOW 
+S3*/S2*/S1*/LVB 
+/S3*S2*/S1*/SO*/LVB 
+S3*/S2*S1*SO*/LVB 

/FL:=/S2*S1 •SO 
+/S3*/S1*S0 
+S3*S2*/S0 
+/S3*/S2*/S1*/S0 
+/S3*S2*S1*/S0 
+S3*/S2*/S1*/ML1 
+/S3*/S2*S1*/S0*/ML1 
+/S3*/S2*S1*/S0*ML2 

/R2:=LPA*LPB 

/R1:=/R2 

/PD:=/PC 

;STATES 8 AND 9 
;STATE 4 
;STATE B 

;STATES 3 AND B 
; STATES 1 AND 5 
;STATES E AND C 
;STATE 0 
;STATE 6 
;STATES 8 AND 9 ML1 LOW 
;STATE 2 ML1 LOW 
;STATE 2 ML2 HIGH 

;R2 LOW IF LPA AND LPB HIGH 

;R1 = R2 DELAYED BY 1 

;PD = PC DELAYED BY 1 



APPENDIX III 

The complete circuit of the surface in-fill CGI system 

is given in this appendix. Three separate diagrams are 

included, corresponding to each of the three circuit boards. 
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a is 
«3 43 Dcpas a>*4 c w o o r sicc 

CRirt 
LAC M 
LAI 27 

KLK 

G r a p h i c s B o a r d 



I l l - 2 

.11 

i 
rf g i B < O ^ 

JOiJjj'dA s B 

-̂-i-- MI I III I -U-I 

II WA ispilSa izz 
I ga; 599:55=; 

593:95: 

| [ 
K Dite __ 

aw njS 1̂  

n "h% 

i 
s 

RSr AAS4: 
PT 

*:ssgs 
T 

^ ' 4 !? Dl b vo 

i ! i F i 
Ctsls 

RASl« 

I 
t 
s 
5 
? 

a 

i ! 

, k 
SK IIS o 

F r a m e s f o r e M e m o r v ( I of 2 ) 



Ill - 3 

B xYbsa* fco ON* XYtitN 31dD ONV 

444 
Avayy 3iv3 to ow B5B8S8B& 

»ZE, 
BSBSSBBk 

BSBBaSBb 

SSBBXBBk 
Avwv 3iV3 dO OW 

AYMWV 31V3 dO dWV • 
5 

41 AvTdwv iivo ac ONv 

BsassBBb 
tZE. 

BoBSaBBb 
kteir#«4s BsBBSBBb 

VES 
BG&BNb bkB 

. - ,̂ o 

. J 
BSBBZBBk BSaGSaaB 

BSti 
BSB8SBB& 

tZE 
BSBBSBBk 

eeeesess*** eegBagssf** 

T M T 
3ZA3 pU 

<I93IS9SS5; IS 5 
3ZA3 pfc 

5795:SS55SI I I b 
Bsassaaa 

I g S i 

kk 
zaaaaaaaa : qacaaadda 

m M M 
AVMWV 31V3 fcC ONV 

SoaSasSa 
»ZE. 

B.85B5S8S& 
AVWWV WOX WO ONV 

rreCEE 

XYdHV 21*3 dD ONV AVddV 31V3 HO ONV 

:g3*g9B5skk&&c"rrCfrl 
8 1 — B p gh 

5i&# 

V 

k I 31 vs' tC CTW ' I Avyyv a i m dO crwv 

In - Fill Board 



APPENDIX IV 

The implementation of the scan selection algorithm 

given in this section is written in the BCPL systems 

implementation language. This listing forms part of the host 

system software used to support the image mapping system in 

real-time. 



GET "\headers\libhdr" 

IV - 1 

MANIFEST 

SOURCE.SIZE = 512.0 // 

NORTH 0 // 
SOUTH = 2 // 
EAST = 1 // 
WEST = 3 // 
MARGIN = 128.0 // 
LEFT.BOUNDARY = 0.0 i - MARGIN // 
RIGHT.BOUNDARY = 512.0 1+ M.ARGIN // 
TOP.BOUNDARY = 0.0 f- MAlGIN // 
BOTTOM.BOUNDARY = 512.0 #+ M.11GIN // 
UPSIDE.DOWN = 8 // 
RIGHT.WAY.UP = 0 // 
$) 

// 

// globals 
GLOBAL 
$( 

all gg + 40 // 
al2 99 + 41 
al3 99 + 42 
a21 99 + 43 
a22 99 + 44 
a23 99 + 45 
a31 99 + 46 
a32 99 + 47 
a33 99 + 48 

c.a gg + 60 // 
c.b 99 + 61 
c.c gg + 62 
c.d gg + 63 
c.e 99 + 64 
c.f 99 + 65 
c.g 99 + 66 
c.h 99 + 67 
c.i 99 + 68 

$) 

// Source size from IRS viewpoint 

Upside down flag (bit 2 = 1) 

// aij coefficients 

a - i coefficients 
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AND adjust.direction(scan.direction) 
$( 

LET a , b , c , d , e , f = 

SKITCHON scan.direction INTO 
$( 
CASE NORTH: RETURN 
CASE EAST: 

$( 

a 
b 
c 
d 
e 
f 
$) 
ENDCASE 

CASE SOUTH: 
$( 

a := c.g I* SOURCE.SIZE #- c.a 
:= c.h f* SOURCE.SIZE }- c.b 
:= c.i #* SOURCE.SIZE #- c.c 
:= c.g #* SOURCE.SIZE {- c.d 
:= c.h #* SOURCE.SIZE #- c.e 
:= c.i 

:= c.d 
:= c.e 
:= c.f 
:= c.g i* SOURCE.SIZE }- c.a 
:= c.h SOURCE.SIZE #- c.b 
:= c.i f* SOURCE.SIZE i- c.c 

i* SOURCE.SIZE i- c.f 

b 
c 
d 
e 
f 
$) 
ENDCASE 

CASE WEST: 
$( 

a := c.g f* SOURCE.SIZE i- c.d 
b := c.h i* SOURCE.SIZE h c.e 
c := c.i #* SOURCE.SIZE #- c.f 
d := c.a 
e := c.b 
f := c.c 
$) 
ENDCASE 

$) 

c.a 

$) 

c.b 
c.c 
c.d 
c.e 
c.f 

a 
b 
c 
d 
e 
f 

BE // Adjusts a - i for scan direction 

// Temporary storage for new values 

// No adjustment necessary 
// Adjust for eastward position 

// a -> d 
// b -> e 
/ / c - > f 
// d -> g.S - a 
// e -> h.S - b 
// e -> i.S - c 

// Adjust for southward position 

// a -> g.S - a 
// b -> h.S - b 
// c -> i.S - c 
// d -> g.S - d 
// e -> h.S - e 
// e -> i.S - f 

// Adjust for westward position 

// a -> g.S - d 
// b -> h.S - e 
// c -> i.S - f 
// d -> a 
// e -> b 
// f -> c 

// Restore a coefficient value 
// Restore b coefficient value 
// Restore c coefficient value 
// Restore d coefficient value 
// Restore e coefficient value 
// Restore f coefficient value 
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>J© find.directionO - VALOF // Returns required scan direction 

LET d = cardinal(a21 f- al2,a22 1+ all) 
// First guess 

LET v.vp = ? // V value of vanishing point 
LET prx.l,prx.r = ?,? // Left and right proximity values 
LET xi,yi = ?,? // Associated screen intersections 
LET flag = d // Lower 2 bits represent N,S,E & W 

TEST (d = EAST) | (d = WEST) 
THEN v.vp := SOURCE.SIZE i* (al2 f/ al3 #+ 0.5) 

// E or W; Compute x vanishing point 
ELSE v.vp := SOURCE.SIZE }* (a22 1/ a23 #+ 0.5) 

// N or S; Compute y vanishing point 
TEST a32 |< 0.0 
THEN flag 
ELSE flag 

:= UPSIDE.DOWN // Image upside dora 
:= RIGHT.WAY.UP // Image right way up 

IF (v.vp f> 0.0) & (v.vp t< SOURCE.SIZE) 
THEN // Within bounds 
$( 

prx.l := c.h f* v.vp #+ c.i // Compute proximity of screen edges 
prx.r := c.g I* SOURCE.SIZE 1+ prx.l 

IF prx.l f> 0.0 // Left hand screen intersection 
THEN //on ground 
$( // First compute source co-ordinates 
xi := (c.b I* v.vp |+ c.c) #/ prx.l 
yi := (c.e i* v.vp #+ c.f) #/ prx.l 
SWITCHON flag INTO 
$( 
CASE (NORTH t RIGHT.WAY.UP): 
CASE (EAST + UPSIDE.DOWN ): 
IF (xi l> LEFT.BOUNDARY) & (yi l> TOP.BOUNDARY) 

// Cusp within image (left,top) 
THEN RESULTIS cardinal2(a21 i- al2,a22 #+ all) 

// Return alternative scan direction 
ENDCASE // End of left,top 

CASE (WEST + RIGHT.WAY.UP): 
CASE (NORTH + UPSIDE.DOWN ): 
IF (xi f> LEFT.BOUNDARY) S (yi l< BOTTOM.BOUNDARY) 

// Cusp within image (left,bottom) 
THEN RESULTIS cardinal2(a21 #- al2,a22 #+ all) 

// Return alternative scan direction 
ENDCASE // End of left,bottom 

CASE (EAST + RIGHT.WAY.UP): 
CASE (SOUTH + UPSIDE.DOWN ): 
IF (xi f< RIGHT.BOUNDARY) & (yi #> TOP.BOUNDARY) 

// Cusp within image (right,top) 
THEN RESULTIS cardinal2(a21 f- al2,a22 f+ all) 

// Return alternative scan direction 
ENDCASE // End of right,top 

CASE (SOUTH + RIGHT.WAY.UP): 
CASE (WEST + UPSIDE.DOWN ): 
IF (xi i< RIGHT.BOUNDARY) & (yi #< BOTTOM.BOUNDARY) 

// Cusp within image (right,bottom) 
THEN RESULTIS cardinal2(a21 f- al2,a22 #+ all) 

// Return alternative scan direction 
ENDCASE // End of right,bottom 

$) // End of left intersection CASE 
$) // End of IF left hand intersection 
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$) 

IF prx.r #> 0.0 // Eight hand screen intersection 
THEN // on ground 
$( // First compute source co-ordinates 
xi := (c.a »* SOURCE.SIZE #+ c.b f* v.vp #+ c.c) f/ prx.r 
yi := (c.d SOURCE.SIZE #+ c.e i* v.vp 1+ c.f) #/ prx.r 
SWITCHON flag INTO 
$( 
CASE (WEST + EIGHT.WAY.UP): 
CASE (SOUTH + UPSIDE.DOWN ): 
IF (xi l> LEFT.BOUNDARY) S (yi |> TOP.BOUNDARY) 

// Cusp within image (left,top) 
THEN EESULTIS cardinal2(a21 al2,a22 1+ all) 

// Return alternative scan direction 
ENDCASE // End of left,top 

CASE (SOUTH + RIGHT.WAY.UP): 
CASE (EAST + UPSIDE.DOM ): 
IF (xi f> LEFT.BOUND.iJtY) i (yi l< BOTTOM.BOUNDARY) 

// Cusp within image (left,bottom) 
THEN RESULTIS cardinal2(a21 t- al2,a22 all) 

// Return alternative scan direction 
ENDCASE // End of left,bottom 

CASE (NORTH + EIGHT.WAY.UP): 
CASE (WEST + UPSIDE-DOWN ): 
IF (xi f< EIGHT.BOUNDARY) S (yi l> TOP.BOUNDARY) 

// Cusp within image (right,top) 
THEN EESULTIS cardinal2(a21 f- al2,a22 f+ all) 

// Return alternative scan direction 
ENDCASE // End of right,top 

CASE (EAST + EIGHT.WAY.UP): 
CASE (NORTH + UPSIDE.DOWN ): 
IF (xi i< EIGHT.BOUNDARY) & (yi #< BOTTOM.BOUNDARY) 

// Cusp within image (right,bottom) 
THEN EESULTIS cardin3l2(a21 I- al2,a22 f+ all) 

11 Eeturn alternative scan direction 
ENDCASE // End of right,bottom 

$) // End of right intersection CASE 
$) // End of IF right hand intersection 

$) // End of IF within bounds 

RESULTIS d // No problem; return original guess 
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AND cardinal(i,j) = VALOF 
$( 
TEST Eiod(j) #> iiod(i) 
THEN 
TEST j l> 0 
THEN RESULTIS NORTH 
ELSE RESULTIS SOUTH 

ELSE 
TEST i |> 0 
THEN RESDLTIS EAST 
ELSE RESULTIS WEST 

$) 

AND cardinal2(i,j) = VALOF 
$( 
TEST Eod(j) f< inod(i) 
THEN 
TEST j l> 0 
THEN RESULTIS NORTH 
ELSE RESULTIS SOUTH 

ELSE 
TEST i f> 0 
THEN RESULTIS EAST 
ELSE RESULTIS WEST 

AND quadrant(i,j) = VALOF 
$( 
TEST j i> 0 
THEN 
TEST i i> 0 
THEN RESULTIS 0 
ELSE RESULTIS 3 

ELSE 
TEST i t> 0 
THEN RESULTIS 1 
ELSE RESULTIS 2 

$) 

// Returns cardinal direction of 
// vector (i,j) 
// Whether i or j largest 
// j largest; north or south 
// Upper or lower half 
// Upper half; northward direction 
// Lover half; southward direction 
// i largest; east or west 
// Left or right half 
// Right half; eastward direction 
// Left half; westward direction 

// Returns second closest cardinal 
// direction to vector (i,j) 
// Whether i or j largest 
// j smallest; north or south 
// Upper or lower half 
// Upper half; northward direction 
// Lower half; southward direction 
// i smallest; east or west 
// Left or right half 
// Right half; eastward direction 
// Left half; westward direction 

// Returns quadrant of vector (i,j) 

// j tve; upper half 
// Left or right half 
,// Right half; quadrant 0 
// Left half; quadrant 3 
// j -ve; lower half 
// Left or right half 
// Right half; quadrant 1 
// Left half; quadrant 2 



APPENDIX V 

The program listed in this appendix is used to 

generate the look-up-table values for the reciprocal 

datapath and is written in the C programming language. The 

program also reports the accuracy of the table output by 

comparison with a high precision result obtained by direct 

division. 
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* * 

* RECIPROCAL TESTING AND GENERATING ROUTINE «RECIP.C» * 
* * 

* Calculates exact reciprocal and compares with estimate * 
* calculated using difference table with constant segments * 
* * 

înclude "\headers\stdio.h" 

Idefine H.AXINT 0X10000 
fdefine MAX LUT 0X20001 
fdefine 0NE~13 0X80000000L 

unsigned long int divide(); 

main() 
{ 
FILE *out file,*diff file; 
unsigned long int number,reciprocal,mantissa,>;,nask; 
unsigned long int recip_13,Bant_13,slope,selection,rec; 
int exponent,exp_13,exp,difference; 
int err_l,err_2,err_3,i; 

if((out_file=fopen("diff.asc","*"))==NULL) 
{ 
printf("\nCannot create result file: diff.asc"); 
exit(O); 

. ) 

if((di ff_f ile=fopen("diff.rom","wb"))==NULL) 
{ . 
printf("\nCannot create result file: diff.rom"); 
exit(O); 
) 

printf("\nEnter number of bits for difference table selection > "); 
scanf("ld",oiselection); 
err_l=0; 
err_2=0; 
err_3=0; 

for(number=l;number<MAXINT;number++) /« for each number */ 

mantissa=number; 
for(exponent=0;mantissa<(MAXINT/2);mantissa=mantissa((l) 
exponent++; /* normalise number */ 

exp_13=exponent; 
exp=exponent; 

mantissâmantissa S 0X7FFF; /* strip off top bit */ 

/* first calculate exact (16 bit) reciprocal */ 
y****x****x*x*x***********x**x*****xxx*xx*x*****xxx*xx**xx*************xx***y 
reciprocal=0L; 
if (mantissa—0) 
exponent++; 

else 
reciprocal=divide(mantissa | 0X8000) & OXFFFF; 

/* calculate 17 bit reciprocal */ 
reciprocal=(reciprocal+l)>>l; /* include rounding in 16 bit result */ 



V - 2 

/* now calculate 13 bit reciprocal */ 

mant_13=mantissa>>2; /* strip off two lower bits */ 
recip_13=0L; 
if (mant_13==0) 
exp_13++; 

else 
recip_13=0NE_13/(mant_13 | 0X2000) & OXIFFFF; 

/* calculate 13 bit reciprocal */ 
recip_13=(recip_13+l)»l; /* include rounding in 13 bit result */ 

/* now calculate slope */ 

x=mantissa | 0X8000; /* replace leading one */ 
Bask=(l«(15-selection))-l; /* mask for lower bits */ 
if((mantissa & mask)==0) /* start of new segment */ 
{ 

x=x>>(15-selection); /* number of bits left = selection */ 
x=(x«l) + 1; /* place at centre of region */ 
x=x * x; /* square x */ 
slope=divide(x); /* slope = 1/x squared */ 
if(number>0X7FFF) 
{ 
fprintf(out_file,"\nSegient IX slope = IX", 

mantissa>>(15-selection), 
slope>>(24-2*selection)); 

for(i=0;i<4;i++) 
putc((char)((((slope * i)>>(27-2»selection))+l)>>l),diff_file); 

} 
) 
difference=slope * (mantissa & 3); /* calculate difference */ 
difference=difference>>(27-2*selection); /* re align */ 
difference=(difference + 1)>>1; /* round */ 

/* 
if(difference! =0) 
printf("\nx squared = IX\tslope = lX\tdifference = IX",x,slope,difference); 

*/ 

y******A*̂*x*x*4*xx*xx*x*xxxxx***x*xAxxxxKxx&xxxxx%x**A 
/* now correct with difference table ' */ 
yAxxAxAAxAiAxAxAxxxxxxAiiiiiixxxixAixAx 

if(recip_13"0 && difference! =0) 
exp_13--; 
rec=(recip_13 - difference) & OXFFFF; 
difference = (int)((reciprocal<<l)-rec)/2; 

if(difference!=0) 
{ 

err_l++; 
difference=difference/2; 
if(difference!=0) 
{ 
err_2++; 
difference=difference/2; 
if(difference!=0) 
err_3++; 

] 
) 
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/* 

*/ 

printf("\nN = I5X R = 1.I4X E I2d Eec_13 = LI4X E I2d R13 = 1.I4X D = Id", 
number,reciprocal«l,exponent,recip_13,exp_13,rec,difference) ; 

) 
printf("\n\t\t\tError Report"); 
printf("\n\tErrors in Bit 0 = l-5d",err_l); 
printf("\n\tErrors in Bit 1 = l-5d",err_2); 
printf("\n\tErrors in Bit 2 = l-6d",err_3); 
fclose(out_file); 
fclose(diff_file); 
printf("\nAll done"); 
getchar(); 
getchar(); 
exit(O); 
) 

unsigned long int divide(divisor) 
unsigned long int divisor; 
{ 
unsigned long int dividend,quotient; 
dividend = OL - divisor; 
quotient = (dividend/divisor) + IL; 
return(quotient); 
) 

/* divides into 1 0000 0000 H */ 

/* one divisor subtracted */ 
/* divide and add one */ 



APPENDIX VI 

The complete circuit of the real-time image mapping 

system is given in this appendix. Seven separate diagrams 

are included; corresponding to each of the three 

framestores, VSPl and VSP2 sub-systems, the polynomial 

generator and the divider circuitry. 
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APPENDIX VII 

This section provides an example PLPL source file to 

illustrate the design process. The source file given is for 

the 22V10 PAL used to implement the IRS controller. 
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DEVICE IRS Controller (P22V10) 

PIN 
CLK15 
/Init 
IRSJnd 
C_request 
/Done 

= 1 
= 2 

= 3 
= 4 
= 5 

/Sysjnit = 23 
/Passjnit = 22 
Divisor_Init = 21 
/IRŜValid = 20 
/Divisor_Noop = 19 
Pass 

S[0:2] 
/Old init 

= 15 

(CLK_IKPUT) 
(INPUT combinatorial) 
(INPUT combinatorial) 
(INPUT combinatorial) 
(INPUT combinatorial) 

"Polynomial generator controller" 

"15 MHz input" 
"Initialisation" 
"Divisor end of line" 
"Coordinate request" 
"Pass completed" 

(OUTPUT registered activejow) "System initialization" 
(OUTPUT registered activejow) "Pass initialization" 
(OUTPUT registered active_high) "Divisor init" 
(OUTPUT registered active_low) "iRS data valid" 
(OUTPUT registered active_low) "Divisor no operation" 
(OUTPUT registered active_high) "Pass; 0 = Passl" 

= 18:16 (OUTPUT registered active_high) "Internal states" 
= 14 (OUTPUT registered activejow) "Old value of Init" 

DEFINE 
Start 
Finish 
Passl 
Ne«_Pass 
Initialize 
Running 
Request_l 

= /Init * Oldjnit, 
= Done * /Pass_Init, 
= /Pass, 
= Finish * Passl, 
= Start T Ne»"_Pass, 
= /Pass_Init, 

"Start at falling edge of Init" 
"End of pass" 
"First pass" 
"Request for next pass" 
"Start of new pass" 
"State machine operating" 

= Divisor_Init * Cjequest * /Pass_Init, 
"Request first line" 

IRS_Init 
IRS_wait_l 
Valid 
End_2 
End_l 
IRS Wait 

"State asignments" 
= #8000, 

= #B001, 
= fBOlO, 
= IBOII, 
= fBlOO, 
= fBlOl 

"Initialize state 1" 
"Wait for IRS data line 1" 
"Valid data stream" 
"2 states before end" 
"1 state before end" 
"Wait for IRS data" 

BEGIN 
Control Terms 

PRESET (Divi sor_̂Init,/Divisor_Noop, 
/SysJnTt, Passjnit, Pass, 
IRS_Valid,S[2:0], 
/Oldjnit) = 0; 

RESET(Divisor Jnit, /Divisor_Noop, 
/Sysjnit,Pass Init,Pass, 
IRSJalid,S[2:0], 
/Oldjnit) = 0; 

ENABLE(Divisor Jnit, /Divisor_Noop, 
/ Sys Jnit, Passjnit, Pass, 
IRSJalid,Sf2:0], 
/Oldjnit); 

"No preset term" 

"No reset term" 

Oldjnit = Init; 
IF (Start) 
THEN Sysjnit = 1; 

"Always enabled" 

System Initialization 

"To detect falling edge" 
"At falling edge" 
"Initialize system, one timing state" 
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IF (Initialize) 
THEN Pass_Init = 1; 
ELSE Pass = Pass; 

IF (Ne*_Pass) 
THEN Pass = 1; 

Pass Initialization 

"At start of either pass" 
"Initialize pass, one timing state" 
"Store pass value" 

"Pass = Pass 2" 

IRS Initialization 

IF (Initialize + Divisor_Init) 
THEN IF (Eequest_l)_ 

THEN Divisorjnit = 0; 
ELSE Divisor Init = 1; 

"Start of operation" 
"Requesting first line" 
"Start IRS" 
"IRS initialized until first C_req" 

State Machine Operation 

"State asignments" 
IF (Running) 
THEN CASE (S[2;0]) 
BEGIN 
IRSJnit) 

IF (Divisorjnit) 
THEN S[2:0] = IRSJnit; 
ELSE S[2:0] = IRS_Wait_l; "Wait for first line of data" 

IRS Wait_l) 

"IRS initialized" 
"Stay in state" 

S[2:0] = Valid; 
Valid) 

BEGIN 
IRS_Valid = 1; 
IF (IRS_End) 
THEN S[2:0] = End_2; 
ELSE S[2:0] = Valid; 

END; 
End_2) 

BEGIN 
IRS_V3lid = 1; 
S[2:0] = End 1; 
END; 

End_l) 
BEGIN 
Si 2:0] = IRS_Kait; 
Divisor_Noop = 1; 

END; 
IRS Wait) 

IF (C_Request) 
THEN 
S[2;0] = Valid; 

ELSE 
BEGIN 
S[2:0] = IRSJWait; 
Divisor_Noop = 1; 
END; 

END; 

"Go to valid data state" 

"Data valid" 
"End of line approaching" 
"Count do»-n" 
"Wait for end of line" 

"Data still valid" 
"Count Dovn" 

"Wait for start of line" 
"Bold IRS" 

"Requesting next line" 

"Valid data state" 

"Wait for C_Request" 
"Hold IRS" 

"End of CASE statement" 

fl 
END. 
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TEST_VECTORS 
IN CLK15; 
IN Init,C_request,IES_End,Done; 
OUT Pass,Pass_Init; 
OUT Sysjnit,Divisorjnit,Divisor_Noop,IES_Valid; 
BEGIN 

C_req Done Pass Init Divisor lES 
CLK Init End Pass Sys Init Noop Valid 

c 1 X X X X X 
c 0 X X X L a 
c 0 0 X X L L 
c 0 0 X 0 L L 
C 0 0 X 0 L L 
C 0 0 X 0 L L 
c 0 0 X 0 L L 
C 0 0 X 0 L L 
C 

1 
0 0 X 0 L L 

C 0 0 X 0 L L 
C 0 1 X 0 L L 
C 0 X 0 0 L L 
C 0 X 0 0 L L 
C 0 X 0 0 L L 
C 0 X 0 0 L L 
C 0 X 1 0 L L 
C 

1 
0 0 X 0 L L 

c 0 0 X 0 L L 
c 0 0 X 0 L L 
c 0 1 0 0 L L 
c 0 X 0 0 L L 
c 0 X 0 0 L L 
c 0 X 0 0 L L 
c 0 X 0 0 L L 
c 0 X 1 0 L L 
c 
1 

0 0 X 0 L L 

c 0 X X 1 a a 
c 0 0 X X B L 
c 0 0 X X B L 
c 0 0 X X B L 
c 0 0 X X B L 
c 0 0 X X B L 
c 0 0 X X B L 
c 

t 
0 0 X X B L 

c 0 0 X X B L 
c 0 1 X X B L 
c 0 X 0 X B L 
c 0 X 0 X B L 
c 0 X 0 X B L 
c 0 X 0 X B L 
c 0 X 1 X a L 
c 0 0 X X B L 

X X X 
H H L 
L H L 
L H L 
L H L 
L H L 
L H L 
L H L 
L H L 
Generate a line --
L H L 
L L L 
L L L 
L L L 
L L L 
L L L 
L L L 
L L 
Generate next line 
L L B 
L L H 
L L L 
L L L 
L L L 
L L L 
L L L 
L L L 
L L L 
Start Second Pass 
L H X 
L H L 
L H L 
L H L 
L H L 
L B L 
L B L 
L B L 
Generate a line — 
L B L 
L L L 
L L L 
L L L 
L L L 
L L L 
L L L 
L L L 

X;"Start initialisation 
L;"Initialization 
L;"Wait for Cjequest 
L;"Wait for Cjequest 
L;"Wait for Cjequest 
L;"Wait for Cjequest 
L;"Wait for C_request 
L;"Wait for C_request 
L;"Wait for C_request 

L;"Waiting 
L;"Start the line 
L;"Wait for end signal 
L;"Wait for end signal 
H;"Wait for end signal 
H;"Wait for end signal 
H;"End of line 
B;"Wait for next C_req 

L;"Waiting 
L;"Waiting 
L;"Start the line 
B;"Wait for end signal 
B;"Wait for end signal 
B;"Wait for end signal 
H;"Kait for end signal 
B;"End of line 
B;"Wait for next C_req 

L;"Initialization 
L;"Wait for Cjequest 
L;"Mait for Cjequest 
L;"Kait for Cjequest 
L;"Wait for Cjequest 
L;"Wait for Cjequest 
L;"Wait for Cjequest 
L;"Wait for Cjequest 

L;"Waiting 
L;"Start the line 
L;"Wait for end signal 
L;"Kait for end signal 
B;"Wait for end signal 
H;"Wait for end signal 
B;"End of line 
E;"Wait for next C req 
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" - Generate next line " 
C O O X X H L L L H L; "Waiting " 
C O O X X H L L L H L; "Waiting " 
C O l O X H L L L L L; "Start the line " 
C O X O X H L L L L H;"Wait for end signal " 
C O X O X H L L L L H;"Wait for end signal " 
C O X O X H L L L L H;"Wait for end signal " 
C O X O X H L L L L H;"Wait for end signal " 
C 0 X 1 X H L L L L H;"End of line " 
C O O X X H L L L L H;"Wait for next C_req 

n 

END. 


