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Abstract—In this work, we propose a system for private sound
which is based on the Weighted Pressure Matching method
(WPMM). The aim is to design the input signals to an array of
loudspeakers which allow for the synthesis of a target field defined
with large amplitude variations between the so-called dark points
and the listener’s position. The system enables listeners to control
the trade-off between directivity performance and the accuracy
of reproduction of the target field at the listening position when
the input energy to the array is limited. This is achieved by
calculating the WPMM weight in the dark zone based on a
performance constraint on the characteristics of the sound field
in the listening zone. The system is validated for a number of
pre-defined use-case scenarios. The results of the experiments in
an anechoic environment with a circular array prototype show
that listeners can control the performance trade-off in a wide
frequency range. In the second part of the paper, algorithms are
presented for the fast update of the input signals when the user
selects a new value of the performance constraint.

I. INTRODUCTION

Loudspeaker arrays driven with purposefully-designed input
signals can be used for the implementation of systems for
private sound, a technology that allows listeners to privately
listen to any selected audio material without affecting other
people located in the same environment [1], [4], [5]. The input
signals may be designed by means of beamforming methods,
such as the Time-Reversal Mirror [3], sound focusing [18],
the Minimum Variance Distortionless Response [2], as well
as methods that aim at the control of the acoustic energy
density in the control area [6], [7], [4], [8], hereafter also
referred to as energy-based methods, and methods that aim
at the synthesis of a target field defined at a set of control
points, such as the Pressure Matching Method (PMM) [17], [8]
and the Weighted Pressure Matching Method (WPMM) [13],
[9]. In this work, we limit our analysis to the PMM and the
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WPMM, as they may provide better sound quality than that
achieved with energy-based methods [8], [24], [9], [18].

In private sound applications, the listener’s position is usually
referred to as the “bright point” and the rest of the control
zone where sound radiation is to be minimized is referred to
as the “dark zone”. The target field is typically chosen with a
large difference in level between the bright point and the dark
zone. However, for a given array configuration and a given
wavelength, a target field of this kind may be difficult to be
reproduced especially if the bright point and the dark zone
are adjacent to each other [11]. Previous works reported that
arrays driven with input signals designed with the PMM may
suffer of limited ability to preserve the characteristics of the
spectrum of the original audio material to be delivered to the
listener [12], [10]. This may be related to the fact that the
transfer functions between bright and dark points are similar
at low frequencies [8], where the size of the array is small
compared to the wavelength. In such scenarios, the system,
in an attempt to provide the large level variations defined in
the target field, achieves a reproduced field at the bright point
which may substantially differ from the target field [10]. This
is an undesired effect which may lead to increased distraction
of the listener [32].

More generally, a performance trade-off exists between
directivity performance, input energy required by the array
to perform directional sound radiation, and accuracy of repro-
duction of the target field in the listening area [18], [12], [23],
[24], hereafter succinctly referred to as “quality”. For example,
for a given level of the input energy, a given system may be
able to provide high directivity performance at the expense
of a reduced quality in the listening zone [9], [10], [12]. A
number of PMM-based methods were proposed to control the
performance trade-off by means of 1) parameters that are freely
customizable by the users [13], [9], [12] or, 2) by calculating
the input signals that satisfy given performance constraints [14],
[15]. Some of these methods are based on the WPMM [13],
[9], [14], [12], a generalized formulation of the PMM wherein
the so-called WPMM weights are assigned to the control points
where sound is to be controlled with the aim of prioritizing (or
not prioritizing) accurate reproduction of the target field at given
control points [14], [9]. We consider the problem of calculating
the input signals that satisfy a performance constraint [14], [15].
In this work, we set a performance constraint on the accuracy
of the reproduction of the target field at the bright point, which
is, hereafter, succinctly referred to as “quality constraint”. Since



2329-9290 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2017.2700945, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

PRIVATE SOUND WITH CIRCULAR ARRAYS 2

quality and directivity performance are interrelated (when the
input energy is limited), by setting the quality constraint, the
user can control the directivity/quality trade-off.

We consider the following scenario: the listener is given the
ability to customize the value of the quality constraint. Ideally,
the system quickly updates the input signals that satisfy the
new performance constraint. To this end, methods can be used
that are based on iterative searches of the input signals [14],
[15]. However, these methods may be time consuming and,
hence, not be suitable for practical applications. In this work,
we address this problem by proposing a system that 1) can be
used to design the input signals that satisfy a desired quality
constraint and 2) quickly updates the input signals (once the
user sets a new value of the quality constraint). In order to
accomplish that, we split this work in two parts.
1) We firstly design a method (that is based on the WPMM)
to control the performance trade-off between quality and
directivity when the input energy is limited. In the proposed
formulation, the WPMM weight in the dark zone is calculated
based on a performance constraint on the reproduced field in
the bright zone. We validate the proposed method in a number
of use-case scenarios where different configurations of the
control zones (e.g., bright or dark) are considered. The optimal
input signals are initially calculated by performing a full-search
of the WPMM weight in the dark zone.
2) We then address the problem of the fast update of the input
signals by proposing two methods: 1) an iterative algorithm
and 2) a method based on the approximation of the input
signals by means of a truncated Neumann series. This method
is based on the calculation of the zeros of a polynomial and
guidelines are proposed for the calculation of the order of
truncation of the Neumann series. We show that this method
can accurately estimate, over a wide frequency range, the value
of the WPMM weight in the acoustically dark zone that satisfies
the performance constraint. Furthermore, we discuss under
which conditions the second method is more computationally
efficient and less time-consuming than the iterative methods.

System performance is evaluated by means of numerical
simulations and experiments in an anechoic environment
with a circular array prototype mounted on a rigid cylinder.
Furthermore, strategies for using the proposed system in a
reverberant environment are discussed. The proposed methods
can be readily extended to other array and control zone
geometries, provided that the transfer functions are known.

This work is organized as follows: the theoretical background
is reported in Section II. The system design is described in
Section III. The experimental validation of the proposed system
is in Section IV. The method for the update of the input signals
is reported in V. Possible strategies to use the system in a
reverberant environment are discussed in Section VI and the
conclusions are drawn in Section VII. We provide a Matlab
implementation of the methods presented in this work [51].

II. THEORETICAL BACKGROUND

We define the vectors 0T
Y = [0,0, · · · ,0] and 1T

Y = [1,1, · · · ,1]
of length Y where [·]T indicates the operation of vector (or
matrix) transpose. Given a square matrix Y, Yn indicates

Fig. 1. Details of the circular array prototype mounted on a rigid cylinder.

the multiplication of Y by itself n times, e.g. Y3 = YYY.
All the acoustical quantities introduced in this work have a
time dependence of e−iωt , where i =

√
−1 is the imaginary

unit and t is time, and ω is a given angular frequency. We
consider a L channel circular array prototype, L = 32, shown
in Fig. 1, whose transducers are uniformly arranged on a
circle of radius r, r = 0.25m. The angular polar coordinate of
the `-th loudspeaker, ` ∈ [1,L], is φ` = (2π/L)`. The array is
mounted on a rigid cylindrical body whose height is 0.35m.
The control zone consists of M control points, M = 72, where
virtual microphones are uniformly arranged on a circle of radius
R, R = 3m. The loudspeaker array and the control points lie
on the same plane. The angular coordinate of the m-th control
point is θm = (2π/M)m, m ∈ [1,M]. A single bright point is
considered that is located at the point of angular coordinate
θB, θB = 90◦. The `-th transducer of the array is driven by
the input signal q` (ω). The vector of the input signals is
qT (ω) = [q1 (ω) , . . . ,qL (ω)]. The output signal to a virtual
microphone placed at the m-th control point to estimate the
sound pressure generated by the array driven with q(ω) is
denoted by p(xm,ω). The control area consists of M control
points and the vector of the virtual microphone signals is
pT (ω) = [p(x1,ω) , . . . , p(xM,ω)]. The relation between the
vectors p(ω) and q(ω) is

p(ω) = Z(ω)q(ω) , (1)

where Z(ω) is the matrix of Transfer Functions (TFs) between
the virtual microphones and the input signals. Hereafter, the
dependence on ω is omitted to simplify the notation.

The circular array is modeled as a discrete distribution of
monopoles radiating in free-field and installed on an infinite
rigid cylinder. The (m, `)-th element Zm,` of Z is the far-field
complex radiation pattern generated by this distribution of
sources on the horizontal plane (where the distribution of
monopoles lies) and it is calculated as [50], [16]

Zm,` =
K

∑
n=−K

2c i(1−n)

πωH ′n(rω/c)
einθme−inφ` , (2)

where c is the speed of sound, c = 343ms−1, H ′n(rω/c) is the
derivative of the Hankel function of the first kind of order
n [16], and K is the maximum order (truncation). Here we
choose K = 150� rω/c. It is assumed that R is large enough
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for the far-field assumption to be satisfied.
In private sound applications, the control points are usually

divided into points where sound is desired or undesired, that are
usually referred to as acoustically bright points and acoustically
dark zone, respectively. Depending on the scenario, we also
consider the “gray zone” [9], a particular case of dark zone
that is not occupied by users. In the most general case, we
partition Z and p as

Z =

zT
B

ZD
ZG

 ,p =

pB
pD
pG

=

zT
Bq

ZDq
ZGq

 , (3)

respectively, where pB, pD, pG, zB, ZD, and ZG are the
microphone signals and transfer functions between the virtual
microphones located at the bright, dark, and gray points and
the input signals, respectively. The number of dark and gray
points are MD and MG, respectively, and M = MD +MG +1. A
target field p̂T = [p̂(x1) , . . . , p̂(xM)] defined as [9]

p̂ =

 p̂B
p̂D
p̂G

=

 1
0MD

0MG

 , (4)

where p̂B, p̂D, and p̂G, are the target fields defined at the bright,
dark, and gray points, respectively. The target field p̂ can be
reproduced by driving the array with input signals designed
with the WPMM [9], [14]. The WPMM cost function is defined
as [9], [14]

J(q) = ψB |pB−1|2 +ψD ‖pD‖2 +ψG ‖pG‖2 +β ‖q‖2 , (5)

where ‖·‖ is the l2-norm operator, 0 ≤ ψB ≤ 1, 0 ≤ ψD ≤ 1,
0≤ψG ≤ 1 are the WPMM weights for the reproduction errors
at the bright, dark and gray points, respectively, and β ∈ [0,∞)
is the Tikhonov regularization parameter [9] that serves to
control the energy of the input signals [14], [9]. The terms
‖pD‖2 and ‖pG‖2 in Eq. (5) may be normalized by the number
of control points in the dark and gray zone, respectively, and
the normalization may be included in ψD and ψG. As reported
in previous works [52], [53], the upper limit for the positive
and real-valued WPMM weights is arbitrary. In this work, we
restrict the range of the WPMM weights to values between
0 and 1 as in previous works on the WPMM for loudspeaker
arrays [9], [13], [14]. The input signals that minimize J(q) can
be found by setting the partial derivative of J(q) with respect
to the real and the imaginary parts of q to zero and by solving
with respect to q, that is [9]

q =
(
ψBz∗BzT

B +ψDZH
DZD +ψGZH

GZG +β I
)−1

ψBz∗B, (6)

where (·)∗, (·)H , and (·)−1 indicate the complex conjugate,
complex conjugate transpose, and the inverse matrix, respec-
tively, and I is the identity matrix. By defining the M×M
diagonal matrix Ψ̂ whose elements on the main diagonal are[√

ψB,
√

ψD1MD ,
√

ψG1MG

]
, Eq. (6) can be also written as [9]

q =
(
ZHΨ̂2Z+β I

)−1 ZHΨ̂2p̂. (7)

An appropriate modeling delay may be required to ensure
that the input signals in Eq. (6) are causal [17].

III. SYSTEM DESIGN

By using the WPMM and the TFs Z, we design a system that
can be used in a variety of settings and applications, hereafter
referred to as use-case scenarios, which are defined by a given
listener/control-zone configurations (i.e., changes in zB, ZD,
and ZG). In order to design the input signals that provide
a desired performance trade-off [13], [14], [9], appropriate
WPMM weights are assigned to the control points where
sound is to be controlled hence prioritizing (or not prioritizing)
accurate reproduction at given control points [14], [9]. For
example, higher values of ψB, ψD and ψG would result in
higher accuracy of reproduction of the target field at the bright
point, and at the dark and gray points, respectively. Thus,
in order to ensure quality at the listener’s position (that is,
ideally, pB = p̂B), maximum value of WPMM weight is given
to the bright zone, i.e. ψB = 1. Conversely, a small value ψG
is assigned to the WPMM weights in the gray zone, due to the
fact that no accurate reproduction of the target field is required.
By doing this, we also relax the constraint in the zones where
no accurate reproduction is required [9]. Based on the desired
performance trade-off between quality and directivity, we define
the following use-case scenarios:

1) the Max-Quality Scenario (MQS), wherein the listener
requires the highest possible quality (and no requirements for
directivity performance). In this case, we consider only the
bright point. The input signals qMQS are calculated by means
of a sound focusing technique [18], that is qMQS = z∗B

/(
zH

B zB
)
.

This scenario may be selected, for example, if the listener is
alone in the environment.

2) In the Max-Directivity Scenario (MDS) the listener
requires privacy and hence, highest directivity performance.
All the control points but the bright point are set as dark points.
The input signals are calculated by setting ψD = 1 in Eq. (6),
thus yielding

qMDS =
(
z∗BzT

B +ZH
DZD +β I

)−1 z∗B, (8)

which corresponds to the PMM solution (also known as
regularized least squares solution [9]). This has been, in turn,
shown to be equivalent to a mode-matching approach, below
the spatial aliasing frequency, as reported in reference [16].
The mode-matching approach for beamforming has also been
used for microphone arrays [26]. This scenario may be suitable
for listeners located in an environment where other people are
present whose positions are likely to vary with time (e.g., the
system is operating in a public space).

3) The Quality-Control Scenario (QCS) is similar to the
MDS, but in this case the user can select a desired trade-
off between quality and directivity by means of the param-
eter ψD. The input signals qQCS are calculated as qQCS =(
z∗BzT

B +ψDZH
DZD +β I

)−1 z∗B. Fig. 2a shows the arrangement
of the control points for the QCS and the MDS.

4) The Hybrid-Scenario is similar to the QCS, the difference
being that the zones that are not occupied by other people
are labeled as gray zones [9] and as dark zones otherwise.
In the context of this work, “Hybrid” is just a nomenclature
that refers to a scenario where both dark and gray points are
simultaneously present. Shin et al. named this scenario as
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Fig. 2. Arrangement and numbering of the control points for the QCS and MDS (Fig. 2a) and for the two Hybrid-Scenarios (Fig. 2b and Fig. 2c, respectively).

“sound field control with a low-priority zone” [9]. The input
signals are calculated with Eq. (6) and a low value of ψG. The
formulation in Eq. (6) with ψD = 1 corresponds to that proposed
in [9]. This scenario may be suitable when the positions of the
other people are not likely to frequently vary with time (e.g.,
in a lounge room as opposed to a public space as in the MDS
or in the QCS). In the case of the Hybrid scenario, system
performance may depend on the relative distance between
the bright and dark points. In this work, two different hybrid
scenarios are analyzed. In the first one, shown in Fig. 2b,
two sets of dark points are selected that are closely spaced
(adjacent) to the bright point. In the second case, shown in
Fig. 2c, the sets of dark points are widely spaced with respect
to the bright point. The first and the second cases are hereafter
referred to as Hybrid Closely-Spaced Scenario (HCSS) and
Hybrid Widely-Spaced Scenario (HWSS), respectively.

A. Control of the directivity/quality performance trade-off

Previous works have addressed the problem of the control of
the directivity/quality performance trade-off by means of the
WPMM. In this work, the WPMM weight ψD is the parameter
by means of which the user controls the performance trade-
off between quality and directivity (when the array effort is
limited and for given values of β and ψG) in the QCS and the
Hybrid scenarios. In general, by increasing ψD, we increase the
priority of the reproduction error in the dark zone (i.e., ‖pD‖2

in Eq. (5)), which would in turn provide higher attenuation
of the Sound Pressure Level (SPL) in the dark zone and thus
higher directional performance. However, this may come at the
expenses of the quality at the listening position. In this work,
we calculate ψD so that the input signals q satisfy (for given
values of ψG and β ) the following performance constraint,
hereafter succinctly and loosely referred to as the “quality”
constraint, that is

zT
Bq(ψD,ψG,β ) = pB ≥ pB,min, (9)

where pB,min ≤ p̂B is a real-valued parameter set by the user
that indicates the minimum SPL that the user allows in the

bright zone. In this work, pB,min is chosen to be frequency
independent. However, other criteria may be considered for
the setting of pB,min in a frequency-dependent fashion, which
are, for example, based on psychoacoustical considerations or
on the type of audio program (e.g., speech, music, etc). A
thorough analysis of this topic lays beyond the scope of this
paper and may be the object of future investigation.

The optimal value of ψD (in the sense of Eq. (9)), i.e. ψD,
is calculated as the maximum value of ψD that satisfies the
quality constraint in Eq. (9). This choice of ψD ensures that
we get the best directivity performance for a given pB,min.
By setting the value of pB,min (and, in turn, of ψD), the user
controls the desired level of “quality”, expressed in dB as
20log10 (pB,min/ p̂B). We choose a real-valued pB,min because
zT

Bq is real-valued and the proof is as follows. Let us define
Z̃−1 =

(
zH

B zB +ψDZH
DZD +ψGZH

GZG +β I
)−1. By substituting

Eq. (6) into Eq. (9), and by noting that zT
B = (z∗B)H , we can

write zT
Bq = (z∗B)H Z̃−1z∗B. Since matrix Z̃−1 is Hermitian, then

it follows that zT
Bq is real valued [19]. As a consequence of

that, the phase of the reproduced field at the bright point is
equal to zero regardless of the values of ψD, ψG, and β . For
a single frequency, ψD may be calculated by means of an
algorithm that performs a full search of ψD which can be
summarized as follows. For each frequency, we start with
ψD = 1. If the quality constraint in Eq. (9) is not satisfied (that
is, zT

Bq(ψD)< pB,min) and ψD > 0, we iteratively decrease ψD
by a small decrement δψ until the optimal value ψD is reached.
The update rule of the value of ψD at the j-th iteration, say
ψD

( j), is ψD
( j) = ψD

( j−1)−δψ . A Matlab implementation of
the full search of ψD is available in the code provided in [51].
In addition to ψD, system performance also depends on other
parameters (e.g., β and ψG) whose setting is addressed in the
next sections.

B. Choice of the regularization parameter

The regularization factor β , which was introduced to limit
the input energy, has significant impact on system performance
[4], [8], [9], [20] and various techniques are available for the
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calculation of β [8], [9], [20]. In this work, we use the so-called
Normalized Tikhonov regularization (NTR) method, wherein
the regularization factor is calculated as [9], [21]

β = β0σ
2
1 , (10)

where σ1 is the largest singular value of matrix Z and β0 is
a positive real-valued factor set by the user [9]. In Appendix
A, we discuss the relations between |pB|, ‖q‖ and β . In this
work, we calculate β for the MDS (see Eq. (8)), we store it
in the system, and we use it for all the other scenarios. This
reduces the system complexity for the calculation of ψD (when
the scenario changes) and, hence, for the calculation of the
input signals. However, due to this choice, we expect the input
energy to vary between different scenarios. An optimal choice
for β to satisfy a constraint on a desired level of maximum
input energy allowed to the sources [20], [8], [22] within the
framework proposed in this work is left to future work. The
parameter β0 may also be used to ensure system robustness
against mismatches between assumed Z and actual responses.
More specifically, higher values of β0 (and, hence, higher values
of β ) result in higher system robustness [4], [23], [24], [9].
This aspect is important and more details on the calculation
of β0 are reported in the next section.

IV. EXPERIMENTAL VALIDATION

The aim of the experiments described in this section is to val-
idate the ability of the system to control the directivity/quality
performance trade-off by means of the method proposed in
Section III-A. With reference to Fig. 3a, the array was installed
in the ISVR Anechoic chamber [25] and placed on top of
a turntable. An omni-directional microphone was placed at
R = 3m from the geometrical center of the array. Both the
loudspeaker array and the microphone were placed at a height
of 1.5m from the floor.

We firstly measured the matrix H of the TFs between the
sources of the circular array prototype and the control points
with the aim of calculating the value of β0 that ensures a
good trade-off between directivity performance and system
robustness (more details are given in the following paragraphs).
The elements of matrix H were estimated using a system
identification method based on the cross-correlation of the
signals captured by the microphone (due to the sound generated
by the sources of the array) and a white noise signal of 6s
duration (that was fed in input to the array) [27], [33]. This
procedure was repeated 72 times by rotating the turntable
every ∆θ , ∆θ = 5◦, from 0◦ to 355◦. In order to estimate the
value of β0, we calculated the input signals qMDS (see Eq. (8))
for increasing values of β0 and we evaluated the directivity
performance in terms of the acoustic contrast [6] ACMDS,
ACMDS = 10log10

(
MD
∥∥hT

BqMDS
∥∥2
/
‖HDqMDS‖2

)
, where hB

and HD are the vector and the matrix of the measured transfer
functions between the bright and dark points and the sources
of the array, respectively. The ACMDS in Fig. 3b shows that, as
β0 increases, the ACMDS becomes smoother (as a function of
frequency) and this indicates higher system robustness. More
specifically, we see that β0 = 10−2 provides a higher ACMDS
at low frequencies than that provided by β0 = 10−1. For values

of β0 < 10−2 the ACMDS is more erratic. Due to these reasons,
we chose β0 = 10−2, and we calculated β using Eq. (10).

After the calculation of β , we measured the response of
the input signals designed with the transfer function Z for
each scenario. We set a frequency independent value of pB,min,
pB,min dB = −3dB (for the QCS and the Hybrid Scenarios),
and δψ = 10−3 (see Section III-A). The WPMM weight ψG in
the low-priority zone was chosen as ψG = 10−2, that is two
order of magnitude lower than the maximum value of ψG, i.e.,
ψG = 1 [9], [12]. The input signals for the five scenarios were
calculated by using the full search of ψD on a per-frequency
basis in the frequency range [0, fs/2]Hz, where fs = 48kHz is
the sampling frequency. The frequency range was divided into
NFFT/2+ 1 frequency bins with uniform frequency spacing,
where NFFT = 8192. The input signals in the discrete time
domain were obtained by inverse Fourier transform of the
frequency-domain input signals [28]. A modeling delay of
∆t = NFFT/(2 fs) was applied to all the input signals to ensure
their causality. Fig. 4a shows the values of ψD calculated with
the full-search of ψD for each scenario. As previously stated,
due to the choice of β , the input energy varies as the use-case
scenario varies. This is shown in Fig. 4b. More specifically,
whilst the input energy for the MDS is lower than that of the
MQS throughout the frequency range, the input energy of the
QCS, HWSS, and HCSS is comparable to that of the MQS.
This seems to indicate that the input energy increases as ψD
decreases.

System performance was evaluated in the anechoic chamber
by measuring the responses d of the array driven with the input
signals designed for each of the use-case scenarios (see Section
III). The measurement setup and procedure is almost identical
to that used for the measurement of the TFs H. Fig. 5 shows
the magnitude of the Frequency Response Function (FRF) of
the reproduced field dB measured at the bright point due to
input signals designed for the QCS, HCSS, HWSS and MDS.
All the FRF were normalized by the measured response at the
bright point dMQS

B of the input signals designed for the MQS,
which is taken as a reference. Whilst the MDS shows the
problem of the energy loss at low frequencies [10], the quality
constraint set in the other use-case scenarios limits the energy
loss. At higher frequencies, all the input signals have similar
performance. The input signals designed for the QCS, HCSS,
HWSS show a reduction of the SPL that is almost equal to the
selected pB,min dB =−3dB (see Fig. 5) hence indicating that
the performance quality constraint is satisfied. However, the
results of the HWSS could be potentially improved by reducing
the value of the regularization factor at low frequencies. This,
however, may reduce the robustness of the system against
errors such as inaccuracies in the positions of the drivers [4] or
reverberation [40]. Fig. 6 shows the measured acoustic contrast
AC for the QCS, MQS, and MDS, where AC is defined as
AC = 10log10

(
MD|dB|2

/
‖dD‖2

)
[6], and dD is the vector of

sound pressures measured in the anechoic chamber at the dark
points. As expected, at frequencies up to 1 kHz, the input
signals for the QCS scenario provide an AC that is between
the MQS (the lowest) and the MDS (the highest). Above
1kHz, the AC of the QCS and MDS are identical. However,
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(a) Details of the experiments.
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Fig. 3. (Color online) Details of the experiments (Fig. 3a) showing the circular array prototype and the microphone installed in the ISVR Anechoic Chamber.
Calculation of β0 (Fig. 3b) through the prediction of the Acoustic Contrast of the input signals designed for the MDS scenario.
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Fig. 4. Values of ψD calculated by means of the full-search of ψD (see Section III-A) for three use-case scenarios (Fig. 4a). Energy (Fig. 4b) of the input
signals designed for the use-case scenarios.

the highest contrast of the MDS corresponds to lower quality
performance than in the other scenarios (see Fig. 5). In this case,
the advantage of using the proposed method over the MDS is
that we can control the SPL at the listening point to reflect the
constraint set in Eq. (9). The directivity performance of the
HCSS and HWSS are evaluated by inspection of the sound field
plots in Fig. 7a and Fig. 7b, respectively. As previously stated,
in the case of the Hybrid Scenario, performance depends on
the relative position of the bright and the dark points. In fact,
in the HWSS (Fig. 7b) the system provides higher attenuation
of the SPL in the dark zone at lower frequencies than that
provided for the HCSS (Fig. 7a).

V. METHODS FOR THE UPDATE OF THE INPUT SIGNALS

In the previous Sections, we have used ψD to control
the directivity/quality trade-off and the input signals were
calculated by means of a full search of ψD (see Section III-A),
which may be time-consuming (e.g., as a function of δψ ) and
thus not suitable for practical applications. In this section, we
devise two methods for the estimation of the optimal ψD once
the user sets a new value of pB,min and the system needs to
update the input signals so that they satisfy Eq. (9). The results
of the full search of ψD are used as a reference to compare the
accuracy of the ψD estimated by the two methods proposed in
the following subsections.
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Fig. 6. Measured Acoustic Contrast provided by input signals designed for
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A. Method based on Neumann series

Let us consider a given scenario and a set of input signals
q(ψ̂D) calculated with Eq. (6) by setting ψ̂D = 1/2. At this
point, the listener sets a desired directivity/quality trade-off
(i.e., by setting a value for pB,min) but the input signals q(ψ̂D)
may not satisfy the performance constraint on pB,min. If that
is the case, then we need to find a new set of input signals
q̃ = q(ψ̂D +∆ψD) that satisfies the performance constraint,
where

−0.5≤ ∆ψD ≤ 0.5 (11)

is the value that we need to add to ψ̂D in order to ensure that
zT

B q̃≥ pB,min (see Eq. (9)). Let us define A= z∗BzT
B +ψ̂DZH

DZD+
ψGZH

GZG +β I, so that

q(ψ̂D) = A−1z∗B, (12)

and

q̃ = q(ψ̂D +∆ψD) =
(
A+∆ψDZH

DZD
)−1 z∗B. (13)

If the entries of matrix ∆ψDZH
DZD are small enough (compared

to those of A) and the following condition is satisfied [19]

lim
n→∞

(
−∆ψDA−1ZH

DZD
)n

= 0I, (14)

then we can write [19], [29](
A+∆ψDZH

DZD
)−1

=
∞

∑
n=0

(
−∆ψDA−1ZH

DZD
)n A−1, (15)

that is also known in the literature as a Neumann Series
expansion [19], [29]. The condition in Eq. (14) is true if and
only if [30]

ρ
(
−∆ψDA−1ZH

DZD
)
< 1, (16)

where ρ
(
−∆ψDA−1ZH

DZD
)

indicates the spectral radius of
matrix −∆ψDA−1ZH

DZD [19]. The condition in Eq. (16)
depends on multiple factors (e.g., Z, ψD, ψG, and β ). In
Appendix B we show that

ρ
(
−∆ψDA−1ZH

DZD
)
≤ |∆ψD|

∥∥ZH
DZD

∥∥/(λ
(0)
L +β

)
, (17)

and λ
(0)
L is the smallest singular value of ZHΨ̂2

0Z, where the
diagonal matrix Ψ̂0 has elements

[
1,
√

ψ̂D1MD ,
√

ψG1MG

]
on

its main diagonal (see Appendix B). This suggests that there is
an upper bound to ρ

(
−∆ψDA−1ZH

DZD
)

and this is controlled
by β and ∆ψD, among other factors. Therefore, for a given
∆ψD, it is always possible to select a value β so that Eq. (16)
is satisfied.

We assume that Eq. (16) holds, which is the case in all the
use-cases under analysis (QCS, HWSS, and HCSS) as shown
in Fig. 8a. By substituting Eq. (15) into Eq. (13), and by using
Eq. (12), we can write

q̃ =
∞

∑
n=0

∆ψ
n
D (−1)n (A−1ZH

DZD
)n q(ψ̂D). (18)

The equation above suggests that the updated set of input
signals q̃ = q(ψ̂D+∆ψD) can be calculated using the reference
set q(ψ̂D) and, most noticeably, no more matrix inversions are
required for the calculation of q̃. In fact, A−1 and ZH

DZD are
computed for q(ψ̂D) and then stored in the system.

The Neumann series in Eq. (18) consists of an infinite series
of terms. Since the terms ∆ψn

D and
∥∥(A−1ZH

DZD
)n∥∥ decrease

monotonically as N increases, it is reasonable to approximate
the series in Eq. (15) by truncating it to an order N, thus
yielding the approximated input signals q̃N that are defined as

q̃N =
N

∑
n=0

∆ψ
n
D (−1)n (A−1ZH

DZD
)n q(ψ̂D). (19)

Let us assume that N is large enough so that q̃N approximates
q̃ well, that is q̃N ≈ q̃. In principle, if q̃ satisfies the quality
constraint in Eq. (9), and if q̃N well approximates q̃, then
we may infer that q̃N may (approximately) satisfy the quality
constraint. The objective is now to determine the value of
∆ψD (that appears as a multiplication factor in Eq. (19)) such
that q̃N satisfies the constraint in Eq. (9). By multiplying both
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(a) HCSS. (b) HWSS.

Fig. 7. (Color online) Responses of the soundfield measured in anechoic environment due to the input signals designed for the HCSS (Fig. 7a) and the HWSS
(Fig. 7b). The color scale is in dB re 1V. The dashed blue linear indicate the limits of the dark zones for each use-case scenario. The distribution of the control
points follows the same specifications as in the legend in Fig. 2.

members of Eq. (19) by zT
B and by setting

p̃B,n = (−1)n zT
B
(
A−1ZH

DZD
)n q(ψ̂D), (20)

we can write the quality constraint as

zT
B q̃N =

N

∑
n=0

∆ψD
n p̃B,n ≤ pB,min, (21)

where we recall that −0.5 ≤ ∆ψD ≤ 0.5 (see Eq. (11)). In
Appendix C we show that the terms p̃B,n are real-valued. Hence,
Eq. (21) is a real-valued polynomial of degree N in ∆ψD. If
that is the case, we are able to estimate the ∆ψD that satisfies
the constraint on pB,min (as an equality) by solving

∆ψD = ∆ψD ∈ R :
N

∑
n=0

p̃B,n∆ψD
n− pB,min = 0, (22)

where R denotes the set of the real numbers. If multiple real
roots exist, ∆ψD is chosen as the highest among the roots that
satisfy Eq. (11). The final ψD is calculated as

ψD =


1, if ψ̂D +∆ψD > 1,
0, if ψ̂D +∆ψD < 0,
ψ̂D +∆ψD, otherwise.

(23)

The algorithm for the update of the input signals is summarized
in Alg. 1.

Algorithm 1 Algorithm for the update of the input signal
(based on the Neumann series).

INPUTS: pB,min.
STORED IN THE SYSTEM: p̃B,n, A, ZD, N, q(ψ̂D).
ASSUMPTION: Eq. (16) is satisfied for ∆ψD = 0.5.
#1) Calculate ψD with Eq. (23) and Eq. (22).
#2) Calculate q̃ (or q̃N) with ψD and Eq. (6) (or Eq. (19)).
OUTPUTS: q̃ (or q̃N), ψD.

By truncating the series to a given order N, we are

introducing errors between the q̃ (calculated with the full-search
of ψD and considered as “true” values) and q̃N (calculated
with the Neumann series in Eq. (19)). These errors depend on
N, as well as on the values of ∆ψD and on frequency. The
error ε(N) between the two sets of input signals is defined as
ε(N) = 10log10

(
‖q̃N − q̃‖2

/
‖q̃‖2

)
dB. If, on the one hand,

it may be possible to accurately approximate the input signals
q̃ by setting high values of N, on the other hand it may be
beneficial to define it as a frequency-dependent parameter in
order to reduce the computational load. More specifically, the
chosen N decreases as frequency increases. By considering the
MDS configuration of control points, we calculate the exact
input signals q̃ with ψD = ψ̂D +∆ψD and ∆ψD = 0.5 using
Eq. (6). Instead, the approximated input signals are calculated
with Eq. (19) and ∆ψD = 0.5. The selected value of N (for
a given frequency) is N = minN{ε(N)≤ εMAX}, where εMAX
is an error threshold (in dB) set by the user, typically to a
very low value, that we set to εMAX =−80 dB. Furthermore,
given that the coefficients p̃B,n of the polynomial are real
valued, N can be chosen to be odd to ensure the existence of at
least one real valued root in the polynomial in Eq. (22) (note
that if zT

Bq(ψ̂D)− pB,min < 0, the value of the polynomial for
∆ψD = 0 is negative). The algorithm for the calculation of N
can be summarized as follows. For each frequency, we start
with N = 0. At each iteration, if ε(N) > εMAX, we perform
N = N +1 until ε(N)≤ εMAX. If the calculated value of N is
even, we then increase N by 1 and we proceed to the next
frequency. By following a similar reasoning as that adopted
for β (see Section III-B), the values of N calculated with the
above-mentioned method and shown in Fig. 8b are stored in
the system and used for all the various scenarios.

As an example, Fig. 9a shows the polynomial in Eq. (22)
as a function of ψD at four frequencies for the HCSS problem
(see Fig. 2b). The intersection of each polynomial (at each
frequency) with the dashed horizontal line in the range −0.5≤
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Fig. 9. Plots of the values (Fig. 9a) and of the roots (Fig. 9b) of the polynomial in Eq. (22) at four frequencies for the HCSS (whose control problem is
shown in Fig. 2b). The selected values of ∆ψD in Fig. 9a and Fig. 9b are the ones that intersect the x-axis. The number N of the roots in Fig. 9b is shown in
Fig. 8b. The vertical dashed lines represent the domain of ∆ψD.

∆ψD ≤ 0.5 is the selected value ∆ψD. This value corresponds
to the real root of the polynomial shown in Fig. 9b. At 100
Hz, ∆ψD <−0.5 (see Eq. (11)) and hence, the solution ∆ψD
is set to ∆ψD =−0.5 (see Eq. (23)). As frequency increases
(e.g., at 1 kHz and 2 kHz in Fig. 9b), the solutions ∆ψD are
in the domain of ∆ψD. At higher frequencies (e.g., at 5 kHz
in Fig. 9b), the solution ∆ψD > 0.5 so we set ∆ψD = 0.5.

The error εψD between the values of ψD calculated
with the full-search (that are taken as a reference)
and those calculated with Eq. (23) is defined as
εψD = 10log10

(∣∣(ψ̂D +∆ψD)−ψD
∣∣2/|ψD|2

)
dB. The values

of εψD in dB as a function of frequency for each scenario
are shown in Fig. 10. Whilst the errors for the HCSS and
HWSS are in the range between -30dB and -70dB, that of the

QCS is high at very low frequencies (from 100 Hz to 300
Hz). This corresponds to small differences between the values
of ψ̂D +∆ψD and ψD (as shown in the subplot in Fig. 10),
where it is observed that Alg. 1 underestimates the “true”
values of ψD (i.e., ψD). In Fig. 11, we show the error εd, εd =

10log10

(∥∥H
(
q(ψ̂D +∆ψD)−q(ψD)

)∥∥2
/‖Hq(ψD)‖2

)
dB,

between the predicted radiation patterns of the input signals
calculated with ψD and ψ̂D +∆ψD. The differences between
ψ̂D +∆ψD and ψD have no impact on the HCSS and HWSS
throughout the whole frequency range and on the QCS at
frequencies above 1 kHz. At frequencies below 1 kHz, the
εd for the QCS decreases as frequency increases and the
maximum value is about -18 dB (at around 150 Hz).
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transfer functions H) generated by the input signals calculated with ψD and
ψ̂D +∆ψD.

B. Iterative method

The estimation of the optimal ψD can be also performed
with the pseudo-code in Alg. 2. This algorithm, which uses
a bisection-like method for the estimation of the optimal ψD,
is significantly faster than the full-search of ψD and, in our
implementation [51], it returns identical results as that provided
by the full-search up to the 5-th decimal digit of ψD (if the
threshold γψ is set to γψ = 10−6).

C. Computational advantages of Alg. 1 versus Alg. 2

Once the user sets a new value for pB,min, for a single
frequency, Alg. 2 requires, at each step, a matrix inversion
and a matrix-vector multiplication. The operation of matrix
inversion can be performed in O(L3) operations [35]. For a
single frequency, the time it takes for Alg. 2 to calculate the

Algorithm 2 Algorithm for the calculation of ψD (bisection-
like method).

INPUTS: Z, p̂, pB,min, β , ψG, γψ , ψMAX = 1, and ψMIN = 0.
1) ψD = (ψMAX−ψMIN)/2+ψMIN.
2) Calculate q(ψD) and pB = zT

Bq(ψD).
if
∣∣pB− pB,min

∣∣≤ γψ OR ψMAX ≤ γψ then 3) Return ψD.
else

if pB < pB,min then ψMAX = ψD else ψMIN = ψD
end if
Go to Step 1).

end if
OUTPUTS: ψD, q.

updated input signals is proportional to the number of iterations
times the time required to perform the matrix inversion.

Instead, Alg. 1 requires the calculation of the roots of a
polynomial of order N (Step #1 of Alg. 1) and then the update
of the input signals (Step #2 of Alg. 1). Step #1 of Alg. 1 can be
implemented by calculating the eigenvalues of the companion
matrix of the polynomial [34], which is, for example, the
implementation provided in Matlab [49]. This operation can
be performed in O(N2) operations [34], [36], [37]. Whilst L
does not depend on frequency and hence the computational
complexity of Alg. 2 is frequency-independent, the complexity
of Alg. 1 decreases as frequency increases. This is due to
the choice of N (see Section V-A and Fig. 8b). Step #2 of
Alg. 1 can be implemented 1) by means of a matrix inversion
(Eq. (6)) with O(L3) operations [35] or, 2) by summing the
terms

(
A−1ZH

DZD
)n weighted by ∆ψD Eq. (19)) with a time

complexity of O(L2) (if the terms
(
A−1ZH

DZD
)n are calculated

offline and stored in the system). We consider option one (the
matrix inversion) for Step #2 of Alg. 1. By using the Matlab
implementations of Alg. 1 and Alg. 2 provided in [51], we
compare the time taken by each algorithm (averaged over 1000
repetitions) to compute the input signals for the QCS on a
personal computer (2.6 GHz Intel Core i5 and 16 GB RAM)
with Matlab 2016b. The average time required by Alg. 1 is
1.49s whilst that of Alg. 2 is 5.92s.

To summarize, the complexities of a single iteration of Alg. 2
(that is proportional to O(L3)) and that of Alg. 1 (Step #2,
which is O(L3)) are comparable. However, in general, the
iterative algorithms may require a number of iterations to
complete, whilst Alg. 1 does not. Hence Alg. 1 is likely to be
faster than the iterative algorithms (e.g., the full-search and
Alg. 2). However, Alg. 1 requires more steps than Alg. 2 in
the setup phase (e.g., the calculation of q(ψ̂D) in Step #1 of
Alg. 1). These steps have to be performed once (for a given
scenario) and do not depend on the value of pB,min.

VI. POSSIBLE STRATEGIES FOR THE REVERBERANT
ENVIRONMENT

In a practical scenario, the proposed system is likely to
be used in a reverberant environment. Previous works have
investigated the design of systems for sound field control in
reverberant environments [38], [39] and the negative effects of
reverberation on system performance [40], [43], [47]. A number
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of strategies have been devised to mitigate such negative effects
by means, for example, of higher order sources [41], [42] or
by exploiting first order reflections [45], [46], [41], [44]. In
case of diffuse sound fields, Simon-Galvez et al. [39], [40]
have highlighted that the level of the input sources plays a
crucial role in system performance. Overall, previous works
emphasize the importance of the problems that arise due to the
effects of reverberation. For example, as reported in the work
of Simon-Galvez et al. [40], low values of the regularization
factor may be used to preserve the directivity performance of
the system in a reverberant environment. However, this may
lead to large values of input energy to the array, thus making
the system difficult to be implemented in practice.

In this section, we provide suggestions for using the proposed
system in a reverberant environment that are based on previous
works. Due to the complex nature of the problem, a thorough
study of the performance of the proposed methods in a
reverberant environment requires further work and experimental
validation. This may be the object of further investigation.

Two options are considered for using the system in a
reverberant environment. 1) To measure the transfer functions
in the reverberant environment [40], [46], and then use that
instead of Z for the calculation of the input signals with the
WPMM. In this case, the proposed algorithms for the control
of the performance trade-off would still apply. However, this
strategy may lead to audio quality issues in the listening zone
[47] and it may be less effective at higher frequencies. 2) If the
environment is characterized by strong early reflections, one
option is to reduce the radiated sound towards the reflectors.
This can be done by imposing a dark region in the directions
of the reflectors, a strategy which was previously proposed in
the context of cross-talk cancellation as shown in reference
[48]. 3) Another option is to increase the overall directivity of
the array (e.g., by increasing the value of ψD), thus decreasing
the quality/directivity ratio.

VII. CONCLUSIONS

In this work, we have presented an implementation of a
system for private sound with a circular array and the WPMM.
The proposed system accounts for different use-case scenarios
and the user is allowed to control the quality/directivity
performance trade-off (when the input energy is limited) by
setting the desired characteristics of the frequency response
of the sound field in the listening zone. The control of the
trade-off is then performed by setting the WPMM weight in
the dark zone so that the input signals satisfy the desired
performance constraint. The results of the experiments with
a circular array prototype have shown that this is effective
in a wide frequency range. Three algorithms were proposed
for the calculation of the WPMM weight in the dark zone
that are based on 1) iterative search of the optimal value of
the WPMM weight in the dark zone (Alg. 2) and 2) on an
approximation of the inverse matrix (by means of the Neumann
series) involved in the calculation of the input signals (Alg. 1).
The main idea behind Alg. 1 is to use a given set of input
signals (stored in the system) and update it. The results of the
validation Alg. 1 have shown that the accuracy of the filter

update depends on frequency and on the use case considered.
In general, it is very accurate at high frequencies and less
accurate at low frequencies. The results of the simulations
have shown that Alg. 1 is faster than the iterative algorithm
(Alg. 2). Further research could aim at improving performance
at low-frequencies by means of a joint optimal tuning of the
regularization factor and the WPMM weight in the dark zone.

REFERENCES

[1] W. Druyvesteyn and J. Garas, “Personal sound,” J. Audio Eng. Soc.,
vol. 45, no. 9, pp. 685–701, 1997.

[2] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proc. IEEE, vol. 57, no. 8, pp. 14081418, 1969.

[3] M. Tanter, J. L. Thomas, and M. Fink, “Time reversal and the inverse
filter.,” J. Acoust. Soc. Am., vol. 108, no. 1, pp. 223234, Jul. 2000.

[4] S. J. Elliott, J. Cheer, J. W. Choi, and Y. Kim, “Robustness and
Regularization of Personal Audio Systems,” IEEE Trans. Audio. Speech.
Lang. Processing, vol. 20, no. 7, pp. 2123–2133, sep 2012.

[5] T. Betlehem, W. Zhang, M. A. Poletti, and T. D. Abhayapala, “Personal
Sound Zones: Delivering interface-free audio to multiple listeners,” IEEE
Signal Process. Mag., vol. 32, no. 2, pp. 81–91, mar 2015.

[6] J. W. Choi and Y. H. Kim, “Generation of an acoustically bright zone
with an illuminated region using multiple sources,” J. Acoust. Soc. Am.,
vol. 111, no. 4, p. 1695, 2002.

[7] M. Shin, S. Q. Lee, F. M. Fazi, P. A. Nelson, D. Kim, S. Wang, K. H.
Park, and J. Seo, “Maximization of acoustic energy difference between
two spaces,” J. Acoust. Soc. Am., vol. 128, no. 1, pp. 121–31, jul 2010.

[8] S. Galvez, F. Marcos, S. J. Elliott, J. Cheer, “A superdirective array of
phase shift sources,” J. Acoust. Soc. Am., vol. 132, no. May 2013.

[9] M. Shin, F. M. Fazi, P. A. Nelson, and F. C. Hirono, “Controlled sound
field with a dual layer loudspeaker array,” J. Sound Vib., vol. 333, no. 16,
pp. 3794–3817, Aug 2014.

[10] F. M. Fazi, M. Shin, F. Olivieri, S. Fontana, “Low frequency performance
of circular loudspeaker arrays,” in Audio Eng. Soc. Conv. 138, May 2015,
pp. 1–4.

[11] F. Olivieri, F. Fazi, M. Shin, and P. Nelson, “Pressure-Matching
beamforming method for loudspeaker arrays with frequency dependent
selection of control points,” in AES 138th Conv., Warsaw, Poland, 2015.

[12] F. Olivieri, F. M. Fazi, P. A. Nelson, and S. Fontana, “Comparison of
Strategies for Accurate Reproduction of a target field with Compact
Arrays of Loudspeakers for the Generation of Zones of Private Sound
and Silence,” J. Audio Eng. Soc., vol. 64, no. 11, pp. 905917, 2016.

[13] J. H. Chang and F. Jacobsen, “Sound field control with a circular double-
layer array of loudspeakers,” J. Acoust. Soc. Am., vol. 131, no. 6, p.
4518, jun 2012.

[14] T. Betlehem and P. D. Teal, “A constrained optimization approach for
multi-zone surround sound,” in 2011 IEEE Int. Conf. Acoust. Speech
Signal Process., vol. 1. May 2011, pp. 437–440.

[15] Y. Cai, M. Wu, and J. Yang, “Sound reproduction in personal audio
systems using the least-squares approach with acoustic contrast control
constraint,” J. Acoust. Soc. Am., vol. 135, no. 2, pp. 734–741, Feb 2014.

[16] F. M. Fazi, M. Shin, F. Olivieri, S. Fontana, Y. Lang, and L. Yue,
“Comparison of Pressure-Matching and Mode-Matching Beamforming
for Methods for Circular Loudspeaker Arrays,” in Audio Eng. Soc. Conv.
137, Oct 2014, pp. 1–14.

[17] O. Kirkeby and P. A. Nelson, “Reproduction of plane wave sound fields,”
J. Acoust. Soc. Am., vol. 94, no. November 1993, pp. 2992–3000, 1993.

[18] M. R. Bai, J.-C. Wen, H. Hsu, Y.-H. Hua, and Y.-H. Hsieh, “Investigation
on the reproduction performance versus acoustic contrast control in sound
field synthesis.” J. Acoust. Soc. Am., vol. 136, no. 4, pp. 1591–600, Oct
2014.

[19] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. Society for
Industrial and Applied Mathematics (SIAM), 2000.

[20] T. Betlehem and C. Withers, “Sound Field Reproduction With Energy
Constraint on Loudspeaker Weights,” IEEE Trans. Audio. Speech. Lang.
Processing, vol. 20, no. 8, pp. 2388–2392, oct 2012.

[21] P.-A. Gauthier, C. Camier, O. Gauthier, Y. Pasco, and A. Berry, “Sound
field reproduction of real flight recordings in cabin mock-up,” in AES
52th Int. Conf., 2013, pp. 1–10.

[22] F. Olivieri, F. M. Fazi, P. A. Nelson, M. Shin, S. Fontana, and L. Yue,
“Theoretical and experimental comparative analysis of beamforming
methods for loudspeaker arrays under given performance constraints,”
Journal of Sound and Vibration, vol. 373, pp. 302324, Jul. 2016.



2329-9290 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2017.2700945, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

PRIVATE SOUND WITH CIRCULAR ARRAYS 12

[23] P. Coleman, P. J. Jackson, M. Olik, M. Olsen, M. Møller, and
J. Abildgaard Pedersen, “The influence of regularization on anechoic
performance and robustness of sound zone methods,” in Proc. Meet.
Acoust., vol. 19, no. 1, 2013.

[24] P. Coleman, P. J. B. Jackson, M. Olik, M. Møller, M. Olsen, and
J. Abildgaard Pedersen, “Acoustic contrast, planarity and robustness
of sound zone methods using a circular loudspeaker array,” J. Acoust.
Soc. Am., vol. 135, no. 4, pp. 1929–1940, 2014.

[25] ISVR, “ISVR Anechoic Chamber Web site,” 2012. [Online] Available:
http://www.isvr.co.uk/faciliti/lg anech.htm

[26] G. W. Elko, “Superdirectional microphone arrays,” in Acoustic Signal
Processing for Telecommunication, S. L. Gay and J. Benesty, Eds.,
Kluwer Academic, 2000.

[27] K. Shin and J. Hammond, Fundamentals of signal processing for sound
and vibration engineers. Wiley, 2008.

[28] O. Kirkeby, P. Nelson, H. Hamada, and F. Orduna-Bustamante, “Fast
deconvolution of multichannel systems using regularization,” IEEE Trans.
Speech Audio Process., vol. 6, no. 2, pp. 189–194, Mar 1998.

[29] M. Wu, B. Yin, A. Vosoughi, C. Studer, J. R. Cavallaro, and C. Dick,
“Approximate matrix inversion for high-throughput data detection in the
large-scale MIMO uplink,” Proc. - IEEE Int. Symp. Circuits Syst., pp.
2155–2158, 2013.

[30] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1990.

[31] J. T. Schwartz, Introduction to Matrices and Vectors, Dover Books on
Mathematics. Dover Publications, 2012.

[32] K. Baykaner, P. Coleman, M. Olik, and S. Bech, “The Relationship
Between Target Quality and Interference in Sound Zone”, J. Audio Eng.
Soc., 63(1), 2015.
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APPENDIX A
RELATIONS BETWEEN |pB|, ‖q‖, AND β0

In this Appendix, we prove that the relations between |pB|,
‖q‖ and β are

|pB| ≤ ‖zB‖‖q‖ ,and‖q‖= ‖zB‖
/(

λL +β0σ
2
1
)
, (24)

where λL is the smallest eigenvalue of matrix ZHΨ2Z. The
proof of Eq. (24) is as follows. By using the Cauchy-Schwarz
inequality on |pB|=

∣∣zT
Bq
∣∣ and Eq. (7), we can write

|pB| ≤ ‖zB‖2
∥∥∥(ZHΨ̂2Z+β I

)−1
∥∥∥ . (25)

We apply the eigenvalue decomposition to matrix ZHΨ̂2Z =
UΛUH , where Λ is the matrix of eigenvalues λ1, · · · ,λL (in
decreasing order) and U is that of the eigenvectors. It follows
that ZHΨ̂2Z+β I = U(Λ+β I)UH . By recalling that ‖U‖=∥∥UH

∥∥= 1, we can write |pB| ≤ ‖zB‖2
∥∥∥(Λ+β I)−1

∥∥∥. We recall

that
∥∥∥(Λ+β I)−1

∥∥∥ is equal to the maximum value among the
elements in the matrix, that is∥∥∥(Λ+β I)−1

∥∥∥= 1/(λL +β ) . (26)

Substituting Eq. (26) and Eq. (10) in Eq. (25) yields the
result in the left-hand side of Eq. (24). Similarly, by writing
‖q‖≤

∥∥∥(ZHΨ̂2Z+β0σ2
1 I
)−1
∥∥∥‖z∗B‖ and by using Eq. (26) and

Eq. (10), we obtain the result in the right-hand side of Eq. (24).
Eq. (24) suggests that increasing values of β0 (and, hence, β )
may lead to a reduction of the pressure field in the listening
zone and of the input energy.

APPENDIX B
CONVERGENCE OF THE NEUMANN SERIES

We prove that Eq. (17) holds. The following relations
holds [19] ρ

(
−∆ψDA−1ZH

DZD
)
≤ |∆ψD|

∥∥−A−1ZH
DZD

∥∥ and∥∥−A−1ZH
DZD

∥∥ ≤ ∥∥A−1
∥∥∥∥ZH

DZD
∥∥. By considering A in its

general form, i.e. A = ZHΨ̂2
0Z+ β I, we take the Singular

Value Decomposition (SVD) of A = U0 (Λ0 +β I)UH
0 . By

following a similar procedure as that in Appendix A, we write∥∥A−1
∥∥≤ ∥∥∥(Λ0 +β I)−1

∥∥∥= 1/
(

λ
(0)
L +β

)
. By using the results

above, we obtain the result in Eq. (17).
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APPENDIX C
PROOF OF REAL VALUED p̃B,n

In this section, we prove that the coefficients p̃B,n in Eq. (20)
are real valued ∀n. Let us define L = z∗BzT

B +ψGZH
GZG +β I,

which gives ψ̂DZH
DZD = A−L. Hence, the term

(
A−1ZH

DZD
)n

in Eq. (20) can be also written as(
A−1ZH

DZD
)n

=
(

ψ̂D
−1A−1(A−L)

)n
= ψ̂D

−n (I−A−1L
)n
.

(27)
By using Eq. (27) and Eq. (12), p̃B,n in Eq. (20) can then
be written as p̃B,n = (−1)n

ψ̂D
−nzT

B
(
I−A−1L

)n A−1z∗B. The
term

(
I−A−1L

)n
= (−1)n (A−1L− I

)n can be expressed in
terms of a binomial expansion [31] (−1)n (A−1L− I

)n
=

∑
n
k=0

n!
k!(n−k)!

(
A−1L

)k
(−1)k, where n! indicates the factorial

of n, thus yielding an alternative expression for p̃B,n, that is

p̃B,n =
N

∑
n=0

(−2)n
n

∑
k=0

n!
k!(n− k)!

(−1)kzT
B
(
A−1L

)k A−1z∗B. (28)

By noting that
(
A−1L

)k
= A−1L

(
A−1L

)k−1 and zT
BA−1 = qH ,

the term zT
B
(
A−1L

)k A−1z∗B in Eq. (28) can be also rewritten
as qHL

(
A−1L

)k−1 q. We now show that qHL
(
A−1L

)k−1 q
is real-valued for all k. This is possible thanks to the fact
that qHYq is real valued for any complex vector q if
Y is Hermitian [19]. We prove that matrix L

(
A−1L

)k−1

is Hermitian in two cases. 1) If k − 1 is odd, that is
k − 1 = 2k′ + 1, then Let us write q′ = L

(
A−1L

)k′ q. It

follows that (q′)H = qHL
(
A−1L

)k′ . Since both L and A−1

are Hermitian matrices (i.e., A−1 = (A−1)H and L = LH),
we can find a complex vector q′ = L

(
A−1L

)k′ q so that
qHL

(
A−1L

)k−1 q = (q′)HA−1q′ . Hence, because A−1 is Her-
mitian, the quantity (q′)HA−1q′ is real valued. 2) If k−1 is
even, that is k−1 = 2k′, then

(
A−1L

)2k′
=
(
A−1L

)k′ (A−1L
)k′

and qHL
(
A−1L

)k−1 q = qHL
(
A−1L

)k′ (A−1L
)k′ q. Two vec-

tors q′ =
(
A−1L

)k′ q and (q′)H = qH
(
LA−1

)k′ exist, so that
qHL

(
A−1L

)k−1 q = (q′)HLq′ . Hence, since L is Hermitian,
the quantity (q′)HLq′ is real valued.
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