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ABSTRACT 
 

The epigenome - the chemical modifications and packaging of the 

genome that can influence or indicate its activity - gives a molecular insight 

to cell-type specific activity. It can, therefore, reveal the pathophysiological 

mechanisms at work in disease. Detected changes can also represent 

physiological responses to adverse environmental exposures, thus enabling 

the epigenetic mark of DNA methylation to act as an epidemiological 

biomarker, even in surrogate tissue. 

This makes epigenomic analysis an attractive prospect to further 

understand the pathobiology and epidemiological aspects of obesity. 

Furthermore, integrating epigenomic data with known obesity-associated 

common genetic variation can aid in deciphering their molecular 

mechanisms. 

This review primarily examines epidemiological or population-based 

studies of epigenetic modifications in relation to adiposity-traits, as opposed 

to animal or cell models. It discusses recent work exploring the epigenome 

with respect to human obesity, which to date have predominately been 

array-based studies of DNA methylation in peripheral blood. It is of note that 

highly replicated BMI DNA methylation associations are not causal, but 

strongly driven by co-associations for more precisely measured intertwined 

outcomes and factors, such as hyperlipidaemia, hyperglycaemia and 

inflammation. Finally, the potential for the future exploration of the 

epigenome in obesity and related disorders will be considered. 
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INTRODUCTION 

 

Epigenetic factors include the chemical modifications of DNA and the 

proteins that the DNA wraps around, which influence or may indicate the 

activity of genes. Deciphering these marks can be a powerful method to 

understand the specialised functioning of a cell and organs (1). Furthermore, 

they may inform how molecular mechanisms are impeded in disease or due 

to adverse environments. 

Obesity rates have increased at such a magnitude that this clearly 

points towards non-genetic, or environmental factors, as the significant driver. 

Identified genetic susceptibilities are also modulated by these external 

influences (2, 3). This has led to considerable interest in the study of the 

epigenome with the potential to quantify gene activity changes due to this 

environment, as well as the possibility of gaining molecular understanding of 

the pathophysiological consequences of the obese state. Crucial biological 

understanding of obesity and its consequences are still lacking (4, 5) and 

would help focus vital preventative measures to counter obesity’s substantial 

morbidity and mortality risk (6).  

 

THE EPIGENOME 
 

DNA is packaged at the strand level by wrapping around Histone 

proteins that comprise of 8 subunits, two of each of Histone 2A, 2B, 3 and 4. 

The histone proteins possess tails that can be post-translationally modified, 

including the addition of methyl or acetyl groups to Lysine (K) molecules on 

histone 3 (H3). These additions can be related to active or repressed regions 

depending upon which K is modified.  Amino acid deviation in the protein 

structure of these histone molecules, termed Histone Variants, also modify 

activity and can as well be associated with disease processes (7). 

Chemical modifications of DNA itself include the most common, stable 

and well-studied, DNA methylation, or the addition of a methyl group onto 

the 5’ carbon of cytosine. This robust chemical mark is due to the strong 

covalent carbon-to-carbon bond that connects cytosine to the methyl 

group. In differentiated cells this occurs in the DNA sequence predominately 
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within the context of a CpG dinucleotide, that is where Guanine follows 

Cytosine in the 5’ to 3’ direction on one DNA strand. It acts canonically as a 

repressive mechanism within gene promoters. However, additional DNA 

modifications occur, and these are in fact progressive oxidative products of 

the active DNA demethylation process, driven by the TET enzymes, leading 

firstly to hydroxymethylcytosine (5hmC), formylcytosine (5fC) and then 

carboxycytosine (5caC). This final product is then recognised by the base-

excision pathway to enable return to an unmodified cytosine (8).  These less 

common modifications may also in themselves possess active roles, with 

5hmC implicated functionally within enhancers (9). 

High-throughput analysis of the epigenome is focused now on DNA 

methylation, particularly because of its stability in extracted DNA in 

comparison to other epigenetic marks, such as histone modifications. 

However, due to its biological plasticity it is an attractive biomarker with 

strong potential clinical utility (10).  

 

CONSIDERATIONS IN THE ANALYSIS OF THE EPIGENOME 

 

To powerfully examine the epigenome, especially in a human 

population setting (11), it is necessary to be clear how this mechanism 

contrasts from the genome. This understanding impacts significantly on 

design, analysis and interpretation. The differences can be broadly 

encapsulated in three principles: i) cell-type specificity ii) changeability and 

iii) sequence interactive (or positional) effects. 

Firstly, as its function dictates, the epigenome is tissue or cell-type 

specific. Therefore, we wish, if at all possible, to be examining the cell-type(s) 

that are most relevant to the pathophysiology of the disease. We can only 

interpret any associated findings in tissue that is not the primary site of action 

as a surrogate measure for markers of exposure, which may also act on the 

organ of disease, or downstream physiological changes due to these 

exposures or disease outcomes. In the analysis of obesity this is not 

straightforward, as the intrinsic genetic predisposition is governed largely 

within the brain (12), with central control for energy balance directed by 

specific hypothalamic neurons, particularly within the arcuate nucleus (13). 
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Thus, these cells are inaccessible except in post-mortem samples. Adipose 

tissue is also an obvious focal interest for the dissection of obesity, with the 

physical and functional changes that occur to it and its role as an endocrine 

organ (5).  

Secondly, the epigenome is changeable over time. This is most 

dramatic during development, where two rounds of epigenomic 

reprogramming occur, firstly in gamete formation and then secondly post-

fertilisation. These are both characterised by global DNA demethylation (14).  

However, the epigenome is not static from this time-point. It is seen to suffer 

from ‘epigenetic drift’ with age, whereby hypomethylated regions gain and 

hypermethylated regions lose methylation over time stochastically throughout 

the genome (15). This process is proposed to be involved in age-related 

deterioration in function, and the concurrent increased risk of chronic 

diseases, such as obesity-related conditions. Though, on top of this are 

specific directional ageing changes that can be identified at defined 

functional loci across the genome (16, 17).  

Thirdly, positional effects driven through sequence variation will be 

reflected in the measured epigenome. These can be direct, in cis, or trans, 

and can bedevil the analysis in human population samples, particularly 

across diverse ancestries (11) (Figure 1). Direct effects with respect to DNA 

methylation can be due to genetic polymorphism at the CpG dinucleotide 

itself. In fact, almost ~⅓ of SNPs occur at CpG locations, because of the 

hypermutability of methylated cytosines, and this contributes considerably to 

allelic variation in the DNA methylome (18, 19).  

The observed epigenetic state may represent the activity or repression 

of local cis-regulatory elements (CREs) (usually 100-1000 bp in length) (20). 

Genetic variability within these regions can led to fixed obligatory epigenetic 

positions or facilitate epigenetic variation (21). Genetic effects on the 

methylome via transcription factors (TFs) has been known for decades, such 

as the role of SP1 within CpG islands (22). Motif changes in this and other 

Methylation Determining Regions (MDR), such as those for CTCF and RFX, give 

rise directly to methylation variation in CpG dense regions (23). TFs binding to 

transcription factor binding sites (TFBS) can also drive down DNA methylation 

(24) at distal regulatory regions and thus genetic variation in these binding 

Page 5 of 42 Obesity



 6 

sites will also be influential. Some TFs are explicitly sensitive to DNA methylation 

(25) and some, in fact, require it in order to bind (26). Also SNPs affecting the 

expression of trans factors will impact on the epigenetic state within their 

distal TFBS or CRE regions (27). Genetic influence on the epigenome is in fact 

so strong that it can be observed in enhancer variation in only 19 individuals 

of diverse ancestry (28). 

Nearby positional effects such as polymorphic insertions of often 

heavily methylated retrotransposons will influence the local region (29). The 

density of CpGs also has a direct relationship with the DNA methylome (30), 

so CpG-SNPs (SNPs creating or abrogating a CpG dinucleotide (18, 31)) as 

well as affecting available methyl-C containing motifs, can impact on the 

rate of change of CpG density slopes. The influence of SNPs as mQTL 

(methylation QTL) (32), can capture impact upon cis or trans factors, the DNA 

methylation machinery, or haplotypic effects, such as regional density or 

proximity factors. Genetically-associated correlated CpGs can be observed 

to cluster, which have been termed ‘GeMes’ (33). Finally, the epigenome is a 

coordinated mechanism so the epigenetic layers should fit logically together, 

such that a DNA hypermethylated promoter should show lack of co-locating 

activating chromatin marks and vice versa (34).  

 

CONFOUNDING ISSUES 

 

All the above effects, tissue-specificity, changeability, and sequence 

interaction, can therefore confound or misattribute action or effect in 

epigenomic studies. To mitigate against these, rigorous study designs have 

been proposed and employed. However, due to practical, technical and 

cost considerations, it is often not possible perform the ideal study, but to 

compromise, acknowledge and work within these limitations (35, 36).  

Isolating disease-relevant tissue cell-types for analysis is an obvious first 

starting point. However, many large epidemiological studies have DNA 

derived from peripheral blood available, with the positive that these are often 

sizeable numbers and possess deep phenotyping. Whilst these are the 

practicalities, an argument may be made that peripheral blood is of interest 

physiologically in obesity due to known inflammatory related changes (37) or 
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for detection of passive exposure biomarkers. Furthermore, the potential 

clinical utility of findings in blood is significant due to its comparative ease of 

access compared to fat-tissue biopsy. However, these DNA methylation 

differences will be unlikely to correlate with other target tissues. Postmortem 

samples or tissue biopsies are required to gain further insights into underlying 

mechanisms. 

The additional factor regarding peripheral blood analysis is that it 

comprises of the various leukocyte cell-types and as such represents a meta-

epigenome of these subsets contained (38). This mixture needs to be 

quantified and even in normal conditions these vary between individuals due 

to many factors including sex and genetic background. Thus, DNA 

methylation profiling in blood will strongly identify signals driven by sub-cell 

composition changes due to the disease state or immune responses 

associated with it. Whilst isolation of the most disease relevant cell-type is 

preferable (39), deconvolution algorithms have been devised using 

Differentially Methylated Positions (DMPs) that estimate leukocyte cell-type 

proportions (40). In fact, due to the cell-type specificity of epigenomes, once 

accurately delineated, this deconvolution is set to become one of the most 

powerful epigenomic tools. The mapping of these cell and tissue types is 

beginning through efforts such as the Epigenomics Roadmap (41), Blueprint 

(42) and future cell-type defining surveys (43). Kim et al. have recently shown 

that an expanded set of reference leukocytes, with pathologically important 

cell fractions comprising immature, memory plasma B cells, activated Natural 

killer cells and naïve T cells, can explain significantly more variability in 

peripheral blood methylomes (44). Additionally, these data improved case 

and control discrimination in immune-related disorders, including the 

metabolic syndrome.  

Changeability in developed tissues encapsulates two often-

intersecting mechanisms. Firstly, significant directional changes with time in 

proportions of a heterogeneous collection of cells, and secondly, the 

activation or representation of certain pathways. Relative change is seen 

clearly, as mentioned, in peripheral blood, with responses to acute infection 

or even chronic low-grade inflammation (45). Other significant proportional 

changes occur due to ageing, with a skew towards a greater myeloid cell 
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fraction in blood (46), but also a reduced ratio of neurons to glia in the brain 

(47). However, in many studies the phenotype of interest may alter the 

proportional composition of the cell types within the analysed target tissue 

(48). In fact, in some cases, correction for cell-type may impede the 

identification of cell-type specific modifications (49). 

Finally, the influence of genetic factors on the epigenome is strong. 

Therefore considerable power comes from longitudinal studies (35), or 

monozygotic (MZ) or identical twin discordant analyses, to remove these 

significant influences (50, 51). In high-throughput DNA methylation array 

analysis the influence of genetic effects can be driven by SNPs at the 

investigated CpGs themselves, under the probes, or nearby (Figure 1).  Drastic 

effects led to discrete genotypic grouping or “gap signals”, with 11,007 seen 

in a recent Illumina Infinium Human Methylation450 bead chip (450k array) 

analysis (52). Previous 450k array analysis has found population genetic 

variation attributable in 66,877 probes (13.8%) (53). Chen et al. observed 

recently this strong genetic influence in a study of genetic drivers of 

epigenetic variation in human immune cells and it was noted to be a 

concern for EWAS interpretation (54). More complex haplotyptic effects may 

also exist, with strong consequences captured by “gap signals”, though more 

subtle outcomes will converge. Although how these genetic influences 

cannot only confound studies, but also may facilitate functional variation, 

should also be borne in mind. CpG-SNPs are proposed to play a significant 

facilitative epigenetic role and these effects were recently seen be to 

enriched within GWAS regions in a number of studies, including Type 2 

Diabetes (55-57)  

 

CELL-TYPE SPECIFIC SIGNALS IN PERIPHERAL BLOOD 
 

Dissecting the strong DNA methylation signals that can be identified 

with tobacco smoking in peripheral blood starts to reveal the biological 

intricacies of epigenetic changes in this heterogeneous tissue. Understanding 

these robust results is very useful in interpreting what may be possible in DNA 

methylation studies of obesity and other diseases. There are distinct results 

dependent upon which cellular subset is examined (58). The strongest 
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tobacco-associated signal in the gene AHRR appears so conspicuously as the 

epigenetic change occurs specifically within granulocytes and monocytes 

and is then amplified by the fact that smoking itself increases the proportion 

of granulocytes in peripheral blood. By contrast tobacco has little impact on 

AHRR T cell DNA methylation. In comparison, lymphoid-specific inflammatory 

changes, such as those seen in GPR15, where DNA methylation changes are 

only seen in T and B cells (58, 59). Biologically these changes are likely 

inflammatory responses driven by smoking injured tissues. On the myeloid side, 

monocyte to macrophage differentiation is influenced, as well as a proposed 

carbon monoxide environmental selection on bone marrow progenitor cells 

(58). Thus, the identification of these subtype specific signals enable novel 

hypotheses and mechanism to be proposed and explored.  

 

OBESITY-INDUCED CHANGES IN FAT AND BLOOD 
 

Fat tissue is not a homogenous organ. The adipocytes of subcutaneous 

fat are mostly white adipocytes, due to triglyceride storage, which are leptin 

and adipokine-secreting. Additionally, there are small but discernable levels 

of brown and beige fat (5). The role of brown fat in humans has gained 

significant interest due to its energy-dissipation properties and fat burning 

actions via uncoupling protein 1–containing mitochondria. Stimulation by the 

sympathetic nervous system after cold exposure leads to heat production. 

Beige, or brown-to-white thermogenic adipocytes, have a progenitor cell 

origin and conversion can be induced by cold temperatures, exercise and 

endocrine factors (5).  

In obesity, adipose tissue becomes a large immunologically active 

endocrine organ (60). Infiltration by macrophages and other inflammatory 

immune cells occurs, partly due to obesity-related apoptosis of adipose cells 

(60). This leads to chronic adipose tissue inflammation (61) with the secreted 

proinflammatory cytokines contributing to the insulin resistant state that arises 

(62). Visceral fat deposits, including the omentum and mesenteric fat, are 

more detrimental than subcutaneous (63) and are associated with many of 

the systematic metabolic consequences of obesity (5). 
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Obesity induces changes in innate immune cells, but also increases in 

CD4+ and CD8+ T cells and reduces tolerance-promoting regulatory B cells as 

well as inducing abnormal B cell function (64). There is a proposed role in 

obesity of lymphoblast-derived Natural Killer (NK) cells, which are shown to be 

significant regulators of macrophage polarization and insulin resistance (65), 

and their methylome is remodelled in conversion from naive to activated cells 

(66). Chronic low-grade inflammation is associated with obesity, and specific 

DNA methylation changes are observed, due to this state, assessed via C-

reactive protein levels (CRP), within peripheral blood (45). 

 

ANALYSIS OF THE EPIGENOME IN OBESITY 

 

Studies of obesity epigenetics up to the beginning of this decade were 

predominately either targeted candidate genes or total measures of the 

epigenome, such as global DNA methylation (67). The later can be useful in 

gross abnormalities, such as cancer, when significant hypomethylation is 

strong enough to drive global variation. Though it is far less useful in more 

nuanced phenotypes and has not lead to consistent findings (68). With the 

former, as was the experience in complex trait genetics, the study of 

candidate genes has not been particularly fruitful, with weak and again 

inconsistent effects. In the exploration of imprinting genes or those involved in 

metabolism, few (if any) have been supported by subsequent genome-wide, 

more powered and confounding-aware studies (68). Many early studies 

therefore need reassessing in the light of current findings and knowledge. 

All DNA methylation studies prior to at least 2012 are likely to have not 

taken the confounding effects of cell-type proportions into account. 

Furthermore, many of these studies are in small numbers, with added 

potential issues due to genetic heterogeneity. Whilst stronger effect size 

epigenetic associations can be found for phenotypic traits or complex 

diseases than genetic associations (69), lack of subsequent replication point 

to their weakness (68). 
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EPIGENOME-WIDE ASSOCIATION STUDIES FOR OBESITY (BMI) IN 

PERIPHERAL BLOOD 

 

In 2014 Dick et al. published one of the first large Epigenome-wide 

Association Study (EWAS) for BMI using the 450k array (70). This was performed 

in whole blood derived DNA in European ancestry individuals. The initial 

discovery set was 479 individuals, followed by two rounds of replication, firstly 

in 339 and then secondly in 1,789 samples. The discovery set identified 5 CpGs 

across 3 genetic loci associated with BMI. Three CpGs replicated and these 

all resided in the first intron of HIF3A, the Hypoxia Inducible Factor 3 Alpha 

Subunit gene, involved in regulating hypoxia-inducible gene expression 

(cg22891070, cg27146050, and cg16672562). Potential lymphocyte cell-type 

effects on cg22891070 were tested for, after the initial analysis. Whilst a small 

association with leukocyte number was seen, adjustment for subtypes did not 

substantially reduce the BMI association.  

Then to investigate HIF3A across different tissues, DNA from adipose 

tissue (n=635) and skin (n=395), was assessed, with significant methylation 

changes identified in adipose only. One driver of this may be the high level of 

inflammatory blood cell invasion into adipose tissue. Genetic effects were 

explored and 2 SNPs (rs8102595 & rs3826795) were both independently 

associated with cg22891070’s DNA methylation state in all datasets, although 

were not themselves significantly associated with BMI. 

As well as being replicated in a number of studies (71-73), including in 

adipose tissue (74), this result was also explored for causality in the ALSPAC 

cohort from Bristol, U.K. (75). Genetic and multiple time point DNA methylation 

data was available in �1,000 mother-offspring pairs. The DNA methylation 

changes were proposed to be secondary to differences in BMI, through 

examination of the temporal relationship of changes in sequential data, not 

causal, which was also supported by Mendelian Randomisation (MR) analysis. 

In further analysis by Main et al. a relatively high level of familiarity (h2 51-64%) 

for HIF3A DNA methylation in blood was observed (76), in fact a similar level 

to obesity itself. Epidemiological evidence has also pointed at vitamin B2 and 

B12 levels influencing HIF3A epigenetic levels (73). 
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Another BMI EWAS analysis with the 450k array in peripheral blood DNA 

was performed in 2,097 African American adults in the Atherosclerosis Risk in 

Communities (ARIC) study (72). A similarly sized replication set of 2,377 

European ancestry derived individuals from the Framingham Heart Study was 

employed, as well as isolated CD4+ T cell DNA from 991 European ancestry 

individuals (Genetics of Lipid Lowering Drugs and Diet Network Study). This 

enabled 37 DMPs to be robustly identified with BMI and an additional DMP 

specifically associated with Waist Circumference only. 16 DMPs were also 

seen to be consistent in 648 adipose tissue samples. Novel results included 

LGALS3BP, KDM2B, PBX1 and BBS2, and genes implicated in lipid metabolism, 

cytokine signalling and immune response.  

In a recent study Wahl et al. analysed a collection of large GWAS 

cohorts with the 450k array in peripheral blood (77). The discovery cohort 

contained a mix of South East Asian (n=2,680) and European (n=2,707) 

ancestry individuals and identified 278 BMI-associated CpGs residing in 207 

genetic loci whilst correcting for leukocyte cell-type proportions. Taking 

forward the strongest individual CpG associations within these regions to an 

additional 4,874 samples, 187 out of 207 replicated at a significance level of p 

< 0.05. The results did not vary significantly across differing ancestry groupings, 

except for seven DMPs where very strong population variation between Asian 

and European was seen (heterogeneity p < 1 x 10-7), hinting at population-

specific or uncaptured genetic effects. All the changes were identified to be 

the potential consequence of obesity not causative, except for 1 CpG 

(cg26663590) in NFATC2IP. These results were strongly enriched for 

methylation scores within an intermediate level of 20-80%. This could point 

towards variation between certain cell subsets driving the signal, although 

analysis of 4 sub-fractions, monocytes, neutrophils, CD4+ and CD8+ T cells 

indicated that these results could in fact be seen across all these cell-types. 

Thus they differ from the biologically defined tobacco smoking results where 

cell-type specific divergent myeloid versus lymphoid signals could be found 

(58). A longitudinal sample set of 1,435 participants was evaluated over a 

period of seven years, showing a consistent relationship between change in 

methylation and change in BMI overtime in 178 of 187 CpGs. 
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Another large-scale BMI EWAS was recently reported by Mendelson et 

al., again using the 450k array in peripheral blood (78). The discovery set was 

in those of predominately European ancestry, including individuals from the 

Lothian Birth Cohort in Scotland and the US Framingham Heart Study. 135 

CpGs were initially identified as BMI-DMPs. 83 DMPs replicated in at least one 

of the 3 additional replication cohorts, ARIC (n = 2,096), GOLDN (n = 992), and 

PIVUS (n = 967). 

Gene ontology enrichment was identified for lipid metabolism in those 

DNA methylation variation associated genes that also had concordant 

expression changes. 77 of the CpGs that were non-redundant (i.e. correlation 

|r| < 0.7) captured ~18% of the inter-individual variation in BMI. The previous 

HIF3A result replicated, with the strongest association seen in the youngest 

subset (cg22891070, p = 0.003). Just 11 CpGs revealed a recognised three-

way association whereby the DNA methylation was associated with BMI and 

expression, as well as BMI–associated expression changes. These included 

ABCG1, CACNA2D3, CPT1A (79), DHCR24, SARS, SLC1A5 and SREBF1. No 

enrichment for blood or adipose-specific regulatory features was seen using 

eFORGE (80) to detect tissue-specificity of the DMPs through co-localisation 

with tissue-specific DNase-I Hypersensitivity Sites. DMPs were more enriched in 

enhancer regions (H3Kme1) than promoter, although this may indicate the 

less dynamic nature of these promoter CpGs (81). The top cis-mQTL for the 

replicated BMI-DMPs, selected by lowest p-value ±500 kb from the CpG, was 

not strongly attenuated by BMI association in 81 of the 83 CpGs. One gene, 

SREBF1 (Sterol regulatory element-binding transcription factor 1), a lipid 

metabolism transcription factor was proposed as possibly causal. It is known 

to induce conversion of acetyl-CoA to triglycerides thus promoting glycolysis, 

lipogenesis and adipogenesis. Also, a role in adiposity, insulin resistance, 

coronary artery disease, obesity-related dyslipidaemia is supported in model 

organism and human studies (78).  

 A comparison of the results from these three recent large EWAS studies 

(72, 77, 78) identified ten CpGs that were robust and replicated within each 

as well as being common to all (See Table 1). These ten CpGs are located in 

ten unique genes, predominately within intragenic intronic loci and in almost 

half within CpG island shores. They also are generally supported in other BMI-
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related studies (70, 82-85). Gene ontology enrichment analysis via GREAT for 

these ten CpGs (compared with the 450k array probes as background) 

identified nominal significance of biological processes, such as regulation of 

cholesterol and lipids, human phenotypes including hyperlipidemia, and 

diseases of the hepatobilary system (Supplementary Table S1). 

In fact, many of these same CpGs are associated with lipid-related 

traits from specific EWAS’s performed for these measures, assumedly due to 

their relationship to the development of adiposity or downstream-induced 

epigenetic changes from BMI-associated altered blood lipid profiles. Four of 

the ten DMPs are significantly related to triglyceride (TG) levels in a recent 

study by Dekkers et al. (49), as well as in earlier and contemporary lipid studies 

(79, 86-89). Furthermore, four CpGs are related to glucose-related 

phenotypes in a study of Kriebel et al. (90). This clearly shows the power of 

EWAS to identify more precise biochemical phenotypes (38) and the benefit 

of closely examining the distinct biological changes associated with broad 

epidemiological measures, such as BMI. A number of these exact CpGs also 

are supported by additional studies in or related to BMI, such as an analyses 

in Arabs (84), Metabolic Syndrome (83), and hypertriglyceridemic waist in 

Mexican Americans (91). Of interest is that one of the CpGs, cg06192883, in 

MYO5C, was recently identified in an EWAS for the inflammatory marker CRP 

(45). Another, cg09349128, in CRELD2, is associated with Inflammatory Bowel 

Disease (92), which is known itself to be connected to lipid abnormalities (93). 

Two additional genes, LGALS3BP (Lectin galactoside-binding soluble 3 

binding protein) and SBNO2 (strawberry notch homolog 2), were consistently 

identified across all 3 studies but represented by differing CpGs. 

 

EWAS ANALYSIS IN ADIPOSE TISSUE 
 

Agha et al. analysed adipose tissue with the 450k array and associated 

measures of adiposity obtained by dual-energy X-ray absorptiometry-

assessed android fat mass, android:gynoid fat ratio and trunk:limb fat ratio, as 

well as BMI (71). This was in 106 individuals (64% women, 68% white) after 

adjusting for smoking, race, and sex as well as reference-free adipose cell-

mixture effects. A gene focused analysis identified association with these 
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adiposity traits including ANGPT2, AOC3, AQP7, CETP, LIPE, and SOD3. HIF3A 

was also explored and found to be positively associated with BMI at the same 

3 CpGs as identified by Dick et al. (70) 

Ronn et al. investigated age, BMI and HbA1c levels, all risk factor for 

disease, in both adipose tissue and blood DNA methylation (74). The DNA 

methylation ageing signals seen previously in ELOVL2, FHL2, KLF14, GLRA1 in 

blood were identified in adipose. This study supported the HIF3A finding in 

adipose within females only and found HbA1c associations with 711 sites in 

adipose tissue. There was minimal overlap in signal between HbA1c and BMI 

or age.  

A study of post gastric bypass DNA methylation variation in adipose 

tissue identified changes within genes associated with obesity by pre- and 

post-surgery weight-loss analysis (94). Both omental and subcutaneous 

adipose tissue were compared and these give further insight to the dramatic 

physiological changes that occur with the rapid post-operative weight loss.  

 

OBESITY AND AGEING ASSOCIATED CHANGES 

 

Horvath et al. observed that obesity accelerates the detected 

epigenetic ageing of the liver when assessed by the Horvath ‘Epigenetic 

Clock’, but interestingly not in the other tissue types tested, including blood, 

adipose tissue, or muscle (95). Obesity-related nonalcoholic fatty liver disease 

did not drive these hepatic changes. Although, it was postulated to be 

associated with obesity-driven liver comorbidities, including insulin resistance 

and hepatocellular carcinoma. The lack of changes in other tissues was 

hypothesized as due to liver-specific oxidative stress and also perhaps the 

suboptimal measure of obesity via BMI.  

A study by Simpkin et al. identified that an accelerated epigenetic 

age measure at birth is also associated with a more rapid increase in BMI in 

childhood (96). Furthermore, obesity is proposed to contribute to the 

‘exposome’ that influences epigenetic ageing, with increased BMI from 

young adulthood to middle age contributing to a greater age acceleration 

(97). In an analysis integrating blood derived ageing–related differentially 
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methylated regions (DMRs) within GWAS associated regions, 3 were identified 

within loci for fasting glucose-related traits that interact with BMI (17).  

 

DEVELOPMENTAL AND IN UTERO INFLUENCES 
 

Critical windows may exist for environmental or intrauterine factors to 

impact on the epigenome, as it being defined, during early development 

(98). These early changes are proposed to have the ability to act as 

‘metastable epialleles’ that then propagate through the all germ layers to 

effect all cell types (99). Although evidence for a role in DNA methylation in 

this process in human is not strong, the possibility for some repetitive elements 

such as SVAs (SINE-VNTR-Alu) to escape the global demethylation, 

subsequent reprogramming, and then be vulnerable to environmental 

influence cannot be excluded at this stage (14).  

Epidemiological data has proposed that in utero exposure to under- 

and overnutrition affects obesity risk in later life, potentially through 

epigenetic modifications (100). Several studies have explored this through the 

unique model of contrasting children born before or after maternal gastric 

bypass surgery. Guénard et al. compared DNA methylation from siblings born 

from 25 mothers adjusting for age and sex and puberty (101). Children born 

prior to the procedure possessed a significantly higher z-score BMI, as well as 

poorer insulin resistance values. Temporal DNA methylation variation was 

identified, although in blood and not adjusted for cell-type effects, but gene 

enrichment for glucose homeostasis and immune function was seen. 

However, more recent and powerful studies have not borne out the findings 

of these earlier studies. In a direct obesity analysis, Willmer et al. in a study 

from Scandinavia of 164 children born before and 176 born after surgery at 

four years of age did not show any improving effect of bariatric surgery on 

weight development in children (77). Sharp et al. examined 1,018 neonatal 

cord blood derived DNA methylomes with the 450k array for the relationship 

between maternal and later childhood adiposity. Both high and low maternal 

weight extremes were seen to led to significant neonatal epigenetic 

changes, although weight gain during pregnancy was not influential (102). A 

large Danish Birth cohort of 30,655 trio families examined children at seven 
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years to also directly explore the influence of parental BMI through 

pregnancy. This supported a role for the intrauterine environment in fetal and 

child growth trajectories, but that later parent-child associations in weight 

were likely to be contributed to by shared known genetic or environmental 

factors with both parents (103). 

The genetic component of these maternal adiposity epidemiological 

observations has been recently dissected through large-scale GWAS and was 

seen to be a significant, but not complete, contributor (104). Furthermore, 

Richmond et al. performed a direct MR analysis, using a weighted genetic 

score from variants for BMI, for maternal obesity influences in children from 

ages 7-18 years. In over 2,000 samples in both discovery and replication sets, 

they found little support for a strong causal intrauterine effect of increasing 

maternal BMI with increased childhood adiposity (105). The complexity of this 

MR analysis in this scenario was recently discussed by Lawlor et al. (106). 

 

LIMITATIONS AND FUTURE DIRECTIONS 

 

Current large-scale high-throughput analysis is limited to DNA 

methylation array-based techniques, commonly the 450k array and the more 

recent 850k array. These provide only a partial story with regards to the DNA 

methylome as ~28 million CpGs reside within the genome, as well as the 

additional potential for non-CG changes. An obvious area of under-

exploration by this approach is repetitive elements, which are proposed to 

conceal significant functionality, such as the strong overlap of chromatin 

enhancer evidence within LTR repeat class member LTR12C (107). Examples 

also include a potential epigenetic role for an Alu repetitive element in POMC 

in childhood obesity (108). 

Furthermore, co-ordinated variation across a functional region, such as 

an enhancer, by the delineation of a significant DMR can increase statistical 

and biological confidence of the result (109). However, sparse array data are 

not the most powerful for robust DMR calling (110). Enrichment for disease 

ontology based results is stronger using sequencing-derived DMRs rather than 

isolated DMPs (58). Thus, larger and more in depth sequencing-focused 

analyses could identify further novel findings.  
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External confounding factors in EWAS analysis include tobacco, 

alcohol, diet, medications, and other chemicals (68), though these signatures 

are now beginning to be precisely defined. Strong and replicated effects 

from prenatal exposures with smoking that persist into childhood exist, 

although these are not yet robust for diet. However, evidence exists in a 

number of murine and other animal models which have explored prenatal 

dietary exposures (111). DNA methylation associations with blood serum 

metabolites have been identified in humans through EWAS (112).  

Major areas for future exploration are the influence of rare cell types, 

and an issue not yet resolved in biology, at what point does a change in the 

epigenome of a cell then indicate a new cell type? Epigenetic variability is 

occurring even in assumed homogenous cell-types, such as neutrophils (113). 

It is of important note that when robustly controlled experiments reduce 

genetic and cell-type variability by the use of isolated cell-types in MZ twin 

discordant models, minimal significant directional disease-associated DMPs 

are identified (39). Although, increased variability at distinct positions can be 

found, it is not attributable therefore could be technical artefact, or 

unaccounted environmental effects. Underlining these cell-type specific 

effects, the Mendelson et al. BMI EWAS only saw 22 of the initial 135 DMPs 

replicated in isolated CD4+ T cells (78). Validation and most crucially 

independent replication are required for robust findings to be reported, with 

subsequent functional investigation in appropriate biological models.  

The integration of genetic and epigenetic data is another area where 

powerful insights can be made. Analysis within GWAS loci to determine allelic 

or haplotype epigenetic differences was first shown with DNA methylation in 

the obesity-related FTO locus (31). This amalgamation of epigenetic and 

haplotypic data has now become a valuable tool in the dissection of GWAS 

traits (114). Incorporating chromatin segmentation data across multiple tissue 

types, including fat, enabled the localisation of enhancer variation in 

adipocytes influencing IRX3 and IRX5 expression, within the large linkage 

disequilibrium (LD) block region of FTO. These regulatory genes were shown to 

be involved with the browning of fat and thermogenesis (115). 

Few studies to date have analysed histone variants or post-translational 

modifications with respect to human obesity, and have been limited to 
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extremely small numbers and/or only global measures (116). Murine studies 

have proposed potential biological insights that may merit human 

exploration, such as histone variant MacroH2A1, which may have an anti-

adipogenic role within differentiating adipose tissue (117). However, large-

scale human studies are on the horizon, as can be seen by the example of a 

recent successful post-mortem study for Autism Spectrum Disorder in the brain 

of the active chromatin mark H3K27ac, or Histone Acetylome-wide 

Association Study (HAWAS) (118). Also, the use of Histone Deacetylase 

Inhibitors in inflammation-related diseases, as well the potential of targeted 

epigenetic drugs via CRISPR, point to future epigenomic therapeutic 

possibilities (119).  

 

CONCLUSION 

 

Epigenomic analysis is a significant tool in the hunt to improve risk 

prediction, as well as prognosis, beyond the rudimentary measure of BMI for 

obesity-related diseases. By observing at a molecular level the biologically 

perturbed mechanisms associated with this disorder, we may understand 

more precisely, for instance, the significant pathogenic influence of visceral 

fat. On the epidemiological side, whilst population-based strategies have 

borne the greatest improvements in human health in the past, there is now 

evidence that this may not be the case for obesity (120). More focused 

policies may be required due to its widening distribution over time.  

Large-scale DNA methylation array analyses in blood have revealed 

the precise sequelae of the obese state, such as epigenetic changes driven 

by dyslipidemia, hyperglycaemia and chronic inflammation. This points 

towards the use of more precisely defined biochemical phenotypes in EWAS 

analysis. Nevertheless, further study may implicate additional novel disease-

associated outcomes, exposures or even causes. These could include or 

exclude unproven but intriguingly proposed factors, such as air pollution 

(121), metal exposure (122), or other "obesogens" in the environment and 

food chain (123), with a role in obesity, or other diseases. The powerful 

potential of robustly identified DNA methylation biomarkers, even if not 

causal, can be seen for tobacco-associated AHRR cg05575921 capturing 
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future smoking-related morbidity and mortality (124). With regards to obesity, 

potential to predict future cardiovascular disease exists in the lipid-related 

DNA methylation changes that influence ABCG1 expression (125).  

The analysis of the epigenome is constantly improving and being 

refined, such as recent discussion by van Iterson et al. on controlling genomic 

bias in DNA methylation EWAS (69). This trajectory will enable us to more 

accurately define the epigenome and interpret these findings. Increased 

high-throughput access to distal regulatory regions via the 850k array, larger 

sample-sized sequencing-based DNA methylome studies, and the analysis of 

additional modifications, including population chromatin data, will drive 

forward this progress. Also, the potential of 3rd generation sequencing to 

directly assess DNA modifications will be a significant step for epigenomics 

(126). We will be able to more accurately define currently abstractly lumped 

together ‘environmental’ change, by more precisely excluding or integrating 

genetic effects, as well as defining cell-type specific and cell proportion 

changes, including increasingly rare cell-types. With this will come improved 

biological interpretation and understanding of critical pathological changes 

within defined cell-type(s), and genetic pathways. This knowledge will 

hopefully help reduce the chronic burden of obesity worldwide. 
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FIGURE LEGEND 
 

 

 

Figure 1 – Factors influencing DNA methylation array analysis A: Direct CpG-
SNPs; B: SNPs under probe sequences. C: Cis and Trans SNP effects with 
increased (orange) or decreased (grey) transcription factor (TF) expression 
influencing the methylation state of binding site; D: Cis effects can include 
regional effects from Hypermethylated Repeats or Methylation Determining 
Region motifs within CpG dense regions; E: Density change within 
Intermediate CpG density regions such as CpG Island shores will also 
influence methylation state. 
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TABLE 
 

 

 

chr start Stop CpG Gene 

Methyl 

BMI CGI Location 

Additional 

BMI 

Other 

Phenotype 

chr11 68607621 68607622 
cg0057495
8 CPT1A - Shore Intronic 

BMI & 
WC*(82);  

TG(49, 86, 87); 
VLDL-C(87); 
Lipoprotein 
Subfractions(7
9); HTG 
waist(91); MetS 
in Eur(83) 

chr15 52554170 52554171 
cg0619288
3 MYO5C + - Intronic 

BMI in 
Arab(84) CRP(45) 

chr21 43656586 43656587 
cg0650016
1 ABCG1 + Shore Intronic   

TG, HDL-C(49, 
88, 89); 
Glucose-
related(90); 
HTG waist(91) 

chr16 11422408 11422409 
cg0694679
7 RMI2 - - Intronic 

BMI in 
Arab(84) 

Glucose-
related(90)  

chr17 40927698 40927699 
cg0885779
7 VPS25 + - Intronic 

BMI in 
Arab(84) TG(49)  

chr22 50327985 50327986 
cg0934912
8 CRELD2 - Shore 

Intergeni
c   

Glucose-
related(90); 
IBD(92) 

chr17 2612405 2612406 
cg0966444
5 CLUH + Shore Intronic 

BMI in 
Arab(84); 
& in Eur(70)   

chr17 17730093 17730094 
cg1102468
2 SREBF1 + Shelf Intronic 

BMI in 
Eur(85) 

TG(49, 89); 
Glucose-
related(90) 

chr6 31681881 31681882 
cg1312300
9 LY6G6F + - Intronic 

BMI in 
Arab(84)   

chr5 
15863408
4 

15863408
5 

cg2640384
3 RNF145 + Shelf Intronic     

 

Table 1: Consistent BMI-DMPs from the studies of Demerath et al. (72), Wahl et 
al. (77), and Mendelson et al. (78). 
WC: Waist circumference, TG: Triglycerides; LDL-C: Low Density Lipoprotein 
Cholesterol; HDL-C: Low Density Lipoprotein Cholesterol; VLDL-C: Very Low 
Density Lipoprotein Cholesterol; HTG: Hypertriglyceridemic.  
*This study was in fact performed earlier with many of the same cohorts at 
Wahl et al. 
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APPENDIX 
 

cis-regulatory elements = binding sites of transcription factors that 
enhance or repress transcription. 
CpG-SNP = SNP that creates or abrogates a CpG dinucleotide 
CTCF = CCCTC-binding factor transcription factor 
DMP – Differentially Methylated Position 
DMR – Differentially Methylated Region 
EWAS – Epigenome-Wide Association study 
GWAS – Genome-wide Association study 
LD = Linkage Disequilibrium 
LTR = Long Terminal Repeats 
MDR = Methylation Determining Regions 
mQTL = methylation Quantitative Trait Loci 
MR = Mendelian Randomisation 
RFX = regulatory factor X family transcription factor 
SNP = Single Nucleotide Polymorphism 
SVA = SINE-VNTR-Alu repeat element 
trans-regulatory elements = DNA sequences that encode transcription 
factors  
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# GREAT version 3.0.0 Species assembly: hg19 Association rule:
Basal+extension: 5000 bp upstream, 1000 bp downstream, 1000000 bp max
extension, curated regulatory domains included
# Ontology  Term Name  Hyper Rank  Hyper Raw P-Value  
Hyper Bonferroni P-Value   Hyper FDR Q-Val   Hyper Fold Enrichment  
Hyper Expected  Hyper Foreground Region Hits  Hyper Total Regions 
Hyper Region Set Coverage  Hyper Term Region Coverage  Hyper Foreground
Gene Hits  Hyper Background Gene Hits  Total Genes Annotated
GO Molecular Function sterol-transporting ATPase activity 1
0.001255707 1 1 795.9213 0.001256406 1
61 0.1 0.01639344 1 1 1
GO Molecular Function glycoprotein transporter activity 2
0.001975554 1 1 505.7417 0.001977294 1
96 0.1 0.01041667 1 2 2
GO Molecular Function sterol response element binding 3
0.003557574 1 1 280.6428 0.003563249 1
173 0.1 0.005780347 1 2 2
GO Molecular Function carnitine O-palmitoyltransferase activity 4
0.003886021 1 1 256.8847 0.003892798 1
189 0.1 0.005291005 1 4 4
GO Molecular Function dynein intermediate chain binding 5
0.004214372 1 1 236.8351 0.004222347 1
205 0.1 0.004878049 1 2 2
GO Molecular Function carnitine O-acyltransferase activity 6
0.004706715 1 1 212.014 0.00471667 1
229 0.1 0.004366812 1 6 6
GO Biological Process positive regulation of cholesterol biosynthetic
process 1 0.0000320249 0.334339956 0.334339956
236.2589 0.00846529 2 411 0.2 0.00486618 2
5 5
GO Biological Process positive regulation of cholesterol metabolic
process 2 0.0000385532 0.402495408 0.201247704
215.3047 0.009289163 2 451 0.2 0.00443459 2
6 6
GO Biological Process regulation of cholesterol biosynthetic process 3
0.0001002341 1 0.348814668 133.3824 0.01499448 2
728 0.2 0.002747253 2 12 12
GO Biological Process intracellular lipid transport 4
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GO Biological Process positive regulation of lipid metabolic process 5
0.0001617343 1 0.3377012184 26.62285 0.1126852 3
5471 0.3 0.0005483458 3 99 99
GO Biological Process positive regulation of steroid biosynthetic
process 6 0.0003000956 1 0.5221663440000001 76.88234
0.02601378 2 1263 0.2 0.001583531 2
12 12
GO Biological Process regulation of cholesterol metabolic process 7
0.0003043593 1 0.4539301560000001 76.33836 0.02619915 2
1272 0.2 0.001572327 2 19 19
GO Biological Process organic hydroxy compound metabolic process 8
0.0004124473 1 0.5382437265000001 10.18646 0.3926782 4
19065 0.4 0.0002098085 4 408 408
GO Biological Process positive regulation of steroid metabolic process
9 0.0004172274 1 0.4839837840000000365.12569 0.03070985
2 1491 0.2 0.001341382 2 21 21
GO Biological Process negative regulation of secretion 10
0.000502318 1 0.524419992 18.07789 0.1659485 3
8057 0.3 0.000372347 3 134 134
GO Biological Process negative regulation of insulin secretion
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11 0.0007385562 1 0.7009569752727273 48.81971 0.04096706
2 1989 0.2 0.00100553 2 28 28
GO Biological Process establishment of secretory granule localization
12 0.0008647375 1 0.752321625 1155.981
0.0008650662 1 42 0.1 0.02380952 1 1
1
GO Biological Process negative regulation of peptide hormone secretion
13 0.0008982793 1 0.7213873763076923 44.21785 0.0452306 2
2196 0.2 0.0009107468 2 32 32
GO Biological Process negative regulation of peptide secretion
14 0.0009177835 1 0.6844042671428571 43.73982 0.04572493
2 2220 0.2 0.0009009009 2 33 33
GO Biological Process regulation of insulin secretion 15
0.0009217111 1 0.6415109256 14.66656 0.204547 3
9931 0.3 0.0003020844 3 150 151
GO Biological Process regulation of peptide hormone secretion
16 0.001084748 1 0.70779807 13.86253 0.2164107 3
10507 0.3 0.0002855239 3 163 164
GO Biological Process regulation of peptide secretion 17
0.001138916 1 0.699428414117647 13.63032 0.2200975 3
10686 0.3 0.0002807412 3 167 168
GO Biological Process regulation of peptide transport 18
0.001163984 1 0.67511072 13.52778 0.2217659 3
10767 0.3 0.0002786291 3 169 170
GO Biological Process regulation of secretion 19
0.001172035 1 0.6440023894736843 7.725547 0.5177627 4
25138 0.4 0.0001591216 4 471 472
GO Biological Process detection of hormone stimulus 20
0.001255707 1 0.655479054 795.9213 0.001256406 1
61 0.1 0.01639344 1 1 1
GO Biological Process establishment of centrosome localization
21 0.001296854 1 0.6447217028571428 770.654
0.001297599 1 63 0.1 0.01587302 1 1
1
GO Biological Process positive regulation of lipid biosynthetic process
22 0.00130653 1 0.6200078727272728 36.57341 0.05468454
2 2655 0.2 0.0007532957 2 46 46
GO Biological Process regulation of hormone secretion 23
0.001699002 1 0.7711991686956522 11.86008 0.2529495 3
12281 0.3 0.0002442798 3 198 199
GO Biological Process negative regulation of pancreatic juice secretion
24 0.001811059 1 0.787810665 551.7182 0.00181252
1 88 0.1 0.01136364 1 3 3
GO Biological Process response to high density lipoprotein particle
stimulus 25 0.001872747 1 0.7820591471999999 533.5297
0.00187431 1 91 0.1 0.01098901 1 2
2
GO Biological Process regulation of lipid metabolic process 26
0.001879611 1 0.7547361092307692 11.44895 0.2620327 3
12722 0.3 0.000235812 3 228 228
GO Biological Process regulation of steroid biosynthetic process
27 0.001896041 1 0.7331358533333334 30.26883 0.06607458
2 3208 0.2 0.0006234414 2 48 48
GO Biological Process glycoprotein transport 28
0.001975554 1 0.73659942 505.7417 0.001977294 1
96 0.1 0.01041667 1 2 2
GO Biological Process regulation of pancreatic juice secretion
29 0.002078351 1 0.74820636 480.705
0.002080278 1 101 0.1 0.00990099 1 4
4
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GO Biological Process negative regulation of hormone secretion
30 0.002148713 1 0.747752124 28.40082 0.0704205 2
3419 0.2 0.0005849664 2 53 53
GO Biological Process detection of endogenous stimulus 31
0.002222251 1 0.7483967883870969 449.5481 0.002224456 1
108 0.1 0.009259259 1 3 3
GO Biological Process regulation of fatty acid metabolic process
32 0.002281373 1 0.74429794125 27.54678 0.07260377
2 3525 0.2 0.0005673759 2 70 70
GO Biological Process organic hydroxy compound transport 33
0.002522022 1 0.7978760509090909 26.17315 0.07641418 2
3710 0.2 0.0005390836 2 90 90
GO Biological Process alcohol metabolic process 34
0.002566734 1 0.7881383223529412 10.26452 0.2922688 3
14190 0.3 0.0002114165 3 316 316
GO Biological Process platelet activating factor metabolic process
35 0.003003097 1 0.8957809337142857 332.5425
0.003007135 1 146 0.1 0.006849315 1 5
5
GO Biological Process regulation of steroid metabolic process
36 0.003432228 1 0.9953461199999999 22.35837 0.08945196
2 4343 0.2 0.0004605112 2 69 69
GO Biological Process distal tubule morphogenesis 37
0.003598635 1 1 277.4354 0.003604442 1
175 0.1 0.005714286 1 3 3
GO Biological Process negative regulation of transport 38
0.00372896 1 1 8.997072 0.3334418 3 16189
0.3 0.000185311 3 302 302
GO Biological Process regulation of transport 39
0.003999272 1 1 4.098324 1.220011 5 59233
0.5 0.00008441241 5 1216 1218
GO Biological Process intracellular distribution of mitochondria
40 0.004091252 1 1 243.9759 0.004098766 1
199 0.1 0.005025126 1 4 4
GO Biological Process negative regulation of digestive system process
41 0.004563138 1 1 218.6991 0.004572493 1
222 0.1 0.004504505 1 9 9
GO Biological Process anion transport 42 0.004633303 1
1 8.32925 0.3601765 3 17487 0.3 0.000171556 3
394 394
GO Biological Process regulation of cholesterol esterification
43 0.004891287 1 1 203.9966 0.004902042 1
238 0.1 0.004201681 1 9 9
GO Biological Process renal sodium ion absorption 44
0.004952805 1 1 201.4573 0.004963832 1
241 0.1 0.004149378 1 4 4
GO Biological Process spermatogenesis 45 0.004965537 1
1 8.126177 0.3691773 3 17924 0.3 0.0001673734 3
417 419
GO Biological Process male gamete generation 46
0.004979527 1 1 8.118025 0.369548 3 17942
0.3 0.0001672054 3 418 420
GO Biological Process cholesterol metabolic process 47
0.00498986 1 1 18.45001 0.108401 2 5263
0.2 0.0003800114 2 107 107
GO Cellular Component apical lamina of hyaline layer 1
0.0006177383 0.7814389495 0.7814389495 1618.373
0.0006179044 1 30 0.1 0.03333333 1 1
1
GO Cellular Component astral microtubule 2 0.001296854 1

Page 36 of 42Obesity



0.820260155 770.654 0.001297599 1 63 0.1
0.01587302 1 1 1
Mouse Phenotype absent hippocampus stratum oriens 1
0.001296854 1 1 770.654 0.001297599 1
63 0.1 0.01587302 1 1 1
Mouse Phenotype abnormal hippocampus stratum oriens morphology 2
0.001769931 1 1 564.5488 0.001771326 1
86 0.1 0.01162791 1 2 2
Mouse Phenotype decreased pro-B cell number 3 0.001999572 1
1 29.46068 0.0678871 2 3296 0.2 0.0006067961 2
58 58
Mouse Phenotype increased interleukin-23 secretion 4
0.003372779 1 1 296.0439 0.003377877 1
164 0.1 0.006097561 1 5 5
Mouse Phenotype decreased pre-B cell number 5 0.004297771 1
1 19.92253 0.1003889 2 4874 0.2 0.0004103406 2
90 90
Mouse Phenotype increased early pro-B cell number 6
0.004481085 1 1 222.7119 0.004490105 1
218 0.1 0.004587156 1 4 4
Mouse Phenotype abnormal lipid level 7 0.004678304 1
1 5.307012 0.7537198 4 36594 0.4 0.0001093075 5
765 767
Mouse Phenotype decreased circulating magnesium level 8
0.004727225 1 1 211.0922 0.004737267 1
230 0.1 0.004347826 1 7 7
Mouse Phenotype abnormal pro-B cell morphology 9
0.004901835 1 1 18.61983 0.1074124 2 5215
0.2 0.0003835091 2 99 99
Mouse Phenotype alkalosis 10 0.004911794 1 1
203.1431 0.004922638 1 239 0.1 0.0041841 1 5
5
Human Phenotype Hyperlipidemia 1 0.0003578343 1 1
70.36406 0.0284236 2 1380 0.2 0.001449275 2
40 40
Human Phenotype Recurrent encephalopathy 2 0.001811059 1
1 551.7182 0.00181252 1 88 0.1 0.01136364
1 1 1
Human Phenotype Transient hyperlipidemia 2 0.001811059 1
1 551.7182 0.00181252 1 88 0.1 0.01136364
1 1 1
Human Phenotype Pseudohypoaldosteronism 4 0.002283917 1
1 437.3982 0.002286246 1 111 0.1
0.009009009 1 4 4
Human Phenotype Abnormality of lipid metabolism 5
0.002582305 1 1 25.85949 0.07734103 2
3755 0.2 0.0005326232 2 107 107
Human Phenotype Head-banging 6 0.002674387 1 1
373.4708 0.002677586 1 130 0.1 0.007692308 1
1 1
Human Phenotype Hyperchloremia 7 0.003003097 1 1
332.5425 0.003007135 1 146 0.1 0.006849315 1
4 4
Human Phenotype Sporadic 8 0.00302621 1 1
23.84637 0.08387022 2 4072 0.2 0.0004911591 2
52 52
Human Phenotype Hyperacusis 9 0.004440057 1 1
224.7741 0.004448912 1 216 0.1 0.00462963 1
2 2
Human Phenotype Hypoketotic hypoglycemia 10 0.004993814 1
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1 199.7992 0.005005026 1 243 0.1
0.004115226 1 6 6
Disease Ontology liver disease 1 0.002303406 1 1
6.441714 0.6209527 4 30148 0.4 0.0001326788 4
629 630
Disease Ontology juvenile periodontitis 2 0.00242779 1
1 411.4508 0.002430424 1 118 0.1
0.008474576 1 2 2
Disease Ontology hepatobiliary disease 3 0.004133896 1
1 5.49113 0.7284475 4 35367 0.4 0.0001130998 4
746 747
Disease Ontology lissencephaly 4 0.004501599 1 1
221.695 0.004510702 1 219 0.1 0.00456621 1
5 5
BioCyc Pathway mitochondrial L-carnitine shuttle pathway 1
0.003187953 1 1 313.2335 0.003192506 1
155 0.1 0.006451613 1 3 3
MSigDB Pathway Genes involved in RORA Activates Circadian Expression 1
0.0005797006 0.765204792 0.765204792 55.17182 0.03625039
2 1760 0.2 0.001136364 2 24 24
MSigDB Pathway Genes involved in Circadian Clock 2
0.002528687 1 1 26.13793 0.07651716 2
3715 0.2 0.000538358 2 52 52
MSigDB Pathway Genes involved in Transcriptional Regulation of White
Adipocyte Differentiation 3 0.00312285 1 1
23.46602 0.08522961 2 4138 0.2 0.0004833253 2
72 72
MSigDB Pathway Genes involved in PPARA Activates Gene Expression 4
0.003831509 1 1 21.13219 0.09464236 2
4595 0.2 0.0004352557 2 104 104
MGI Expression: Detected TS22_meninges 1 0.0003660393 1
1 6.912384 0.7233395 5 35119 0.5 0.0001423731 5
650 650
MGI Expression: Detected TS22_hair 2 0.001972184 1 1
4.797549 1.042199 5 50600 0.5 0.00009881423 5
979 981
MGI Expression: Detected TS22_labyrinth 3 0.00198777 1
1 4.78922 1.044011 5 50688 0.5 0.00009864268 6
938 938
MGI Expression: Detected TS22_vibrissa follicle 4
0.002238701 1 1 4.664976 1.071817 5 52038
0.5 0.00009608363 5 998 1000
MGI Expression: Detected TS22_haemolymphoid system 5
0.002319229 1 1 4.628596 1.080241 5 52447
0.5 0.00009533434 5 1060 1062
MGI Expression: Detected TS17_nasal epithelium 6
0.002441395 1 1 26.61069 0.07515777 2
3649 0.2 0.0005480954 2 37 37
MGI Expression: Detected TS22_hair follicle 7 0.00244668 1
1 4.574002 1.093135 5 53073 0.5 0.00009420986 5
1016 1018
MGI Expression: Detected TS22_thymus primordium 8
0.002669965 1 1 4.486094 1.114555 5 54113
0.5 0.00009239924 5 1128 1130
MGI Expression: Detected TS20_glossopharyngeal IX nerve 9
0.003803919 1 1 262.4389 0.00381041 1
185 0.1 0.005405405 1 2 2
MGI Expression: Detected TS22_foregut gland 10 0.00402513 1
1 4.092382 1.221782 5 59319 0.5 0.00008429003 5
1219 1221
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MGI Expression: Detected TS22_tooth 11 0.004178872 1
1 4.057972 1.232143 5 59822 0.5 0.00008358129 5
1129 1131
MGI Expression: Detected TS28_female reproductive system 12
0.004183018 1 1 2.720739 2.57283 7 124914
0.7 0.00005603855 8 2538 2574
MGI Expression: Detected TS22_jaw 13 0.004197498 1 1
4.053906 1.233378 5 59882 0.5 0.00008349755 5
1131 1133
MSigDB PerturbationGenes down-regulated between two breast carcinoma
subtypes: metaplastic (MCB) and ductal (DCB). 1 0.00007821423
0.263112669719999970.2631126697199999734.06305 0.08807197 3
4276 0.3 0.0007015903 3 106 106
MSigDB PerturbationGenes which best discriminated between two groups of
breast cancer according to the status of ESR1 and AR [GeneID=2099;367]: basal
(ESR1- AR-) and luminal (ESR1+ AR+). 2 0.0002138256
0.7193093184 0.3596546592 12.09622 0.3306818 4 16055
0.4 0.0002491436 4 322 322
MSigDB PerturbationGenes up-regulated in bulk samples from early primary
breast tumors expressing ESR1 [GeneID=2099] vs the ESR1 negative samples. 3
0.0003067409 1 0.3439587958666666 76.03947 0.02630213 2
1277 0.2 0.001566171 2 26 26
MSigDB PerturbationGenes up-regulated in the luminal B subtype of breast
cancer. 4 0.0004514236 1 0.3796472476 18.75288
0.1599754 3 7767 0.3 0.0003862495 3 160
160
MSigDB PerturbationUp-regulated genes from the optimal set of 550 markers
discriminating breast cancer samples by ESR1 [GeneID=2099] expression: ER(+)
vs ER(-) tumors. 5 0.0005055934 1 0.34016323951999994
18.0376 0.1663193 3 8075 0.3 0.000371517 3
156 156
MSigDB PerturbationGenes up-regulated in the liver tissue from 10 week old
male mice with KLF10 [GeneID=7071]. 6 0.0006357855 1
0.3564637369999999552.65857 0.03798052 2 1844 0.2
0.001084599 2 50 50
MSigDB PerturbationGenes important for spermatid differentiation, based on
mouse models with male reproductive defects. 7 0.0007224791 1
0.3472028132 49.36573 0.04051393 2 1967 0.2
0.001016777 2 37 37
MSigDB PerturbationGenes up-regulated in group C of tumors arising from
overexpression of BCL2L1 and MYC [GeneID=598;4609] in plasma cells. 8
0.00132112 1 0.55553096 36.36794 0.05499349 2
2670 0.2 0.0007490637 2 46 46
MSigDB PerturbationGenes up-regulated in hepatocellular carcinoma (HCC)
induced by ciprofibrate [PubChem=2763]. 9 0.00136041 1
0.5084910266666667 35.83114 0.05581736 2 2710 0.2
0.0007380074 2 59 59
MSigDB PerturbationCluster 5: genes changed in primary keratinocytes by UVB
irradiation. 10 0.001690353 1 0.5686347491999999
32.08936 0.06232596 2 3026 0.2 0.0006609385 2
46 46
MSigDB PerturbationGenes correlated with the early tumor onset in the Emu-myc
transgenic mouse lymphoma model. 11 0.003537915 1 1
22.01369 0.09085254 2 4411 0.2 0.0004534119 2
108 108
MSigDB PerturbationGenes up-regulated in immature bone marrow progenitor
cells upon knock out of CBFA2T3 [GeneID=863]. 12 0.004276857 1
1 8.569875 0.3500634 3 16996 0.3 0.0001765121 3
376 376
MSigDB Predicted Promoter Motifs Motif TGACGTYA matches JUN: jun
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oncogene&lt;br&gt; ATF2: activating transcription factor 2 1
0.001716904 1 1 11.81678 0.2538763 3 12326
0.3 0.000243388 3 263 265
MSigDB Predicted Promoter Motifs Motif TGGGGTYACTNNCGGTCA matches NR1H3:
nuclear receptor subfamily 1, group H, member 3 2 0.002617446 1
0.804864645 25.68167 0.07787655 2 3781 0.2
0.0005289606 2 76 76
MSigDB Predicted Promoter Motifs Motif GGCNKCCATNK (no known TF) 3
0.00448854 1 0.9201507000000001 19.48283 0.1026545 2
4984 0.2 0.0004012841 2 115 115
MSigDB Predicted Promoter Motifs Motif CTGCAGY (no known TF) 4
0.004845115 1 0.74493643125 5.255881 0.7610522 4
36950 0.4 0.0001082544 5 726 726
InterPro Protamine P1 1 0.0002883206 1 1
3467.943 0.0002883554 1 14 0.1 0.07142857 1
1 1
InterPro P-type trefoil, chordata 2 0.001049951 1 1
951.9843 0.001050437 1 51 0.1 0.01960784 1
3 3
InterPro TRC8 N-terminal domain 3 0.001132258 1 1
882.7491 0.001132825 1 55 0.1 0.01818182 1
2 2
InterPro Pigment precursor permease 4 0.001255707 1 1
795.9213 0.001256406 1 61 0.1 0.01639344 1
1 1
InterPro Dynein regulator LIS1 5 0.001296854 1 1
770.654 0.001297599 1 63 0.1 0.01587302 1
1 1
InterPro Lymphocyte antigen 6 complex locus protein G6d/G6f 6
0.001502564 1 1 665.0849 0.001503567 1
73 0.1 0.01369863 1 2 2
InterPro G-protein beta WD-40 repeat 7 0.001656455 1 1
32.4215 0.06168746 2 2995 0.2 0.0006677796 2
81 81
InterPro Clustered mitochondria protein 8 0.001954993 1
1 511.0653 0.001956697 1 95 0.1 0.01052632
1 1 1
InterPro CLU domain 8 0.001954993 1 1
511.0653 0.001956697 1 95 0.1 0.01052632 1
1 1
InterPro Clustered mitochondria protein, N-terminal 8
0.001954993 1 1 511.0653 0.001956697 1
95 0.1 0.01052632 1 1 1
InterPro Protein LIN54/Tesmin 11 0.001996114 1 1
500.5278 0.001997891 1 97 0.1 0.01030928 1
2 2
InterPro CRC domain 11 0.001996114 1 1
500.5278 0.001997891 1 97 0.1 0.01030928 1
2 2
InterPro GSKIP domain 13 0.002530545 1 1
394.7252 0.002533408 1 123 0.1 0.008130081 1
2 2
InterPro Domain of unknown function DUF3456 14 0.002982555 1
1 334.8359 0.002986538 1 145 0.1
0.006896552 1 6 6
InterPro ABC-2 type transporter 15 0.003003097 1 1
332.5425 0.003007135 1 146 0.1 0.006849315 1
5 5
InterPro Guanine nucleotide-binding protein, beta subunit 16
0.003865496 1 1 258.2511 0.003872201 1
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188 0.1 0.005319149 1 5 5
InterPro Dilute 17 0.004501599 1 1 221.695
0.004510702 1 219 0.1 0.00456621 1 6
6
InterPro Dil domain 17 0.004501599 1 1
221.695 0.004510702 1 219 0.1 0.00456621 1
6 6
InterPro Serine/threonine-protein kinase OSR1/WNK, CCT domain 19
0.004563138 1 1 218.6991 0.004572493 1
222 0.1 0.004504505 1 6 6
InterPro G-protein, beta subunit 20 0.004665695 1 1
213.8819 0.004675477 1 227 0.1 0.004405286 1
7 7
TreeFam RMI2 1 0.0007824105 1 1 1277.663
0.0007826789 1 38 0.1 0.02631579 1 1
1
TreeFam TFF1, TFF2, TFF3 2 0.001049951 1 1
951.9843 0.001050437 1 51 0.1 0.01960784 1
3 3
TreeFam platelet-activating factor acetylhydrolase, isoform Ib, alpha
subunit 45kDa 3 0.001296854 1 1 770.654
0.001297599 1 63 0.1 0.01587302 1 1
1
TreeFam CRELD1, CRELD2 4 0.001420285 1 1
703.6406 0.00142118 1 69 0.1 0.01449275 1
2 2
TreeFam RNF139, RNF145, SYVN1 5 0.001543702 1 1
647.3493 0.001544761 1 75 0.1 0.01333333 1
3 3
TreeFam ATP-binding cassette, sub-family G (WHITE), member 1/4 6
0.001667105 1 1 599.3975 0.001668342 1
81 0.1 0.01234568 1 2 2
TreeFam CLUH 7 0.001954993 1 1 511.0653
0.001956697 1 95 0.1 0.01052632 1 1
1
TreeFam LIN54, MTL5 8 0.001996114 1 1
500.5278 0.001997891 1 97 0.1 0.01030928 1
2 2
TreeFam MYO19, MYO5A, MYO5B, MYO5C 9 0.002078351 1 1
480.705 0.002080278 1 101 0.1 0.00990099 1
4 4
TreeFam SREBF1, SREBF2 10 0.004009164 1 1
248.9805 0.004016379 1 195 0.1 0.005128205 1
2 2
TreeFam RAI1, TCF20 11 0.004091252 1 1
243.9759 0.004098766 1 199 0.1 0.005025126 1
2 2
HGNC Gene Families MYOV 1 0.001543702 0.7378895560000001
0.7378895560000001 647.3493 0.001544761 1 75 0.1
0.01333333 1 3 3
HGNC Gene Families ABCG 2 0.002448342 1
0.585153738 407.9933 0.002451021 1 119 0.1
0.008403361 1 4 4
Ensembl Genes PRM1 1 0.0002883206 1 1
3467.943 0.0002883554 1 14 0.1 0.07142857 1
1 1
Ensembl Genes LY6G6D 2 0.0003912742 1 1
2555.326 0.0003913395 1 19 0.1 0.05263158 1
1 1
Ensembl Genes TFF3 3 0.0006177383 1 1
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1618.373 0.0006179044 1 30 0.1 0.03333333 1
1 1
Ensembl Genes WNK4 4 0.0006589087 1 1
1517.225 0.000659098 1 32 0.1 0.03125 1 1
1
Ensembl Genes RNF145 5 0.0006794933 1 1
1471.248 0.0006796948 1 33 0.1 0.03030303 1
1 1
Ensembl Genes CRELD2 6 0.0007824105 1 1
1277.663 0.0007826789 1 38 0.1 0.02631579 1
1 1
Ensembl Genes RMI2 6 0.0007824105 1 1
1277.663 0.0007826789 1 38 0.1 0.02631579 1
1 1
Ensembl Genes MYO5C 8 0.0008647375 1 1
1155.981 0.0008650662 1 42 0.1 0.02380952 1
1 1
Ensembl Genes GNB5 9 0.0009882165 1 1
1011.483 0.000988647 1 48 0.1 0.02083333 1
1 1
Ensembl Genes ABCG1 10 0.001255707 1 1
795.9213 0.001256406 1 61 0.1 0.01639344 1
1 1
Ensembl Genes PAFAH1B1 11 0.001296854 1 1
770.654 0.001297599 1 63 0.1 0.01587302 1
1 1
Ensembl Genes MTL5 12 0.001523133 1 1
656.0973 0.001524164 1 74 0.1 0.01351351 1
1 1
Ensembl Genes CPT1A 13 0.001811059 1 1
551.7182 0.00181252 1 88 0.1 0.01136364 1
1 1
Ensembl Genes CLUH 14 0.001954993 1 1
511.0653 0.001956697 1 95 0.1 0.01052632 1
1 1
Ensembl Genes EBF1 15 0.002119467 1 1
471.3709 0.002121472 1 103 0.1 0.009708738 1
1 1
Ensembl Genes PIM3 16 0.002181139 1 1
458.0302 0.002183262 1 106 0.1 0.009433962 1
1 1
Ensembl Genes RAI1 17 0.002674387 1 1
373.4708 0.002677586 1 130 0.1 0.007692308 1
1 1
Ensembl Genes SREBF1 18 0.003270102 1 1
305.3535 0.003274893 1 159 0.1 0.006289308 1
1 1
MSigDB Immunologic Signatures Genes down-regulated in comparison of
dendritic cells (DC) stimulated with poly(I:C) (TLR3 agonist) at 12 h versus
DC cells stimulated with Pam3Csk4 (TLR1/2 agonist) at 12 h. 1
0.0008032368 1 1 15.38053 0.1950518 3 9470
0.3 0.0003167899 3 197 197
MSigDB Immunologic Signatures Genes up-regulated in comparison of
dendritic cells (DC) stimulated with CpG DNA (TLR9 agonist) at 0.5 h versus
those stimulated with CpG DNA (TLR9 agonist) at 4 h. 2
0.0008679936 1 0.828933888 14.97415 0.2003452 3
9727 0.3 0.0003084199 3 197 197
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