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Iraq contains the Great Mesopotamian alluvial plain of the Euphrates and Tigris 

rivers. Its regional vegetation phenological patterns are worthy of investigation 

because relatively little is known about the phenology of semi-arid environments, 

and because their inter-annual variation is expected to be driven by uncertain 

rainfall and varied topography. In addition, in Iraq accurate discrimination of 

different vegetation types using Earth observation data is challenging due to their 

similar spectral responses and reliable ground information about croplands and 

natural vegetation in such regions is generally scarce. Furthermore, inter-annual 

variation in climatic factors (such as rainfall) and anthropogenic factors (such as 

civil war) pose a major risk to crop production and in turn, food security in Iraq. 

Therefore, this research aimed to i) assess and map the spatial variation in key 

land surface phenology (LSP) parameters over the last decade and their relation 

with elevation, ii) develop a phenology-based classification approach using 

support vector machines for the assessment of space-time distribution of the 

dominant vegetation land cover (VLC) types, iii) evaluate the potential of Moderate 

Resolution Imaging Spectroradiometer MODIS-derived measures of greenness and 

productivity, and information related to the phenology of crops to estimate crop 

production and yield in the arid and semi-arid regions like Iraq. 

Across all Iraq, a large spatiotemporal variation in the LSP parameters such as 

start of the season (SOS), end of the season (EOS) and length of the season (LOS) 

were observed. These variations are explained by the spatial distribution of 

rainfall and temperature as a function of elevation. A positive coefficient of 

determination was observed for SOS and EOS with elevation for all major land 

cover types. In particular, raising the elevation by 500m leads to a delay in EOS by 



 

 

around 22 or more days in all vegetation types. In addition, the dominant 

vegetation land cover (VLC) types resulted from the phenology-based 

classification have a strong similarity with the expected land cover types over the 

region. The classification approach produced satisfactory classification accuracies 

(generally > 85%, with relatively high Kappa coefficients >0.86) among the 

dominant VLC types of Iraq. In terms of regional accuracy assessment and areal 

agreement with ground crop area data, the VLC classification outperformed the 

global MODIS land cover dataset. This research also showed that the 2008 

drought, the most extreme event during the last decade in Iraq. Despite testing 

several methodological approaches, it was not possible to forecast crop yield at 

the governorate level over Iraq, mainly due to ground data quality and a coarse 

spatial resolution. However, more precise estimates of crop production were 

possible over the region. The result of the current research implies that the date 

of the maximum vegetation index (VI) offered the most accurate forecast of crop 

production. The date of MODIS normalized difference vegetation index (NDVI) 

was the most accurate predictor of crop production in Iraq with an average 

R
2

=0.70 compared to the date of MODIS enhanced vegetation index (EVI) (Avg 

R
2

=0.68) and a net primary productivity (NPP) (Avg R
2

=0.66) using the leave-one-

year-out approach. The research indicated that remote sensing indices could 

characterize and forecast crop production more accurately than simple cropping 

area, which was treated as a null model or benchmark against which to evaluate 

the proposed approach. The results also point to the implementation of crop 

forecasting models in arid and semi-arid environments, which have utility in 

relation to tackling food insecurity. 
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 Introduction 

Agriculture is the world’s largest industry which employs over one billion people 

and makes more than 1.3 trillion dollars’ worth of food annually (WWF 2016). The 

agricultural sector does not contribute a large part of global gross domestic 

product (GDP) but it is a vital component due to the fact that around one-third of 

the world’s population gains its livelihood from agriculture with the major part in 

Asia (FAO, 2013). Agriculture can make on average 29% of the GDP and employs 

65% of the labour force on country basis (World Bank, 2008). Global expectations 

of rising population and demand for food have insisted to look at the global and 

regional food production seriously.  In addition, many economic crises and food 

insecurities have posed major risk on sustainable food production. 

Generally, global agriculture may face several challenges in the future such as 

providing an extra food for global population growth (global food security), 

decreasing global poverty rate and sustainable natural resource management. 

Meeting these challenges will need to generate a set of technologies, wise policy 

and easy access to international and domestic markets for farmers. The world 

population is expected to increase to around 9 billion people in 2050 (FAO, 

2013). Recent studies have claimed that the world requires 70 to 100% more food 

by 2050 to meet the growing demand (FAO, 2009a; World Bank, 2008; Royal 

Society of London, 2009). To cope with these challenges, areas under agriculture 

was expanded which have been a major driver of deforestation and other 

decimating habitats, biodiversity and ecological destruction (Millennium 

Ecosystem Assessment 2005). Therefore, unsustainable farming practice to 

increase the production could threat the global environment and biodiversity.  

War and conflict are among the major drivers of damage to the economy and 

spread of disease, leading to forced emigration, refugee populations, a collapse 

of social trust and severe food insecurity (WFP, 2011). In addition, war and 

political conflicts can affect the land use practices, particularly agriculture in a 

country and in turn could affect the availability of food grain and food security of 

a country. Therefore, the evaluation and analysis of the factors which are making 

a region’s food insecure is an important case in the world. For instance, there are 

more than 870 million people undernourished in (2010-2012) in the world (FAO, 

2012). Many reasons are involved into this: which include economic crises, high 

food price, region of political instability and climate change. In fact, the main 

factors of more than 35% of food emergencies from 1992 to 2003 were economic 
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issues and conflict; in contrast, this value was 15% in the period between 1986 

and 1991 (FAO, 2003a). However, conflict was the main cause of more than of 

half of countries were undernourishment in the period of 1990s (FAO, 2003b). 

On the other hand, throughout the human history, natural disasters such as 

drought, floods and storms have played a major role in hindering agriculture 

growth and economic cost. Since the 1950s, the economic losses by all natural 

disasters have increased by 14 fold (World Disaster Report, 2001). Drought 

occurs nearly in all climatic zones and describes as a slow onset natural disaster 

and creeping phenomenon. Drought has been defined in different ways in respect 

to different aspects as it affects different part of society in various ways. Tucker 

and Choudhury (1987), and Wilhite and Glantze (1985) defined drought as a 

distinct period which receives lower than average precipitation, as a result it has a 

significant impact on vegetation growth. In addition, agriculture drought take 

places when there is inadequate soil moisture to meet the needs of a specific 

crop at a specific time, resulting in crop failure (American Meteorological Society, 

2004). It is therefore important to understand the impact of drought on food 

production to plan for adequate food stock to ensure food security. 

Iraq has been established as one of the oldest agricultural countries in the world. 

For instance, according to Meyers (1997), the village that called Jarmo, situated in 

Iraqi Kurdistan Region, has been the oldest known agricultural and pastoral 

community in the world, dated back to the seventh millennium (BCE). Looking 

into the history indicated that in the past agriculture was the primary economic 

activity of the people of old Mesopotamia and modern day in Iraq, since the 

beginning of recorded time. For instance, agriculture played a crucial role in the 

country’s major economic activity in the 1920s, but its contribution the gross 

domestic product (GDP) fell from 42% in 1981 to 18% in 1990 (Jaradat, 2002). 

Although agriculture is no longer have a significant contribution of the country’s 

economy, it is a vital component of GDP (Schnepf 2004). This sector declined 

considerably again during the last few decades due to some unfavourable factors 

from both natural and anthropogenic impacts. For example, the contribution of 

agriculture in GDP had dropped from around 9% in 2002 to 4% in 2008 (FAO, 

2009) mainly due to drought; however, this value was increased to nearly 12% in 

2010 because of some recent policy improvements in this sector (USAID, 2010). 

Over last decade, crop production in Iraq has been subjected to a sequence of 

major turbulences, both natural and anthropogenic leading to push the country 

toward regional food insecurity. For instance, Iraq had been involved in a war 
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‘Post-Gulf’ mainly to oppose the previous regime. Due to the political instability 

and fear for the life during the war many farmers were unable to grow the crop. 

In some places, the military activity and building military encampment 

encroached up on agriculture land. In addition to the war, due to its geographical 

location, the region is affected by irregularities in precipitation resulting in 

frequent occurrence of drought (Al-Timimi, and Al-Jiboori). Both these factors 

made the region vulnerable to sustained food production. Therefore, timely and 

comprehensive method is highly required to monitor the outcome of those 

factors on land use/land cover (LULC) changes and crop production during last 

decade. 

Remote sensing has been used widely in both agriculture and agronomy. The 

monitoring of agricultural activity is challenging due to the very large area that 

requires repeated coverage; thus, the employment of remote sensing is vital 

(FAO, 2011). Agricultural production is predictable based on monitoring of the 

seasonal patterns of the growth phase of crops. Moreover, those seasonal 

patterns (and, thus, agricultural production) are driven by several factors such as 

climatic variables, the physical landscape and agricultural management. These 

factors are subject to large changes in time and space. Therefore, timely 

agricultural monitoring through the growth season via remote sensing is needed.  

Globally there are various applications of remote sensing in the agricultural 

sector, related to food production, aiming to provide reasonable spatial and 

temporal data. These applications have been seen in different context like 

increasing production would be the global challenges of the agriculture sector 

which may have an impact on the environment. The current study will attempt to 

use three remote sensing applications in agriculture sector in Iraq. All three 

applications are aimed to support decision making in order to improve the 

regional production and improve regional food security. Three different 

applications have been selected such as land surface phenology, crop mapping 

and crop area estimation, and yield estimation due to the fact these areas have 

been subjected to a sequence of major turbulences during last decade, and on 

the country level they have not been assessed yet. The unreliability of the 

country’s official statistical data (USDA FAS 2008) and difficulties with access to 

the country due to security problems mean that remote sensing is the only viable 

method to map the country’s land cover types and estimate and forecast crop 

yield across the country. 
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In general, phenology has a long tradition in agriculture. The extracted 

knowledge of the vegetation phenology can be used as a surrogate of climate 

change (Menzel et al. 2006). The data can be used to accurate identification LULC 

change, and identifying, mapping and estimating area of various land cover 

types, particularly crop (Newstrom et al. 1994; Gu at al. 2010; Clerici et al. 2012; 

Lupo at al. 2007). In addition, crop phenological observation can also play an 

essential role in process that is relevant to estimate crop yield (Bolton and Friedl, 

2013; Funk and Budde, 2009; Sakamoto et al. 2013). Moreover, LSP information 

can help to improve agricultural management such as fertilization and irrigation 

through aiming to establish a suitable relationship between the timing of plant 

growth phases and carbohydrate consumption (Garcia-Tejero et al., 2010; Menke 

and Trlica 1981; Mooney and Billings, 1960). Therefore, the current study mainly 

relied on vegetation related phenology information to derive land cover 

classification and crop production estimation.   

This thesis monitors decadal land cover and crop production in Iraq using 

time series remote sensing data. Chapter 1 provided a general introduction of 

the work that included the importance of agriculture on a broad scale, then 

looking down into Iraq and why Iraq has been selected for the current study. In 

addition, the importance of remote sensing to monitor agriculture activity, 

particularly crop including crop mapping and crop yield forecasting via related 

vegetation phenology information. Specifically, this work aimed to: 

1- Map and assess the spatial variation in key land surface phenology (LSP) 

parameters across Iraq over the last decade and explore their relation 

with elevation (as a surrogate of temperature and precipitation). 

2- Develop and apply a phenology-based approach for the assessment of 

dominant vegetation land cover (VLC) types in Iraq, particularly croplands 

from 2002 to 2012. 

3- Evaluate the potential of MODIS-derived measures of greenness and 

productivity, and information related to the phenology of crops to 

estimate crop production and yield in the arid and semi-arid regions like 

Iraq 

Chapter 2 will be mainly split into three sections. Section 2.1 will provide a 

general description of food insecurity. In addition, short introduction of the arid 

and semi-arid regions in term of climatic, location, crop area, and crop 

production, in particular the contribution of these regions in the world food 

production will be highlighted. This section also addresses the food insecurity in 
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arid and semi-arid regions in the world and why it is important to evaluate these 

vulnerable regions in term of crop production. Furthermore, the impact of the 

main drivers such as rainfall, temperature, population growth and conflict on the 

regional food insecurity in these regions will be explained. Section 2.2 focuses on 

using remote sensing data for several applications such as classification, crop 

condition and yield forecasting. This section also discusses different 

methodological approaches for such applications and validation of the space 

observation results with in situ data. Section 2.3 provides a historical data of 

wheat and barley in term of harvested area and production in past 50 years in 

Iraq. Chapter 3 to 5 embody three analysis chapter which will be conducted in 

three individual papers. Chapter 3 (research paper one) highlights the 

spatiotemporal variation of dominant vegetation types phenology such as 

croplands, grasslands and shrublands in Iraq and their relation with elevation. 

Chapter 4 (research paper two) focuses on using several phenological parameters 

to develop a phenology-based classification that can derive an accurate 

vegetation land cover types for Iraq during last decade. In chapter five (research 

paper three) several remote sensing based methodological approaches will be 

tested to estimate and forecast crop yield/production at the governorate level 

using different remotely sensed indices. Chapter 6 provides combine discussion 

of the research findings for the papers generated in this work and assessing the 

main uncertainties and variations with several suggestions for the future studies. 

Final chapter (Chapter 7) highlights the most important conclusions derived from 

this thesis.      
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 Food insecurity in arid to semi-arid 

regions  

Throughout the history of civilisation, the foremost concern of human societies 

has been to ensure that people have access to adequate food to survive and, in 

the present day, to lead a healthy and active life. More than 30 definitions of the 

term “food security” have been proposed in previous studies (Maxwell and Smith 

1992). The most common definition of the term was made by the Food and 

Agriculture Organization (FAO): “Food security is a situation that exists when all 

people at all times have physical, social, and economic access to sufficient, safe, 

nutritious food that meets their dietary needs and food preference for an active 

and healthy life” (FAO 2001). The definition can be divided into three main 

components: food availability, food access and food consumption. Availability 

refers to adequate quantities of food available on a regular basis; access refers to 

having enough resources to acquire satisfactory foods for a nutritious diet; 

consumption refers to adequate utilization depended on knowledge of basic 

nutrition of the food content and the ability of the body to use it effectively.  The 

concept of the food availability will be more explored in the context of estimation 

methodology and controlling factor in the arid and semi-arid regions. 

Food availability is determined by a combination local food production and food 

imports. The food availability dimension of food security encloses issues of 

global and regional food supply, and reminds us the simple question whether 

enough food is available to feed our population efficiently. The import part 

includes many aids from different aspects, which cannot be measured easily due 

to constant trade and personal business to import food in various ways in some 

regions. In addition, these aids are not on a regular basis and mainly occur in a 

time of natural disasters and catastrophes. Therefore, the local production will be 

mostly a target of our evaluation due to the fact that in many arid and semi-arid 

regions, the local food productions can still be accounted as the main source of 

food.  

Grain crops and vegetables are the main component of the home food 

production. One of the first priorities of the earliest settler’s communities arriving 

in a place to obtain food was crop growing. According to recent FAO statistics, 

more than 1.5 billion ha (around 12% of the world’s total land area) was dedicated 

to crop production in 2013 (FAO 2013). To meet the basic calorific requirement 
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of humans per day per capita, requires around 219 kg of grain annually (Palm et 

al. 2010). “The world now produces enough food to feed its population. The 

problem is not simply technical. It is a political and social problem. It is a problem 

of access to food supplies, of distribution, and of entitlement. Above all, it is a 

problem of political will” (Shaw 2007). Many people in arid and semi-arid regions 

rely directly on agriculture for their basic source of food, and any negative 

impacts on crop productivity can lead to overall food shortages at the local level. 

Therefore, comprehensive information about grain crop production of region or 

country will lead us to know how the food secure or insecure of that region or 

country is and provides better base for making policy. 

Arid regions can be described as areas where the ratio of mean annual rainfall to 

mean annual potential evapotranspiration ranges between 0.05 to 0.020 and 

semi-arid regions as those where the ratio varies between 0.2 and 0.5 (UNEP 

1992). Arid regions occur within rainfall zones of 0-300 mm, with inter-annual 

variability of 50-100%, whereas semi-arid regions occur within rainfall zones 300-

600 mm, with inter-annual variability of 25-50% (Barakat 2009; IFAD 2000). Arid 

and semi-arid regions, situated in the tropical and sub-tropical zones of the 

world, cover around 30% of the global total land and are inhabited by around 20% 

of the total world’s population (Sivakumar 2005). At the continental level, arid 

and semi-arid regions are home to around 23% of the total population of Asia, 

24% in Africa, 11% in Europe, 6% in Australia and Oceania, and 17% in the 

Americas and the Caribbean (UNDP/UNSO 1997). Arid and semi-arid regions are 

highly vulnerable to disruption of local grain crop production due to climatic 

fluctuations, which cause such regions to have unstable annual crop production 

such that food insecurity is always present and famine is a constant risk.  

 

 

Figure 2-1 Global distribution of arid and semi-arid regions (FAO 2002). 
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Drylands, refer to arid, semi-arid and dry sub-humid area, have a ratio of average 

annual precipitation to potential evapotranspiration of less than 0.65 (UNEP 

1992). In drylands, food security is essential in the global fight against hunger, as 

drylands is the home for 60% of the world’s food insecure population and more 

than 80% of the rural population in this region is reliant on livestock and 

agriculture for both food and income (ELLA 2011). It was also reported that 

drylands are accommodating around 40% of the world population where over half 

of the world’s livestock are grown (UNIC 2011). Therefore, a sustainable 

agricultural monitoring system is highly required to provide comprehensive 

information to exile these risks in drylands where arid and semi-arid region are 

part of them.   

 

2.1 Main Drivers of food insecurity in arid and semi-arid 

regions 

 Precipitation 

In part, due to the likelihood of unfavourable climatic events across many regions 

around the world, local communities are often food insecure and at risk of 

famine. Environmental conditions have a direct impact on food availability. For 

example, weather extremes such as droughts and flood and sudden climatic 

changes can negatively affect the storage and distribution of food (Haile 2005; 

Wheeler and von Braun 2013). Biophysically, crop production is affected by 

climatic variables such as temperature and precipitation. However, their effect on 

agricultural production varies across the globe, in some regions positive and 

negative in others. In arid and semi-arid regions, the amount and pattern of 

rainfall are among the most important factors that affect cropping systems, since 

rainfall is marginal and erratic, exacerbated by large runoff and evaporation 

losses, which can constrain crop production. In these regions, rainfall patterns 

are unpredictable and highly variable in time, amount, duration and space, and 

are subject to large fluctuations. Thus, water is the leading factor affecting 

agricultural and biological activities in these areas. For example, historically, lack 

of rainfall has been a major cause of famines and food shortages in Ethiopia 

(Bewket 2009). Time-series data on rainfall and crop production from 1994 to 

2003 indicated that sorghum production had the largest inter-annual variability, 

as it is cultivated in arid and semi-arid parts of the country. Simple linear 
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correlation and standardized multiple-regression analyses were conducted to 

show the correlation of precipitation and temperature with grain yields in 

Lebanon, in which barley grain yield was correlated positively with precipitation 

(r=0.70), and the rainfall distribution index (r=0.71), but negatively with 

temperature (Yau and Ryan 2013). Most case studies suggested that in arid and 

semi-arid regions, fluctuation in crop production is closely linked to variability in 

rainfall, which may cause food insecurity. However, this might vary with the types 

of crops cultivated, types and characteristics of soil, and climatic condition of a 

given area. 

 Temperature 

Temperature, and particularly increasing trends in temperature, is another main 

constraint on crop production in arid and semi-arid regions. On a regional basis, 

strong warming trends have been observed around the world since 1980, 

especially in the Middle East, northern half of China, Japan and Europe (Gourdji et 

al. 2013). The output from 23 global climate models reveals that there is a 90% 

chance that growing season temperature will exceed the most extreme seasonal 

temperature record in the tropics and subtropics by the end of 21st century 

(Battisti and Naylor 2009). In the arid and semi-arid regions of Asia, the projected 

area-averaged annual mean warming is expected to be 1.6 ± 0.2°C in the 2020s 

and rising up to 4.6 ± 0.4°C by 2080 (Sivakumar, 2005). This will add further 

pressure on crop production, as crop ecologists found that for each 1°C increase 

in temperature above the optimum during the growing season grain yields will 

decline by 10% (Brown 2006). A study also revealed that changes in climate such 

as increasing temperature and reducing levels and distribution of rainfall are 

more likely to lead to a decline in yields of wheat, maize, rice and other food 

crops in the semi-arid regions of the world (Lobell et al. 2009). Therefore, besides 

production reduction in response to global warming, rising temperature may 

affect all aspects of the hydrological cycle resulting in the frequent occurrence of 

severe droughts in arid and semi-arid regions. 

A great challenge to crop production and food price stability is global warming 

and it’s resultant of severe drought events. Increasing aridity, more frequent and 

intense meteorological drought, and extended periods without precipitation are 

common components of future climatic projections for many arid and semi-arid 

regions (Seager et al. 2007). For example, the 2009 drought in California’s San 

Joaquin Valley affected of 285,000 acres of land resulting in loss of around 
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10000 jobs, and $340 million in revenue (Howitt et al 2011), the same event also 

caused a reduction of 20% in the value of irrigated agriculture in Australia (Kirby 

et al. 2012). In 2000 and 2001, drought posed significant social and economic 

issues in central Asia especially in Tajikistan, Turkmenistan and Uzbekistan where 

only in Tajikistan, for example, the direct economic cost of agricultural 

production was estimated at around 5% of national GDP (World Bank, 2006). The 

recent drought in 2008-2009 also caused sizeable declines in crop yields which 

cost $1-2 billion and affected over 435,000 farmers in Turkey as well as reducing 

by 45% the total wheat production in Iraq compared to the previous year (Table 

2.1) (USDA FAS, 2008). Therefore, agriculture and related sectors in arid and 

semi-arid regions have been challenged by drought and its frequency, which can 

eliminate or reduce food production, and adversely affect food prices, market 

access, trade, employment and farm income (FAO, 2013b). 

  

 

Table 2.1 The impact of drought on the regional wheat production (million tons) 

(USDA FAS, 2008). 

 Population growth 

Of seven people around the world, one is chronically hungry. The recent FAO 

report indicated that around 850 million people are estimated to be chronically 

undernourished in 2012-2014 in the world (FAO, IFAD and WFP, 2014). The report 

also stated that Asia has the largest number of undernourished, and Sub-Saharan 

Africa has the highest prevalence of undernourishment (one in four people). One 

of the reasons could be rapid global population growth, particularly in arid and 
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semi-arid regions, which has caused a considerable increase in demand for 

agricultural lands and a growing consumption of food. The world’s population 

living in arid and semi-arid regions was estimated at around 15% of the global 

population (841 million), of which about 524 million live in semi-arid regions. 

Arid and semi-arid regions have the most rapid population growth in the world, 

which has led to dense habitation of these regions in recent decades (Barakat, 

2009). This rapid population growth, with increasing demand for food is a major 

driver of land conversion. For example, 70% of tropical forests, 70% of 

Mediterranean forests and 60% of temperate broadleaved forests have been 

converted to agricultural/grazing land (Millennium Ecosystem Assessment 2005). 

Thus, rapid population growth in arid and semi-arid regions has the potential to 

cause regional food insecurity, producing an environment in which people cannot 

guarantee both physical and economic access to adequate food to fulfil their 

needs. This, in turn, may make these regions politically unstable. 

 War/conflict 

The causes and consequences of conflict might induce food insecurity. Food 

availability can be reduced because of conflict by influencing agricultural 

production through demolition of agricultural assets and infrastructure (FAO, 

2000; Deininger and Castagnini 2006). In the 21st century, food security in 

developing countries has been impacted by the exclusive phenomenon of civil 

war (Hendrix and Brinkman, 2013), and the fact that a relationship exists between 

both chronic food insecurity and civil war with poverty (Collier et al. 2003), 

because food insecurity can be fuelled by conflict itself. Experience from other 

world regions reveals that Arabic countries in transition such as Egypt, Tunisia, 

Yemen, and Libya are at a high risk of entering extended phases of conflict 

(Maystadt et al. 2014). The analysis also showed that among these countries, at 

the macro dimension of food security, Libya performed well (due to its oil wealth), 

but the remaining the countries will need to focus on macro food security, 

whereas only Tunisia showed a relative good performance at the household level 

food security. The recent conflict and drought in Syria led to a large reduction in 

winter cereal cropped area in 2013/2014 of around 21% lower than the planned 

level, maintained a significant food price inflation, and raised the number of 

displaced people from 4.25 million to 6.5 million in July 2013, with more than 2.7 

million refugees registered in nearby countries of the region (FAO, 2014). 

Therefore, the previous examples and many other researchers suggest that 
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shocks to regional security due to extreme conflict events may increase regional 

food insecurity. 

In addition to previous factors, there are many other drivers which may push the 

region toward food insecurity such as farming background, water scarcity, 

corruption, pests and livestock disease. 

2.2 Monitoring crop by remote sensing 

To meet a reasonable regional food security, the previous mentioned drivers have 

to be monitored and updated to target a sustainable food production. One of the 

most crucial technical options for regional food insecurity mitigation in 

agriculture is improving cropland management and timely monitoring of yield to 

provide robust data to be prepared for any unfavourable events. In this regard, 

the traditional method relied on the classical field based statistical data collection 

both on the regional and sub-regional level. Agricultural production has different 

characteristics which are different to other sectors such as large area, high spatial 

variation, different environmental condition, and substantial intra-annual and 

inter-annual seasonal variation. Due to these properties, consistent survey and 

traditional monitoring approach are not adequate to provide an accurate and low 

cost agricultural statistical data set to fulfil the agricultural production and 

management needs in time. Furthermore, subjectivity in sampling and data 

collection and lack of spatial distribution are the most common issues of the 

existing sample survey approaches.     

Land surface can be monitored periodicity, macroscopically and economically 

through remotely sensed data. Remote sensing can provide numerous 

opportunities in the field of crop monitoring and management. In addition there 

has been increased interest in using space based observation due to the ability to 

offer crop information with greater spatial coverage, potentially at the global 

scale with high degree of availability. Providing timely comprehensive crop 

information by remotely sensed data can provide key information to help decision 

maker act to mitigate food insecurity. Here, three main applications of remote 

sensing in crop monitoring such as crop area estimation and identification, crop 

condition, and crop yield estimation will be explored.  
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 Crop area estimation and identification 

Prior information on cropped area plays crucial role in different applications 

ranging from economy, environment to policy (Wardlow et al. 2007). As the world 

population is growing rapidly, more food and irrigation water is required. Crop 

type maps are among the crucial datasets in yield estimation because it is needed 

by policy makers in the global food market (Doraiswamy et al. 2004; Thenkabail 

et al. 2009). Due to rapid agricultural development and scarcity in water 

resources, irrigation water management and planning face several challenges. 

Meanwhile, crop classification can facilitate irrigation timing and water planning 

(Xie et al. 2007; El-Magd and Tanton 2003). In this regard, remote sensing data 

can offer and facilitate crop type identification and area estimation due to mainly 

large spatial coverage and frequent revisiting. For instance, Gallego (2006) 

reported the evaluation of three activities to estimate crop area which was 

conducted in Monitoring Agriculture ResourceS (MARS) project; i) combining 

ground survey and satellite image to generate regional crop inventories, ii) ignore 

the ground survey and estimate a rapid crop area change and iv) stratification of 

a large resample of points by photo-interpretation on areal orthophotos for 

Eurostat’s LUCAS 2006 survey. The results indicated that the third activity 

outperformed the other two. Regarding to the attempt of using the remote 

sensing data and ignoring the ground survey, the effort did not reach the cost 

efficiency at that time. However, the author deduced that as more improved 

sensors are generating, the future cost efficiency might change a swell.  

With development of remote sensing technology, land cover classification 

estimation using remote sensing based approaches have become widely used 

over last few decades particularly in crop area estimation. According to Gallego 

(2008), the timing of estimating crop area or advance area prediction is based on 

following factors; i) the spatial differences in sowing practice, ii) the time after 

sowing a crop can be exposed by remote sensor, iii) spatial and temporal 

properties of remote sensors, iv) regional crop calendar, v) an appropriate date 

when the crop can be identified in the field, vi) time required for ground data 

collection and vii) time required to process the ground data. However, lack of 

quality in ground data is still one of the key issue to achieve a better classification 

accuracy. Although, many efforts have been made in methodological 

improvement and potential of remote sensing for estimating land cover area, still 

quality of ground survey is crucial. Instead, high spatial resolution imageries are 

sometimes replaced for ground surveys if the regions have time, budget and 
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access restrictions. However, less success was mostly observed for these efforts. 

For instance, less encouraging results were revealed when Gallego (2006) and 

Narciso et al. 2008 attempted to avoid or minimize ground data collection 

substituting by high spatial resolution imagery. 

 Classification 

For the purpose of the classification, single date imagery and multi-temporal 

imagery (time series) have been used to identify or classify crop. Reducing the 

number of the images to be acquired and less processing requirement are the 

main advantages of the single date classification. The object-oriented 

classification, with a single date of Polarimetric Synthetic Aperture Radar (POLSAR) 

imagery in North-eastern Ontario, Canada, was able to classify five crop types 

with an overall accuracy of 95% and Kappa of 0.93 (Jiao et al. 2014). In Tavakkoli 

et al. (2006) noticed that classification accuracy is strongly based on acquisition 

date and land use type, for instance each crop can be distinct on some images 

better than on other, on the other hand extracting some crops is sufficient in 

each image than other crops. In the semi-arid region, Thiruvengadachari, (1981) 

demonstrated that croplands irrigated by surface water could be discriminated 

visually from those irrigated by ground water in a single Landsat image, however 

discriminating of different crop types is much harder. In addition, Masialeti et al. 

(2010) and Wardlow et al (2007) claimed that crop mapping using single date 

image is a real challenge as most of the time overlapped signature of various 

crops exist in a same date. Therefore, in arid and semi-arid regions, single date 

capture remotely sensed data might be insufficient to track large temporal 

variability and frequent spatial land cover changes among vegetation types. 

Due to the spatio-temporal variation in cropping area in arid and semi-arid 

regions because of climatic variability and crop rotation practices, researchers 

promote the use of time-series data in these regions. First, at different 

phenological stages, time-series data can be selectively analysed to provide more 

useful vegetation spectral information, whereas this information is limited in 

single date imagery (Singh and Glenn 2009; Key et al. 2001). Second, temporal 

analysis of crops can aid in the discrimination of various crop classes based on 

differences in their growth patterns. Third, multi-temporal data may increase the 

quality of the imagery as the Sun angle changes with the season, which affects 

surface reflectance (Song and Woodcock 2003). Fourth, time-series data have the 

potential to provide a larger number of predictor variables which can suit 

machine learning classification approaches, thus, providing greater class accuracy 
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(Pal and Mather 2005; Ham et al. 2005). Extracting data from Landsat TM and 

ETM
+

 sensors were employed in comparison between Hidden Markov Model 

(HMM) and single date image for classifying various crops over state of Sao Paulo, 

Brazil and the result showed a great achievement of HMM model by increasing the 

accuracy from 58% to 86% (Leite et al. 2011). The percentage difference between 

maximum NDVI and minimum NDVI was extracted from time-series data to 

differentiate crop area from non-crop areas in central Arizona (Zheng et al 2015). 

Then, a support vector machine (SVM), a machine learning classifier, was 

employed to discriminate various crop types in a complex cropping system in the 

region. The result showed an overall accuracy of >86% for crop classes and the 

study demonstrated that multi-temporal Landsat data are capable of monitoring 

cropping pattern and crop types over time in arid and semi-arid regions. The 

hierarchical classification approach using MODIS 250 m NDVI data was used to 

produce large-area crop mapping over the U. S. Central Great Plains (Wardlow and 

Egbert, 2008). The classes were: a) crop/non-crop, b) general crop types, c) 

specific summer crop types, and d) irrigated/non-irrigated crops, with 

incorporation a series of quantitative and qualitative evaluations, the overall map 

quality and misclassified area were assessed. The crop maps generally had 

classification accuracy more than 80% and at the state level, the crop patterns 

classified were consistence with general cropping pattern across Kansas. In 

addition, for the most classes, the classified crop areas were usually within 1-5% 

of the USDA reported area. 

Remote sensing data can estimate and predict crop area in advance and the result 

has relatively good agreement with the ground data. In Rio Grande do Sul state, 

Brazil, MODIS crop detection algorithm (MCDA) using temporal profile of MODIS 

EVI was developed to estimate soybean crop area in December, using images 

from the sowing period, and March, using images from sowing and maximum 

crop development (Gusso et al. 2012). The coefficients of determination ranged 

from 0.91 to 0.95 were observed in comparison between results were obtained 

from MCDA and official statistics. Unsupervised k-means approach was employed 

to compute the integrated difference of two consecutive MODIS EVI images (one-

month part) for three EVI threshold cut-offs at monthly breaks from April to 

October in order to estimate total winter crop area in Queensland, Australia 

(Potgieter et al. 2010). The highest pixel accuracy was observed for July with 

percent correctly classified for all thresholds of 94% and 98% for 2003 and 2005, 

respectively. The results also indicated that early estimation of crop area using 

multi-temporal approach could be confidently predicted at least one to two 
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months prior to harvest. At the same area, the rigour of the harmonic analysis of 

time series (HANTS) and early season metric produced high accuracy, 4 months 

prior to harvest, at pixel and regional level with percent errors of -8.6% and -26% 

for the 2005 and 2006 (Potgieter et al. 2011).     

Over the past decade, research on land cover classification has involved the use 

of vegetation phenological information to discriminate between land cover types. 

Several phenological parameters, extracted from temporal profile of Landsat data, 

have been proved considerable in discriminating between corn, wheat, soybean 

and barley (Badhwar et al. 1982; Crist and Malila 1980). An innovative technique 

of harmonic analysis was proposed by Jakubauskas et al. (2002) to identify crop 

type from amplitude and phases of decomposed of Fourier component. The 

technique was applied to NDVI time series data from AVHRR and the result 

indicated its usefulness in detecting LULC changes during planting and 

harvesting. In terms of the comparison, a phenological based classification to 

map crop type was compared to the traditional maximum likelihood classifier and 

the result showed a great advantage of the former approach (Zhong et al. 2011). 

Although, discriminating cultivated and non-cultivated areas in arid and semi-arid 

regions of northern Asia is challenging due to mainly their similar seasonal 

change, several phenological parameters extracted from MODIS-NDVI can be 

employed to detect cultivated area in these regions (Enkhzaya and Tateishi 2011). 

In addition, multi-temporal time series analysis was used to estimate post-harvest 

total and specific crop area in related to crop phenology attributes using different 

fitting procedures (Potgieter et al 2013; Gongalton and Green 2009; Potgieter et 

al 2010, 2007). Time series MODIS-NDVI was used to extract key parameters to 

discriminate crop types over northern China (Zhang et al. 2008). The result 

showed a well correlation between area estimated by MODIS and the statistics at 

county level. A relatively high agreement regional LULC classification was 

obtained using phenological based classification approach in Upper Pangani River 

Basin, Eastern Africa, comparing to available detailed datasets for the region 

(Table 2.1). Son et al (2014) reported a close relationship between MODIS-derived 

rice area and rice area statistics (R
2

 ≥ 0.89) from 2001 to 2012 using phenology 

based classification in Mekong Delta, Vietnam. There were, however, slightly 

overestimated areas, with a relative error in area (REA) from 0.9-15.9% (Table 2.2). 

To sum up, having the knowledge of what kind of crop is going to be grown in 

the country will help a region financially, as this information will lead the region 

to have a pre-plan for importing and exporting of food product. 
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Table 2.2 Comparison of land use land cover classification using phenological 

variability MODIS vegetation with other sources of datasets such as Irrigation 

survey was done by the irrigation department, Ministry of Water and Irrigation 

(MOWI, 2009) and the surface areas of the water bodies (IUCN, 2003; PBWO/IUCN 

(2008) in Upper Pangani River Basin, Eastern Africa (Kiptala et al. 2012). 

S/No

. 
Classification 

Present study 

(ha) 

Other sources 

(ha) 

% 

Agreement 
Source 

1 
Total irrigated 

area 
129406 95823 74 MOWI (2009) 

2 
Irrigated 

sugarcane 
8919 8480 95 MOWI (2009) 

3 Water bodies 10525 7555-18800 72-179 
IUCN (2003), PBWO/IUCN 

(2008) 

 

Table 2.3 Results of regression analysis and the relative error in area (REA) 

between the MODIS-derived rice area and the rice area statistics, REA=(MOD-

RAS)/RAS*100, where RAS= rice area statistics, MOD=MODIS-derived rice area 

(Son et al. 2014). 

Year R2 RAS (km
2

) MOD (km
2

) REA (%) 

2001 0.90 3792 4393.4 15.9 

2002 0.89 3834.8 4356.1 13.6 

2003 0.89 3787.3 4136 9.2 

2004 0.92 3815.7 4246.2 11.3 

2005 0.95 3826.3 4095.6 7 

2006 0.95 3773.9 4138.2 9.7 

2007 0.96 3683.1 4060.2 10.2 

2008 0.96 3858.9 4047.7 4.9 

2009 0.97 3863.9 4121.2 6.7 

2010 0.94 3945.9 4051.4 2.7 

2011 0.94 4089.3 4126.3 0.9 

2012 0.94 4181.3 4248.5 1.6 

 

 Crop condition 

Monitoring crop condition, health, and seasonal progress are also essential in 

securing regional crop production. Wang et al. (2010) stated that one of the most 

crucial methods of yield estimation and food security is monitoring crop growth 

condition. The traditional approach of crop growth condition in the field, as a 

surrogate of the crop health, was limited in time and labour, and was subjected to 

many factors. Remote sensing for evaluating crop condition is relied on the 

relationship between multispectral reflectance, photosynthesis, temperature of 

crop canopy and evapotranspiration (Seelan et al. 2003). Four main necessities 

for remote sensing systems such as high temporal resolution, spatial resolution 
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of 5-25 m, combining agronomic and meteorological data into an intelligent 

system and quick data delivery were suggested by Bauer (1985) for farm 

management. Hatfield and Pinter (1993) stated that thermal infrared obtained 

from aircraft or satellite platform has the potential to provide a clue on crop 

related to frost, water stress, insect and disease.  

A wide range of commercial crops might be affected by plant diseases and pests, 

which pose a major risk to final crop production. Globally, at least 10% of food 

production is lost because of plant disease (FAO 2000; Christou and Twyman 

2004). This can be controlled in time if disease and pest are timely monitored 

and dealt locally. In this regard, the information of disease infected area is 

required as early and precisely as possible. The traditional approach of 

monitoring crop growth condition in the field, as a surrogate of crop health, is 

time and labour intensive, and the results are subject to many factors. Remote 

sensing data can supply relatively low cost data over wide spatial coverage of the 

area which is infected by disease and pest. In last two decades, many remote 

sensing based methods were developed to monitor crop condition in different 

countries and most common methods such as image classification method (Li et 

al. 2001; Li 2002), direct monitoring method through remote sensing indices 

(Wang 1991; Liu and Zhang 1997), crop growth profile monitoring method (Zhang 

and Wu 2004), same period comparing method (Zhao 2002; Zhang and Wu 2004) 

and crop growing models method (Xie and Kiniry 2002). Hyperspectral data were 

obtained for winter wheat using field spectroradimeter to evaluate severity of 

yellow rust disease and both techniques of the partial least square (PLS) and 

multiple linear regression (MLR) were employed to assess the suitability of the 

bands and develop the spectral model (Krishna et al. 2014). The result revealed 

that an accurate delineation and detection of yellow rust disease can be obtained 

through the developed model. Near-infrared reflectance spectroscopy (NIRS) was 

used to investigate early diagnosis of strip rust and leaf rust in incubation period 

and disease period (Li et al. 2013). The results depicted that the identification 

rate of training sets was 97% and the identification of testing sets was 96% using 

distinguished partial least square (DPLS) model. The physiological variables such 

as vegetation water content (VWC) and dry matter were obtained from MODIS 

normalized difference water index (NDWI) and NDVI to assess crop condition over 

the Yellow River, China (Yi et al. 2007). In general, NDWI was found to have great 

potential for VWC and soil moisture change monitoring. Combined analysis 

between NDWI and VWC indicated that wheat was under water stress at the end of 

the growing season in 2006, which was supported by ground experiment.     
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Fine spatial and temporal resolution remotely sensed data have been 

demonstrated for crop condition monitoring, assessing crop damage in flood 

areas (Zhang et al. 2013), assessing crop condition in relation to soil moisture 

(Bolten et al. 2010), and monitoring crop condition in extreme events such as 

drought (Krishna et al. 2009). In addition, good progress has been made in 

estimation of crop phenological parameters which can facilitate crop condition 

assessment resulting may provide more precise agricultural decision support 

(Doraiswamy et al. 2004; Sakamoto et al. 2005). Meng and Wu (2008) stated that 

having the crop condition information in pre-harvest stage can help to indicate 

potential food shortages and surpluses, and related wise policy making-decision. 

A crop suitability index was used to show that cropland suitability was at good 

level, and an overall gradual improvement in cropland quality during the period 

was observed but in some regions, the cropland quality had worsened over the 

period mainly due to government policies and population growth. Besides 

detecting the problems related to crop condition through the growing season, the 

success of treatments can also be monitored. Nevertheless, identifying and 

observing crop health and damage needs fine spatial, multi-spectral and multi-

temporal imagery. 

 Yield estimation 

The need to model and forecast crop yield in arid and semi-arid regions is 

increasing in parallel with recent and projected changes in land use and climate, 

and with recent crises in food security occurring mainly because of rapid global 

population growth (Antônio et al. 2009). Forecasting crop yield and production 

are essential for agricultural and economic stability of the region and are vital to 

sustaining global food security. Farmers, policy-makers, investors and hedgers 

need accurate and timely information on crop quality and supply. This 

information will also help governors to ensure a strategic contingency plan to 

redistribute food during times of crisis. It is important to consider which spatial, 

temporal and spectral resolutions meet the requirements. For example, medium 

to coarse spatial resolution satellite sensor data are commonly used in crop early 

warning systems by many aid organizations such as FAO to mitigate food 

insecurity (Hielkema, and Snijders 1994). In the context global agricultural 

observation, the group on earth observation ‘s Global Agricultural Monitoring 

(GEOGLAM) provides timely and accurate forecasts of agriculture production and 

yield at national, regional and global scales through the use of Earth Observations 

(EO) for which satellite and ground-based observation are included (GEO 2011; 
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Whitcraft 2015). GEOGLAM covers four main cereal crops (wheat, rice, maize and 

soy) within the main agricultural producing regions of the AMIS countries 

(G20+7). In contrast, fine spatial and moderate temporal resolution imagery is 

required if the study aims are localized at the farm level. In addition, Dadhwall 

and Ray (2000) stated that in managing large agricultural areas, forecasting crop 

yield is essential, and to achieve this remotely sensed data are required. This 

could be more efficient for a region where yield data are either unreliable or non-

existent, often the case in war affected countries.  

The advantage of using remote sensing data in crop yield assessment can be 

divided into two main parts. Firstly, it can estimate crop yield at the sub-

region/region/global scale which could be useful for inaccessible countries in the 

world where data are not available or not in a good quality. Secondly, yield can be 

forecasted by remotely sensed data with supplying a precise, scientific and 

independent forecast of crops’ yield in advance during the crop growing season 

to predict any unfavourable events. The possibility of involving remote sensing 

approaches to estimate crop yield and production have been demonstrated in 

many studies (Singh et al. 2002; Funk and Budde 2009; Ren et al. 2008; Dadhwall 

and Ray 2000; Tennakoon et al. 1992; Chang et al. 2005). In addition, as an 

action against the recent food price instability and to improve information on 

food supplies by international community, lunching satellite monitoring 

observation system in various regions of the world was proposed in the G20 

Agriculture Minister meeting held in Paris (Becker-Reshef et al. 2010a). 

In some countries, weather data have been used to monitor and forecast crop 

production (Andarzian et al. 2008; Liu and Kogan 2002; Paul et al. 2013; de Wit 

and Boogaard 2001). Missing data, a lack of continuity in weather data and the 

sparse spatial distribution of ground weather stations for a large diverse crop 

area limit the utility of these approaches (Liu and Kogan 2002; Dadhwall and Ray 

2000; de Wit and Boogaard 2001). At the same time, to predict yield before 

harvesting, several empirical simulation crop models with incorporation of 

remotely sensed data have been developed and established. Examples of crop 

simulation models includes World Food Studies (WOFOST) (Vandiepen et al. 

1989), Simulateur mulTIdisciplinaire pour les Cultures Standard (STICS) (Brisson 

et al. 1998) and Crop Systems Simulation (CROPSYST) (Van Evert and Campbell, 

1994).  
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 Modelling (empirical) 

The most widely used approach to forecast crop yield is empirical regression-

based models. In these models, crop yield is correlated to some selected 

predictors such as vegetation indices (VIs) obtained from remote sensing data 

and meteorological monitoring. The assumption behind regression-based models 

is that photosynthetic activity, extracted from spectral Vis, is correlated with 

eventual yield (Becker-Reshef et al. 2010). Thus, any positive or negative impact 

on the crop growing season (photosynthetically active biomass) is likely to result 

in a corresponding impact on the final crop yield. A linear regression model was 

established by Hamar et al (1996) to estimate wheat and corn yield at a regional 

level based on vegetation indices derived from Landsat MSS data. A strong 

relationship between wheat yield and integrated NDVI over entire growing season, 

and with late season NDVI variables was observed at region and farms scale in 

Montana for the years 1989-1997 (Labus et al. 2002). Ren et al. (2008) found the 

highest correlation between the spatial accumulation of MODIS-NDVI, at 40 days 

ahead of harvest time of winter wheat, and regional winter wheat production in 

Shandong, China. Similarly, spatial cumulative of SPOT NDVI has shown to have 

suitable prediction capability of 20 and 30 days before harvest for the short and 

long maize crop cycle in Kenya (Rojas, 2007). Normalized Difference Water Index 

(NDWI) and two-band variant of the Enhanced Vegetation Index were employed to 

predict the U. S. crop yield, and showed that including crop phenology related 

information improved model prediction, and the best time to predict crop yield 

were 65-75 days and 80 days after the MODIS derived green up for maize and 

soybean, respectively (Bolton and Friedl 2013). The fact that statistical regression 

remote sensing-based approaches are relied on the empirical relationship 

between satellites derived vegetation index and historical yield data, thus this 

relationship is typically localized and cannot be extended to other areas easily 

(Moriondo et al. 2007; Doraiswamy et al. 2003). However, their limited data 

requirements and simplicity to practice led them to be still most preferred 

approaches in crop estimation and forecasting.  

Different approaches with incorporation of phenological-based remotely sensed 

data have been developed to estimate and forecast crop production. For instance, 

a corn yield estimation model using time series MODIS Wide Dynamic Range 

Vegetation Index (WDRVI) was developed by incorporating crop phenology 

detection approach (Sakamoto et al. 2013). The study found that the smoothed 

MODIS WDRVI (α=0.1), taken at 7-10 days before the MODIS deriving silking 
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stage, accurately estimated corn grain yield as well as observed the spatial 

patterns of corn yield all over the U. S. from 2000 to 2011. In north India, 

phenological parameters such as length of the season and start of the season, 

extracted from MODIS data, were used to measure the vulnerability of, and yield 

falls in, the wheat crop to extreme heat events (Lobell et al. 2012). In addition, 

many organization monitoring systems have employed the land surface 

phenology (LSP) information as an essential key component to assess the food 

security. For instance, NDVI as a surrogate of vegetation activity is used in the 

Famine Early Warning System Network (FEWSNET) as a part of integrated early 

warning system for food security (Ross et al. 2009). Furthermore, MODIS data 

with incorporation of county level data from United States Department of 

Agriculture (USDA) were employed to develop empirical models forecasting maize 

and soybean yield in the USA (Bolton and Friedl 2013). The results indicated that 

the model performance was significantly improved within and across year with 

inclusion of crop phenology information extracted from MODIS.  

The remote sensing based approaches have been proved suitable for estimating 

and forecasting crop yield at different scales by comparing to ground or other 

official statistics data. For instance, Ferencz et al. (2004) presented two methods 

for estimating the yield of different crops in Hungary from satellite remote 

sensing data. A new vegetation index General Yield Unified References Index 

(GYURI) was used for the first method using double-Gaussian curve to NOAA 

AVHRR and other method was investigated by only using NOAA AVHRR county 

level yield data. The R
2

=0.75 was obtained for the correlation between GYURI and 

the field level yield data. In the second method, the county level yield and the 

deduced vegetation index, GYURRI, were examined for eight various crops over 

eight years where high correlations were observed (R
2

=84.6-87.2). An advance 

version of the method was developed by Bognar et al. (2011) to forecast corn and 

wheat, several weeks before harvest, in Hungary from 1996 to 2000. The 

difference between forecasted and reported yield data for wheat and corn were 

not more than 5%, except in 1997 where the absolute error is around 8%. At the 

provincial level in Italy, correlation coefficient equal to 0.77-0.73 were obtain 

between observed and simulated wheat yield, with corresponding root mean 

square errors (RSME) of 0.47 and 0.44 Mg/ha for Grosseto and Foggia, 

respectively (Moriondo et al. 2007). At regional scale, Ren et al. (2008) proposed 

a method of winter wheat yield estimation using MODIS-NDVI data. To validate 

the method, the results were compared to the ground data and the errors of the 

agro-climatic models. The results revealed that the relative errors of the predicted 
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yield using MODIS-NDVI are between 4.62% and 5.40% and that measured RMSE 

was 214.16 kg/ha lower than the RMSE (233.35 kg/ha) of agro-climatic models. 

An approach for predicting rice crop yield was developed in Vietnamese Mekong 

Delta using MODIS enhanced vegetation index (EVI) and leaf area index (LAI) (Son 

et al. 2013). Ten sampling districts were used to evaluate the robustness of the 

model by comparisons between predicted yield and crop yield statistics in 2006 

and 2007. The results in 2006 revealed that better predictions were obtained for 

the spring winter crop (RMSE= 10.18%, mean absolute error (MAE) =8.44%, mean 

biased error (MBE) =0.9%) compared with the autumn summer crop (RMSE= 

17.65%, MAE=14.06%, MBE=3.52%). In 2007, the spring winter crop yielded better 

results (RMSE= 10.56%, MAE=9.14%, MBE=3.68%) compared with the autumn 

summer crop (RMSE= 17%, MAE=12.69%, MBE=2.31%). Three different 

approaches: fine-resolution remote sensing imagery, the agro-meteorological 

Simple Algorithm For Yield (SAFY) model and the combination of both were 

evaluated to forecast crop yield in the semi-arid, low productivity regions of North 

Africa (Chahbi et al. 2014). The result indicated a greater accuracy using fine-

resolution remote sensing imagery over others with a root mean square error 

equal to 8.5 and 1160kg ha-1 between the predicted and ground measured data. 

The regression-based models were built using MODIS-derived vegetation and 

production indices to predict summer crop yield in semi-arid irrigated ecosystems 

within the conflict-affected country of Syria (Jaafar and Ahmed 2015). The 

research reported a significant correlation (p<0.05) between the predicted and 

reported summer crop yield and demonstrated the potential of the approach to 

forecast crop yields during conflict years where reported data could be 

questionable.Therefore, remote sensing based methods are generally robust, 

accurate and stable for predicting yield at county, region and country level.     

Remote sensing-based approaches to estimate and forecast crop yield also have 

some limitations which might not be able to achieve a high accuracy required in 

agricultural monitoring. One of the main issues for any based on satellite 

reflectance measurement is persistence of cloud cover during crop growing 

season which may prevent an accurate crop estimation or forecasting (Lobell et 

al. 2003). Space observation remotely sensed data, such as satellite derived 

vegetation indices, can provide a crop growth signal over the crop growing 

season. This information can be used as an estimation of crop condition and crop 

yield rather than directly its size, health and weight (Allen et al. 2002). In 

addition, other limitations are related to the sensor attributes including limited 
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spectral range, low frequent visit, and coarse spatial resolution (Moran et al. 

1997).  

Lack of the study with incorporation of remote sensing data in the arid and semi-

arid regions pose many challenges for local farmers and decision makers to 

establish a proper policy to avert food insecurity. The necessity for surrogating 

and modelling crop yield in arid and semi-arid regions is increasing parallel to the 

vast changes in land use and climate with recent occurrence of crisis in food 

security mainly because of rapid global population growth (Antônio et al. 2009). 

In managing large agricultural land, estimating of its crop yield is very essential 

(Hutchinson 1991), to achieve this involving remotely sensed data is the best 

option (Dadhwall and Ray 2000). Satellite imagery data are potential tool for crop 

acreage and biomass production assessments in arid and semi-arid regions due 

to their ability to offer reasonable spatial and temporal knowledge’s of various 

vegetation in these conditions (Teixeira et al. 2009). The design of operational 

tool which has the ability to provide regional estimate of crop production may 

maintain the regional food security. For instance, water scarcity is one of the 

series problems in arid and semi-arid regions which restricted the crop 

production. Quantifying crop production at regional level could help to simplify 

the observation of crop water use and irrigation efficiency. In the context of semi-

arid regions, low productivity areas in North Africa, three approaches such as 

high resolution remote sensing data, the agro-meteorological Simple Algorithm 

for Yield Estimation (SAFY) model, and combination of remotely sensed data with 

SAFY model were evaluated to estimate the dynamic and yields of cereal (Chahbi 

et al. 2014). For wheat and barley, a strong correlation coefficient (R
2

 > 0.6) was 

observed between NDVI, pre-time before the maximum growth (April), and grain 

and straw.  

 

2.3 Smoothing remote sensing time series data 

The use of remote sensing time series for crop and vegetation monitoring often 

needs a number of processing steps that include the temporal smoothing of the 

cloud-impacted remote sensing signal. This is mainly because the reflected light 

waves that satellite sensors detect coming from vegetation on the Earth's surface 

can be altered or blocked by a variety of phenomena, which produce noise in the 

raw data. To address this issue, raw data are processed using techniques that 
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filter out noise and produce a clearer, more representative data set. Various 

methods have been employed in smoothing out noise from remote sensing time 

series data. They include Discrete Fourier Transformation (DFT) (Wagenseil and 

Samimi, 2006), best index slope extraction (BISE) (Viovy et al., 1992), the double 

logistic model (Zhang et al., 2004), Savitzky–Golay (S-G) (Chen et al., 2004) and 

asymmetric Gaussian model (Jönsson and Eklundh, 2004). These approaches all 

have their advantages and drawbacks which are also reliant on the frequency of 

cloud contamination and seasonal variability of vegetation indices in the time 

series (Atkinson et al. 2012). BISE was compared to maximum value compositing 

(MVC) and concluded that BISI was performed better in terms of de-noising (Viovy 

et al., 1992). DFT, BISE and S-G were highlighted as effective techniques for 

constructing high quality NDVI (Chen et al., 2004). The S-G, changing-weight filter 

(CW) and the Whittaker smoother (WS) techniques revealed better performance in 

comparison to other tested techniques (Geng et al. 2014).  

Any complex vegetation temporal profile can be decomposed through DFT into a 

series of sinusoids of various frequency. Individual sinusoids and their 

frequencies can be combined into a complex waveform for which noise has been 

removed. In the current work, DFT is targeted to be employed as it has minimal 

user interactions (only require to decide the number of harmonics to reconstruct 

the time series) and have been implemented successfully to many regional to 

global remote sensing time series data (Dash et al. 2010, Los et al. 2000). 

Recently, Atkinson et al. (2012) compared  several models including Fourier 

analysis, and the asymmetric Gaussian, double logistic and Whittaker filter 

models in terms of their ability to fit a smooth time-series of a vegetation index 

such as to capture SOS (Atkinson et al. 2012). Several tests were applied including 

the root mean square error, Akaike information criterion and Bayesian 

information criterion and indicated that Fourier analysis is superior to other 

tested techniques. 

The DFT is given by: 

F(u)= 

1

𝑁
∑ 𝑉𝐼(𝑡) ∗  𝑒−

2𝜋𝑢𝑥

𝑇𝑁−1
𝑡=0                      (1) 

Where VI(t) is the input vegetation index value at time t in the time series, u is the 

number of Fourier components, t is the composite number, T is the length of 

time period (number of composite), and here T is equal to N.  
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The effect of data smoothing on the time series for (a) crop, (b) shrub and (c) 

grass is depicted in Figure 2-2. The FT was able to capture the broad phenological 

pattern and major variation throughout a phenological cycle. Crop land cover type 

has the highest NDVI value around 0.5 and more, whereas the NDVI value is 

slightly lower for grass and much lower for shrub. It can be seen in the figure that 

there are number of missing data and this increases toward the very high altitude 

area in the region due to mainly cloud cover and snow. These were removed by 

the data cleaning operation. The final smoothed curve was constructed from the 

first five harmonics of the DFT.     

 

Figure 2-2 Effect of smoothing on NDVI time series data for (a) crop, (b) shrub 

and (c) grass.   
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2.4 Crop production in Iraq and role of remote sensing 

Generally, Iraq can be divided into two agro-zones in terms of crop area; the 

north is mostly rain-fed and the central and southern parts are mainly irrigated 

(FAO, 2003). Iraq has a total surface area of 438 320 km
2

 of which around 77.7% 

is not viable for agriculture in its current condition (UNEP 2007). Of the remaining 

22%, around half is used for marginal agriculture and seasonal grazing. The area 

under cultivated crops, including cereals, vegetables, and pulses, is estimated to 

be around 3.5–4 million ha, of which wheat and barley account for 70%–85% of 

the cropland in any given year (Gibson et al. 2012; Schnepf 2004). 

 Wheat 

Winter wheat is planted generally between September and November across the 

country, whereas the harvest time is varied, mainly between May and Jun in rain-

fed area and February and March in irrigated area. Figure 2.2 presents harvested 

area of wheat in Iraq from 1960 to 2012. It is apparent that the three used data 

set has similar trend. Figure 2.3 shows production of wheat in Iraq for the same 

period. From 1990 the harvested area and production of wheat sharply increased 

mainly due to the national policy to raise crop production to combat the 

international economic sanctions. A clear decrease in harvested area can be seen 

from 1980 to 1988 because of the international war between Iraq and Iran which 

were taken place in wide areas of Mesopotamian plain. The drop of harvested 

area and wheat production in 2008 and 2009 was due to the impact of severe 

drought over the region. Although, figure 2.3 shows an increase of wheat 

production over the period, high inter-annual variation can be seen in the data. 

This is mainly due to the variabilty of the climatic variable such as rainfall and 

temperature, particularly in rain-fed area.   
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Figure 2-3 Rain-fed and irrigated harvested area for wheat in Iraq extracted from 

different sources (USDA-PSD, FAO-FAOSTAT and MOI-GoI) (Scoppe and Saleh 

2012).   

 

 

 

Figure 2-4 Production of wheat (rain-fed and irrigated) in Iraq (Scoppe and Saleh 

2012). 
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 Barley 

The growing season for barley falls within the same time as wheat in Iraq. Figure 

2.4 shows the total harvested area of barley over 50 years in Iraq. The impact of 

Iran and Iraq conflict cannot be clearly seen as declining harvested area of barley 

as harvested area of wheat. This is likely due to the fact that barley is a fodder 

crop, thus its cultivation and harvest time might not have an impact as a crop 

grown for cereal production or human consumption (Scoppe and Saleh 2012). 

Over last 50 years, barley harvested area fluctuated mostly between 400,000 ha 

and 2,200,000 ha, whereas wheat harvested area fluctuated between 1,000,000 

ha and 2,000,000 ha. Production of barley over past 50 year presents in figure 

2.5. Larger fluctuation in barley production can be seen in the figure over the 

period due to mainly the availability of water.    

 

 

Figure 2-5 Rain-fed and irrigated harvested area for barley in Iraq extracted from 

different sources (USDA-PSD, FAO-FAOSTAT and MOI-GoI) (Scoppe and Saleh 

2012). 
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Figure 2-6 Production of barley (rain-fed and irrigated) in Iraq (Scoppe and Saleh 

2012). 

  

In Iraq, no previous study has investigated the possibility of using remote 

sensing-based approach to surrogate crop yield over the country. The expected 

fluctuation in crop production due to natural and anthropogenic stresses make it 

more interesting to evaluate decadal crop yield estimation with the incorporation 

of remotely sensed data. In general, to date there have been limited studies of 

crop yield estimation remotely sensed-based approach in arid and semi-arid 

environment in the subtropical region. The crop production in these regions is 

driven mostly by water availability. Therefore, there is a growing interest to 

characterise the agricultural production in these regions and identify the key 

controlling factors. The non-existence of proper ground agricultural observation 

and restricted access to the country due to security problems mean that remote 

sensing is the only viable method to estimate and map crop’s area and yield.  

Lack of the satellite based surveys across Iraq has obliged the federal government 

organization and Kurdistan Region government to rely totally on the ground 

information data. However, a report from USDA FAS (2008) proved that the 

official Iraqi government statistics is unreliable. In addition, international 

statistics data for the country for cultivated area and production are mostly 

“unofficial” or shown as an estimated figure, and alternative sources have been 

used to fill out missing data or uncovered areas (FAO 2012). Thus, the chance of 
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margining error in crop yield estimation based on the ground data is considerably 

high. In addition, to manage the agricultural activities across the country, Iraq’s 

Ministry of Agriculture has assistance director at the governorate level. The entire 

official agricultural related statistical and report announcement such as land use, 

area and production are based on the governorate level. It is apparent from those 

data that to compute the governorate level of crop yield which cover large diverse 

area, only one average of crop yield was multiplied to the total crop area to 

obtain the governorate crop yield level. This approach is ignoring the variation in 

the yield of the different counties under this governorate level. Moreover, the 

reliability of calculating the total and harvested crop area is also under the 

question. Besides, a comprehensive and regular visiting to collect and update the 

data is often missing across the country, might be due to consistent regional 

instability. Therefore, up to date regional crop map and monitoring or forecasting 

crop yield could be helpful to improve the regional food security. 
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 Spatiotemporal variation in the 

terrestrial vegetation phenology of Iraq and its 

relation to elevation 

 

3.1 Introduction 

Vegetation phenology, the study of the life cycle events of plants, has become a 

key source of information for mapping, managing and monitoring the terrestrial 

ecosystem at local-to-global scales.  Several studies have revealed that the 

phenology of plants and animals can be affected by climatic change (Sparks and 

Carey, 1995). For instance, the study of long-term datasets (1953-2005) of 

vegetation phenology events revealed an advance in the spring phenology and 

delay in autumn phenology in Japan and South Korea, with rapid changes in the 

timing of autumn phenology events compared to spring phenology events, due to 

global warming (Ibanez et al. 2010). This research also found that there were 

dissimilarities in temporal trends and vegetation phenological responses to 

temperature between East Asia and comparable sites in Europe, where spring 

events are varying more rapidly than autumn events. Jones et al. (2009) showed 

that increasing the global mean temperature above 2°C increased the possibility 

to lose forest cover in Amazonia. Thus, annual vegetation phenological variation 

has been used as a sensitive indicator of climatic change (Chung-Te et al. 2011). 

Moreover, variation in vegetation phenology may affect energy fluxes, the carbon 

cycle and the water cycle, mainly through the processes of both 

evapotranspiration and photosynthesis, which may affect the climate, and have 

consequences for food security and water availability (Xiao et al. 2009). 

Therefore, obtaining knowledge of current vegetation phenological responses can 

lead to greater understanding of the long-term rhythms of plant communities 

under various possible climatic regimes. 

 

 

 

1

QADER, S. H., ATKINSON, P. M. & DASH, J. 2015. Spatiotemporal variation in the terrestrial 

vegetation phenology of Iraq and its relation with elevation. International Journal of Applied 

Earth Observation and Geoinformation, 41, 107-117. 
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Vegetation phenology can be monitored either directly through ground 

observation or indirectly through space observation. Although the former 

approach is accurate for monitoring at point locations, it is time consuming and 

has poor spatial coverage, both in terms of extent and intensity. Moreover, data 

from ground observations may not be suitable for many global biogeochemical 

models which require information across large areas (White et al. 1997). In 

contrast, there has been increased interest in utilizing space observation due to 

the ability to provide vegetation phenological information with greater spatial 

coverage, potentially at the global scale.   

Most space-based LSP studies rely on time-series of a vegetation index from 

moderate to coarse spatial resolution satellite sensors (e.g. Medium Resolution 

Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer 

(MODIS), Advanced Very High Resolution Radiometer (AVHRR), Satellite Pour 

l’Observation de la Terre Vegetation (SPOT VGT)) due to their high temporal 

frequency (Boyd et al. 2011; Bobee et al. 2012; Chen et al. 2013; Fan et al. 2013). 

A considerable amount of literature has been published in which the AVHRR 

normalised difference vegetation index (NDVI) is used to estimate LSP due to its 

daily revisit frequency and extensive spatial coverage, leading to long time-series 

with which to map vegetation LSP parameters either at the regional scale (You et 

al. 2013; Wessels et al. 2011; Running et al. 1994; Loveland et al. 1997; Bradley 

and Mustard, 2008) or global scale (Brown et al. 2012; Nemani and Running, 

1996; Eastman et al. 2013; Fensholt et al. 2012: Hansen and DeFries, 2004). For 

instance, at a regional scale, the SOS estimated from AVHRR NDVI data for winter 

wheat was in close agreement with in situ vegetation phenological observations 

(Huang and Lu, 2009), and at a continental scale there was also positive 

agreement particularly for homogeneous vegetation (Maignan et al. 2008).  

Some studies have been conducted to assess the general compatibility of the 

AVHRR data with other sensors such as MODIS and SPOT VGT. For instance, 

Fontana et al. (2008) and Fensholt et al. (2006) compared the AVHRR-NDVI to the 

NDVI from other sensors such as MODIS and SPOT. Although the disagreement 

was small, the latter sensors’ VIs were more accurate than the AVHRR-NDVI. The 

reasons for this could be that initially the AVHRR sensor was not designed for 

monitoring vegetation (Teillet et al. 1997) and the NDVI from AVHRR is more 

affected by water vapour due to the sensitivity of this sensor’s spectral bands to 

water vapour in the atmosphere (Cihlar et al. 2001). Therefore, recent research 
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has been directed to using alternative satellite sensor data such as MODIS, MERIS 

and SPOT products to estimate LSP parameters. 

Since 2000, satellite sensors such as MODIS have been available which offer 

significant increases in terms of spectral and spatial resolution, and the quality of 

cloud screening, geolocation, sensor calibration and atmospheric correction 

(Soudani et al. 2008). These properties have made MODIS a common choice for 

monitoring terrestrial vegetation and LSP in different geographic areas and 

ecosystems (Xia et al. 2012; Hmimina et al. 2013). In addition, a close agreement 

between MODIS LSP parameters and ground reference data has been 

demonstrated (Kang et al. 2003; Sakamoto et al. 2005; Shuai et al. 2013). Besides 

demonstrating accurate estimation of LSP parameters by MODIS Terra and Aqua 

compared to field observation, Colombo et al. (2011) used MODIS data to show 

that the start of the growing season may advance or delay by as much as 10 days, 

if the spring temperature changes by ±1 C°. Therefore, time-series MODIS data 

are a suitable choice for monitoring seasonal and inter-annual vegetation 

phenological changes which may be affected by changes in local climate.  

LSP extracted from remotely sensed data have been used as a sensitive indicator 

of different drivers such as climate change (Chung-Te et al. 2011), and natural 

and anthropogenic factors exerted through land use/land cover type (de Beurs 

and Henebry, 2004) as well as affecting ecosystem carbon exchange (Churkina et 

al. 2005). Moreover, LSP information can help to improve agricultural 

management such as fertilization and irrigation through aiming to establish a 

suitable relationship between the timing of plant growth phases and carbohydrate 

consumption (Garcia-Tejero et al. 2010; Menke and Trlica 1981; Mooney and 

Billings, 1960). Amongst all natural factors, changes in ground elevation have a 

significant influence on the timing of LSP parameters. Some studies have been 

carried out to show the relationship between individual LSP parameters and 

elevation (Gimenez-Benavides et al. 2007 and Arroyo, 1990). For instance, Pellerin 

et al. (2012) stated that elevation was the main driving factor leading to delayed 

budburst and leaf unfolding dates of about 2.4 to 3.4 days per 100 m in the 

Western Alps. Delayed SOS and EOS were observed during 2001-2010 in a 

subtropical mountainous region in China due to the colder temperature at higher 

elevation (Qiu et al. 2013).   

There have been limited studies of land surface phenology in arid/semi-arid 

environments in the subtropical region. The vegetation phenology in these 

regions is driven mostly by the availability of rainfall, contrary to the phenology 
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of much northern high latitude vegetation which is driven mostly by temperature. 

Therefore, there is a growing interest to characterise the vegetation phenology in 

these regions and identify the key controlling factors.  Iraq, being situated in the 

subtropical region with its highly seasonal precipitation patterns presents an 

interesting area within which to study changes in vegetation phenology.  In 

addition, the changes in LSP parameters across Iraq have potentially been driven 

by different environmental factors, both natural and anthropogenic, during the 

last decade. The non-existence of ground vegetation phenology data and 

difficulties with access to the country due to security problems mean that remote 

sensing is the only viable method to estimate and map LSP across the country. 

It is also possible that in Iraq elevation is one of the main predictor variables 

influencing the country’s LSP parameters. The northern part of Iraq is comprised 

mostly of mountainous areas relying on rainfall while the Great Mesopotamian 

alluvial plains of the Euphrates and Tigris rivers are located in the middle and 

south parts of the country (FAO Aquastat, 2008). Therefore, the altitudinal-

phenology relationship may vary across the country based on local temperature 

and rainfall conditions.  

Therefore, the aim of this research was to assess and map the spatial variation in 

key land surface phenology (LSP) parameters across Iraq over the last decade and 

explore their relation with elevation (as a surrogate of temperature and 

precipitation). 

 

3.2 Material and Method 

 Study Area 

Iraq is situated in the Middle East between the longitudes 38° to 48°E and 

latitudes 29° to 37°, with an area of 437,072 km
2

, surrounded by Iran to the east, 

Turkey to the north, Syria, Jordan and the Kingdom of Saudi Arabia to the west 

and the Arabian gulf to the south (Figure 3.1). Climatologically, Iraq is described 

as having a subtropical continental climate (except for some parts in the north) 

with an extreme, hot summer (average maximum temp. in Aug. and Jul. around 

43 °C) with no rainfall, and a short cool winter (FAO, 2011). Precipitation is highly 

seasonal and more than 90% of the precipitation occurs between November and 

April. The rainfall ranges from 1200 mm in the north and northeast to less than 
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100 mm over the majority of the south, with an average annual rainfall of around 

216 mm over the whole country (FAO Aquastat, 2008). Rainfall varies 

considerably spatially based on altitudinal variation across the country. 

  

Figure 3-1 Map of Iraq showing the boundaries of 18 administrative governorates. 

 

Generally, Iraq can be divided into two agro-zones in terms of crop area; the 

north is mostly rain-fed and the central and southern parts are mainly irrigated 

(FAO, 2003). Natural vegetation varies seasonally with rainfall. Grassland is 

mostly located in the high elevation area in the north, but open shrubland is 

distributed from the lowlands in the north to the south of the country (Figure 

3.3a). In terms of the crop calendar, wheat and barley are the major winter crops; 

where irrigation is available sorghum, corn, millet and rice are grown in the 

summer. Winter crops are planted between September and November and 

harvested between May and June; irrigated summer crops are planted between 

April and May and harvested between August and September (Schnepf, 2004). 
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 MODIS Land Surface Reflectance Data 

This study utilised the 8-day composite data of the MODIS land surface 

reflectance level-3 data product, with a spatial resolution of 250 m (MOD09Q1 

V5) from 2001 to 2012. The data were downloaded from NASA’s Land Processes 

Distributed Active Archive Centre (LP DAAC) 

(https://lpdaac.usgs.gov/data_access). The Quality Assurance (QA) layer is a 16-

bit image that is composed of values ranging from 0-65535 representing 

different permutations and combinations of MODIS land surface reflectance 

quality parameters. The QA layer was used to remove contaminated pixels due to 

sensor effects such as different orbits, adjacency, band quality, and MODLAND 

QA and non-sensor effects such as cloud state and atmospheric noise. A number 

of permutations and combinations were then conducted using the above criteria 

to finalize which values in the QA flag image were retained to represent good 

quality data. This ensures that only the best quality pixels were used in the 

analysis. For detail of this QA assessment procedure please refer to MODIS land 

products quality assurance tutorial on the LP DAAC website 

(https://lpdaac.usgs.gov/sites/default/files/public/mois/docs/MODIS_P_QA_Tuto

rial-1b.pdf). 

For each time step (composting period) the NDVI was calculated as in equation 

(1): 

NDVI=  ((NIR-RED))/((NIR+RED))      (1) 

 

where, NIR and RED are the spectral reflectances in the near infrared and the red 

wavebands in the MOD09Q1 product.  

Generally, the vegetation growing season in Iraq starts in September and 

continues until December in the next year (FAO aquastat, 2008; Schnepf, 2004). 

Since, many LSP parameters cross the calendar year, to extract land surface 

phenological variables for a specific year data from the previous year and 

following year were considered in the “layer stack”. For example, the dataset for 

2008 contained 8 day NDVI composites from July 2007 to January 2009 resulting 

in 72 data layers (bands). 
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 Extraction of LSP parameters 

The methodology for extracting LSP parameters can be divided into four main 

steps: moving window averaging to remove dropouts, linear interpolation for gap 

filling, data smoothing, and LSP parameter estimation. NDVI values in the study 

period were affected by noise or errors (dropouts) in the data, particularly in the 

Kurdistan Region, resulting from cloud cover, snow and local climate fluctuations 

which, in turn, led to erroneous NDVI values. Thus, a temporal three point moving 

window average was applied to each pixel as a first step to remove these 

dropouts and the missing values were then interpolated linearly in time.  

To estimate the LSP parameters, different smoothing techniques have been 

applied to time-series vegetation index data to capture the annual growth cycles 

(Hmimina et al. 2013; Clerici et al. 2012; White et al 2005; Viovy et al. 1992; 

Zhang et al. 2003). Recently, several models were compared including Fourier 

analysis, and the asymmetric Gaussian, double logistic and Whittaker filter 

models in terms of their ability to fit a smooth time-series of a vegetation index 

such as to capture SOS (Atkinson et al. 2012). Several tests were applied including 

the root mean square error, Akaike information criterion and Bayesian 

information criterion, mostly indicating the advantage of Fourier analysis.  

The current study used Fourier-based smoothing due to minimal user interaction 

and because it has been used widely in different regional-to-global AVHRR studies 

(Cihlar et al. 1997). The Discrete Fourier Transform (DFT) was used to decompose 

the information into a series of sinusoids of various frequencies (Jakubauskas et 

al. 2001). Then, inverse a Fourier transform on the first few harmonics was used 

to provide an appropriate reconstruction of the main vegetation phenological 

signal.  Jakubauskas et al. (2001) stated that for 50-90% of the variability in a 

dataset, the inverse Fourier transform utilizing the first two harmonics is 

required. Nevertheless, this can only represent annual and semi-annual vegetation 

cycles. Natural vegetation phenological cycles require three to five harmonics for 

adequate representation (Geerken, 2009). This means that the number of 

harmonics might be changed due to the land cover type. For example, to reveal 

the agricultural land phenological signal where double or triple cropping is 

practiced, the first six Fourier components are required (Dash et al. 2010). 

After smoothing the data, the LSP parameters can be estimated by one of several 

methods. These methods can be categorized into three broad groups: trend 

derivative methods, threshold-based methods and inflection point methods (Reed 
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et al., 2003). As the threshold value may vary by land cover type, there is some 

difficulty in implementing threshold-based methods over large areas (Reed et al. 

1994). Regarding the trend derivative method, choosing a suitable moving 

average time interval may be challenging as a large time interval results in less 

sensitive trend detection and a small time interval may detect irrelevant trend 

changes (Reed et al. 2003). In the current research the inflection point method 

was applied due to easy implementation and the ability to discriminate multiple 

growing seasons for different land cover types such as crops (Reed et al. 1994). 

This technique captures LSP parameters while maximum curvatures occur in 

plotted time-series data (Zhang et al. 2001). The algorithm searching for the 

valley points in time checks the derivative information; the derivative at the 

beginning of green up is positive, while it changes to negative at the senescence 

stage. Thus, a time-series dataset can be searched for a continuous trend of four 

consecutive rising NDVI values and four consecutive declining NDVI values to 

define the key LSP parameters, SOS and EOS (Figure 3.2). However, due to local 

fluctuations, some valley points may appear at larger values of NDVI which may 

lead to unreliable detection of these parameters. Therefore, a condition that the 

difference between the maximum NDVI and valley point must be greater than one 

fifth of the maximum was applied to avoid this issue. The whole process was fully 

automated using Matlab code. Through this process, the SOS and EOS were 

mapped for each year, and then the Median was calculated and mapped for the 

whole period. 
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Figure 3-2 Estimating the key LSP parameters in the current study by applying the 

inflection point technique to define the SOS and EOS from smoothed time-series 

data for major vegetation types. 

  

 MODIS Land Cover Type  

To identify the most predominant land cover types over the country and, in turn, 

their LSP parameters, the MODIS land cover types (MCD12Q1) from 2001 to 2012 

were downloaded from NASA’s LP DAAC (https://lpdaac.usgs.gov/data_access). 

The reason for using 12 years of MODIS land cover type is that the country’s land 

cover type is highly dynamic and has changed from one year to another due to 

several natural and human factors.  

The MODIS land cover product has a 500 m spatial resolution which provides 

broad information on Iraq’s land cover types. Supervised classification 

(Schowengerdt, 1997) was used to create the MODIS land cover classification 

involving high quality land cover training sites. This approach was developed by 

utilizing the combination of ground reference data and fine spatial resolution 

imagery to increase the accuracy of the product (Muchoney et al. 1999). The 

International Geosphere and Biosphere Programme (IGBP), which is a primary land 

cover scheme, was used to identify the MODIS land cover classes: 17 classes, of 

which 11 are natural vegetation, 3 are developed classes and the rest are non-

vegetation classes. To see the distribution of classes, the 2007 MODIS land cover 

type is shown as an example in Figure 3.3a. 
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Figure 3-3 Maps of (a) MODIS land cover type with a spatial resolution of 500 m 

for 2007 (https://lpdaac.usgs.gov/data_access) and (b) elevation, extracted from 

SRTM data (Jarvis et al. 2008) for Iraq with a spatial resolution of 250 m. 

 

 Calculating the standard deviation (STD) and 

correlation between LSP parameters and elevation 

After extracting Iraq’s land cover from the MODIS product, it was apparent that 

the most dominant vegetation types are croplands, open shrublands and 

grasslands (Figure 3.3a). To present the temporal variation in the LSP parameters 

among these classes over the last decade the standard deviation (STD) was 

estimated for each pixel. The STD describes the variability in the LSP parameters 

in each pixel and can highlight the most unstable areas in terms of LSP through 

the time period of the study.  

For the linear regression analysis described below, only those pixels which were 

consistently allocated to the same class through time were used. Then 

homogeneous areas were extracted for each permanent land cover type to reduce 

the number of miss-classified areas. Elevation for Iraq was estimated from the 
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Shuttle Radar Topography Mission dataset (SRTM) (Jarvis et al. 2008) (Figure 

3.3b). To be compatible, the estimated LSP parameters (250 m) and elevation 

data (250 m) were resampled to the spatial resolution of the MODIS land cover 

types (500 m). Then linear regression was applied to estimate, for each 

permanent homogeneous land cover class, the coefficient of determination 

between the LSP parameters (Median LSP) and elevation. The composite date was 

converted to Julian days for the regression analysis. For example, the SOS may 

start at the end of September of the previous year (around 280 days) and finish in 

August (around 650 days) in the following year in homogeneous areas (Median 

LSP). A schematic diagram of the methodology can be seen in Figure 3.4. 

 

 

 

Figure 3-4 Schematic diagram showing the research methodology adopted in this 

study. 
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3.3 Results 

 Phenological parameters for specific vegetation types 

The spatial distributions of the SOS (Figure 3.5a), EOS (Figure 3.5b) and LOS 

(Figure 3.5c) based on the multi-year median of each vegetation phenology 

parameter across dominant vegetation types in Iraq are shown in Figure 3.5. 

Generally, rainfall and elevation can be expected to influence the distribution of 

the LSP parameters across Iraq. Based on these factors and for ease of 

explanation, we divide the study area into two main parts; the north including the 

Kurdistan Region, Kirkuk and the northern part of Ninawa and Dyala, which are 

mainly rain-fed, and the central and southern parts, which are mostly irrigated 

(FAO aquastat, 2008; Schnepf, 2004). 
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Figure 3-5 Median spatial distribution of different vegetation types for (a) SOS, (b) 

EOS, and (c) LOS during 2001-2012 in Iraq. The median SOS and EOS were 

presented in Julian days rather than composite period: the growing season starts 

around September of the previous year and continues to December of the 
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following year, for all vegetation types, to make the maps easier to read. LOS is 

shown in number of days representing the duration of the median growing 

season for all vegetation types. 

A large amount of variation in the SOS across the country was observed. The 

earliest SOS was detected in the central and southern parts of the country, 

dominated by cropland, between the end of September and end of October due to 

the availability of water. However, for the rest of the croplands in the central and 

southern parts of the country, the SOS was detected from mid-to-late December. 

This difference might be the result of different crop types grown in these areas. 

For some areas in the central and southern parts of the country, the SOS was 

delayed to the end of March to mid-May. This is an indication of the growing of 

summer crops in these regions. However, the SOS of the shrubland cover type in 

the central and southern parts seems to range between mid-to-end of November 

(Figure 3.5a).  

The EOS in the central and southern parts of the country is less variable, with the 

majority of this area exhibiting an EOS between mid-April to mid-May (Figure 

3.5b). The reason could be a lack of moisture and the approach of a hot summer 

in the area. However, a relative delay in the EOS was detected for a few areas 

which might be the result of the practicing of summer cropping (beginning-to-end 

of June). From Figure 3.5c, it is apparent that the longest growing season was 

also detected for agricultural land that is connected to water in the central and 

southern parts of the country (217 to 257 days) due to their earlier start. For the 

remainder of the area, mainly occupied by shrubs, the LOS was between 137 to 

161 days and 169 to 269 days for a mixture of shrub and crop land cover types.  

The predicted key LSP parameters in the northern part of the country were much 

more heterogeneous than in the middle and southern parts (Figure 3.5a). The SOS 

was detected around mid-to-end of November for various places in the north 

dominated by open shrubs and a few areas of crops with a long growing season 

of 217 to 241 days (Figure 3.5c). However, these areas exhibited an EOS from 

beginning-to-end of May, the same as for most of the shrubland land cover type 

(Figure 3.5b). The SOS of cropland areas was detected for the majority of places 

from mid-to-end of January. The corresponding EOS of crops in this area was 

towards the beginning-to-mid June. However, towards Kirkuk, the southern part 

of Erbil and the middle of Ninawa governorates it became more difficult to 

discriminate between open shrublands and croplands in the period start-to-mid-

January because of the similar timing of the LSP parameters. Finally, the grassland 
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cover type is another dominant class in this area and its SOS fell into three 

different periods due to elevation. A very late SOS was detected for very high 

elevations between the end of March to end of May, mostly located at the border 

of this region; the beginning to middle of March was recorded for an average 

elevation and mid-to-end of February for relatively low elevation compared to the 

previous two classes. As for SOS, the grassland cover’s EOS can be divided into 

three classes. A very late EOS between the middle of September to December was 

detected for the first class; the beginning-to-mid July was detected for the second 

class and mid-to-end of June was recorded for the majority of the grassland cover 

type. Although grassland had a very late EOS compared to the other classes, the 

LOS for the majority of its area was very short; between 105 to 129 days due to a 

delay in the SOS. 

From Figure 3.5, most parts of the country have no LSP parameters as there was 

no or very sparse vegetation cover. This result may be explained by the fact that 

more than 40% of the western part of the country is desert (FAO Aquastat, 2008) 

and in other places, LSP parameters are hard to detect because of variable or 

unclear vegetation phenology patterns. 

 

 Analysis of decadal changes in LSP parameters  

To present the inter-annual variability of the LSP parameters such as SOS EOS and 

LOS, the STD was calculated for the entire study area for the period from 2001 to 

2012 (Figure 3.6). As shown in Figure 3.6, the SOS is much more variable than 

the EOS. The STD of the SOS for most of the country ranges between 0 and 72 

days (Figure 3.6a). However, this value increases dramatically towards the 

lowlands in the north to about 80 to 120 days. Some areas, which are connected 

directly to water, exhibited the largest STD. Generally, these areas of highly 

variable SOS are mostly occupied by the cropland and shrubland cover types. 
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Figure 3-6 Standard deviation of LSP parameters (a) SOS (b) EOS and (c) (LOS) from 

2001 to 2012. 

 

In contrast, a relatively small STD can be observed in EOS across the country 

(Figure 3.6b). The STD of EOS for the majority of the country ranged between 0 to 

32 days. However, the value seemed to increase to 40 to 80 days in some areas 

close to the source of water, particularly in the central and southern parts of Iraq. 

This result might be because of practicing different crop types in these areas 

between years. As for SOS, some areas connected directly to available water 

exhibited the largest STD of EOS.  

As expected, it is apparent from Figure 3.6c that the STDs of LOS for natural 

vegetation cover types such as shrubland and grassland are relatively small, 
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especially in the northern part of the country which is mostly rain-fed (0 to 32 

days). In contrast, a relatively large STD of LOS was detected for croplands 

(around 56 days and more), particularly in the middle and southern parts of the 

country, which are mostly irrigated areas.  

 

 The relation of LSP parameters of dominant 

vegetation types to elevation 

Over the whole of Iraq, the most dominant land cover types such as cropland, 

shrubland and grassland were analysed to assess the effect of elevation on the 

LSP parameters (Figure 3.7). Because the country’s rainfall and temperature vary 

considerably based on elevation, amongst other factors, elevation can be 

considered as one of the main factors potentially driving spatial variation in the 

LSP parameters. Generally, as expected, considerable variation in the SOS and EOS 

was found with elevation for all land cover types across the country (Table 3.1). 

 

Table 3.1 Linear regression parameters defining the coefficient of determination 

between the median LSP parameters (SOS, EOS, LOS) and elevation. 

Type 

No. of 

samples 

Y-intercept Slope R
2

 

SOS EOS LOS SOS EOS LOS SOS EOS LOS 

Crop 99313 346.80 510.43 175.07 0.06 0.045 -0.027 0.539 0.638 0.155 

Grass 41207 354.07 530.15 176.14 0.047 0.024 -0.021 0.528 0.588 0.161 

Shrub 75256 325.501 502.19 160.20 0.064 0.048 0.001 0.481 0.685 0.07 

 

The largest positive coefficient of determination between the SOS and elevation 

was found for croplands (R
2

=0.539, p<0.05) (Figure 3.7a). It seems possible that 

this result is due to the existence of irrigation water at the beginning of the 

season in the south (lowlands) to irrigate croplands, which led to an earlier green 

up, and weather conditions varying with respect to elevation in the north 

(highlands), which delayed green up. In other words, the SOS was delayed with 

respect to elevation from the south to the north of the country which resulted in a 

relatively large positive coefficient of determination compared to the other 

classes. Similarly, grassland produced a positive coefficient of determination 
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between SOS and elevation (R
2

 =0.528, p<0.05) (Figure 3.7d). This might be due 

to the location of this land cover type in mountainous areas with high relief. The 

temperature in this region is relatively cold, especially in winter, which delays the 

start of the season compared to the rest of the country. In comparison to the 

other classes, shrubland produced a small positive coefficient of determination 

(R
2

 =0.481, p<0.05) due to the fact that this class is divided almost equally into 

lowlands and (relatively) highlands (Figure 3.7g). Thus, excluding the very high 

mountainous area for this land cover type may lead to a relatively small 

coefficient of determination compared to the other classes for SOS. However, the 

coefficient of determination between EOS and elevation was the largest compared 

to the other parameters, particularly for shrublands and croplands (R
2

 =0.685 and 

R
2

 =0.635, p<0.05, respectively) (Figure 3.7b and 3.7h). The reason could be that 

half of these classes are located in the lowlands and this area is expected to have 

an earlier EOS compared to the rest of the country. In contrast, this coefficient of 

determination was smaller for grasslands (R
2

= 0.588, p<0.05) (Figure 3.7e). 

Very small positive coefficient of determination were observed between the LOS 

and elevation for cropland, grassland and shrubland vegetation types (R
2

=0.155, 

R
2

=0.161 and R
2

=0.07, respectively, p<0.05) (Figure 3.7c, 3.7f and 3.7i). Low 

elevation is effectively being used as a proxy for irrigation, which cancels out the 

normal effect of elevation on LOS. Although EOS in the lowlands occurred early, 

the source of water at the beginning of the season made the LOS in this area 

longer than for the rest of the country. On the other hand, a very late EOS at high 

elevation did not mean that the vegetation types of this area had a long LOS 

because the plants need to complete their growing season, which started later.  

Because the MODIS land cover type is a global land cover classification, at 

regional level the product might not be able to adequately classify the required 

local land cover types. Therefore, the possibility of misclassification in some 

areas should be taken into account in the present study. For instance, in very 

high elevation areas, a large delay in EOS was recorded for some areas of 

shrubland which, in reality, might be caused by a mix of grassland and other 

cover types (Figure 3.7h). Finally, increasing the elevation by 500 m will delay the 

SOS in cropland and shrubland by around 30 days, and grassland about 25 days 

as well as delay EOS by around 22 days in cropland and shrubland, and grassland 

by around 12 days.  
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Figure 3-7 Changes in SOS, EOS and LOS for three major vegetation types with 

elevation variation in Iraq {(a, b and c for cropland), (d, e and f for grassland) and 

(g, h and i for shrubland)}. For SOS and EOS, values on the y axis up to 365 days 

belong to the previous year and above belong to the following year, due to the 

timing of the growing season in Iraq. 

 

3.4 Discussion 

In arid and semi-arid regions, LSP parameters can vary considerably spatially 

depending on variation in water availability, climate, soil type, and vegetation 

composition. Remote sensing is the only viable means of characterising and 

monitoring vegetation phenology at the country-scale (Ganguly et al. 2010; Dunn 

and De Beurs, 2011; Chuanfu et al. 2012), and this is particularly true of Iraq 

where access is restricted due to security issues. However, validation of the LSP 

parameters estimated from remotely sensed data is often absent. Both direct 

evaluation and indirect evaluation, through comparison of LSP estimated from 

remotely sensed data and in situ observations upscaled through fine spatial 
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resolution remote sensing data, have been applied in many cases (Zhang et al. 

2006; Fontana et al. 2008; Hmimina et al. 2013; Fisher and Mustard, 2007). 

However, validation of the results presented here is challenging because (i) this 

research attempted to establish for the first time a comprehensive 

characterisation of the vegetation phenological characteristics of the major 

vegetation types over Iraq; (ii) a very limited number of earlier studies of the 

vegetation phenology across Iraq were attempted or available at the local scale 

and (iii) no ground vegetation phenological stations exist across Iraq. 

Due to its climatic and topographic variation, Iraq is a land of different vegetation 

types. For example, in only four governorates in the Kurdistan region 67 species 

were detected distributed in 32 genera, 16 families and 9 orders (Aziz, 2011). 

Thus, spatial mixing of vegetation types at finer classification levels (e.g., species, 

genera) in Iraq is common. In addition, the small agricultural field size in Iraq 

compared to the coarse spatial resolution of the data used in this study may to 

lead to mixed vegetation types in the area (e.g., where adjacent fields are covered 

by different vegetation types). A second issue is that the land cover classification 

used for the current research was a global land cover classification. Thus, it might 

be possible that the product was not able to provide accurate mapping at a 

regional level for some land cover types. Pflugmacher et al. (2011) and Acharya 

and Punia (2013) reported some disagreement with MODIS land cover types for 

some vegetation covers at a local level over Northern Eurasia and India. They 

pointed out that the uncertainties could be related to the classification process 

using the training dataset. Moreover, the sample size of each class and its 

adjustment process led to high uncertainty resulting in overestimation or 

underestimation. However, the overall pattern of LSP parameters observed has a 

strong similarity with the expected phenological pattern for the dominant 

vegetation types. For example, in the cropland and shrubland areas, an earlier 

SOS for the central and southern parts and delayed SOS for the north were 

detected. This result may be explained by the fact that generally the area is 

divided into two agro-zones; the central and southern parts are mostly irrigated 

and the majority of the north is rain-fed (FAO, 2008; Schnepf, 2004). This makes 

the possibility for advancing SOS in the central and southern parts due the 

availability of the water at the beginning of the season and delaying SOS in the 

north (rain-fed) due to rainfall and temperature constraints which depend on 

elevation. Moreover, the late SOS and EOS with a short LOS were detected for 

grasslands located in the high elevation area. A possible explanation for this 

might be that a very short growing season and reduced photosynthetic activity 
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can be attributed to high elevation areas due to weather conditions such as snow 

and limited rainfall (Inouye and Wielgolaski, 2003). The current research also 

found that the EOS in the central and southern parts was earlier than in the north. 

This could be the result of moisture scarcity and temperature increasing from the 

north to the south of the area due to changes in elevation. In terms of vegetation 

phenological patterns, the current findings are consistent with those of other 

studies where the vegetation phenology pattern of some spatially restricted parts 

of Iraq (including rain-fed and irrigated areas) were shown (Griffin and Kunz 

2009; Gibson et al. 2012). 

The STD was used to indicate the most variable locations through the last decade 

in terms of specific LSP parameters. It was apparent that variation in the SOS was 

more obvious compared to EOS, particularly in the north. There are several 

possible explanations for this result. The most likely explanation is that the area 

is mostly reliant on rainfall for starting the growing season either directly in rain-

fed areas or indirectly to recharge the two main rivers in irrigated areas (Schnepf, 

2004). Another possible explanation is that these areas are under the control of 

human activity. Further, practising crop rotation and the traditional biennial 

system to recharge the depleted soil are other reasons for the observed variation 

(Schnepf, 2004). However, a relative homogeneity in STD for EOS may be the 

result of sharing a common hot season around the time of the EOS. The 

heterogeneity indicated by the STD for LOS for cropland area is also due to mainly 

human interactions such as application of different crop growing systems among 

years and different policies for planting and harvesting which may affect the LOS. 

In contrast, this variation is relatively small in natural vegetation types such as 

shrubland and grassland, particularly in the north of the country. Because this 

area is mainly reliant on rainfall, changing the timing of the start of rain might 

not affect much the LOS, as plants need to complete their growing season, 

whether SOS might be advanced or delayed. Besides, for natural vegetation less 

variation in LOS is expected due to lack of human interaction compared to 

croplands. 

Relationships exist between the LSP parameters and elevation (Murray et al. 1989; 

Gimenez-Benavides et al. 2007; Li et al. 2010). The findings of the current study 

are consistent with those of Ding et al. (2013) who found that an increase in 

elevation delayed the SOS, delayed EOS and shortened the LOS of grassland in the 

Qinghai-Tibetan Plateau from 1999 to 2009. These findings further support the 

observed regularity of the variation in LSP parameters along with elevation in 
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areas of very high elevation compared to low elevation, which may reflect the 

influence of human activity in the lowlands (Li et al. 2010; Ding et al. 2013). More 

interesting is the large coefficient of determination between EOS and elevation for 

all land cover types, in contrast to many studies which point to a general trend of 

delayed EOS at lower elevation (Qiu et al. 2013; Jeganathan et al. 2010; Zhang et 

al. 2004). The reason could be as a result of rapid declines in moisture and 

rapidly rising temperatures in the hot season at the end of the vegetation growing 

season, moving from south to north, as a function of variation in elevation in Iraq.  

Several factors affected the coefficient of determination between the LSP 

parameters and elevation. The main influence is likely to be the use of a global 

land cover product with an overall accuracy of 75% to provide the country’s land 

cover types especially given that the product was not able to provide accurate 

mapping at the regional level for some land cover types. In addition, there are no 

studies that assess the accuracy of MODIS land cover across Iraq. The error in 

land cover classification might have some impact on the LSP characterisation of 

individual land cover types presented in this study. Moreover, the 250 m spatial 

resolution of MODIS land surface reflectance may also prevent capture of a pure 

vegetation type’s phenology information in some areas since the size of 

agricultural land parcels in Iraq is relatively small. The middle and southern parts 

of the country are mainly flat, irrigated areas which are more managed in terms 

of planting and harvesting, which may reduce the effect of elevation on 

vegetation phenological variation.  

 

3.5 Conclusion 

For the first time LSP parameters of terrestrial vegetation were mapped across 

Iraq at a spatial resolution of 250 m. The aim was to identify and map the 

spatiotemporal variation in LSP parameters such as SOS, LOS and EOS across the 

country between 2001 and 2012, and to explore their relation with elevation. The 

median vegetation phenology (SOS, EOS and LOS) was mapped for different 

vegetation types during 2001-2012.  

This study quantified the spatial variation in LSP across the whole of Iraq for all 

vegetation types, thus, providing an important example of mapping vegetation 

phenology in a semi-arid environment, for which previous research has been 

relatively lacking. Linear regression analysis revealed that elevation was positively 
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correlated with all LSP parameters particularly EOS (R
2

=0.685, R
2

=0.638 and 

R
2

=0.588, p<0.05 in shrubland, cropland and grassland, respectively). In contrast, 

in most case studies in Europe the correlation coefficient between EOS and 

elevation was negative due to the effect of low temperature at high elevations as 

a driving factor in bringing the season to an early end. In Iraq, raising the 

elevation by 500 m leads to a delay in EOS by around 22 or more days in all 

vegetation types because conversely high temperature is the limiting factor 

bringing the season to an end. The results of this investigation also indicate that 

the relative lowland in the north of the country (mostly croplands and shrublands) 

exhibited the greatest variability in terms of SOS during the last decade with a 

STD of around 80 to 120 days, due mainly to the practice of crop rotation and the 

traditional biennial cropping system. However, importantly, the variation in EOS 

was very small, indicating an extremely consistent EOS across Iraq, implicating 

the effect of high temperature, overwhelming other factors. So, while elevation 

delays the EOS by postponing the approach of high, limiting temperatures, this 

effect is applied in a highly consistent manner across years.  

The research has several practical applications. Firstly, knowledge of the spatial 

distribution of the timing of vegetation phenology events, in particular in the 

agricultural regions of Iraq, can be useful for agricultural management practices. 

For example, the timing of fertiliser application can be targeted for a few weeks 

after the start of the season. Secondly, the variation in vegetation phenology 

information from the current study can be used as a surrogate for identifying 

areas of changing land cover or agricultural practices during the last decade. As 

different land cover types have distinct phenological characteristics, changes in 

land cover result in a large amount of variability (large standard deviation) in the 

mapped phenological variables during the period.  

It is recommended that future research should focus on the use of vegetation 

phenology to classify land cover directly, and exploring the relations between 

inter-annual phenological changes and climate changes in Iraq.  
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 Decadal vegetation land cover 

monitoring in Iraq based on satellite derived 

phenological parameters  

4.1 Introduction 

Monitoring crop area and crop condition, and the resulting yield, provides crucial 

information for ensuring food security (FAO 2012; Tilman 2001). Rapid 

population growth has resulted in increased global and regional demand for food 

production. At the same time, the effects of climate change, pests, and disease 

have added further pressures on the food production system to meet this rising 

demand. Although increases in food production have been achieved by increasing 

the area of land under agriculture over the last few decades, this has resulted in 

negative impacts on the environment and ecosystems. For example, Tilman et al. 

2011 found an increase in the demand for crops commensurate to increases in 

the real income per capita since 1960 and this relationship forecasts a 100-110% 

increase in global crop demand from 2005 to 2050. The research also indicated 

that if current trends of greater agricultural intensification and extensification 

continue, ~1 billion ha of land might be cleared globally by 2050, with CO2-C 

equivalent greenhouse gas emissions reaching ~3Gt y
-1

 and N use ~250 Mt y
-1

. 

Many studies also highlighted the danger of land use/land cover (LULC) change 

driven by cropland expansion at the expense of other land cover types (such as 

loss of biodiversity and modification to the biogeochemical cycle), (Sitch et al. 

2005; Brink and Eva 2009; Pongratz et al. 2009; Akinyemi 2013; Matinfar et al. 

2013). Therefore, accurate information on LULC and its change over time is an 

essential requirement for national and international agencies for policy 

formulation. This information is even more important in areas affected by 

climate, environmental or socio-political changes. 

 

 

 

 

2
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Primary information of importance in various application areas such as food 

insecurity, climate change impacts and agricultural management can be obtained 

directly/indirectly from land cover maps (Running et al. 1994; Wardlow and 

Egbert 2008; Ran et al. 2012; Potgieter et al. 2013). The environmental modelling 

community could benefit from accurate maps of the spatial distribution of 

croplands and natural vegetation to better parameterize biogeochemical (Burke et 

al. 1991; Low et al. 2013), crop yield and water demand models Kastens et al. 

2005). Furthermore, updated annual land cover maps can be utilized by policy 

makers and scientists to improve regional scale agricultural management 

practices under a variety of environmental problems.  

This chapter focuses on the use of time-series remotely sensed information for 

the classification of cropland area in arid and semi-arid regions, using Iraq as an 

example. In Iraq, there is no reliable system for predicting cropland distribution 

and area, and forecasting yield, and the official Iraqi government statistics may be 

unreliable (USDA FAS 2008). Therefore, farmers and policy makers alike require 

accurate classified land cover maps, particularly for croplands. In future, 

quantifying cropland area could be essential to forecasting regional crop yield. 

Iraq has been subjected to major natural and anthropogenic disturbances such as 

drought and war during the last two decades. These factors together with an 

unsustainable agricultural policy have led to exploitation of Iraq’s agricultural 

lands with frequent changes in crop area and cropping types. For instance, the 

impact of three decades of nearly continuous war and instability on the central 

cultivated area was assessed using Landsat data and the results revealed a 20% 

reduction in area during the Post-Gulf War period compared to the sanction 

period (Gibson et al. 2012). Other estimates revealed an annual degradation of 

around 40000 ha in arable land due to salinization, desertification, improper 

management and implementation of traditional irrigation systems (National 

development plan 2010). However, currently there is no reliable map of cropland 

area across the country and it has been demonstrated that the official Iraqi 

government statistics are likely to be unreliable (USDA FAS 2008). Therefore, a 

rapid agriculture monitoring system is required to provide accurate and up-to-

date information to national policy makers. 

Over the past decade, research on land cover classification has included the use 

of vegetation phenological information to differentiate between land cover types. 

In particular, land surface phenology (LSP) as observed by satellite sensors 

provides the potential opportunity to map vegetated land cover at regional-to-
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global scales by identifying their distinct phenological characteristics (Lupo et al. 

2007; Newstrom et al. 1994; Gu et al. 2010; Clerici et al. 2012). For example, to 

exploit information related to the phenological variability of different land cover 

types, the global MODIS land cover map employed around 135 features including 

annual metrics (minimum, maximum and mean values) of the enhanced 

vegetation index (EVI), land surface temperature (LST) and nadir BRDF-adjusted 

reflectance (NBAR) as inputs to classify global land cover (Freidl et al. 2010). It is 

also claimed that phenology-based classifications, which are based on analysis of 

time-series data, can produce more accurate classifications compared to 

traditional methods. First, at different phenological stages, time-series data can 

provide more discriminatory information, compared to single date image (Key et 

al. 2001; Singh and Glenn 2009). Second, multi-temporal data may increase the 

quality of data as the Sun angle changes with the seasons, which affects surface 

reflectance Song and Woodcock 2003). Lastly, time-series data have the potential 

to provide a larger number of predictor variables which can be exploited by 

machine learning approaches with the potential to provide more accurate and 

more robust classification (Pal and Mather 2005; Ham et al. 2005). For instance, a 

phenology-based approach to identify crop types, using phenological parameters 

from MODIS-NDVI, was compared to the traditional maximum-likelihood 

classification, revealing the advantages of the former approach (Zhong et al. 

2011). Furthermore, the time-series MODIS-NDVI data were employed to estimate 

key phenological parameters to discriminate crop types and their areas over 

northern China (Zhang et al. 2008). A large coefficient of determination was 

found between areas estimated by MODIS and statistics at the county level. 

Besides the difficulties in discriminating cultivated and non-cultivated areas in the 

arid and semi-arid regions of northern Asia due to their similar seasonal changes, 

Enkhzaya and Tateishi (2011) claimed that several phenological parameters 

estimated from MODIS-NDVI could be used to differentiate cultivated area in 

these regions efficiently. 

The complexity of land covers often means that LULC classification remains a 

challenging task. Numerous classification algorithms have been applied to solve 

complex classification problems for LULC monitoring (Wilkinson 2005; Lu and 

Weng 2007). These techniques range from unsupervised algorithms (e.g., 

Vogelmann et al. 1998) to supervised algorithms such as maximum likelihood 

(e.g., Dean and Smith 2003) and machine learning, non-parametric algorithms. 

Unlike parametric algorithms, non-parametric algorithms do not require the data 

to have a specific statistical distribution. In addition, the advantages of machine 



 

80 

learning classification algorithms over traditional classification algorithms have 

been demonstrated in many studies, particularly when the ground cover is 

complex and different statistical distributions exist (Paola and Schowengerdt 

1995; Mas and Flores 2008; Mountrakis et al. 2011; Batistella et al. 2012; Wang 

et al. 2014). Furthermore, the incorporation of machine learning methods in 

remote sensing-based classification has increased for various reasons including: 

their ability to learn complex patterns, mostly non-linear; their ability to handle 

incomplete or noisy data due to their high generalisation capacity; and their 

independence with respect to the data statistical distribution, which makes it easy 

to deal with data from various sources (Mas and Flores 2008; Rogan et al. 2008; 

Mountrakis et al. 2011; Shao and Lunetta 2012). 

The support vector machine (SVM) classifier, which has been utilized in many 

studies for the classification of remotely sensed data (Rodriguez-Galiano and M. 

Chica-Rivas 2012; Jia et al. 2012; Duro et al. 2012), was employed in this study. 

Initially, the SVM was developed by Cortes and Vapnik (Cortes and Vapnik 1995), 

and a detailed description of the SVM method is given by Burges (1998). 

Comparative studies have been conducted previously to examine the relative 

performance of different classification algorithms including the SVM. For 

instance, thematic mapping accuracies were compared using four classification 

algorithms: decision trees, (three-layer backpropagation) neural networks, 

maximum-likelihood and SVM classifiers (Huang et al. 2002). In general, the 

accuracy of the SVM was greater than the other three classifiers. Recently Shao 

and Lunetta (2012) examined the ability of the SVM classifier in terms of training 

sample size, landscape homogeneity (purity) and sample variability using MODIS 

time-series data. In this research, the SVM was compared to nonparametric 

classification algorithms: the multi-layer perceptron neural network and 

classification and regression trees (CART). 

There have been limited studies of phenology-based classification in arid and 

semi-arid environments in the subtropical regions. Vegetation phenology in these 

regions is driven mainly by the availability of rainfall, whereas in northern high 

latitudes vegetation phenology is driven mainly by temperature. Due to their 

similar spectral and phenological characteristics, accurate discrimination between 

croplands and natural vegetation is challenging in these environments. In 

addition, regular changes in agricultural area, particularly croplands, increase the 

complexity of the task. Therefore, the current research aimed to develop and 

apply a phenology-based classification approach for the assessment of dominant 
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vegetation land cover types (VLC) in Iraq, particularly croplands from 2002 to 

2012. 

4.2 Methods 

 Study area 

Iraq has a total surface area of 438,320 km
2

 of which around 77.7% is not viable 

for agriculture in its current condition (UNEP 2007) ((Figure 4.1). Of the remaining 

22%, around half is used for marginal agriculture and seasonal grazing. Recent 

political instability, soil degradation, and the practice of leaving land fallow has 

led to further reductions in the area of land suitable for agriculture (FAO 2012). 

Climatologically, Iraq is described as having a subtropical continental climate with 

an extreme, hot summer with no rainfall, and a short, cool winter (FAO 2011). 

Precipitation is highly seasonal and more than 90% occurs between November and 

April. The north and northeast parts have the largest range of rainfall (1200 mm) 

with less than 100 mm over the majority of the south, and an average of about 

2016 mm over the entire region (FAO 2008). Altitudinal variation drives the 

rainfall considerably from north to south. 

Generally, Iraq can be divided into two agro-ecological-zones in terms of crop 

area; the north is mostly rain-fed and the central and southern parts are mainly 

irrigated (FAO 2003). The area under cultivated crops, including cereals, 

vegetables and pulses, is estimated to be around 3.5 to 4 million ha, of which 

wheat and barley account for 70% to 85% of the cropland in any given year 

(Schnepf 2004; Gibson et al. 2012). Due to a recent proliferation of plant disease 

and pests, mono-cropping is practiced more commonly over the country. In terms 

of the crop calendar, winter wheat and barley are planted in autumn (mainly 

October-November) and harvested in the late spring (April-June) in accordance 

with the rainfall pattern, whereas irrigated summer crops such as sorghum, corn, 

millet and rice are planted in April-May and harvested in September-October, 

depending on the crop type (Schnepf 2004; FAO 2011). 
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Figure 4-1 Map of the study area. The country is composed of 18 governorates. 

 

 Data pre-processing 

A time-series of 8-day composites of the MODIS land surface reflectance level-3 

data product, with a spatial resolution of 250 m (MOD09Q1 V5) from 2002 to 

2013, was used to analyse seasonal phenological features. The data were 

downloaded from NASA’s Land Processes Distributed Active Archive Centre (LP 

DAAC) (NASA LP DAAC 2013). The information in the QA layer in the MOD09Q1 

product was used to remove contaminated pixels due to sensor effects such as 

different orbits, adjacency, band quality, and MODLAND QA, and non-sensor 

effects such as cloud state and atmospheric noise. Then, for each time step 

(compositing period) the NDVI was calculated from the near infrared (NIR) and red 

surface reflectance. Although, MODIS has a NDVI product, the VLC classification 

used NDVI calculated from the MODIS land surface reflectance as it has a finer 

temporal resolution (8-day).  
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Global MODIS land cover maps (MCD12Q1) at a spatial resolution of 500 m from 

2002 to 2012 were acquired from NASA’s LP DAAC (NASA LP DAAC 2013) for 

comparison with the annual VLC classification. Currently, the global MODIS land 

cover map is the only annual-based land cover map for the country with a 

hierarchical thematic class legend consisting of 17 classes, of which 11 belong to 

natural vegetation, three are developed classes and the rest are non-vegetation 

classes. After extracting the country’s land cover types, it was apparent that 

cropland, shrubland and grassland are the dominant land cover types over the 

country. 

Elevation was considered as an input to the VLC classification. The elevation data 

for Iraq were extracted from the Shuttle Radar Topography Mission (SRTM) (Jarvis 

et al. 2008), and to be compatible, the nearest neighbour method was used to 

resample the elevation data to the spatial resolution of MODIS land surface 

reflectance (250 m). Historical agricultural activities, including a yearly 

agricultural statistical record, have been managed through agricultural directors 

at the governorate level (Abi-Ghanem 2009). Therefore, official government 

statistics on land use, area and other agricultural activities are aggregated to the 

governorate level [58]. For the purpose of comparison, the current study 

employed the area of wheat and barley, as they are the major crops for the first 

season over the country, from 2002 to 2012 at the governorate level (COSIT 

2011). 

 

 Estimation of Phenological Parameters and Elevation 

The methodology for estimating LSP parameters can be divided into four main 

steps: (i) moving average window to remove drop outs, (ii) linear interpolation for 

gap filling, (iii) data smoothing and (iv) LSP parameter estimation. For the purpose 

of data smoothing, the current study used Fourier-based smoothing due to its 

minimal requirement for user interaction and because it has been used widely in 

different regional-to-global studies (Cihlar et al. 1997; Atkinson et al. 2012). The 

inflection point method was also employed for LSP parameter estimation, due to 

its easy implementation and the ability to discriminate multiple growing seasons 

for different land cover types such as crops (Reed et al. 1994). In this process, the 

start of season (SOS), end of season (EOS) and length of season (LOS) were 
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estimated per pixel, on an annual basis (the detailed methodology was given in 

Qader et al. 2015). 

Based on these basic parameters, several secondary parameters were estimated 

from the vegetation phenological pattern to provide additional information for 

discriminating the vegetation types over the country. In this regard, parameters 

such as maximum NDVI (max-NDVI), time maximum NDVI (Tmax-NDVI), 75% 

maximum NDVI (75% max-NDVI), time 75% pre-maximum NDVI (TPRmax-NDVI), 

time 75% post-maximum NDVI (TPOmax-NDVI), cumulative NDVI, average NDVI 

(cumulative NDVI/TD3), time difference between max-NDVI, time difference 

between TPOmax-NDVI and SOS (TD1 and TD2), time difference between 

TPOmax-NDVI and TPRmax-NDVI (TD3) and time difference between EOS and SOS 

(LOS) were also estimated from the NDVI time-series profile for each pixel, per 

season (only season one) ((Figure 4.2). 

 

Figure 4-2 Schematic representation of the various phenological parameters 

estimated in this research. The acronyms are: max-NDVI (maximum NDVI), 75% 

max-NDVI (75% of maximum NDVI), Tmax-NDVI (time of maximum NNDI), 

TPRmax-NDVI (time of 75% premaximum NDVI), TPOmax-NDVI (time of 75% 

postmaximum NDVI), SOS (start of the season), EOS (end of the season), LOS 

(length of the season), TD1 (time difference between Tmax- NDVI and SOS), TD2 

(time difference between TPOmax-NDVI and SOS), and TD3 (time difference 

between TPOmax-NDVI and TPRmax-NDVI). 
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The parameters can be categorised as belonging to either the NDVI temporal 

profile or the timing of the phenological events. Maximum NDVI, which provides 

an index of the greenness of the vegetation at the time of optimum greenness, 

can be used as a differentiating variable among vegetation types, as mostly crops 

have the largest value, followed by grasses and shrubs, respectively. The 75% 

max-NDVI is located around peak growth, and can be used as a means of 

classifying vegetation types as crop phenology has a steep slope when 

approaching the maximum compared to natural vegetation. Average NDVI, 

indicates the overall greenness while cumulative NDVI indicates the total 

greenness: both are employed because they are larger in crops compared to 

grasses and shrubs. Relative parameters such as TD1, TD2, TD3 and LOS were 

also incorporated. These parameters could be beneficial as different vegetation 

type’s exhibit differences in completing their growing seasons. Apart from the 

vegetation phenological parameters, elevation was incorporated as an input 

variable because the region has high altitudinal variation from north to south, 

which is likely to be a strong influence on the country’s land cover distribution 

(e.g., as a surrogate for the direct influences of temperature and precipitation) 

(Qader et al. 2015). 

 Ground reference data collection 

Two independent reference datasets were obtained. The first dataset was derived 

using the fine spatial resolution image layer in Google Earth, including on-screen 

identification of broad vegetation phenological stages of various vegetation types. 

To obtain this dataset, a grid with spacing equivalent to a pixel of MOD9AQ1 was 

overlaid and grid locations with a nearly 100% coverage for the dominant classes 

(i.e. cropland, shrubland, grassland) were selected as training sites. In total, 

around 500 samples per year (2003 and 2006) were acquired randomly, in which 

250 samples were cropland, 150 samples were shrubland and 100 samples were 

grassland.  

The second dataset was obtained via fieldwork conducted in spring 2013, mainly 

in the Kurdistan region (Sulaimani, Erbil and Duhok), and excluding the remainder 

of Iraq due to security restrictions. In total, 104 samples were obtained during 

the fieldwork, of which 59 samples were cropland and 45 samples were natural 

vegetation (Figure 4.3a). The samples were taken in homogeneous areas of 

vegetation classes and these patches were larger than the spatial resolution of 

the dataset (250 m). Information on the area and height of vegetation types, 
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along with a field photo per sample, was obtained at each location (Figure 4.3b). 

In addition, coordinates were also recorded for each sample with a global 

positioning system (GPS) handheld receiver unit (e-Trex German International Inc) 

with greater than 12 m accuracy.  

 

Figure 4-3 Distribution of fieldwork samples over the northern Iraq region, of 

which 59 sample sites were cropland and 45 sample sites were natural 

vegetation. (b) Example photographs of crops and natural vegetation in April 

2013. 

 Classification 

The SVM classifier has the ability to find the optimal non-linear separating 

boundary (hyperplane) between classes. The samples located on or close to the 

hyperplane are known as support vectors where the separability is very low. It 

may be apparent that there is no ideal solution if the data cannot be separated 

without error. Therefore, a penalty value C for misclassification errors is 

introduced (Huang et al. 2002). The adjustment between the complexity of SVMs 

and the number of separable examples is controlled by C. If the linear approach 

is not sufficient, non-linear transformation (via kernels) of the feature space into a 

higher dimensional space (called a Hilbert space) is undertaken, where the data 

are linearly separable (Muller et al. 2001). 
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This research employed the radial basis function (RBF) type of SVM where several 

parameters need to be optimized. The optimization of these parameters has to be 

sufficient to obtain generalizable models; therefore, care needs to be exercised to 

not over-fit or under-fit the data. For constructing the SVM model, the cost 

parameter (C) was explored between 0.1 and 100, at 0.1 intervals, and the 

gamma parameter between 0.05 and 1, at 0.05 intervals.  

For the fine spatial resolution data from Google Earth (500 samples per year; 

2003 and 2006), around 375 samples were assigned randomly for training the 

classification model and the rest were used for validation (see section 2.6). Then, 

a trained SVM classifier in 2003 was applied to predict the dominant VLC types in 

2002, 2003 and 2004, and the trained SVM classifier in 2006 was applied to 

predict for the remaining years. The 2013 predicted dominant VLC types are not 

shown as the corresponding ground reference statistical data were not available 

during this research. 

 Accuracy assessment 

Accuracy assessment of the VLC classification maps was conducted based on 

independent datasets obtained from (i) fine spatial resolution imagery from 

Google Earth and (ii) fieldwork data. A confusion matrix was constructed for both 

datasets to assess the overall accuracy of the predicted VLC classes and the 

Kappa coefficient per class. For the purpose of accuracy assessment using the 

fieldwork data, all natural vegetation classes were combined into one class, as the 

reference samples separated only cropland and natural vegetation, and the 

assessment was conducted for the northern region of Iraq (Kurdistan region). In 

addition, to further evaluate the accuracy, the cropland area predicted from the 

VLC classification at governorate level for each year was compared with estimates 

obtained from (i) official statistics on cropland area (COSIT 2011) and (ii) global 

MODIS land cover types. In this regard, linear regression was applied to show the 

agreement between the crop area estimated from the VLC classification and the 

official statistics and the global MODIS land cover types at the governorate level 

(18 governorates) from 2002 to 2012. A flowchart illustrating the research 

methodology is given in Figure 4.4. 
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 Figure 4-4 Schematic diagram representing the processing steps undertaken in 

this research. 

 

4.3 Results 

 Vegetation phenological patterns 

Figure 4.5 (a, b and c) gives typical phenological patterns, as depicted by NDVI 

time-series, for three dominant vegetation land cover types (cropland, grassland 

and shrubland) in Iraq. In general, the NDVI values for the cropland vegetation 

type are higher compared to grassland and shrubland. For cropland, there is a 

sharp increase in NDVI value in January (SOS), a peak at the beginning of April 

followed by a decrease in NDVI, which reaches a minimum by the beginning of 

July (EOS) (Figure 4.5a). Grassland is generally found in the rain-fed area and its 

phenology is controlled by the availability of rainfall. The grassland vegetation 

type, shown in Figure 4.5b, also has a relatively well defined phenological 

pattern, particularly in the area where it mixed with sparsely distributed oak 

trees. Generally, grassland has a late start of the growing season compared to 

other vegetation types, a less sharp increase in NDVI values from February (SOS), 
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a peak during May, and a subsequent decrease which reaches a minimum by the 

end of August (EOS). Shrubland vegetation exhibits an early SOS around 

November, a peak during the end of February and a decrease which reaches a 

minimum by the end of May. 

It is apparent from Figure 4.5 that there are marked differences in these selected 

parameters between the vegetation types. Figure 4.5 (d) illustrates the differences 

amongst the vegetation types in terms of the 75% of maximum NDVI, where it is 

apparent that cropland has the largest range compared to grassland and 

shrubland. In general, cropland has the largest value of maximum NDVI which 

can be used as one of the parameters to separate vegetation types over the 

region (Figure 4.5e). In addition, the average NDVI parameter across the growing 

season also provides a good separability between the three classes of interest 

with the largest value belongs to cropland then grassland and shrubland (Figure 

4.5f).  Furthermore, these differences in parameters for three land cover types 

were statistically significance (p<0.05). 

 

Figure 4-5 Examples of representative MODIS NDVI time-series for the dominant 

VLC types that have been classified for the study area: (a) cropland; (b) grassland; 

and (c) shrubland. Ten pure pixels were selected for each land cover type. The 

bold line represents the Median and the dotted envelopes represent the 

interquartile range (first and third quartiles). Differences among cropland, 

grassland, and shrubland classes for selected three parameters used in 

classification: (d) 75% of maximum NDVI; (e) maximum NDVI; and (f) average 

NDVI. Each box embodies the first and third quartile. The bold horizontal line 
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represents the median, whiskers are situated at the maximum and minimum of 

each group, and white points denote outliers. 

 Spatial distribution of VLC type in Iraq during 2002-

2012 

The annual maps of the dominant VLC classes for Iraq from 2002 to 2012 are 

presented in Figure 4.6. Three distinct types of vegetated area were predicted 

based on phenological information as well as another class which represents 

mainly non-vegetated area (or lacked a clear phenological pattern). It is clear from 

Figure 4.6 that the dominant VLC classes are cropland, shrubland and grassland. 

Grassland occupies mainly the higher altitudes, particularly in the north and the 

north-east border. Regular precipitation in the areas occupied by grasslands 

made this class appear more consistently, inter-annually compared to other VLC 

classes during the period. Shrubland can be seen commonly amongst the 

cropland (at low elevation) and may exist also in some areas of unplanted 

cropland where the traditional biennial cropping system is practiced. Rain-fed 

croplands are limited in distribution by climate variability and slope. However, 

accessibility to water from the main rivers (Tigris and Euphrates) together with 

other conditions such as salinization act as the main drivers of the extension of 

croplands in the middle and southern parts of Iraq. However, the existence of 

many phenological similarities makes it difficult to divide croplands into rain-fed 

and irrigated areas at this spatial resolution, and this is not attempted here. 
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Figure 4-6 Annual maps of the dominant VLC classes for Iraq from 2002 to 2012. 

(OPD=out of phenological detection). 

Winter croplands in Iraq are estimated to cover around 2.5 to 3.5 Mha annually in 

normal years (UNEP 2007), and the current VLC classification also predicted 

within that range (Figure 4.7). An average year constitutes 2.8 Mha of cropland, 

7.16 Mha of shrubland and 2.01 Mha of grassland in Iraq. A significant decrease 

in all vegetation types (except shrubland) was observed in 2008 and this is 
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associated with a severe drought affecting most part of the country (USDA FAS 

2008; Abi-Ghanem et al. 2009). The overall spatial pattern in the VLC classes 

accords with expectations, showing that dense grassland occurs in the high 

altitude, high relief northern part of Iraq, whereas areas with generally lower relief 

and the alluvial plains alongside rivers are occupied mostly by cropland and 

shrubland. 

 

Figure 4-7 Dominant VLC types predicted by SVM classification shown against 

official statistics on harvested cropland of Iraq from 2002 to 2012. 

 

 Accuracy assessment using fine spatial resolution 

The overall accuracies estimated using Google Earth fine spatial resolution 

imagery for 2003 and 2006 were 93.55% and 91.06%, with Kappa coefficients of 

0.901 and 0.864, respectively (Table 4.1). Producer’s and user’s accuracies of the 

individual categories were consistently high with relatively higher Kappa 

coefficients per class (Table 4.1). The cropland class had larger errors of omission 

(0.096) than the shrubland and grassland classes, which suggests some 

difficulties in differentiating this class from natural vegetation. Most misclassified 

croplands were mixed pixels located in the borders of agricultural areas in the 

lowlands. These areas are more challenging to classify accurately due to similar 

phenological response or an integrated spectral response from multiple VLC 

types. Consequently, this could be the reason for the relatively high commission 

error (0.120) of grassland compared to cropland and shrubland. 
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Table 4.1 Confusion matrix obtained using fine spatial resolution Google Earth 

imagery for cropland, grassland and shrubland in 2003 and 2006.  

 Confusion Matrix  2003 

Overall Accuracy 93.55% 

Kappa Coefficient 0.9015 

Class 

Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 

Omission 

error 

Commission 

error 

Kappa 

Coefficient 

Croplands 90.38 95.52 0.096 0.040 0.84 

Grasslands 96.67 87.88 0.033 0.120 0.95 

Shrubland 95.24 95.24 0.047 0.047 0.93 

 

Confusion Matrix  2006 

Overall Accuracy 91.06 % 

Kappa Coefficient 0.864 

Class 

Producer 

Accuracy 

(%) 

User 

Accuracy 

(%) 

Omission 

error 

Commission 

error 

Kappa 

Coefficient 

Croplands 86 93.48 0.140 0.065 0.78 

Grasslands 90.63 93.55 0.093 0.064 0.87 

Shrubland 97.56 86.96 0.024 0.130 0.96 

 

 Accuracy assessment using field data 

Accuracy assessment using field reference data for cropland and natural 

vegetation in the northern part of the country is shown in Table 4.2 for 2013. The 

overall accuracy for the northern region map for 2013 was 88.46%, with a Kappa 

coefficient of 0.80 (Table 4.2). User’s and Producer’s accuracies were generally 

greater than 85%, with a Kappa coefficient of 0.86 for cropland and 0.70 for 

natural vegetation. The source of high omission error (0.200) in the natural 

vegetation class might arise from confusion when discriminating this VLC type 

from cropland due to their relatively similar phenological patterns. The classified 

map and distribution of the fieldwork data are shown in Figure 4.8. 
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Table 4.2 Confusion matrix obtained using fieldwork data in 2013 for the 

northern region of Iraq (Kurdistan). 

Confusion Matrix  2013  

Overall Accuracy 88.46 %  

Kappa Coefficient 0.80  

Class 

Producer 

Accuracy 

 (%) 

User 

Accuracy 

(%) 

Omission 

error 

Commission 

error 

Kappa 

Coefficient 

Croplands 94.92 86.15 0.050 0.138 0.86 

Natural vegetation 80 92.31 0.200 0.076 0.70 

 

 

Figure 4-8 (a) Classified land covers types in 2013 for the northern region of Iraq 

(Kurdistan), (b) the distribution of fieldwork points over the northern region of 

Iraq (Kurdistan) in 2013. 

 

 

 



 

95 

 Comparison between predicted VLC cropland, the 

global MODIS land cover cropland, and official government 

statistical data. 

The VLC cropland and the global MODIS cropland predictions were compared to 

the governorate crop reference data to evaluate their agreement over last 12 

years at the governorate level (18 governorates) (Fig. 8). Overall, the predicted 

VLC cropland area at the governorate level produced a larger coefficient of 

determination with government statistics than the MODIS cropland map. At 

governorate level, the average coefficient of determination between the VLC 

cropland area and the government statistics over the last 12 years was 0.7 

(p<0.05), whereas it was 0.35 (p<0.05) for the MODIS cropland. The largest 

positive coefficient of determination for the VLC cropland area prediction was for 

2010 (R
2

=0.825, p<0.05). In contrast, the same coefficient of determination in 

2010 for the MODIS cropland area was the smallest (R
2

=0.074, p<0.05). Figure 

4.9 also shows that the coefficient of determination values for the VLC prediction 

were more stable compared to the MODIS cropland area, which fluctuated during 

the period. The smaller coefficient of determination for the MODIS cropland area 

is entirely expected as it is a global product. Indeed, it is this very fact that 

motivated this study. Further, on a regional basis, with Iraq as an example, the 

global MODIS land cover dataset often overestimates cropland area. In summary, 

the coefficient of determination of the predicted VLC cropland area with official 

data supports the methodology developed here based on LSP parameters and 

SVM classification. 
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Figure 4-9 Coefficient of determination between official statistics obtained at the 

governorate level (18 governorates) and 1) the VLC cropland area and 2) the 

MODIS cropland area predictions per year from 2002 to 2012. 

 

4.4 Discussion 

 Interannual stability of phenological parameters  

Traditionally, ground data collected for a given year are used to support 

classification from remote sensing data for the same year. However, it may be 

challenging to collect yearly training data for a study area, especially when 

working on a historical dataset covering last 15 years. Therefore, it could be 

useful if training samples from a given year could be applied to estimate the land 

cover types of other years within a restricted time period (e.g., 4 to 5 years). It 

can also be argued that, since plant developments are broadly correlated with 

environmental conditions, years with similar climatic condition may have similar 

vegetation phenological response. On this basis, the current research trained the 

classifier for a given year using several phenological parameters and applied this 

to other periods. These phenological parameters for a given class may vary inter-

annually based on (both natural and anthropogenic) environmental conditions. 



 

97 

However, within-class variation in these phenological variables is likely to be 

much smaller than the overall variation between classes. 

The relatively high accuracy of the land cover maps produced for most years is an 

indicator of limited inter-annual variation in the phenological parameters for the 

major vegetation types within the study period. However, lower than normal 

rainfall in 2008 and 2009 led to a deviation in the phenological parameters 

compared to the training data and resulted in a lower accuracy. As very few 

acquisition dates were available for the fine spatial resolution Google Earth 

imagery for those drought years, we were unable to train the classifier to take 

into account these conditions. Beside of the phenological parameters, the 

elevation data was incorporated in the current research. This could be explained 

by the fact that elevation can reduce the miss-classification, particularly in 

northern part between cropland and grassland, since the grassland occupies the 

highest altitude area. 

 

 The VLC cropland mapping outperformed the MODIS 

land cover mapping 

The accuracy assessment pointed to the need for a more accurate 

characterisation of croplands in Iraq and demonstrated clearly the need to map 

Iraq’s dominant land covers while global land cover classifications for the country 

already exist. Compared to the global MODIS land cover classification, the current 

VLC classification led to greater potential separability and greater classification 

accuracies for the dominant VLC types, particularly croplands. One interesting 

finding is that the current VLC cropland classification produced a coefficient of 

determination with the official statistical crop data at the governorate level that 

was double that of the global MODIS land cover classification. There are several 

possible explanations for this result. The reason may be mainly because MODIS 

land surface reflectance (MOD09Q1 V5) has a finer spatial resolution (250 m) than 

the MODIS land cover dataset (500 m). This may help to capture more detailed 

phenological characteristics of the VLC types, which, in turn, helps to classify the 

regional dominant VLC types more accurately than the MODIS dataset. The coarse 

spatial resolution of the global MODIS land cover classification may make it 

challenging to estimate Iraq’s land cover types, especially for croplands where the 

average field size is small compared to a 500 m pixel. In addition, in relation to 
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the spatial distribution of the training data used in the MODIS dataset, Iraq might 

be the only country that was actually excluded (Friedl et al. 2010). Most 

importantly, the MODIS land cover dataset is a global product with an overall 

accuracy of 75% (Friedl et al. 2010) with the expectation that the product may not 

be able to provide very accurate agreement at the regional level for some land 

cover types. The findings of the current research support those of Pflugmacher et 

al. (2011) and Acharya and Punia (2013) who reported some disagreements with 

the global MODIS product for some specific land cover types at the local level 

over India and Northern Eurasia. 

 Why use phenological parameters and two years of 

training data? 

Initially, we attempted to classify the VLC types using a classifier trained with only 

a single reference dataset over the entire period, but the accuracies were low. 

This result may be explained by the fact that the region has been subjected to 

many disturbances during the last decade (due to both natural and anthropogenic 

factors) which may affect the phenological response of a pixel. In addition, due to 

its geographical location the region is affected by irregularities in precipitation 

resulting in the frequent occurrence of drought (the most recent one in 2008) 

(Griffin and Kunz 2009; Al-Timimi and Al-Jiboori 2013). The combination of these 

factors makes it challenging to classify the last 11 years of land cover based on 

one trained classifier for the entire period. Therefore, to produce VLC 

classifications for the 11 years of interest, the SVM classifier was trained for two 

years (2003 and 2006) and these models were then applied to classify the 

dominant VLC types for the rest of the period. These two specific years were 

selected for particular reasons that are worth reporting. The primary reason is 

that the majority of the fine spatial resolution imagery in Google Earth across the 

country was available for these two years, which assures that the selected 

samples are assigned to the correct classes (note: in most years, the image 

acquisition dates were not available). In terms of the climatic condition, each year 

has a similar climatic condition with one of the two training years. This 

implementation agrees with the ideas of other studies, in which the classification 

models were trained in a certain year and these used to predict the LULC types of 

a relevant period (Friedl et al. 2010; Hansen et al. 2014). 

Due to its potential to provide high classification accuracy, phenological-based 

classification has been employed in many recent studies (e.g., (Zhong et al. 2011; 
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Zhong at al. 2012; Son et al. 2014; Jianhong et al. 2014; Yan et al. 2015). 

Incorporation of multi-temporal and phenological-based data led to comparable 

or increased accuracies relative to traditional approaches based on spectral 

information alone (Knight et al. 2008; Singh et al. 2009). The phenological-based 

VLC classification approach developed here for the assessment of the dominant 

vegetation land cover types of Iraq, particularly cropland, is commensurate with, 

and adds knowledge to, these studies.  

The distribution of land cover types was consistent with expectations. In addition, 

the annual predictions of cropland area matched well with the official ground 

statistical data. Therefore, it can be said that the VLC classification methodology 

developed here based on SVM classification of phenological parameters can be 

generalizable to other regions with similar environments. 

  

 Change in the spatial distribution of VLC classes over 

the period 

As presented in Figure 4.6, the land cover class distribution differed considerably 

across the country with areas dominated by cropland, grassland and shrubland. 

The most stable land cover during the period was grassland. This class is 

confined entirely to the high altitude region of the country which makes it less 

easily influenced by human activities. This region has a high rainfall rate and a 

more conducive temperature in summer than the remainder of the country, which 

makes this land cover type more resilient to drought and other factors. In 

addition, the sparse distribution of oak trees in grasslands provides some 

stability in the face of unfavourable climatic conditions by controlling the local 

micro climate. In contrast, the intervening valleys are mostly occupied either by 

cropland or shrubland. Surprisingly, the distribution of cropland was found to be 

spatially varied and decreased overall in area during the period. There are several 

possible explanations for this result. Due to excessive salinity, around 2.5 million 

ha of Iraq’s irrigated cropland had become degraded by 1973, and in every 

subsequent year another 6,000 to 12,000 ha were lost to salinization (Schnepf 

2004). Traditionally, a biennial fallow system was practiced over Iraq to recharge 

the depleted soil and reduce the effect of pests and diseases (Schnepf 2004; FAO 

2011). This means that a winter crop of wheat and barley was planted only once 

in every two years. In addition, a lack of inputs of fertilizers and pesticides with 
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poor crop management policy limited cropland planting to every other year. 

Furthermore, natural and anthropogenic factors have also accelerated the 

magnitude of temporal variation in croplands. For example, due to political 

instability and insecurity during the last decade, many farmers were unable to 

grow crops. In addition, the region is regularly subjected to drought and its 

consequences. Therefore, Iraq might have a relatively consistent total annual 

cropland area, but this might vary spatially which can be detected efficiently 

through phenological-based classification. 

Several important limitations need to be considered. The small agricultural field 

size in Iraq compared to the coarse spatial resolution of the data used in this 

study may lead to mixed vegetation types in the area (e.g., where adjacent fields 

are covered by different vegetation types). Thus, some areas may be challenging 

to classify accurately because of a similar phenological response or an integrated 

spectral response from multiple cover types. It is worth noting that regional 

instability and insecurity limited our fieldwork extent to the north of Iraq. Lastly, 

the unreliability of official statistical data also limited the ability to assess the 

accuracy of the classified maps in the current study, although as a function of 

this, the accuracies obtained can be seen as conservative (USDA 2008). 

 

4.5 Conclusion 

Land cover mapping in arid and semi-arid regions is required for a wide range of 

applications, including grand challenges such as agricultural intensification and 

food insecurity. However, land cover maps in arid and semi-arid regions are 

scarce, with a major obstacle to production being the lack of spectral separability 

between classes when observed at a single point in time. A limited number of 

studies have demonstrated the potential of vegetation phenology information for 

land cover classification generally, but until now this has not been applied to arid 

and semi-arid regions. This research demonstrated that vegetation phenology 

estimated from MODIS NDVI time-series at 250 m spatial resolution can provide 

consistent, high accuracy, regional-scale land cover mapping in arid and semi-arid 

countries such as Iraq. The application of Fourier-based smoothing provided 

useful phenological information for each year studied. Despite significant 

limitations on ground data availability due to political instability in the country, 

the results presented here are convincing. The SVM classifier approach produced 
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satisfactory classification accuracies (generally > 85%) among the dominant VLC 

types of Iraq. In terms of regional accuracy assessment and areal agreement with 

ground crop area data, the VLC classification outperformed the global MODIS land 

cover dataset. Correlation of VLC cropland area during the last decade with 

ground statistical data revealed an average coefficient of determination of 0.7 

(p<0.05), whereas the average agreement for the MODIS product cropland class 

was 0.35 (p<0.05). This research also showed that the 2008 drought, the most 

extreme event during the last decade in Iraq, led to a considerable decline in all 

dominant VLC types. VLC instability, particularly for croplands, was evident, most 

likely due to more than a decade of regional instability and natural disasters 

across the country coupled with variable quality agricultural management 

practices. 
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 Forecasting wheat and barley crop 

production in arid and semi-arid regions 

using remotely sensed primary productivity 

and crop phenology: a case study in Iraq 

5.1 Introduction 

At present, 15% of Earth’s population (841 million people) is living in arid and 

semi-arid regions, of which about 524 million live in semi-arid regions (Barakat, 

2009). Rapid population growth (Barakat, 2009) together with rising living 

standards in arid and semi-arid regions imply that more food will be required to 

meet the demands of these populations. This is a major driver of land conversion 

to agricultural and grazing land within these regions (Millennium Ecosystem 

Assessment, 2005). Therefore, crop production forecasting is potentially a crucial 

tool for tackling food insecurity in arid and semi-arid regions. However, this is 

considered one of the most challenging tasks in crop research because of the 

highly variable climate in arid and semi-arid regions. 

In many part of the world, wheat and barley are major grain crops and their 

production influences local food security in the majority of developing countries 

(Macdonald and Hall 1980; FAO 2003a). Vast swathes of agricultural land across 

the world are occupied by wheat and barley. For instance, at the global scale, 

more than 219 Mil and 49 Mil ha (harvested area) were dedicated to growing 

wheat and barley, respectively, of which over 715Mil and 143Mil tonnes of cereal 

were produced in 2013 (FAOSTAT, 2013). Furthermore, wheat and barley play an 

essential role in international trade, and it has been reported that food shortages 

are commonly attributable to a lack of wheat and barley (Mellor, 1972). In both 

developing and developed country contexts, timely and accurate estimation of 

wheat and barley yield and production before harvesting are, therefore, vital at 

different governance levels including regional, national and international levels. 

Such forecasts could increase regional food security, through improved policy 
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setting and local decision-making, as well as playing a crucial role in informing 

international markets (Justic and Becker-Reshef, 2007).  

 In part due to the likelihood of unfavourable climatic events across many arid 

and semi-arid regions around the world, local communities are often food 

insecure and at risk of famine. Weather extremes such as droughts, floods and 

sudden climatic changes can have a direct impact on food production and can 

negatively affect the storage and distribution of food (Haile 2005; Wheeler and 

von Braun 2013). For example, the drought in 2008-2009 caused sizeable 

declines in crop yields, which cost $1-2 billion (USDA FAS, 2008a). In Turkey, 

435,000 farmers were affected while in Iraq total wheat production was reduced 

by 45% compared to the previous year (USDA FAS, 2008a). It was also found that 

increasing aridity and more frequent and intense meteorological droughts are 

projected for many arid to semi-arid regions (Seager et al. 2007). Thus, timely 

crop monitoring and forecasting is crucial to evaluate and quantify the magnitude 

of any shortfall in production and warn policy-makers and local decision-makers 

about the possible consequences. 

Another factor which makes many of the regions in the world food insecure, and 

in particular regions in the Middle East such as Iraq, is political instability and its 

consequences. War and conflict can damage the economy and incomes, disease, 

forced immigration, refugee populations, a collapse of social trust, and severe 

food insecurity (WFP, 2011). Conflict was the main cause of undernourishment in 

more than half of the Middle East countries in the 1990s (FAO, 2003b). There are 

many reasons for this, including economic crises, high food prices, regions of 

political instability and climate change. The main drivers of more than 35% of 

food emergencies from 1992 to 2003 were economic issues and conflict; in 

contrast, this value was 15% in the period between 1986 and 1991 (FAO, 2003a). 

Therefore, timely monitoring and forecasting of crop production is especially 

required in regions where the potential for drought occurs in the context of 

conflict.  

Over the last decade crop production in Iraq has been negatively affected by both 

natural and anthropogenic events. For instance, Iraq was involved in a war ‘Post-

Gulf’ mainly to oppose the previous regime. Due to political instability during the 

war, many farmers either abandoned their land or were unable to grow their 

crops effectively, and this affected overall crop production in the country. In 

addition, due to its geographical location, Iraq is affected by irregularity in 

precipitation resulting in the frequent occurrence of droughts. Both factors have 



 

104 

made the region vulnerable to irregularities in food production. However, the 

impacts of disaster such as drought and war could have been mitigated if 

decision-makers were warned in advance. For example, the NDVI as a surrogate 

of vegetation greenness is used in the Famine Early Warning System Network 

(FEWSNET) as a part of an integrated early warning system for food security (Ross 

et al. 2009). Such early warning systems would be useful to provide early 

monitoring data and forecasts of crop production and yield to local authorities to 

avert regional food shortages.  

A wide range of the techniques to estimate and forecast crop yield have been 

employed during the past decades with different degrees of utility and accuracy. 

Crop yield estimation in many countries still relies on traditional approaches 

based on data collection on the ground and reporting (crop cutting experiments). 

Such data are frequently time consuming, costly and prone to large errors 

because of incomplete ground observations, leading to uncertain crop area 

estimation and crop yield assessment (Reynolds et al. 2000). Delayed availability 

of the data from such traditional approaches delays the ability to make early 

interventions to avoid food shortages, resulting in regional food insecurity. Crop 

yield can also be forecasted through either statistical or agronomic models based 

on historical weather, crop management and crop production data. In some 

countries, weather data have been employed to monitor and forecast crop 

production (Andarzian et al. 2008; Liu and Kogan 2002; Paul et al. 2013; de Wit 

and Boogaard 2001). Missing data, a lack of continuity in weather data and the 

sparse spatial distribution of ground weather stations for a large diverse crop 

area limit the utility of these approaches (Liu and Kogan 2002; Dadhwall and Ray 

2000; de Wit and Boogaard 2001).  

With the development of satellite sensors, there has been increased interest in 

utilizing satellite remote sensing data for crop monitoring and crop production 

forecasting due its ability to provide data synoptically, with greater spatial 

coverage, potentially at the global scale. In addition, remote sensing can provide 

timely (and potentially real-time) and objective data on crop growth at relatively 

low cost. In this regard, the NDVI has a long history of use for monitoring crop 

condition and estimating crop yield (Doraiswamy et al. 2004; Groten, 1993; 

Kastens et al. 2005). Either remote sensing data can be used as an input to crop 

simulation models or remotely sensed biophysical variables measured within-

season can be used as a surrogate of crop production for use in monitoring and 

forecasting. One such approach involves biophysical crop simulation models, 
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which are calibrated and driven through remotely sensed information on crop 

characteristics within-season. Examples of crop simulation models includes World 

Food Studies (WOFOST) (Vandiepen et al. 1989), Simulateur mulTIdisciplinaire 

pour les Cultures Standard (STICS) (Brisson et al. 1998) and Crop Systems 

Simulation (CROPSYST) (Van Evert and Campbell, 1994). These models assimilate 

several factors that affect crop growth and development such as temperature, 

wind, water availability and type of management practice which lead them to be 

capable of capturing soil-environment-plant interactions (Moriondo et al. 2007). 

However, the high computational and data demands of these models makes them 

generally difficult to use in some regions for which data are sparse. In addition, 

their complexity, method of analysis and large number of tuning parameters have 

led them to be impractical, particularly capturing field level information in an 

heterogeneous landscape. 

The most widely used approach to estimate crop yield at the regional scale is 

based on simple regression between a satellite-derived vegetation index within-

season and actual crop yield (Wall et al. 2008). A linear regression model was 

established by Harmmar et al (1996) to estimate wheat and corn yield at the 

county level based on vegetation indices derived from Landsat multispectral 

scanner system (MSS) data in Hungary. Similarly, a relatively large coefficient of 

determination between wheat yield and NDVI integrated over the entire growing 

season, and with late season NDVI, was observed at the regional and farm scales 

in Montana for the years 1989-1997 (Labus et al. 2002). Ren et al. (2008) found 

the largest coefficient of determination between county level winter wheat 

production and the spatial accumulation of MODIS-NDVI, 40 days ahead of 

harvest time, and the accuracy was within 10% of official statistics in Shandong 

Province, China. NDVI, normalized difference water index (NDWI) and a two-band 

variant of the enhanced vegetation index (EVI2) were employed to predict the US 

crop yield, and showed that including crop phenology-related information 

increased the regression model accuracy (Bolton and Friedl 2013). The study 

indicated that the best dates to predict crop yield were 65-75 days and 80 days 

after the MODIS derived green up for maize and soybean, respectively for the US.  

Because statistical regression-based approaches model the empirical relation 

between a satellite-derived vegetation index and historical yield data, the model is 

typically localized and cannot be generalised to other areas readily (Moriondo et 

al. 2007; Doraiswamy et al. 2003). In addition, if photosynthetic capacity at the 

time of measurement is not the main driver of the eventual crop yield, forecasting 
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may be inaccurate (Becker-Reshef et al. 2010).  However, the low demand for data 

and simplicity of implementation has led to regression being the most widely 

used approach for estimating crop yield. 

There have been limited attempts to monitor and forecast crops in arid and semi-

arid regions based on remote sensing data. Forecasts of crop production and 

yield are needed by policy-makers, the academic community and crop insurance 

companies. In particular, due to population increases, regional instability and 

natural disasters, there is a growing need for micro-level forecasting of crop 

production and yield over Iraq. This forecasting should warn local authorities 

about potential changes in crop production and yield, leading to appropriate 

import and export decisions. Therefore, the current research aims to evaluate the 

potential of MODIS-derived measures of greenness and productivity, and 

information related to the phenology of crops to estimate crop production and 

yield in the arid and semi-arid regions like Iraq. 

5.2 Methods 

 Study area 

Iraq is predominantly an agricultural country, and has long been recognised as 

one of the oldest agricultural countries in the world (Figure 5.1a). For instance, 

according to the Meyers (1997), the village called Jarmo, situated in the Iraqi 

Kurdistan Region, is the oldest known agricultural and pastoral community in the 

world, dated to the seventh millennium (BC), and agriculture was the primary 

economic activity of the people of old Mesopotamia. For example, agriculture 

played a crucial role in the country’s economic activity in the 1920s, but its 

contribution to the gross domestic product (GDP) fell from 42% in 1981 to 18% in 

1990 (Jaradat, 2002). Although the agricultural sector is no longer the most 

significant contributor to the country’s economy, it is a vital component in the 

country’s GDP (Schnepf 2004). The contribution of agriculture in GDP declined 

considerably again during the last few decades due to some unfavourable natural 

and anthropogenic impacts. For example, the contribution of agriculture in GDP 

decreased from around 9% in 2002 to 4% in 2008 (FAO, 2009) mainly due to 

drought. However, this has increased to nearly 12% in 2010 because of some 

improvements in the sector (USAID, 2010). 
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Of 3.5 to 4 million ha cultivated crops, 70% to 85% is dedicated to plant wheat 

and barley in any given year (Schnepf 2004; Gibson et al. 2012). By international 

standards, Iraq has low crop yields. One third of the country’s cereals are 

produced under rain-fed conditions and the remaining cereal production occurs 

within irrigated areas between, and along, the Tigris and Euphrates rivers (FAO 

2008). The climate varies dramatically through the year from very cold winters to 

extremely hot and dry summers. The region has large spatial variability in 

expected rainfall from less than 100 mm year-1 to 1000 mm year-1 (FAO 2008). 

Estimating and forecasting crop production and yield is a key challenge as the 

region is still vulnerable to natural factors that impact the yield and production 

level of major crops. As a result, large inter-annual fluctuations in yield and 

production can be seen. For example, the production of wheat in 2011 was 

around 5.1 MT, whereas less than 2 MT and around 3 MT were recorded in 2008 

and 2009, respectively (COSIT 2011). This fluctuation can be seen largely among 

the governorates with respect to climate, soil, water availability and workforce 

capability. 

 

 

 Figure 5-1 Maps (a) study area and (b) an example of phenology-based 

classification map with spatial resolution of 250 m for 2006 (Qader et al. 2016). 
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 Data and pre-processing 

A time-series of 8-day composites of the MODIS land surface reflectance product 

(MOD09Q1) at 250 m and MOD09A1 at 500 m spatial resolution from 2002 to 

2012 were used to estimate NDVI, EVI, and the seasonal phenological parameters. 

The data were downloaded from NASA’s Land Processes Distributed Active 

Archive Centre (LP DAAC) (https://lpdaac.usgs.gov/data_access). The NDVI has 

been used widely for crop monitoring and the production of agricultural statistics 

(Hatfield and Prueger, 2010; Becker-Reshef et al. 2010; Benedetti and Rossini, 

1993). NDVI tends to saturate at large biomass, whereas EVI has increased 

sensitivity in this region (Huete, 1997). In addition, by incorporating the 

reflectance in the blue band of the electromagnetic spectrum, EVI reduces the 

impact of the soil background and atmosphere (Rocha and Shaver, 2009; Jiang et 

al. 2008; Huete et al. 1997).  For crop yield forecasting, both indices have been 

applied widely (Kouadio and Newlands, 2014; Kogan et al. 2012; Moriondo et al. 

2007; Doraiswamy et al. 2005).   

The information in the quality assurance (QA) layer in the MOD09Q1 and 

MOD09A1 products was used to remove contaminated pixels due to sensor 

effects such as different orbits, adjacency, band quality, and MODLAND QA, and 

non-sensor effects such as cloud state and atmospheric noise (atmospherically 

corrected and clear cloud state). Then, for each time step (compositing period) 

the NDVI and EVI were calculated from the surface reflectance data. A temporal 

moving average window function was applied to correct errors in specific weeks, 

a linear interpolation approach was applied for gap filling, and Fourier 

transformation was used to smooth the data (Dash et al. 2010; Qader et al. 

2015).  

In addition to the vegetation indices, the MODIS Net Primary Productivity (NPP) 

product was also employed as a predictor of crop production and yield. The term 

primary productivity refers to the rate at which light energy is converted to plant 

biomass. The overall converted energy is known as gross primary productivity 

(GPP). The difference between GPP and energy lost during plant respiration is 

called NPP. NPP plays a crucial role in studies of global vegetation changes, 

particularly for global biomass mapping and crop yield estimation (Jianqiang et al. 

2007).  Satellite-derived NPP has been demonstrated to have a large coefficient of 

determination with regional crop production. For example, less than 4% error was 

recorded between forecasted yield and actual yield using NPP extracted from TM 
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images in the Yaqui Valley, Mexico (Lobell et al. 2003). The NPP model was fitted 

to the relation between winter wheat yield and a function of MODIS NPP, and the 

absolute error of estimated yield was 232.7 kg.ha-1 with a relative error of 4.28% 

(Jianqiang et al. 2007).  

NPP (MOD17A3) is an annual product provided from 2002 to 2010 with a spatial 

resolution of 1000 m (https://lpdaac.usgs.gov/data_access). To retain the best 

quality pixels, the information in the QA flag layer was also applied for this 

product (only include pixels falling into the following categories, perennial salt or 

inland fresh water body cover type, perennial snow or ice cover type, permanent 

wetlands/inundated marshland, urban/built up and unclassified pixel) 

(https://lpdaac.usgs.gov/data_access). The product is affected mainly by cloud 

contamination. Valid annual QA values range from 0 to 100; the higher the 

number the more the cloud contamination. 

 Crop statistics data 

For winter wheat and barley, data on the total area planted, total area harvested, 

production and yield from 2002-2012 were obtained from Statistics Iraq (COSIT 

2011). In Iraq, agricultural activities are managed through agricultural directors at 

the governorate level (Abi-Ghanem et al. 2009). Thus, official governorate 

statistics on agricultural activities such as crop yield, production and area are 

aggregated to the governorate level. Iraq consists of 18 governorates (Figure 

5.1a). The crop data were utilized to fit regression models between winter wheat 

and barley production and yield and the predictor variables, including various 

spectral indices derived from MODIS such as NDVI, EVI and NPP at the 

governorate level. 

 

 Crop map 

To allow utilization of MODIS VIs and NPP in crop production and yield 

forecasting, it is necessary to identify the areas under cropping. The crop map for 

the current research is based on previous work (Qader et al. 2016) in which a 

phenology-based classification approach was developed to map annually the 

dominant vegetation land cover types over Iraq such as cropland, grassland and 

shrubland (Figure 5.1b). The approach employed several phenological parameters 

together with elevation data to discriminate the dominant vegetation land cover 
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types using a support vector machine (SVM) classifier. The classification approach 

was assessed using reference data taken from fine spatial resolution Google Earth 

imagery and independent testing data obtained through fieldwork. Overall the 

accuracies were generally >85% with relatively high Kappa coefficients (>86) over 

all the classified land cover types. To be compatible, the nearest neighbour 

method was employed to resample the crop map data (250 m) to the spatial 

resolution of the MODIS EVI (500 m) and MODIS NPP (1000 m). To depict the 

impact of the spatial resolution on spatial correlation between biophysical 

variables and crop production at the governorate level, the NDVI (250m) data was 

up scaled to 500m and 1000m using the nearest neighbour approach to be 

comparable with EVI (500m) and NPP (1000m) data. 

 

 The threshold of indices value utilized to forecast crop 

yield/production 

Several studies indicated that the correlation between final crop production (and 

yield) and VIs changes through the crop growing season (Doraiswamy et al. 2005; 

Ren at al. 2008; Huang et al. 2013). Therefore, using crop phenology can have a 

significant benefit for remote sensing-based crop yield models as crop yields 

change as a function of time throughout the growing season (Mkhabela et al. 

2011; Sakamoto et al. 2013; Bolton and Friedl 2013; Meng et al. 2014). Crop 

phenology varies spatially and inter-annually and, therefore, forecasting of crop 

yield based on a VI at a fixed calendar date is not optimal (Bolton and Friedl 

2013). In the current research, three different approaches were applied to find 

the phenological parameters, which have the optimal correlation with crop 

production and yield at the governorate level in Iraq (Figure 5.2).  

The maximum NDVI and EVI were estimated from the smoothed time-series data, 

which is equal to the peak value for each growing season, and from these 

maxima, seven (8-day) composite values before and after each maximum were 

defined. Using this information, time-series values of NDVI and EVI with an 8-day 

interval, which starts at the seventh 8-day composite before maximum (Maxb7) 

and ends at the seventh 8-day composite after maximum (Maxa7) over the 

growing season were extracted (Figure 5.2). 

Generally, three different types of VIs variables were suggested in the literature to 

correlate with final yield such as the original value (Rojas 2007; Esquerdo et al. 
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2011), integrated value over the growing season (Mkhabela et al. 2005; Wall et al. 

2008; Balaghi et al. 2008) and average value (Boken, Shaykewich 2002; Mkhabela 

et al. 2005). Some studies (e.g. Ren et al. 2008; Becker-Reshef et al. 2010) 

regressed crop production statistics at the county level on spatially-accumulated 

NDVI. Other studies (e.g. Tucker et al. 1980; Rojas, 2007) showed that seasonally 

integrated VIs, could forecast production more accurately than single measures. It 

has also been demonstrated that VIs around the time of maximum have a large 

coefficient of determination with final yield (Tucker et al. 1980; Benedetti and 

Rossini 1993). Therefore, three different approaches were employed in the 

current research: 

1. Approach 1: spatial sum of the single parameter (original value) from 

Maxb7 to Maxa7 at the governorate level (Figure 5.2 and Table 5.1).  

2. Approach 2: cumulative, integrated spatial sum of the parameters from 

Maxb7 to Maxa7 over the growing season (Figure 5.2 and Table 5.1).  

3. Approach 3: integrated spatial sum of the vegetation indices for four 

composite periods before and four composite periods after the maximum 

value (Figure 5.2 and Table 5.1). 
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 Figure 5-2 The proposed three approaches to determine the phenological 

parameters which have the largest coefficient of determination with crop 

production or yield at the governorate level. 

The three algorithms search during the growing season to find the time of the 

phenological event that has the largest coefficient of determination with crop 

production or yield at the governorate level. The description of VIs, NDVI as an 

example, and their calculation are presented in Table 5.1. However, as NPP is an 

annual product, only one spatial sum NPP value can be correlated with crop 

production or yield at the governorate level. The main purpose of applying three 

different approaches is to determine which indices and phenological parameters 

can estimate crop production or yield most accurately in advance. 

 

 

 

Table 5.1 Description of the employed variables, equations, and NDVI as an 

example. 
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NDVI 

variables 
Description of equations 

 Approach one Approach two Approach three 

NDVImaxb7 

The seventh 8-day 

composite before 

NDVImax 

NDVImaxb7 NDVImaxb7   

NDVImaxb6 

The sixth 8-day 

composite before 

NDVImax 

NDVImaxb7-b6 (NDVImaxb7+ NDVImaxb6)   

NDVImaxb5 

The fifth 8-day 

composite before 

NDVImax 

NDVImaxb7-b5 
(NDVImaxb7+ NDVImaxb6+ 
NDVImaxb5) 

  

NDVImaxb4 

The fourth 8-day 

composite before 

NDVImax 

NDVImaxb7-b4 
(NDVImaxb7+ NDVImaxb6+ 
NDVImaxb5+ NDVImaxb4) 

NDVImax-b4 

(NDVImax+ NDVImaxb1+ 

NDVImaxb2+ NDVImaxb3+ 

NDVImaxb4) 

NDVImaxb3 

The third 8-day 

composite before 

NDVImax 

NDVImaxb7-b3 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb5+ 

NDVImaxb3) 

NDVImax-b3 
(NDVImax+ NDVImaxb1+ 

NDVImaxb2+ NDVImaxb3) 

NDVImaxb2 

The second 8-day 

composite before 

NDVImaxc 

NDVImaxb7-b2 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb4+ 

NDVImaxb3+ NDVImaxb2) 

NDVImax-b2 
(NDVImax+ NDVImaxb1+ 
NDVImaxb2) 

NDVImaxb1 
The first 8-day 
composite before 

NDVImax 

NDVImaxb7-b1 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb4+ 

NDVImaxb3+ NDVImaxb2+ 
NDVImaxb1) 

NDVImax-b1 (NDVImax+ NDVImaxb1) 

NDVImax Maximum NDVI 
NDVImaxb7-

max 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb4+ 
NDVImaxb3+ NDVImaxb2+ 

NDVImaxb1+ NDVImax) 

NDVImax NDVImax 

NDVImaxa1 

The first 8-day 

composite after 

NDVImax 

NDVImaxb7-a1 

(NDVImaxb7+ NDVImaxb6+ 
NDVImaxb5+ NDVImaxb4+ 

NDVImaxb3+ NDVImaxb2+ 

NDVImaxb1+ NDVImax+ 
NDVImaxa1) 

NDVImax-a1 (NDVImax+ NDVImaxa1) 

NDVImaxa2 
The second 8-day 
composite after 

NDVImaxc 

NDVImaxb7-a2 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb4+ 
NDVImaxb3+ NDVImaxb2+ 

NDVImaxb1+ NDVImax+ 

NDVImaxa1+ NDVImaxa2) 

NDVImax-a2 
(NDVImax+ NDVImaxa1+ 

NDVImaxa2) 

NDVImaxa3 

The third 8-day 

composite after 

NDVImax 

NDVImaxb7-a3 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb4+ 

NDVImaxb3+ NDVImaxb2+ 
NDVImaxb1+ NDVImax+ 

NDVImaxa1+ NDVImaxa2+ 

NDVImaxa3) 

NDVImax-a3 (NDVImax+ NDVImaxa1+ 
NDVImaxa2+ NDVImaxa3) 

NDVImaxa4 

The fourth 8-day 

composite after 

NDVImax 

NDVImaxb7-a4 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb4+ 

NDVImaxb3+ NDVImaxb2+ 
NDVImaxb1+ NDVImax+ 

NDVImaxa1+ NDVImaxa2+ 

NDVImaxa3+ NDVImaxa4) 

NDVImax-a4 

(NDVImax+ NDVImaxa1+ 

NDVImaxa2+ NDVImaxa3+ 

NDVImaxa4) 

NDVImaxa5 

The fifth 8-day 

composite after 

NDVImax 

NDVImaxb7-a5 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb4+ 
NDVImaxb3+ NDVImaxb2+ 

NDVImaxb1+ NDVImax+ 

NDVImaxa1+ NDVImaxa2+ 
NDVImaxa3+ NDVImaxa4+ 

NDVImaxa5) 

  

NDVImaxa6 

The sixth 8-day 

composite after 
NDVImax 

NDVImaxb7-a6 

(NDVImaxb7+ NDVImaxb6+ 
NDVImaxb5+ NDVImaxb4+ 

NDVImaxb3+ NDVImaxb2+ 

NDVImaxb1+ NDVImax+ 
NDVImaxa1+ NDVImaxa2+ 

NDVImaxa3+ NDVImaxa4+ 

NDVImaxa5+NDVImaxa6) 

  

NDVImaxa7 

The seventh 8-day 

composite after 
NDVImax 

NDVImaxb7-a7 

(NDVImaxb7+ NDVImaxb6+ 

NDVImaxb5+ NDVImaxb4+ 

NDVImaxb3+ NDVImaxb2+ 
NDVImaxb1+ NDVImax+ 

NDVImaxa1+ NDVImaxa2+ 

NDVImaxa3+ NDVImaxa4+ 
NDVImaxa5+NDVImaxa6+ 

NDVImaxa7) 
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 Model development 

The first stage in fitting a model to forecast crop production or yield is to decide 

how to relate the vegetation indices (VIs) to the final production or yield. Several 

approaches were considered in the current research to select the data in the 

remote sensing-based crop production or yield model:  

(i) the three approaches already mentioned (Figure 5.2) and annual NPP  

(ii) average VIs for the previous three approaches (Figure 5.2) and average NPP at 

the governorate level. 

(iv) applying the log transformation to the previous three approaches and NPP at 

the governorate level, and 

(v) the regression model was developed according to the procedure used by 

Kogan et al. (2012). 

These approaches were tested in two ways; (i) the coefficient of determination 

was estimated between official statistics on production or yield and transforms of 

the VIs among all governorates within one year, and (ii) the same based on each 

governorate during the period. 

 

 Model validation 

Validating the performance of the model is an essential part of the remote 

sensing-based crop production or yield modelling. In this regard, several 

approaches to validate the model have been suggested primarily based on 

removal of a year or a period and then its re-estimation (Mkhabela et al. 2011; 

Bolton and Friedl 2013; Kouadio et al. 2014). The current regression-based 

models were validated in three different ways: 

(i)   leave-one-year-out  

(ii)  leave-two-years-out  

(iii) leave-half-period-out  

 Based on the following model, using the maximum NDVI, EVI and annual NPP, 

crop production and yield were estimated for each governorate during the period:  
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Y = a + ∑ bi Xi     +                                                            (1) 

where Y is the estimated production  or yield of winter wheat and barley at the 

governorate level, the Xi   are the spatially accumulated indices (maximum NDVI, 

maximum EVI and NPP) of winter wheat and barley at the governorate level, and a 

and b are coefficients. 

 

 Regression modelling 

Regression models were applied separately for each year at the governorate level. 

The country consists of eighteen governorates. Regression was applied using 

decadal composite VIs and annual NPP values (independent variables) to estimate 

crop production or yield (dependent variable).  

For each year of the study period, the fitted regression models used all the 

historical data excluding one year to estimate the crop production or yield for 

that missing year. For estimating crop production or yield and to be comparable 

using the leave-one-year-out approach, only the data from 2002 to 2010 were 

used as the NPP product is only available until 2010.  

Model accuracy assessment is crucial in scientific research. Here, the performance 

of the models was assessed by comparing the estimated against the actual crop 

production or yield. The coefficient of determination and relative error were 

calculated between the estimated and actual crop production or yield for the held-

out-year as follows: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟% =
(𝑃𝑃𝑖 − 𝐴𝑃𝑖)

𝐴𝑃𝑖
 × 100                        (1) 

where PPi is the forecasted production and APi is the actual crop production. 
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5.3 Results 

 Estimating phenological parameters for forecasting crop production  

 

Crop production was affected by the growing condition throughout each crop 

stage and over different years. Regression models were fitted between crop 

production and the spatial accumulated 8-day NDVI, EVI and annual-based NPP at 

the governorate level. A large coefficient of determination was found between 

crop production and the remotely sensed indices (Figures 5.3 and 5.4). Figure 

5.3a, b and c show the multi-year average coefficients of determination obtained 

from linear regression utilizing the NDVI and EVI to forecast crop production at 8-

day intervals over the growing season for three different approaches from 2002 

to 2012. Figure 5.3a presents the multi-year average coefficients of determination 

for the spatial sum of a single variable (original VIs value) from Maxb7 to Maxa7 

at the governorate level (approach 1). From figure 5.3a, it is apparent that the 

largest coefficient of determination between crop production and the remotely 

sensed VIs occurred at the maximum, with NDVI producing a slightly larger 

coefficient of determination than EVI. Figure 5.3b presents the multi-year average 

coefficients of determination for the integrated spatial sum of the VIs from 

Maxb7 to Maxa7 over the growing season (Approach 2). The largest coefficient of 

determination was recorded for the period around the maximum over the 

growing season, with NDVI producing a slightly larger coefficient of 

determination than EVI. Figure 5.3c presents the multi-year average coefficients 

of determination for the integrated spatial sum of the VIs from the maximum 

(approach 3). There is a clear trend of increasing coefficients of determination 

from the beginning of the growing season until the peak of the growing season, 

then decreases from the maximum towards the end of the growing season. 
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Figure 5-3 Plots showing the multi-year average coefficient of determination (y-

axis) between crop production and VIs for different dates (x-axis) at the 

governorate level from 2002 to 2010, for three different approaches (a, b, c), and 

(d) maximum NDVI, maximum EVI and NPP 

However, as the NPP product is annual-based, it cannot be compared at this stage 

with VIs (the coefficients of determination for VIs are an average of 8 years for 

each variable). Therefore, maximum VIs as the best predictor should be compared 

to the annual NPP value. Figure (5.3d) depicts the comparison of the coefficients 

of determination among the maximum VIs (as the best predictor to estimate crop 

production over the growing season) and annual based NPP over the period. It can 

be seen from the figure that generally all indices produce relatively large 

coefficient of determinations, with NDVI producing a larger coefficient of 

determination (Avg. R
2

=0.70) than EVI (Avg. R
2

=0.68) and NPP (Avg. R
2

=0.66). In 
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general, fluctuation through the years can be seen in the figure with the smallest 

correlations in 2008 and 2009. 

The aim here is not to compare amongst indices: such a comparison would not be 

fair because of differences in spatial resolution. The current research tended to 

use the finest spatial resolution for each product to estimate crop production as 

the region has a small agricultural field size. 

Figure 4-5 represents the coefficients of determination between maximum (a) 

500m spatial resolustion of NDVI and EVI and (b) 1000m spatial resolustion of 

NDVI and NPP with crop production, at the governorate level from 2002 to 2010. 

It can be seen from the figure that after upscaling the NDVI (250) to 500m and 

1000m, still sum of maximum NDVI data has better coefficient of determination 

with crop prodution compare to EVI and NPP. However, with the decrease of 

spatial resolution from 250m to 500m and 1000m, the average coefficients of 

determination bewteen maximum NDVI and crop production at the governorate 

level was decreased from 0.70 to 0.69. 

 

Figure 5-4 The coefficients of determination between maximum (a) 500m spatial 

resolustion of NDVI and EVI and (b) 1000m spatial resolustion of NDVI and NPP 

with crop production, at the governorate level from 2002 to 2010. 

As the climatic conditions are varied from the north to the south of the region, 

phenological events across the country are heterogeneous spatially. In the north 

of the region, the maximum occurred from 7th to 23rd April, while in the central 

region it occurred around 22nd to 30th March and in the south of the region it 

occurred around 26th February to 14th March. Therefore, the present results 

imply that the VIs at the time of the maximum are among the predominant 
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predictors that can be used to forecast crop production at least one and a half 

months before harvesting. 

 Regression model results and accuracy assessment 

Considering the climatic conditions and the phenology of winter wheat and barley 

in Iraq, the spatial accumulated VIs from the maximum over the growing season 

were found to be the best predictors to forecast crop production as it exhibited 

the largest coefficient of determination with production. Thus, maximum VIs and 

annual NPP were used to build the model to forecast crop production. Table 5.2 

provides some summary statistics for the fitted regression models using the 

leave-one-year-out method to estimate crop production over the region for each 

year from 2002 to 2010. A large coefficient of determination was found using the 

leave-one-year-out method for the regression model between the maximum VIs 

and annual NPP and crop production at the governorate level for each year (Table 

5.2). These coefficients of determinations were larger with NDVI compared to EVI 

and NPP. The regression models for each year in Table 5.2 were used to estimate 

crop production at the governorate level. 

 

Table 5.2 Linear regression models for estimating wheat and barley production 

between crop production and the spatially accumulated remotely sensed indices 

(NDVI, EVI and NPP) at the governorate level. The regression models were trained 

on eight years of the data to forecast crop production in the hold-out year (shown 

in the left column). 

  NDVI EVI NPP 

Year Model R
2

 Model R
2

 Model R
2

 

2002 y = 20.296x 0.74 y = 38.089x 0.68 y = 568.8x 0.68 

2003 y = 21.568x 0.70 y = 36.968x 0.69 y = 604.55x 0.67 

2004 y = 21.96x 0.73 y = 37.749x 0.72 y = 607.58x 0.70 

2005 y = 21.33x 0.73 y = 36.646x 0.73 y = 596.07x 0.71 

2006 y = 21.067x 0.72 y = 35.704x 0.72 y = 582.25x 0.68 

2007 y = 21.481x 0.72 y = 36.362x 0.72 y = 594.04x 0.70 

2008 y = 21.074x 0.72 y = 36.415x 0.72 y = 586.07x 0.70 

2009 y = 21.15x 0.74 y = 36.527x 0.74 y = 588.52x 0.72 

2010 y = 20.542x 0.69 y = 34.981x 0.70 y = 569.11x 0.67 

 n=114 

Figure 5.5 shows the linear relation between forecasted crop production using the 

developed regression-based models in Table 5.2 and official estimates of crop 
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production at the governorate level from 2002 to 2010. It can be seen from the 

figure that the data are linearly correlated. Table 5.3 presents the summary 

statistics for the forecasted and actual crop production for each year over the 

region. In general, it can be seen from the data in Table 5.3 that R
2

 is large, but 

there is variation amongst years and amongst VIs. Generally, large coefficient of 

determinations were observed for each year for all input indices employed for the 

modelling; R
2

 values ranged from 0.65 to 0.88. However, the smallest coefficient 

of determinations were recorded for 2008 and 2009 (drought years). The largest 

coefficient of determination was obtained for NDVI (Avg R
2

=0.70) followed by EVI 

and NPP (Avg R
2

=0.68 and Avg R
2

=0.66). As table 5.3 shows, there is a clear 

increase in relative error for forecasting crop production with a decreasing spatial 

resolution of the data (NDVI 250 m, EVI 500 m and NPP 1000 m). When 

comparing winter wheat and barley production forecasts made using NDVI 

against official statistics, the relative error ranged from -20 to 20%. Meanwhile for 

estimated production using EVI, the relative error ranged from -45 to 28% and it 

ranged from -48 to 22% for estimating crop production using NPP. In general, the 

drought years (2008 and 2009) were found to have the largest relative error over 

the period. 

 

Table 5.3 Coefficients of determination and the relative error between forecasted 

and actual crop production for all models. 

 

 

 

 

  
NDVI EVI NPP 

Year 
Forecasted 

MT 

Actual  

MT 
R

2

 
Error  

% 

Forecasted  

MT 

Actual  

MT 
R

2

 
Error  

% 

Forecasted  

MT 

Actual  

MT 
R

2

 
Error 

 % 

2002 3.86 4.33 0.76 -11 5.44 4.33 0.84 26 3.74 4.33 0.77 -14 

2003 4.22 3.83 0.87 10 4.03 3.83 0.85 5 4.13 3.83 0.85 8 

2004 4.46 3.73 0.75 20 4.14 3.23 0.78 28 3.93 3.23 0.70 22 

2005 3.72 3.79 0.72 -2 3.11 3.79 0.65 -18 3.38 3.79 0.66 -11 

2006 3.97 3.92 0.76 1 2.92 3.92 0.76 -26 3.45 3.92 0.80 -12 

2007 4.09 4.21 0.79 -3 3.31 4.21 0.78 -21 3.57 4.21 0.77 -15 

2008 1.59 1.94 0.42 -18 1.06 1.94 0.26 -45 1.01 1.94 0.22 -48 

2009 2.50 3.04 0.33 -18 2.04 3.04 0.32 -33 2.08 3.04 0.30 -32 

2010 4.02 5.00 0.87 -20 3.38 5.00 0.86 -32 3.69 5.00 0.85 -26 
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Figure 5-5 Scatterplots of official estimates of production against remotely sensed forecasts of production made using the leave-one-year-out 

approach, and using (a to i) NDVI from 2002 to 2010; (j to r) EVI from 2002 to 2010; (s to ab) NPP from 2002 to 2010. 1:1 line shown for 

comparison. 
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 Crop yield estimation 

The first set of analyses examined the ability of the employed remotely sensed 

VIs and several approaches to forecast crop yield at the governorate level in Iraq. 

The same methodology as presented in section 5.2.6 was used to forecast crop 

yield over the region. However, based on the available data, we found that crop 

yield could not be estimated at the governorate level in Iraq. The results of the 

regression analysis for two examples are shown in Figure 5.6. Figure 5.6a shows 

the coefficient of determination between crop yield and the average maximum 

NDVI for all governorates within each year. Very small coefficient of 

determinations were found for each year, except for 2002. In the second 

example, it can be seen that the coefficients of determination between crop yield 

and the average maximum NDVI during the period for each governorate are very 

small (Figure 5.6b). However, a slightly larger positive coefficient of 

determination was observed for the Kurdistan governorates (Sulaimani, Erbil and 

Duhok). 

 

Figure 5-6 (a) the coefficients of determination between crop yield and the 

average maximum NDVI for all governorates within each year, (b) the coefficients 

of determination between crop yield and the average maximum NDVI during the 

period for each governorate ((1) Anbar, (2) Babil, (3) Baghdad, (4) Basrah, (5) 

Duhok, (6) Dyala, (7) Erbil, (8) Karbala, (9) Kirkuk, (10) Muthana, (11) Mysan, (12) 

Najaf, (13) Ninawa, (14) Qadsia, (15) Salahadin, (16) Sulaimani, (17) Wasit and (18) 

Ziqar)). 
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5.4 Discussion 

A regression-based model was fitted between actual crop production and yield 

based on official crop statistics from Iraq and remotely sensed measures of 

winter wheat and barley productivity within-season. As yield presents the amount 

of production per area, many researchers have reported crop yield instead of 

production (Quarmby et al. 1993; Singh et al. 2002; Ferencz et al. 2004; 

Sakamoto et al. 2013). Meanwhile, other researchers have reported only crop 

production or both. For instance, the combined use of AVHRR-NDVI and drought 

indices at various time-scales were used to forecast wheat and barley production 

four months before harvest and the predictive models explained 88% and 82% of 

the temporal variability in wheat and barley production, respectively (Vicente-

Serrano et al. 2006).  The regression-based model was used to forecast winter 

wheat production in Kansas and then applied directly to forecast winter wheat 

production in the Ukraine (Becker-Reshef et al. 2010). The predicted crop 

production in Kansas and Ukraine closely matched the official reported 

production with a 7% and 15% error, respectively.  

Although this research tested several methodological approaches, it was not 

possible to forecast crop yield at the governorate level over Iraq. There are 

several possible explanations for this result. It has been demonstrated that the 

official Iraqi government statistics are likely to be unreliable (USDA FAS, 2008b). It 

has also been reported that international statistics data for Iraq for production, 

yield and harvested area are often “unofficial” or estimated figures, or other 

sources have been used to estimate uncovered or missing data (FAO 2012). To 

support this point, this research demonstrated that the coefficient of 

determination between the average maximum NDVI and crop yield for 2002 was 

much larger compared to the rest of the period (Figure 5-6a). This result could be 

explained by the fact that besides more regional instability, at that time the Food 

Agriculture Organization (FAO) conducted a more accurate ground survey over 

the region. In addition, as the Kurdistan region is more stable in terms of security 

compared to the rest of Iraq during the last decade, slightly larger coefficient of 

determinations were found for Slaimani, Erbil and Duhok (Figure 5-6b). However, 

double counting in the agricultural statistics at the governorate level for the 

disputed areas between Kurdish Government and Central Government has led to 

the coefficient of determinations remaining very small. In addition, for many 

areas in Iraq access was restricted by the local authority due to security issues. 

Thus, for such areas the ground survey was replaced by estimation. Another 
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possible explanation for the lack of correlation is the coarse spatial resolution of 

the data used in this study compared to the small agricultural field size in Iraq. A 

coarse spatial resolution could prevent capture of the phenology of a pure crop in 

some areas since the region has small agricultural field sizes. Another source of 

uncertainty might be related to the crop map used for the current research, which 

was not able to separate wheat and barley due to their similar crop calendars and 

phenological responses in the region (Qader et al. 2015). Due, in part, to greater 

variability of their yields from one year to the next, yield forecasting is more 

challenging for both together. Another possible explanation for this could be the 

large inter-annual variation in terms of croplands at the governorate level as the 

traditional biennial fallow system is practiced widely in the region to recharge the 

depleted soil and decrease the impact of pests and disease particularly in the 

north (FAO 2011; Schnepf 2004).   

Interestingly, winter wheat and barley production were highly and linearly 

correlated with the spatial accumulated NDVI and EVI obtained during maximum 

green canopy cover at the governorate level in Iraq, compared to the other 

variables. Therefore, the seasonal maximum NDVI and EVI were selected as this 

enabled timely forecasting of crop production around a month and half prior to 

harvest. These results are in line with previous studies that found similar results 

with either crop production or yield (Becker-Reshef et al. 2010; Doraiswamy and 

Cook 1995; Mahey et al. 1993; Tucker 1980). In terms of comparison amongst 

the employed indices, it is apparent from statistical evaluation of the results that 

NDVI could have an advantage relative to the EVI and NPP for forecasting crop 

production in the region using the leave-one-year-out approach. A possible 

explanation for this might be that MODIS-NDVI has a finer spatial resolution (250 

m) than MODIS-EVI (500 m) and MODIS-NPP (1000 m). This might make the NDVI 

data more sensitive to annual variation and capture the detailed phenological 

characteristics of cropland cover type. In general, a large relative error was 

obtained for forecasting crop production for 2008 and 2009 when the region 

experienced a severe drought (Schnepf 2004; Griffin and Kunz 2009). This is 

potentially a limitation of the remotely sensed-based regression model, and this 

has been pointed out in several studies where it has not been possible to capture 

the impact of extreme events (Kouadio et al. 2014; Becker-Reshef et al. 2010). 

It might be argued that production is driven mainly by crop area and using 

remote sensing indices might not have much impact on improving the forecast of 

final crop production beyond knowledge of the cropped area. Thus, we 
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investigated the relationship between final crop production and both (i) actual 

crop area and (ii) estimated crop area at the governorate level from 2002 to 2010. 

The average R
2

 between final crop production and actual crop area was 0.58 and 

with estimated crop area was 0.63 at the governorate level from 2002 to 2010. 

However, using the remote sensing indices increased the average coefficient of 

determination to NDVI=0.70, EVI=0.68 and NPP=0.66. This indicates that the 

remote sensing indices could characterize and forecast crop production more 

accurately than simple cropping area, which was treated as a null model or 

benchmark against which to evaluate the proposed approach. In addition, 

multiple regression model was also fitted between crop production and (VIs + 

cropped area), but it did not lead to a significant increase in accuracy. 

There is room for further progress in forecasting crop production and yield at the 

governorate level in Iraq. To increase the quality of data, an accurate and 

intensive ground survey with a robust experimental design is needed to obtain 

accurate data on crop yield. It is also important to note that low intensity 

agriculture and the widely practiced traditional biennial fallow system is difficult 

to detect at the 250 m spatial resolution of MODIS. The land cover classification 

map used in this study also was unable to separate wheat and barley over the 

region. Identification of winter wheat and barley area is a vital component to 

modelling and forecasting crop production and yield using remote sensing data. 

For example, a significant increase in the accuracy of crop yield forecasts was 

observed while a crop map was applied to mask NDVI values as an input to a crop 

yield model (Maselli et al. 2000; Genovese at al. 2001; Ren et al. 2008). In 

addition, the low accuracy may be related to the high sensitivity of photosynthetic 

activity to environmental factors. This might be improved by using VIs sensitive 

to chlorophyll content as they have less tendency to saturate at high biomass 

compared to other VIs sensitive to leaf area index (LAI) (Zhang and Liu 2014). As 

the region has an extreme climatic condition and crop production and yield vary 

considerably with the amount of rainfall, further studies, which consider climatic 

variables, will need to be undertaken.   

 

5.5 Conclusion 

Regression models were developed to forecast crop production in Iraq, as an 

example of an arid and semi-arid environment, using within-season remotely 
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sensed metrics of vegetation productivity. To do this, several methodological 

approaches using different remotely sensed indices were investigated to forecast 

annual crop production and yield at the governorate level. The main aim was to 

evaluate the potential of MODIS-derived measures of greenness and productivity, 

and information related to the phenology of crops to estimate crop production 

and yield in the arid and semi-arid regions like Iraq. 

This research identified that over the winter wheat and barley growing seasons, 

crop production was most correlated with the maximum VIs at the governorate 

level compared to other MODIS derived information related to the timing of crop 

phenology. This research also demonstrated that the MODIS NDVI offers a more 

accurate basis for forecasting crop production relative to MODIS EVI and MODIS 

NPP. The research also found that the average R
2

 between final crop production 

and actual crop area was 0.58 and with estimated crop area was 0.63 at the 

governorate level from 2002 to 2010. Meanwhile, using the remote sensing 

indices increased the average coefficient of determination to NDVI=0.70, 

EVI=0.68 and NPP=0.66. When winter wheat and barley production were 

forecasted using NDVI, EVI and NPP and compared to official statistics, the 

relative error ranged from -20 to 20%, -45 to 28% and -48 to 22%, respectively.  

As Iraq is continually experiencing various natural and anthropogenic impacts on 

crop production, it is potentially food insecure. Therefore, quantifying its regional 

crop production in advance could help policy-makers, scientists and decision-

makers to improve agricultural management and food security under a variety of 

environmental conditions. The model developed here for Iraq, as an example of 

an arid and semi-arid region, should be extended and tested for other similar 

regions.    
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 Discussion 

This chapter aims to supply a combination discussion of the individual research 

papers (i.e., chapters 3, 4 and 5). The current research is based on three main 

research papers to address the main objectives established in the introduction. In 

chapter three, for the first time a comprehensive characterisation of the 

vegetation phenological characteristics of the dominant vegetation types was 

established in Iraq. Then, the major phenological parameters such as SOS, EOS 

and LOS for the dominant vegetation types were correlated to the altitudinal 

variation in the country (as a surrogate of precipitation and temperature).  As in 

arid and semi-arid regions such as Iraq, accurate discrimination of various 

vegetation types is challenging due to their similar spectral signature. In addition, 

reliable information about croplands and natural vegetation in such a region is 

scares and the ground data might not be reliable. Therefore, in the fourth 

chapter, phenology-based classification approach using SVM was developed for 

the assessment of space-time distribution of the dominant VLC types in Iraq.  

Meanwhile, in the arid and semi-arid regions of Iraq, inter-annual variation in 

climatic factors (such as rainfall) and anthropogenic factors (such as civil war) 

pose a major risk for food security. The combination of these factors makes it 

challenging in this region to sustain food production. Therefore, an operational 

crop production estimation and forecasting system is required to help decision-

makers make early estimates of the potential food availability and plan for annual 

imports. In fifth chapter, different MODIS spectral vegetation indices in 

collaboration with official crop statistics were combined to develop an empirical 

regression based model to estimate and forecast winter wheat and barley 

production in Iraq at the governorate level. These individual papers already 

provided the main research finding, method assessments, work limitations and 

discussion. Meanwhile, the aim here is to show the relevancy of the research 

papers, bigger scale discussion of the finding for entire thesis and locating them 

into context. In addition, further research are suggested based on assessment of 

the research finding and limitations.  
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6.1 Uncertainties in extracting phenological parameters   

 Uncertainties and high spatiotemporal variation of LSP parameters  

In semi-arid regions, several factors such as climate, water availability, soil type, 

and vegetation composition can affect the spatial distribution of the LSP 

parameters. In order to monitor and characterise the LSP variation at the country 

level, remote sensing is the only viable means (Chuanfu et al. 2012; Dunn and de 

Beurs 2011; Ganguly et al. 2010), and this is especially efficient for Iraq as the 

region has been almost in a continuous war during last three decades. Although, 

numerous efforts have been made during last two decades to characterise of 

vegetation phenology through remote sensing data, still its validation with situ 

data is challenging. This is particularly true for Iraq because (i) limited access to 

the country due to restricted security issues; (ii) for the first time this research 

attempted to establish a comprehensive characterisation of the vegetation 

phenology at local scale over the country; (iii) a very limited number of earlier 

studies of the vegetation phenology attempted for the region and (iv) no ground 

vegetation phenological stations exist across the region. 

Despite an overall pattern of LSP parameters observed having a strong similarity 

with the expected phenological pattern for the major vegetation types (Figure 

3.5), some uncertainties can be found in the results such as spatial mixing among 

vegetation types. Some of the issues emerging from this finding relate specifically 

to the coarse spatial resolution of the data used in the current study compare to 

the small agriculture field size in Iraq. In addition, due to its climatic and 

topographic variation, Iraq is the land of various vegetation types. Therefore, low 

spatial resolution and small agriculture field size led to spatial mixing of 

vegetation types at finer classification scale. In order to characterise the dominant 

LSP parameters, global MODIS land cover type is the only available annual based 

land cover classification over the region (Friedl et al. 2010). It is apparent that the 

product is a global land cover classification which make it possible that there 

might be some disagreement at the local scale for some classes. The coarse 

resolution of the product (500 m) compare to the small agriculture field size in 

Iraq, make it possible that the product  might not be able to discriminate some 

land cover types over the region. Sobrino et al. 2015 stated that the uncertainties 

and errors of the global MODIS product might be large as arid and semi-arid 

regions have large spatial and temporal variations in surface emissivity and less 

information is known regarding to emissivity variations with viewing angle. The 
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lower spatial resolution of MODIS data (i.e. 500m), for example, causes a high 

degree of heterogeneity, particularly in croplands because of mixing of small 

patches of natural vegetation.  

To assess the spatial and temporal variation in term of specific LSP parameters, 

STD was computed and mapped to show the most variable locations during last 

decade (Figure 3.6). The SOS and LOS are varied noticeably throughout the 

country compare to EOS, especially in the north part (rain-fed) (Figure 3.6). The 

STD of the SOS for most of the country ranges between 0 and 72 days (Figure 

3.6a). Whereas, this value rises dramatically towards the lowlands in the north to 

about 80 to 120 days. In contrast, a relatively small STD can be observed in EOS 

across the country. It is apparent from the Figure 3.6c that STDs of LOS is closely 

related to the type of the vegetation as less varied for natural vegetation and 

relatively higher for croplands. These results are likely to be related to the fact 

that in both rain-fed area directly and irrigated area indirectly to recharge the 

main two rivers, rainfall is the main driver of start of the growing season. Any 

disruption in the rainfall would lead to change in time of starting the growing 

season, particularly in the north part of the country. There are, however, other 

possible explanations for these variations such as human interaction, different 

crop growing system among years, different policies for planting and harvesting, 

widely practicing crop rotation and traditional biennial system to recharge the 

depleted soil (Schnepf 2003 and 2004). As natural vegetation is less impacted by 

human activity, its LOS is less varied compare to SOS. The variation in SOS is 

mostly driven by changing the timing of the start of rainfall which is not much 

compared to cropland as plants need to complete the growing season, whether 

SOS might be advanced or delayed. Meanwhile, a relative homogeneity in STD for 

EOS can be seen throughout the region compare to other LSP parameters. This 

result may be explained by the fact that the region is facing a common hot 

season around the time of the EOS. 

As temperature and precipitation varied considerably across the region based on 

the altitudinal variation, this research explored the relationship between spatial 

variations in key LSP parameters and elevation (as a surrogate of temperature and 

precipitation) (Figure 3.7). Li et al (2010) demonstrate that inter-annual variability 

of SOS is greater at higher latitudes than lower latitudes at the same elevation, 

whereas the impact of elevation is clearer when the range of altitude achieves 

more than 1000m. Ding et al. (2013) also showed that the phenology of 

grasslands in the Qinghai-Tibetan Plateau is driven closely by elevation. For every 
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1000 m rise in elevation between 2500 and 5500 m, start of growth season is 

delayed by 9 days, end of growth season is advanced by 1 day, and length of 

growth season is shortened by 9 days. In the current research, a positive 

coefficient of determination was observed for SOS and EOS with elevation for all 

major land cover types with EOS producing the largest positive coefficient of 

determination (R
2

 = 0.685, R
2

 = 0.638 and R
2

 = 0.588, p < 0.05 in shrubland, 

cropland and grassland, respectively). It is also found that the magnitude of delay 

in SOS and EOS increased in all land cover types along a rising elevation gradient 

where for each 500m increase, SOS was delayed by around 25 or more days and 

EOS delayed by around 22 or more days, except for grassland. More interesting is 

the large coefficient of determination between EOS and elevation for all land 

cover types, in contrast to many studies which point to a general trend of delayed 

EOS at lower elevation (Qiu et al. 2013; Jeganathan et al. 2010; Zhang et al. 

2004). With low moisture availability, rise in temperature and decline in elevation 

from north to south of the region, EOS advancement appear gradually. According 

to Dry Adiabatic Rate, for each 1000 m increase in elevation will result in 9.8 c° 

drop in temperature will be dropt. Since the EOS of vegetation is sensitive to the 

temperature change in the region, there is a gradually earlier pattern from low to 

high altitude. Our results indicate that water deficit and temperature condition 

could drive the lowland LSP variation for the major vegetation types, while this 

variation in high-altitude environments are more stable over time. 

 

 Smoothing techniques 

The main purposes of applying smoothing techniques on time series data are to 

reduce residual cloud contamination and upcoming noise because of compositing 

and resampling procedures (Boyd et al. 2011).  Approaches of estimating 

phenological parameters and smoothing the time series data are a source of 

uncertainties and yet have not been standardized (White et al. 2009). Thus, 

special consideration has to be taken to select smoothing technique (Boyd et al. 

2011). Several model have been developed and fitted to smooth time series 

vegetation index from various satellite data to estimate vegetation phenological 

parameters. However, comparisons among these techniques indicated that each 

has its own advantages and disadvantages (Viovy et al. 1992; Lu et al. 2007; Hird 

and McDermid 2009; Atkinson et al. 2012; Kandasamy et al. 2013; Geng et al. 

2014). In addition, fine-tuning of parameters such as number of harmonic, size of 
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temporal neighbourhood and the noise-threshold are required for most models 

(Atkinson et al. 2009). Michishita et al. (2014) compared seven noise reduction 

techniques for NDVI temporal profile, and found that Hanning smoothing 

(RMMEH) and iterative Savitzky-Golay filters performed best. Jonsson and Ekundh 

(2002) revealed relatively better performance of a Gaussian function-fitting 

technique compare to a Fourier transform technique and Best Index Slope 

Extraction (BISE) filter (Viovy et al. (1992).  

The accuracy of estimating phenological parameters might have a large influence 

through the type of smoothing techniques. However, assessing the impact of the 

type smoothing techniques on extracting phenology and annual variation are 

infrequent in the literature. Ten models for estimating SOS were compared and 

found that individual methods varies in average day of the year by ± 60 days and 

in STD by ± 20 days (White et al. 2009). de Beurs and Henebry (2010) tested 

several spatiotemporal statistical approaches to determine the SOS and EOS using 

a time series of remote sensing data and lack of general consequences 

associating model significance, nomenclature, error structure and uncertainty was 

revealed. The research also indicated that over a diverse landscape, it would be 

challenging to find a set of parameters appropriate for all the vegetation types. 

Therefore, the purpose of the study mainly drive a choice of the smoothing 

techniques (Hird and McDermid 2009).      

6.2 Uncertainties and main challenges of estimating VLC 

types    

Monitoring LULC and its change in arid and semi-arid regions is becoming a 

crucial issue across different fields of development and sustainable management. 

In Iraq, there is no reliable system for predicting cropland distribution and area, 

and forecasting yield, and the official Iraqi government statistics may be 

unreliable (USDA 2008). In addition, depending on the political, historical, social 

and technological contexts and environmental, the spatial extend of VLC types 

are highly variable between and within the years, particularly croplands. 

Throughout the growing season, the area planted for harvesting of a given crop 

might vary. These variations could be as result of multiple events such as severe 

weather damage, abandonment or unexpected economic condition resulting 

might have an impact on final crop production estimation. For instance, area 

estimation can create problems particularly in regions prone to security problems 
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and flooding or drought issues. These events in any regions can drive false 

calculation of the production as inaccurate harvested area can be observed due to 

either inaccessibility or economic infeasibility. In addition, planting more than 

one crop, which may have similar timing of the growing season and spatial 

mixing within the same pixel add more complexity to the classification. 

Furthermore, landscape factor such as soil type and altitudinal variation may 

cause problems too. Therefore, producing high accurate classification product 

over the region is challenging.  

Classification errors of the croplands largely occurred because of confusion with 

the natural vegetation classes in the arid and semi-arid regions. This is mainly 

due to their similar spectral and phenological characteristics. Spatial proximity 

can be accounted as the first reasons because many cropland areas were 

intermixed with natural vegetation classes. Other studies reporting the same 

difficulties to discriminate crops in an area with small scale farming. For example, 

although, hard classification of fine spatial resolution (30 m) images produced 

accurate results for commercial farming, it could not deal with mixed pixels 

because of the small agricultural field size in Ethiopia (Delrue et al. 2013). For the 

countries located in semi-arid zones such as Zambia, Niger and Cameroon in 

Africa, croplands are mostly confused with savannas and grasslands, followed by 

shrublands and woodlands. The results indicated that in highly heterogeneous 

and intermixed land uses, moderate spatial resolution data have intrinsic 

limitations (Hannerz and Lotsch 2006). Part of this confusion might be related to 

differences in crop calendars; classification might be affected as some 

agricultural practices might be advanced or delayed in some areas. For instance, 

if different crops or the same crop is planted at different times and ununiformed 

agriculture managements are applied to the lands resulting may add more 

complexity to the classification process as their growth process influences the 

reflectance signal. In addition, the spectral resolution of satellite sensor data also 

plays a vital role in controlling the level of detail at which land cover can be 

classified. The broad spectral, and coarse spatial, resolutions of MODIS land 

surface reflectance (MOD09Q1 V5) might not be adequate for mapping land cover 

types, particularly crop, at a finer level of detail in Iraq. 

In addition to the spatial mixing of croplands with natural vegetation, 

discriminating crop types, in particular wheat and barley, in Iraq is a great 

challenge. This is mainly due to the small agriculture fields used to plant both 

crops. In addition, the NDVI time series of both wheat and barley presented very 
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similar patterns with almost similar peak over the crop growing season using the 

current data. This result is in line with Griffin and Kunz (2009) where the Indian 

Remote Sensing (IRS) AWiFS sensor was used with 56 m spatial and 4 nm spectral 

resolution, the spectral signature of wheat and barley was shown to be almost 

identical in Iraq. Currit (2005) also reported the same identical signature issue 

among crops such as wheat and barley using Landsat data in Chihuahua, Mexico, 

as both crops typically are planted and harvested at the same time. The 

classification was therefore not efficient for discriminating the wheat and barley 

over Iraq at the spatial and spectral resolution of MODIS 250 m. This might have 

an impact on the classification accuracy of the product and its certainties.     

It is not by chance that the global MODIS croplands are not good as the MODIS 

(250m) croplands as the differences in their spatial resolutions poses various 

classification challenges. The reason may be mainly because MODIS land surface 

reflectance (MOD09Q1 V5) has a finer spatial resolution (250 m) than the global 

MODIS land cover dataset (500 m). This may help to capture more detailed 

phenological characteristics of the VLC types, which, in turn, helps to classify the 

regional dominant VLC types more accurately than the MODIS dataset. The coarse 

spatial resolution of the global MODIS land cover type may make it challenging to 

estimate Iraq’s land cover types, especially for croplands where the average field 

size is small compared to a 500-m pixel. The overall accuracy for recent global 

MODIS land cover types is stated to be around 70-80% (Friedl et al. 2010). 

However, the accuracy level might be much lower when the product used for a 

particular region such as East Africa (Ge et al. 2007). This might affect the 

classification accuracy and produced exaggerated estimates of pixels that have 

truly changed (Cambell 2002). For instance, Fritz et al. 2011 found that around 

360 Mha, which is equivalent to 20% of the global cropland area, are classified as 

cropland in GlobCover (300 m) but as non-cropland in MODIS land cover types. 

Another source of uncertainty may be that the official Iraq’s statistical data dose 

not account fallows in their statistics, whereas global MODIS includes mostly the 

fallows (Leroux et al. 2014). Wu et al. (2014) stated that fallow areas are often not 

included in cropland classes because of their confusion with other vegetation 

types and temporal dynamics. 

To monitor crops efficiently, a high temporal revisit frequency over large 

geographic areas is required. Meanwhile, this limits the spatial resolution of the 

data. A coarse spatial resolution is problematic where pixels are mixed, meaning 

that several signals corresponding to different land cover types occur within a 
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single pixel due, for example, to small agricultural field sizes. In monitoring 

remote sensing-extracted crop phenology, crop maps and crop growth dynamics, 

such data with spatial resolution of 250m (Wardlow and Egbert 2008; Zhong et al. 

2011), 500 m (Zhang et al. 2008; Li et al. 2014) and coarser resolution (Atzberger 

and Rembold 2013) were regularly employed. In small agricultural field sizes, this 

variability is especially problematic as the spectral reflectance in gridded products 

such as the MODIS and MEdium Resolution Imagine Spectrometer (MERIS) may 

represent a mix of different land covers and heterogeneous cropping patterns 

(Tan et al. 2006; Gomez-Chova et al. 2011). Figure 6.1 depicts the spatial 

coverage differences between gridded Landsat-8 (30 m) and MODIS (250 m) over 

the fine spatial resolution Google Earth imagery for some agricultural lands in 

north-west of Mosul, Ninawa, Iraq. The figure shows clearly that the individual 

MODIS pixels cover several agricultural land covers, which may be used to plant 

different crops. Even if the same crop is planted in several fields covered by a 

MODIS pixel, within-pixel variability in crop phenology timing may exist as 

different agricultural management practices are applied. The mismatch in spatial 

resolution between remotely sensed data and the small agricultural field sizes 

makes it challenging to accurately derive crop phenology, identify crop types and 

estimate crop yield. In Iraq, agriculture field sizes are varied from the rain-fed 

area to the irrigated area. Although robust information regarding to the land 

holdings sizes is missing, in general the land holding areas may  range from few 

donoms to around 50 donom (1dounm=2500 m
2

). The largest land holding are 

located in rain-fed, whereas in irrigated areas, farmers have much smaller lands. 

The typical footprint of a 250 m gridded MODIS pixel is 25 donom (62500 m
2

). 

Means majority of the agricultural lands cannot be detected by this resolution in 

Iraq. In contrast, general land cover types including agriculture can be mapped 

successfully in US and Brazil with MODIS 250 m. In addition, given to the region’s 

large field sizes, Wardlow et al. (2007) demonstrated that in the Central Great 

Plains, U.S. fields are frequently 324,000 m
2

 or larger can be mapped with MODIS 

250 m, although it encompassed around five 250 m spatial resolution MODIS 

pixels. 
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Figure 6-1 (a) depicts the true colour composites of Landsat-8 for acquisition date 

25
th

 of April, 2015, (b) shows grid cell outlines from Landsat-8 (30 m) products 

over a small agriculture field size, and (c) represents grid cell outlines from 

MODIS (250 m) products over a small agriculture field size, in Iraq.  

In addition to the previous factors, many other sources of uncertainty can be 

considered in deriving an accuracy assessment of land cover classification. First it 

has to be noticed that it can be challenging to generate a land cover map which is 

completely satisfies all the needs (Brown et al. 1999). The sampling design used 

to select the reference data is of the fundamental importance and must be 

considered when conducting accuracy assessment (Stehman and Czaplewski 

1998). Another source of uncertainty is the nature of the classifier used to derive 
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land cover from the remotely sensed data. Part of the misclassification might be 

related to the quality of the ground or reference data rather than a mistake in the 

classification employed to produce the map. Thus, including some measure of 

confidence could be useful in the ground data used (Estes et al. 1999; Scepan 

1999). In addition, the class labels used in both image classification and ground 

data should have the same meaning (Strahler et al. 2006).   

To sum up, in the validation phase, the relative difference between the 

classification model and ground based estimates of wheat and barley area might 

be associated with one or more of the following factors: i) the spatial resolution 

(250 m) of the used MODIS data may not be efficient for all the crop fields as 

most of the agriculture fields size in Iraq are small and heterogeneous in nature, 

ii) due to various climatic conditions over the regions, the initial/transplanting 

stage might have a few weeks shifting in some areas, iii) the official statistical 

data of the crop area obtained through ground visits have been claimed to be 

unreliable (USDA FAS 2008), (iv) percentage of occurrence of pure or mixed pixels 

and (v) spectral resolution of the chosen data.  

 Uncertainties of estimating crop yield. 

Generally, the product of crop production forecasts is based on two essential 

components: area harvested and yield per unit area (Michael and Atkinson 2013). 

Thus, an accurate estimating of harvested area and yield will guarantee to 

generate an accurate crop production estimation. In several cases, the results of 

predicting yield using remote sensing data are generally in a good agreement 

with the field data. This is mainly due to the availability of the data such as 

ground data, reference data and images in term of quality and quantity which 

make the possibility to drive a better crop yield prediction. For instance, in 

Canadian Prairies, regression based model using MODIS NDVI was developed to 

predict crop yield and the difference of the predicted from the actual crop yield 

was within ±10% (Mkhabela et al. 2011). In China, Independent validation 

between stepwise regression based models for the remotely sensed rice yield 

predictions and observed data found that the overall relative error is nearly 

5.82%. Most assessments of remote sensing yield predictions are on the broader 

scale rather than individual fields by comparing counties or district predicted 

yield and official statistics (Doraiswamy et al. 2005; Becker-Reshef at al. 2010; 

Lobell et al. 2010). The accuracy of predicted yield with ground data might be 

varied based on the level of the prediction and the spatial resolution of the data 
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used. For instance, using 1km MODIS data, yield was estimated sufficiently ( ≤5% 

deviation from actual yield) at the state level in Montana and North Dakota, 

whereas very low accuracy was yielded at the county level (Reeves at al. 2004).     

In contrast, obtaining such accurate information in arid and semi-arid regions 

through remote sensing is a challenge. This is mainly due to: (i) lack of reliable 

administrative data, (ii) high inter-annual variation in yields, (iii) limited numbers 

of survey data (Michael 2007), (iv) the heterogeneity of the landscape, (v) extreme 

weather including droughts and (vi) the coarse spectral and spatial resolutions of 

the available remote sensing data. This clearly implies for Iraq as the country 

meets own issues which are difference to other regions. The region is still 

influenced by natural factors on determining the yield and production level of the 

major crops. This leads to have a strong fluctuated yield and production 

according to the year. For instance, the production of wheat in 2002 was around 

2.6 millions tons and the productivity of the donom (1 donom= 2500 m
2

) was 

around 329 kg, whereas less than 1 million tons and 172 kg of production and 

productivity were recorded in 1997 (National Development Plan 2020). This 

variation can be seen largely among the governorates with respect to climate, 

water resources and soil as well as work force capabilities. In addition, due to its 

insecurity issues, the region is affected by lack of quality and quantity of the 

ground survey data. Thus, the international statistics data for Iraq for production, 

yield and harvested area are often “unofficial”, or estimated figures or other 

sources have been used to estimate uncovered or missing data (FAO 2012). 

Production might be miss-leaded when an appropriate ground survey is not 

conducted which can create a problem for space observation validation. This is 

particularly true for Iraq as severe events such as drought and political instability 

can take harvested area out of production. The influence of regional instability 

and related wheatear factors on yearly crop yield in addition to the quality of the 

ground data make it a real challenging to estimate and predict crop 

yield/production at the governorate level in Iraq and drive the main uncertainties 

in computing agriculture productivity. 

Another source of uncertainty might emerge due to the type of vegetation index. 

NDVI was the most widely used VI for crop monitoring and yield forecasting 

(Groten 1993; Benedetti and Rossini 1993; Labus et al. 2002; Doraiswamy et al. 

2003; Huang et al. 2013). The most common approach to forecast crop yield at 

the regional scale is based on simple regression between a satellite-derived 

vegetation index within-season and eventual crop yield (Prasad et al. 2007; Wall 
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et al. 2008). These approaches are based on the assumption that measures of the 

photosynthetic capacity from spectral vegetation indices are strongly correlated 

to the eventual crop yield. Several studies revealed that prediction accuracy can 

be improved by using cumulative NDVI over a growing season as grain yield is 

normally represented by the cumulative photosynthetic activity (Hayes and Decker 

1996 and 1998; Maselli et al. 2000; Rent et al. 2008). However, the high 

sensitivity of photosynthetic activity to environmental factors is a serious issue in 

forecasting crop yield based on such VIs particularly in arid and semi-arid 

regions. 

Some of the works mentioned earlier forecasted crop yield depended on variables 

related to crop growth variables such as biomass and LAI. An alternative way to 

increase the accuracy of yield forecasts, particularly in arid and semi-arid regions 

as the environment is highly variable, is to use vegetation biochemical and 

biophysical parameters to surrogate crop yield. Long at al. (2006) found that 

increase in leaf photosynthesis is closely related with similar increase in yield. 

However, relatively fewer studies have considered remotely sensed VIs as 

estimate for vegetation biochemical and biophysical parameters to surrogate crop 

yield at regional scale. Chlorophyll is a key biochemical parameter, which has 

large correlation with crop productivity (Gitelson et al. 2006). Photosynthesis is 

the process underpinned by chlorophyll. In addition, many studies revealed the 

close relationship between chlorophyll content and the GPP (Gitelson et al. 2006 

and 2008, Houborg et al. 2013). Thus, compared to the leaf area index (LAI) or 

biomass, the content of chlorophyll might be more associated to crop yield. The 

chlorophyll content of vegetation, which is a function of the biochemical variables 

of chlorophyll concentration and the biophysical variable of LAI, can be 

surrogated by the MERIS Terrestrial Chlorophyll Index (MTCI) (Dash and Curran 

2007).  Thus, the stronger relationship between yield and MTCI would be 

expected. Zhang and Liu (2014) assessed the potential of a MTCI-based model for 

crop yield forecasting compared to NDVI in Henan Province, China from 2003 to 

2011. Their results revealed several advantages for the MTCI-based model 

compared to an NDVI-based model such as (i) larger significant correlation 

coefficient and smaller error, (ii) crop yield can be forecasted 30 days earlier than 

using the NDVI-based model. Although, the results were not compared to other 

VIs, a significant correlation between MTCI and crop yield was found at regional 

scales for the state of South Dakota, USA (Dash and Curran 2007). Crop yield 

forecasting relied on remote sensed chlorophyll content might be more efficient 

than remote sensed LAI. Therefore, employing a VI sensitive to chlorophyll 
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content in the current research might have the potential to improve the accuracy 

of the prediction model. 

 

6.3 Spatiotemporal variation of Vegetation land cover 

types in Iraq during the period 

Different natural and anthropogenic factors such as war and drought in arid and 

semi-arid regions led to instable LCLU types during last decade. Iraq is 

geographically located in an arid to semi-arid region and has been struggling with 

different anthropogenic and natural factors resulting to have an inconsistent land 

cover types during the last decade. To assess the class stability, the areas 

consistently allocated within the same class through time were used to calculate 

its stability regarding to the average area of the same class during the period. 

The least stable land cover type was found for cropland (9.367%) during last 

decade (Table 6.1). It can be seen from figure 6.2 that the spatial distributions of 

stable crop areas are mainly situated in the areas close to available water. 

However, the highest stable vegetation class was detected for grassland 

(74.464%) as this class was mainly located in high altitude areas. Grasslands were 

more resilient in very high altitude area than low land. The absence of grasslands 

at the top border of the country may refer to presence of ice and cloud from year 

to year which might occurred as a result of exclusion of those pixels during flag 

quality assessment (Figure 6.1). Shrublands were the second category with the 

largest instability, with an 11.155% over the period. In general, annual variation of 

croplands is not much among the normal years, whereas its interannual spatial 

variation is considerably high. The figure 6.1 shows the spatial location of 

different land cover types that has been allocated within the same class during 

last decade over Iraq.   
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Table 6.1 Land covers instability in Iraq during 2002-2012. 

Class 

Consistent areas with the 

same class during the period      

1000 ha 

 

Average land cover areas 

during the period 

 

1000 ha 

Class stability 

 

% 

Cropland 262.509 2802.555 9.367 

Grassland 1503.623 2019.271 74.464 

Shrubland 798.122 7167.978 11.135 
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Figure 6-2 Spatiotemporal variations of (a) croplands and (b) crop production, 

during last decade in Iraq. 

As presented in figure 4.6, land covers distribution varied considerably across the 

country with area dominated by cropland, grassland and shrubland. The most 

stable land cover during the last decade was grassland. This class is confined 

entirely to the high altitude region of the country which made difficult to be 

influenced by human interaction. This region has high rainfall rate and adequate 

temperature in summer than rest of the country which made this land cover type 

more resilience to drought and other factors. In addition, the sparse distribution 

of Oak trees in grassland helped this class to be more challengeable to 

unfavourable climatic conditions. Differently, the intervening valleys are mostly 

occupied either by cropland or shrubland. Surprisingly, cropland was found as the 

least stable land cover types over the period. These factors may explain the 

relatively good correlation between croplands and its instability. Due to excessive 

salinity, around 2.5 million hectares of Iraq’s irrigated cropland had become 

degraded in 1973, and that every year another 6000 to 12000 hectares were 

vanished to salinization (Schnepf, 2004). Traditionally, a biennial fallow system 

was practiced in crop system over the country to recharge depleted soil and 

reduce the effect of pests and diseases (FAO, 2011; Schnepf, 2004). It means a 

winter crop of wheat and barley was planted once in every two years. In addition, 

lack inputs of fertilizers and pesticides with poor crop management policy limited 

the agricultural land to be planted every year. On the other hand, natural and 

anthropogenic factors have also accelerated this land cover’s instabilities.  

 

6.4 Why does Iraq have low crop yields by international 

standards? 

By international standards, Iraq has low crop yields. For example, the average 

wheat yield in Iraq is 1.1 T/Ha, whereas the global average is around 2.8 T/Ha. 

This might be related to a long history of regional instability and natural factors 

which have devastated the agricultural infrastructure. For example, Iraq was 

involved in nearly continuous conflict during the last three decades including the 

Iran-Iraq war from 1980 to 1988, the Gulf War from 1990 to 1991, sanctions and 

economic warfare against Iraq from 1990 to 2003 and the recent Post-Gulf War 

from 2003 to 2011. These wars had serious negative impacts on agricultural 



 

143 

infrastructure by affecting: (i) human resources, (ii) the quality of agricultural 

land, (iii) water for irrigation. For example, during the Iraq-Iran war, many farmers 

were forced to join the army. The contribution of agriculture to GDP decreased to 

around 14% in 1985 due to the impact of war. The main issues during the Gulf 

war were air pollution due to oil well fires and incursion by oil into a wide area of 

the coastline of the Gulf because of oil spills, which led to a decline in Gulf water 

productivity (El-Baz, 1992). After a short invasion of Kuwait by Iraq, the United 

Nations Security Council decided to set Iraq under resolution 661, which imposed 

inclusive sanctions on the country 

(http://www.un.org/Depts/oip/background/index.html). Foreign companies were 

prohibited to invest in the country and major restrictions were placed on 

importing essential agricultural resources such as farm machinery, fertilizers, 

herbicides and pesticides (Schnepf, 2004). Continuous war and its consequences 

have increased the poverty rate over the region. Thus, the resolution 986 ‘Oil-for-

Food’ by the United Nations on 14 April 1995 gave permission to Iraq to sell 

limited quantities of oil to provide primarily basic needs to the Iraqi people. 

(http://www.un.org/Depts/oip/background/index.html). Although this 

programme reached its targets, albeit with some serious issues, it discouraged 

local food production. In 2003, Iraq was again involved in war (Post-Gulf War).  

During the period, the agricultural sector suffered greatly; e.g., reduction in the 

fertility of the land by mismanagement, limited access to fertilizers, farm 

machinery and pesticides, and the devastation of the irrigation system (Schnepf, 

2003). In the recent history of the Middle East, the new Iraq conflict was the 

largest in terms of displacement, and this vast displacement has placed great 

pressure on food security and human assistance in Syria and Jordan (Doocy, 

2011).  

In addition to the long periods of regional instability, other environmental 

conditions should be considered that have affected the region’s productivity. The 

north of Iraq is mostly rain-fed and its agriculture yields are generally poor and 

change considerably with the amount of rainfall. Traditionally, a biennial fallow 

system is practiced over the country to recharge the depleted soil and reduce the 

effect of pests and diseases (Schnepf, 2004). In addition to crop rotation, 

agricultural productivity suffers from lack of crop management practices, 

fertilizers and pesticides. In addition, after neglecting the infrastructure of the 

irrigation system for many years and overexploitation of the land to increase 

production, widespread salinization and saturation were observed over the 

region, which significantly reduced productivity (Mahdi 2000). Therefore, 



 

144 

although Iraq has a strong agricultural heritage, decades of war, political 

instability, sanctions, mismanagement, and climatic variability have reduced the 

region’s productivity.  

With the development of satellite, there has been increased interest in utilizing 

space observation due to the ability to provide crop monitoring information with 

greater spatial coverage, potentially at the global scale. Such a system could 

monitor water quality and land and irrigation efficiency, quantify the type and 

amount of agriculture crops, provide surrogates of crop yield and production. 

Predicting crop yield before the harvest is one of the vital concerns in agriculture 

since the inter-annual differences in crop yield affect international trade, market 

prices and food supply (Hayes and Decker 1998). Early estimation of crop 

production on the regional and global scales provides crucial information to 

policy planners. In addition, appropriate identification of crop productivity is 

important for sound economic policy and land use planning (Hayes and Decker 

1996). Furthermore, an advance crop yield estimation is an essential base of 

organising food aid missions, as it supplies adequate information about when 

and where surpluses and shortages are expected to happen.   

6.5 Main Causes of variations 

 Drought 

Recently, regular and severe drought has become a major risk to agricultural 

activity throughout Iraq. For example, a severe drought affected the region during 

2008, which resulted in a loss of production of more than 2 Mt (figure 6.4). Like 

many other arid and semi-arid countries, rainfall in Iraq has been sparse 

throughout the essential planting season with few areas receiving adequate rains 

in the north. Figure (6.3) depicts the total harvested area of winter wheat and 

barley and the total production of winter wheat and barley, along with the 

average rainfall, from 2000 to 2010 for a) Iraq, b) Iraq excluding the Kurdistan 

Region and c) the Kurdistan Region. As the Kurdistan Region is mostly rain-fed 

and was not involved directly in the war during the study period, it is shown 

separately.  

Wheat and barley require a specific amount of water. In the north part of the 

region (rain-fed area), wheat and barley mainly depend upon the amount and 

frequency of rainfall as well as its temporal and spatial distribution. For instance, 
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annually the region may receive adequate rain, but a surplus or shortage in 

rainfall at any of the growing stages might have a significant impact on final crop 

production. In Iraq, the total harvested area and production of the cereals wheat 

and barley fluctuate greatly inter-annually. The average rainfall also fluctuates 

annually with a similar pattern and, therefore, is considered the main contributing 

factor for wheat and barley production. Although, the majority of the country is 

irrigated, rainfall is nevertheless considered the main driver of production. This is 

likely related to the fact that rainfall is the major source of recharging the two 

main rivers in the country, which are used to irrigate crops. Thus, any disruption 

in the rainfall pattern can cause water deficiency, resulting in lack of production. 

It is apparent from figure 6.3 that the smallest harvested area, production and 

rainfall were recorded for 2000 and 2008 when the region experienced severe 

droughts. 
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Figure 6-3 Winter wheat and barley harvested area and production, with average 

rainfall, from 2000 to 2010 for a) Iraq, b) Iraq excluding Kurdistan Region and c) 

Kurdistan Region. 

Interannual rainfall variability considerably affects soil water availability in return 

pose major risk on crop production. It has been reported that the recent droughts 

in 2008 and 2009 caused sizeable declines in crop production in Iraq and the 

reduction was estimated to be 45% from 2007 to 2008 (USDA 2008).  This result 

is consistent with data obtained in this study where the reduction is estimated to 

be about 50%. To illustrate the impact of drought on regional crop production, 

the estimated 2008 and 2007 crop production maps are estimated and 
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compared. Figure 6.4 shows the distribution of the estimated crop production 

(1000 tons) over Iraq for (a) 2007, (b) 2008 and (c) the relative change 

(percentage) between these two years. It is apparent from figure 6.4a that the 

winter wheat and barley production were distributed normally over the region in 

2007. Mostly, the north and the areas alongside the rivers are having the highest 

amount of the production compare to very south, south-western and middle-

western parts of the country. In 2008, the region was experienced a severe 

drought. In figure 6.4b there is a clear decrease of winter wheat and barley 

production throughout the region due to the impact of drought. During the 2007-

2008 growing season, the vegetation indices and NPP were generally very poor. 

As figure 6.4a and 6-4b cannot show which area had been impacted more due to 

drought, the relative change between these years was computed. It can be seen 

from figure 6.4c that the crop production decreased for all governorates except 

Karbala and Baghdad. The north part of the region, which is considered as rain-

fed, is the most affected area by drought. The largest reduction in crop 

production was recorded for Ninawa followed by Erbil, and Sulaimani (by -86%, -

74% and -62%, respectively) as these are mainly rain-fed areas. In total, the winter 

wheat and barley production decreased by -50% from 2007 to 2008. 
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Figure 6-4 The figure shows the impact of severe drought in 2008 on winter 

wheat and barley production with the comparison of 2007. 
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 War/Conflict 

In Iraq, since the 1980s international cooperation and assistance in the 

environmental sector has been limited due to political instability. Although, after 

2003 the country was partially opened to some organizations, they had limited 

powers and resources. Therefore, even today insufficient robust scientific data 

exist to address natural and human issues in Iraq. The country has faced several 

major turbulences where some of them are directly or indirectly related to recent 

military conflicts during last decade.  

The ‘Post-Gulf’ war, which started in 2003, lasted for around eight years. During 

this time, due to political instability and insecurity, many farmers were unable to 

grow crops. This, in turn, affected the overall crop production of the country. The 

US Department of Defence estimated that around 1700 tonnes of depleted 

uranium was used during the 2003 war which contaminated soil, water and air 

with higher levels of radiation than normal (United Nations, 2013). The 

consequence of these major turbulences have significantly polluted the 

environment and this might have a negative impact on overall vegetation cover, 

particularly crop production. Cordesman and Burke (2007) reported that the 

Anbar, Baghdad and Salahadin governorates accounted for 80% of the total 

attacks during 2006 to 2007. Therefore, these governorates were selected to 

identify the extent to which regional instability has impacted on regional crop 

production. The number of attacks was obtained from the individual reports to 

Congress on measuring stability and security in Iraq (DOD, 2005-2007). The 

“attacks” range from an individual insurgent executing an ineffective attack to a 

coordinated attack with several insurgents using various weapons systems. The 

crop production of these governorates in 2005 to 2007 was compared to the crop 

production in 2002 when the region was relatively stable (Figure 6.5). 

The recent conflicts in Iraq are complex and highly dependent on geographical 

location. Some governorates in Iraq faced more attacks than others, mainly due to 

different sectarian and ethnic tensions. The peak in violence was reached during 

2005 to 2007 and the most conflicted affected governorates were Baghdad, Al-

Anbar and Salahadin in term of the number of attacks. It is apparent from figure 

6.5 that, in total, Baghdad had the largest number of attacks during the period 

(27711) followed by Al-Anbar and Salahadin by 18058 and 14886, respectively. 

Given large population displacements, and extensive disruption of markets and 

trade flow, it might be expected that the governorates of Baghdad, Al-Anbar and 

Salahadin might face elevated food insecurity levels over the period. The figure 



 

150 

6.5 shows the amount of winter wheat and barley production for Baghdad, Al-

Anbar and Salahadin from 2005 to 2007 in comparison to 2002. Although 

agriculture management has been improved and farmers have received more 

support from the government since 2002, the winter crop production was 

generally low during that period. These results are likely to be related to high 

regional instability in those governorates over the period. 

  

 

Figure 6-5 The figure illustrates the impact of regional instability of the most 

affected area on governorate crop production from 2005 to 2007 with the 

comparison of 2012. 

Surprisingly, we found that, although the region experienced a severe drought in 

2008, crop production in Baghdad was greater than in 2007 when Baghdad 
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experienced the largest number of attacks (this is also in line with statistical 

ground data). This suggests that regional instability might have an impact similar 

to extreme events such as drought. This result is likely to be related to the largest 

number of attacks in the area. Baghdad is the capital city of Iraq, and it holds 

around a quarter of Iraq’s population. Since 2003, when the US forces arrived, 

incidents started in Baghdad. In Baghdad, several districts experienced not only 

ground fighting, but also revenge killings and bombings (Serdan, 2013). As a 

consequence of being the most affected by conflict, Baghdad had the highest rate 

of movement with 8% of household members leaving their dwellings (United 

Nations WFP, 2008), which might have impacted the workforce in the agriculture 

sector. 

Due to their geographical locations, Anbar and Salahadin faced a large numbers 

of incidents during the period and, thus, their food security was consistently at 

risk. For example, one of the most violent governorates in the Coalitions in Iraq 

was Anbar. Violent attacks increased to an average of 50 per day by August 2006, 

up 57% from February, and this rate continued to rise (Lindsay and Roger, 2012). 

In particular, inside Anbar, Fallujah suddenly arose as the major battleground of 

the Iraqi insurgency. Besides, it was the most heavily bombarded city during the 

war (United Nations, 2013. ‘‘The insurgency has created complex patterns of 

conflict that have become a broad struggle for sectarian and ethnic control of 

political and economic peace’’ (Cordesman and Burke, 2007). Therefore, the 

deterioration of crop production in the three most attacked governorates during 

the period, compared to production in 2002, could be attributed to their regional 

instability.  

 

4. Why drought has to be monitored? 

Based on the human history, it can be seen that natural disaster such as drought 

has had a substantial role in agriculture growth and economic cost. Drought can 

have both direct impact such as water scarcity, hydropower supply and 

agricultural losses, and indirect impact such as industry losses, expensive 

payment for food imports, reduced export earnings (Benson and Clay 1994). The 

level of the losses realised depends on the experience of the local society and the 

vulnerability of the infrastructure of the country to the hazard (Below et al. 2007). 

In term of the number of people killed globally over 100 years, drought 

positioned number one among all natural hazards, and the most frequent 
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occurrence of droughts taken place in Asia and Africa (Below et al. 2007). The 

research also reported that Asia and the Middle East recorded the largest increase 

in deaths by 25% followed by Africa (8%) over the period. Although increased in 

economic losses was observed for all regions in the research, the 68% increase in 

Asia and Middle East was double that of any other region. In developing 

countries, drought was considered as the main cause of severe food deficiency 

and was the cause of the majority of food emergencies (FAO, 2003). 

Due to its geographical location, Iraq is affected by irregularities in precipitation 

resulting in frequent occurrence of drought. At the 39 meteorological stations 

over past 30 years (1980-2010), the SPI was computed at various time scales as 

an indicator to determine the impact of drought severity over Iraq (Al-Timimi and 

Al-Jiboori 2013). They highlighted the years 1983, 1998, 1999, 2000 and 2008 as 

the most impacted years by drought over the investigation period, whereas 2008 

was announced the worst drought during the period. Barley production 

fluctuation was evaluated from 1961 to 2000 in Iraq, Morocco, Syria and Turkey, 

and found that severe fluctuations closely related to precipitation fluctuations (De 

Pauw 2005). During 1999 drought, water level in Iraq’s main rivers dropped by 

more than 50 % and rainfall was 30% below average (ESCWA 2005). This led to a 

70% failure in crop germination in rain-fed agriculture areas and reduction of 37% 

and 83% of wheat and barley production, respectively in central and southern 

parts of the country.  

Drought is a common event in many arid and semi-arid regions due to the 

prevailing climate. Many research and operational drought monitoring models 

have been developed regionally and globally to estimate and predict drought. In 

these models past, current and future condition with the frequency of drought 

were evaluated. For example, model simulations under a low-to-moderate 

scenario were used to investigate the magnitude and key drivers of drying land 

globally (Figure 6.6) (Zhao and Dai 2015). The results indicated that over most 

parts of East and West Asia, southern Africa, America, Australia and Europe, the 

frequency of the SM-based moderate (severe) agricultural drought is expected to 

increase by 50-100% (100%-200%) in a relative sense by the 2090s (Figure 6.6 c 

and d). It was also expected that the runoff-based hydrological drought frequency 

would increase by 10%-50% over the majority of lands. It can be seen from figure 

6.6 that drought frequency, using the three drought measures, is expected to 

increase over most areas including Iraq. These results are also in line with both 

climatic models (Evans 2009; Evans 2010) and regional climatic simulations (Kitoh 
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et al. 2008; Mariotti et al. 2009; Jin et al. 2010; Seager et al. 2014) where 

significant drying under future climate was projected for the Eastern 

Mediterranean. In addition, Zakaria et al. (2013) employed the climatic model 

CGCM3.1 (T47)2 to demonstrate the variation in average rainfall and temperature 

in the countries of the Middle East and North Africa (MENA), with particular 

emphasis on Iraq, by comparing historical (1990-2009) to future (2020-2100) 

data. The study revealed that average future monthly temperature tends to be 

higher and average monthly rainfall lower by 36.47% relative to the historical 

record of rainfall for the same months (Figure 6.7 a and b). World Bank (2011) 

also stated that MENA countries would face higher temperature because of 

climate changes. Warmer climate and increased variability will lead to frequent 

occurrence of both droughts and floods (Wetherald and Manabe 2002). Drought 

is one of the most frequently issues for agriculture life and water supply in MENA 

regions. This particularly effective in MENA countries as most of the agricultural 

land is under rain-fed condition. For instance, one third of Iraq’s winter wheat and 

barley production is produced under rain-fed condition (Schnepf 2004). Based on 

previous evidence, Iraq might face further droughts and its consequences in the 

future. Therefore, a comprehensive method to provide timely information, wide 

adaptation and mitigation policy is required to make the region more drought 

resistant.   
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Figure 6-6 “Multimodel ensemble averaged changes of drought frequency 

(defined as the percentage of the time in drought conditions, not percentage 

changes) from 1970–99 to 2070–99 under the RCP 4.5 scenario, with drought 

being defined locally as months below the (a),(c),(e) 10th and (b),(d),(f) 20th 

percentile of the 1970–99 period based on monthly anomalies of (a),(b) 

sc_PDSI_pm, (c),(d) normalized SM in the top 10-cm layer, and (e),(f) normalized 

runoff R in individual model runs. The monthly anomalies of SM and R were 

normalized using the standard deviation over the 1970–99 period. The stippling 

indicates at least 80% of the models agreeing on the sign of change” (Zhao and 

Dai 2015). 
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Figure 6-7  Average annual (a) temperature (c°) and (b) rainfall (mm) over the 

study area for historical and future periods in Iraq (Zakaria et al. 2013). 

 

6.6 Drought mitigation plan 

In term of the agriculture drought mitigation, directly or indirectly the results of 

the current research might have a significant contribution to improve the regional 

agriculture management. In addition, previous researches have demonstrated that 

using remote sensing data might help the region in supporting local and policy 

making decisions. The results of the current work could improve the agriculture 

practice management toward better drought mitigation plan. For example, 

spatiotemporal variation in key land surface phenology parameters were assessed 

and mapped across Iraq over last decade (Qader et al. 2015). Such information 

can assist to improve agricultural management such as irrigation and fertilization 

through aiming to establish a suitable relationship between the timing of plant 

growth stages and carbohydrate consumption (Garcia-Tejero et al., 2010; Menke 

and Trlica 1981; Mooney and Billings, 1960). The dominant vegetation land cover 

types were classified over the region using automated phenology-based 

classification approaches during the last decade (Qader et al. 2016). Updated 

annual land cover maps can be employed by policy-makers and scientists to 
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improve regional scale agricultural management practices under a variety of 

environmental conditions. It was also found that the date of maximum MODIS 

NDVI can be used to estimate crop production in Iraq using linear regression 

model (Qader et al. in submission). Local crop production and yield needs to be 

forecasted regularly using remote sensing data. This forecasting could help notify 

local authorities about potential decreases in crop production and yield, leading 

to appropriate import and export decisions (Garcia-Tejero et al., 2010; Menke and 

Trlica 1981; Mooney and Billings, 1960). The results of LSP, VLC types and crop 

production were mapped in the current research. The products consists of colour 

maps, depicting which parts of Iraq are suffering from various degrees of 

drought. The maps quantify the area and production loss over the region due to 

the impact of drought. This could help the local authority to take careful 

consideration to those areas which are more vulnerable or exposed to the impact 

of drought. 

Any reconstruction project aiming to improve agricultural conditions, including 

based on developing an agricultural monitoring system, might be challenging in 

Iraq until security conditions improve. In addition, reliable socioeconomic and 

environmental information are needed to improve agricultural decision support 

systems. For the current condition, an agricultural monitoring system based on 

remotely sensed data is required to provide comprehensive information to local 

farmers and policy makers. This system should have the ability to quantify the 

type and amount of agricultural crops, monitor water quality, land quality and 

irrigation efficiency, and estimate and forecast crop yield and production. A 

drought early warning system should be at the top of regional plans and this 

should be capable of characterising water supply and climate trends and 

therefore identify the onset or likelihood of occurrence and severity of drought. 

This could reduce the impact of drought if the information is delivered in time to 

the right people, and mitigation and preparedness plans are put in place. Drought 

mitigation and preparedness plan can be consisted of different components; i) 

prediction can advantages from climatic studies, soil moisture and remote 

sensing data, ii) monitoring based on the ground based knowledge such as 

weather stations, iii) impact assessment can be obtained indirectly such land cove 

types and iv) response by providing better management.  

As the region is struggling with water scarcity, water conservation could be 

another mitigation strategy to combat drought. This could be done by building 

dams or holding surface water in reservoirs as the region has intense rainfall in 
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winter resulting in the frequent occurrence of floods. The mitigation plan could 

also be implemented through improving water use efficiency. Up to now, many 

irrigated areas rely on traditional irrigation systems such as surface irrigation. In 

this method, a massive amount of water is needed to irrigate crops. Therefore, 

promotion of the irrigation system to modern systems such as drip and sprinkler 

irrigation is potentially beneficial. In addition, the government and farmers could 

consider adopting a range of plants that can tolerate dry conditions or using 

genetically modified varieties that are more resistant to drought. Other strategies 

for drought mitigation or relief should be considered such as cloud seeding, crop 

rotation, and using recycled water as part of improving agricultural management. 

Research should also be encouraged that seeks to find the optimal method to 

mitigate drought by incorporating more technologies that can assess and forecast 

potential crop production failures and provide possible solutions in the region.        

6.7 Future work 

The global impacts of land use land cover change might be as important or more 

than those related with potential climate change over the coming decades (IPCC 

2000). Over last 50 years, 33% of the total anthropogenic carbon emission 

accounted for the contribution of LULC change (Houghton et al. 1999), from 

19980s to 1990s was 20% of total emission (IPCC 2007), and was 12.5% over 

2000 to 2009 (Friedingstein et al. 2010). Despite of less information regarding to 

the rates and types of the land use land cover change, evidence of natural and 

anthropogenic causes of such change are frequently missing (Turner et al. 1999). 

Natural and anthropogenic factor are the main causes of LULC changes. Future 

research on investigating rapid changes in land use/land cover are therefore 

recommended in Iraq. These changes can be used as a surrogate of the impact of 

natural factor such as drought and anthropogenic factor such as civil war over the 

region. For instance, Stevens et al. (2011) used Landsat satellite images to 

investigate the changes of forest area caused by civil war in Atlantic Coast of 

Nicaragua from 1978 to 1993. The result revealed that the beginning of five to 

seven years of the conflicts, the rate of reforestation is higher than deforestation, 

as compare to the later years of conflicts where deforestation land was nearly 

doubled to reforestation. In South Vietnam, the results obtained from GIS and 

remote sensing data indicated that war caused the reduction of the total 

mangrove area by one third because of using herbicides by US (Thu and Populus, 

2007). Further research should also be undertaken to investigate which 

combination of remotely sensed and phenological data results in the best 
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classification of abundant agriculture land in Iraq due to regional instability 

(Alcantara et al. 2012). In addition, the smoothed MODIS time series can be used 

to understand the degree of extensification and intensification in croplands 

during last decade (Galford et al. 2008). With higher quality and more accurate 

maps of agricultural lands, decision makers at the regional level will be much 

better positioned to reliably assess land use policy.  

The current regional land cover classification can serve as a start point. More 

research efforts should be undertaken toward finding approaches to improve 

regional VLC types. Although, moderate resolution such as MODIS 250m can be 

employed to monitor area with large field sizes, higher spatial resolution data are 

required with finer temporal resolution for monitoring agricultural lands with 

smaller field size (Justice and Becker-Reshef 2007). A new data source for 

monitoring land cover can be obtained from Landsat 8 which has the potential to 

improve the characterization of land’s surface significantly. Compare to previous 

Landsat data, the new data set has several new features such as two spectral 

bands, two sensors, an improved spectral range for some bands, and refined 

radiometric resolution from 8-bit to 12-bit (Pahlevan and Schott 2013. However, 

validation of the future classification over Iraq remains a crucial issue. This will 

need larger involvement of experts on the ground and the obtaining a higher 

quality and quantity of ground data. In addition, further input data in both 

reference data and images might improve the performance of the classification. 

The reference data in different agro-ecological zones and the ground reflectance 

for various crop growth stages should be collected in order to achieve maximum 

accuracy in crop mapping. One of the main sources of misclassification could be 

related to the variations in planting and harvesting dates. In addition, in order to 

improve the classification accuracy and discriminate different crop types such as 

wheat and barley, using of the rich spectral data (hyperspectral data) is crucial. 

For instance, in Iran, a neighbouring country with a similar environment, an effort 

was made to discriminate wheat and barley using the hyperspectral sensor 

Hyperion, which has 242 spectral bands and 30 m spatial resolution (Fahimnejad 

et al. 2007). The results of the classification indicated that Hyperion data could 

be used to discriminate both crops. Therefore, fine spatial and multi-spectral 

remote sensing data are needed to identify and map crops in the arid and semi-

arid regions.   

To overcome this issue and increase the accuracy, researchers have used fusion 

approaches to combine the fine spatial resolution of Landsat with the high 
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temporal frequency of coarse resolution data such as MODIS (Gao et al. 2006; 

Lobel at al. 2013), which can be applied in arid and semi-arid regions. Such a 

product could have additional value for many applications, which need both fine 

spatial and temporal resolution such as land cover classification and forecasting 

crop yield. One approach, called the spatial and temporal adaptive reflectance 

fusion model (STARFM) is based upon a spatial relationship between Landsat and 

MODIS spectral reflectance. The MODIS spectral reflectance can be downscaled to 

the spatial resolution of Landsat obtained at the same dates (Gao et al. 2006). An 

extension of STARFM was developed to enhance the accuracy of predicting the 

surface reflectance of heterogeneous landscapes (ESTARFM) (Zhu et al 2010). 

Linear mixture models were also used to downscale MERIS to a Landsat-like 

spatial resolution and results indicated that vegetation dynamics, discrimination 

of crop types, phenology and capturing rapid land cover types can be monitored 

effectively (Zurita-Milla et al. 2009; Amoros-Lopez et al. 2013). In addition, new 

products such as the Sentinel data provided by the European Space Agency (ESA) 

have become accessible to the remote sensing community and increase the 

spatial and spectral properties for services such as complex land cover/land use, 

forest monitoring, and change detection. For example, Balzter et al. 2015 

recently reveal that Sentinel-1 can be employed to recognise several land cover 

classes of the CORINE Land Cover nomenclature. The Sentinel satellite missions 

comprise five different satellite, one and two for agriculture interest, three for sea 

and land surface temperature, ocean colour and land colour and sea surface 

topography, and five for atmospheric monitoring. The data extracted from 

Sentinel imagery can be used in isolation such as Sentinel-2 and 3, or both can be 

combined, or both can be combined with MODIS and Landsat 8 through data 

fusion techniques. This may also advance the LULC classification and forecasting 

of crop yield in the future in arid and semi-arid regions.  

Increasing global population to around 9 billion people by 2050 and impact of 

climate change pose a major risk on the world’s agriculture, researchers are 

seeking to develop space based technology to help maintain the global food 

supply. Until now, we have focused on reflected light in the solar spectrum as the 

main source of information about vegetation condition. However, there is an 

extra source of information in the spectral range of optical and near infrared 

which can provide information about vegetation productivity. This source of 

information is associated to the emission of fluorescence of plant leaf chlorophyll 

where it can be yielded as re-emitted energy as fluorescence because this part 

cannot be utilized in carbon fixation. In addition, observational evidence in many 
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studies revealed that chlorophyll fluorescence provides information content 

independent of reflectance based spectral VIs (Guanter et al. 2007; Middleton et 

al. 2008). Recent advances in remotely sensed-based approaches to estimate 

photosynthesis relied on the flux of chlorophyll fluorescence emitted by the 

canopy, which has given opportunities to develop many satellite retrieval 

algorithms (Joiner et al. 2011; Frankenberg et al. 2011; Parazoo et al. 2014). 

Recently, Guan et al. (2016) for the first time provided a framework to correlate 

solar-induced fluorescence (SIF) retrievals and crop yield. In their work, crop 

productivity was estimated for 2007-2012 using spaceborne SIF retrieval from the 

Global Ozone Monitoring Experiment-2 satellite in United States. Besides more 

accurate and efficient measurement of crop productivity compared to traditional 

crop monitoring approaches, the SIF was able to measure the impact of 

environmental stresses on carbon use efficiency and autotrophic respiration, with 

considerable sensitivity of both to high temperatures. These outcomes revealed 

new opportunities to improve crop yield forecasting and increase understanding 

of crop yield responses to different climatic conditions in arid and semi-arid 

regions.       

Furthermore, to forecast regional crop production and yield, as the region has 

high climatic flactuations and crop production/yield are significantly vary with the 

amount of rainfall, thus use of the crop forecasting model based on climatic data 

should be considered in the future work in Iraq. These models are mainly based 

on two components, rainfall and temperature (Barnett and Thompson 1982) as 

they are related to cop yield. Temperature and rainfall data can be obtained either 

through meteorological stations or through satellite measurements. For instance, 

AVHRR-NDVI data and SPI at different time scales was combined to predict wheat 

and barley production in Middle Ebro valley (Vicente-Serrano et al. 2006). In Spain 

and Kenya, The FAO Crop Specific Water Balance model (CSWB), SPOT-NDVI and 

meteorological data were combined to improve the crop yield forecasting (Rojas 

2007). Similarly. In Iowa, USA, crop yield was assessed and predicted using the 

combination of NDVI, soil moisture, rainfall and surface temperature (Prasad et al. 

2006). In Morocco, predictive models, that combined NDVI, air temperature and 

rainfall, were developed to forecast wheat yield (Balaghi et al. 2008). 

Improvements were reported in all studies to predict and forecast crop yield. 

Therefore, in the future works, the performance of the model can be improved by 

combining MODIS-NDVI data with meteorological data such as SPI and 

evapotranspiration (ET).  
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 Conclusion       

This chapter provides a list of key findings extracted from the three research 

papers. These findings are all key to improve the regional crop production and 

monitoring vegetation land cover types. In addition, primary information of great 

importance to various applications such as food security, climate, agriculture 

management, biodiversity, natural and anthropogenic impact and carbon cycle 

modelling can be obtained directly or indirectly from these findings.  

For the first time LSP parameters of terrestrial vegetation were mapped across 

Iraq at a spatial resolution of 250 m. The spatial variation in LSP across the whole 

of Iraq for all vegetation types was quantified, thus, providing an important 

example of mapping vegetation phenology in a semi-arid environment, for which 

previous research has been relatively lacking. 

 Greater spatial variation occurred in the SOS than end of season (EOS), 

which may be due to the spatial distribution of rainfall and temperature 

as a function of elevation. 

 Linear regression analysis indicated that elevation was positively 

correlated with all LSP parameters particularly EOS (R
2

 = 0.685, R
2

 = 0.638 

and R
2

 = 0.588, p < 0.05 in shrubland, cropland and grassland, 

respectively). In contrast, in most case studies in Europe the coefficient of 

determination between EOS and elevation was negative due to the effect 

of low temperature at high elevations as a driving factor in bringing the 

season to an early end. 

 The magnitude of delay in SOS and EOS increased in all land cover types 

along a rising elevation gradient where for each 500 m increase, SOS was 

delayed by around 25 or more days and EOS delayed by around 22 or 

more days, except for grassland. 

 The SOS and EOS also varied temporally during the last decade, 

particularly the SOS in the lowland, north of the country where the 

standard deviation was around 80 to 120 days, due mainly to the practice 

of crop rotation and the traditional biennial cropping system. 

Reliable information about croplands and natural vegetation in such regions is 

generally scarce. Such an information can be of interest to several applications 

such climate, food security, biodiversity and agriculture management. Therefore, 

a phenological-based classification approach using SVM at the regional scale for 
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the first time was developed to derive dominant VLC types in arid to semi-arid 

regions such as Iraq, particularly croplands, from 2002 to 2012. 

 The SVM classifier approach produced satisfactory classification 

accuracies (generally > 85%) with relatively high Kappa coefficients (> 

0.86) among the dominant VLC types of Iraq. 

 Correlation of VLC cropland area during the last decade with ground 

statistical data revealed an average coefficient of determination of 0.7 (p 

< 0.05), whereas the average agreement for the global MODIS product 

cropland class was 0.35 (p < 0.05).  

 This research also showed that the 2008 drought, the most extreme 

event during the last decade in Iraq, led to a considerable decline in all 

dominant VLC types.  

 VLC instability, particularly for croplands, was evident, most likely due to 

more than a decade of regional instability and natural disasters across 

the country coupled with variable quality agricultural management 

practices. 

Using the current crop area to mask croplands, this study combines the data from 

NASA’s MODIS in collaboration with official crop statistics to develop an empirical 

regression based model to forecast winter wheat and barley yield/production in 

Iraq. Although, several methodological approaches were tested with using various 

remotely sensed indices to estimate and forecast crop yield at the governorate 

level, the research was unable to do so. This is due to mainly lack of the reliability 

of the ground data and low spatial resolution data used in the current study 

compare to the small agriculture field size in the country. However, better 

estimation and forecasting of crop production were obtained at the governorate 

level in Iraq. 

 The result of the current research imply that time of the maximum VIs are 

among the predominant predictors that can be used to predict crop 

production at least one and half month prior to the harvest. 

 The result indicated that MODIS NDVI offers a better basis for estimating 

and forecasting crop production, with an average R
2

=0.70, relative to 

MODIS EVI (Avg R
2

=0.68) and NPP (Avg R
2

=0.66) using the leave-one-year-

out approach. 

 This study has shown that remote sensing indices could characterize and 

forecast crop production more accurately than simple cropping area, 
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which was treated as a null model or benchmark against which to 

evaluate the proposed approach. 

 Generally, the results from this work suggest that remote sensing related 

to vegetation phenology is valuable for agriculture monitoring, land cover 

classification and crop production forecasting. For the homogeneous 

pixels, the MODIS data are performed better for such application in the 

region. However, due to its coarse spatial resolution compare to the small 

agricultural field size, separating crop types and forecasting yield are 

challenging in Iraq.   

Quantifying crop production is essential for the wide range of application such as 

food security, management and carbon cycle modelling. This is particularly 

crucial for such a region as Iraq, as its food security is always at risk due to the 

impact of decadal natural and anthropogenic factors. Thus, such an estimation in 

advance could help scientists and policy planners to improve regional agriculture 

management and food security under a variety of environmental condition.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

164 

List of References 

Abi-Ghanem, R., Carpenter-Boggs, L., Koenig, R., Pannkuk, C., Pan, W., & Parker, 

R. (2009). Extension Education for Dryland Cropping Systems in Iraq. 

Journal of Natural Resources and Life Sciences Education, 38, 133-139. 

Acharya, P., & Punia, M. (2013). Comparison of MODIS derived land use and land 

cover with Ministry of Agriculture reported statistics for India. Journal of 

Applied Remote Sensing, 7. 

Akinyemi, F. O. (2013). An assessment of land-use change in the Cocoa Belt of 

south-west Nigeria. International Journal of Remote Sensing, 34(8), 2858-

2875. 

Alcantara, C., Kuemmerle, T., Prishchepov, A. V., & Radeloff, V. C. (2012). 

Mapping abandoned agriculture with multi-temporal MODIS satellite data. 

Remote Sensing of Environment, 124, 334-347. 

Allen, R., Hanuschak, G., & Craig, M. (2002). Limited Use of Remotely Sensed Data 

for Crop Condition monitoring and Crop Yield forecasting in NASS. 

Alnasrawi, A. (2004). State and agriculture in Iraq: Modern development, 

stagnation and the impact of oil. International Journal of Middle East 

Studies, 36(2), 318-320. 

Al-Timimi, Y. K., & Al-Jiboori, M. H. (2013). Assessment of spatial and temporal 

drought in Iraq during the period 1980-2010. International Journal of 

Energy and Environment, 4(2), 291-302. 

Al-Timimi, Y. K., & Al-Jiboori, M. H. (2013). Assessment of spatial and temporal 

drought in Iraq during the period 1980-2010. International Journal of 

Energy and Environment, 4(2), 291-302. 

American Meteorological Society (2004). "Statement on Meteorological Drought." 

American Meteorological Society 85: 771-773. 

Amoros-Lopez, J., Gomez-Chova, L., Alonso, L., Guanter, L., Zurita-Milla, R., 

Moreno, J., & Camps-Valls, G. (2013). Multitemporal fusion of Landsat/TM 

and ENVISAT/MERIS for crop monitoring. International Journal of Applied 

Earth Observation and Geoinformation, 23, 132-141. 



 

165 

Andarzian, B., Bakhshandeh, A. M., Bannayan, M., Emam, Y., Fathi, G., & Saeed, K. 

A. (2008). WheatPot: A simple model for spring wheat yield potential using 

monthly weather data. Biosystems Engineering, 99(4), 487-495. 

Antônio, H., Teixeira, C. d., & Bassoi, L. H. (2009). Crop Water Productivity in 

Semi-arid Regions: From Field to Large Scales. Annals of Arid Zone, 48(3), 

1-13.  

Arroyo, J. (1990). Spatial variation of flowering phenology in the mediteranian 

shrublands of south Spain. Israel Journal of Botany, 39(3), 249-262.  

Atkinson, P. M., Jeganathan, C., & Dash, J. (2009). Analysing the effect of different 

geocomputational techniques on estimating phenology in India. In B. G. 

Lees, & S.W. Laffan (Eds.), 10th International Conference on 

GeoComputation. Sydney: UNSW November–December, 2009. 

Atkinson, P. M., Jeganathan, C., Dash, J., & Atzberger, C. (2012). Inter-comparison 

of four models for smoothing satellite sensor time-series data to estimate 

vegetation phenology. Remote Sensing of Environment, 123, 400-417. 

Atzberger, C., & Rembold, F. (2013). Mapping the Spatial Distribution of Winter 

Crops at Sub-Pixel Level Using AVHRR NDVI Time Series and Neural Nets. 

Remote Sensing, 5(3), 1335-1354. 

Aziz, F. H. (2011). Seventeen spp. new records for the Moss flora of Iraq. Phyton-

International Journal of Experimental Botany, 80, 35-46.  

Badhwar, G. D., Carnes, J. G., & Austin, W. W. (1982). Use of Landsat-derived 

temporal profiles for corn soybean feature-extraction. Remote Sensing of 

Environment, 12(1), 57-79. 

Balaghi, R., Tychon, B., Eerens, H., & Jlibene, M. (2008). Empirical regression 

models using NDVI, rainfall and temperature data for the early prediction 

of wheat grain yields in Morocco. International Journal of Applied Earth 

Observation and Geoinformation, 10(4), 438-452. 

Balzter, H., Cole, B., Thiel, C., & Schmullius, C. (2015). Mapping CORINE Land 

Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using 

Random Forests. Remote Sensing, 7(11), 14876-14898. 

Barakat H. N. (2009). Arid lands: challenges and hopes. Earth system: history and 

natural variability-Vol. III. EOLSS publishers. 



 

166 

Barnett, T. L., & Thompson, D. R. (1982). The use of large-area spectral data in 

wheat yield estimation. Remote Sensing of Environment, 12(6), 509-518. 

Battisti, D. S., & Naylor, R. L. (2009). Historical Warnings of Future Food Insecurity 

with Unprecedented Seasonal Heat. Science, 323(5911), 240-244. 

Bauer, M. E. (1985). Spectral Inputs to Crop Identification and Condition 

Assessment. Proceedings of the IEEE, 73(6), 1071-1085. 

Becker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., 

Doorn, B. (2010). Monitoring Global Croplands with Coarse Resolution 

Earth Observations: The Global Agriculture Monitoring (GLAM) Project. 

Remote Sensing, 2(6), 1589-1609. 

Becker-Reshef, I., Vermote, E., Lindeman, M., & Justice, C. (2010). A generalized 

regression-based model for forecasting winter wheat yields in Kansas and 

Ukraine using MODIS data. Remote Sensing of Environment, 114(6), 1312-

1323. 

Below, R., Grover-Kopec, E., & Dilley, M. (2007). Documenting Drought-Related 

Disasters: A Global Reassessment. The Journal of Environment & 

Development, 16(3), 328-344. 

Benedetti, R., & Rossini, P. (1993). On the use of NDVI profiles as a tool for 

agricultural statistics: The case study of wheat yield estimate and forecast 

in Emilia Romagna. Remote Sensing of Environment, 45(3), 311-326. 

Benson, C., & Clay, E. (1994). The impact of drought on sub-Saharan African 

economies. Ids Bulletin-Institute of Development Studies, 25(4), 24-36. 

Bewket, W. (2009). Rainfall variability and crop production in Ethiopia Case study 

in the Amhara region. Paper presented at the Proceedings of the 16th 

International Conference of Ethiopian Studies, Trondheim. 

Bobee, C., Ottle, C., Maignan, E., de Noblet-Ducoudre, N., Maugisa, R., Lezine, A. 

M., & Ndiaye, M. (2012). Analysis of vegetation seasonality in Sahelian 

environments using MODIS LAI, in association with land cover and rainfall. 

Journal of Arid Environments, 84, 38-50. 

Bognar, P., Ferencz, C., Pasztor, S., Molnar, G., Timar, G., Hamar, D., Ferencz, O. 

E. (2011). Yield forecasting for wheat and corn in Hungary by satellite 



 

167 

remote sensing. International Journal of Remote Sensing, 32(17), 4759-

4767. 

Bolten, J. D., Crow, W. T., Zhan, X. W., Jackson, T. J., & Reynolds, C. A. (2010). 

Evaluating the Utility of Remotely Sensed Soil Moisture Retrievals for 

Operational Agricultural Drought Monitoring. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing, 3(1), 57-66. 

Bolton, D. K., & Friedl, M. A. (2013). Forecasting crop yield using remotely sensed 

vegetation indices and crop phenology metrics. Agricultural and Forest 

Meteorology, 173, 74-84. 

Boyd, D. S., Almond, S., Dash, J., Curran, P. J., & Hill, R. A. (2011). Phenology of 

vegetation in Southern England from Envisat MERIS terrestrial chlorophyll 

index (MTCI) data. International Journal of Remote Sensing, 32(23), 8421-

8447. 

Bradley, B. A., & Mustard, J. F. (2008). Comparison of phenology trends by land 

cover class: a case study in the Great Basin, USA. Global Change Biology, 

14(2), 334-346. 

Brink, A. B., & Eva, H. D. (2009). Monitoring 25 years of land cover change 

dynamics in Africa: A sample based remote sensing approach. Applied 

Geography, 29(4), 501-512. 

Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M. H., Ruget, F., Nicoullaud, B., 

Delecolle, R. (1998). STICS: a generic model for the simulation of crops 

and their water and nitrogen balances. I. Theory and parameterization 

applied to wheat and corn. Agronomie, 18(5-6), 311-346. 

Brown, J. F., Loveland, T. R., Ohlen, D. O., & Zhu, Z. L. (1999). The global land-

cover characteristics database: The users' perspective. Photogrammetric 

Engineering and Remote Sensing, 65(9), 1069-1074.  

Brown, L., R. (2006). Rescuing planet under stress and a civilization in trouble. 

New York, Norton.  

Brown, M. E. (2008). Famine Early Warning Systems and Remote Sensing Data. 

Springer Berlin-Heidelberg. 

Brown, M. E., de Beurs, K. M., & Marshall, M. (2012). Global phenological response 

to climate change in crop areas using satellite remote sensing of 



 

168 

vegetation, humidity and temperature over 26 years. Remote Sensing of 

Environment, 126, 174-183. 

Burges, C. J. C. (1998). A tutorial on Support Vector Machines for pattern 

recognition. Data Mining and Knowledge Discovery, 2(2), 121-167. 

Burke, I. C., Kittel, T. G. F., Lauenroth, W. K., Snook, P., Yonker, C. M., & Parton, 

W. J. (1991). Regional-analysis of the central Great-Plains-Sensitivity to 

climate variability. Bioscience, 41(10), 685-692. 

Centre for Research on the Epidemiology of Disasters-CRED. EM-DAT: The 

OFDA/CRED 

Chahbi, A., Zribi, M., Lili-Chabaane, Z., Duchemin, B., Shabou, M., Mougenot, B., & 

Boulet, G. (2014). Estimation of the dynamics and yields of cereals in a 

semi-arid area using remote sensing and the SAFY growth model. 

International Journal of Remote Sensing, 35(3), 1004-1028. 

Chang, K. W., Shen, Y., & Lo, J. C. (2005). Predicting rice yield using canopy 

reflectance measured at booting stage. Agronomy Journal, 97(3), 872-878. 

Chen, J., Jonsson, P., Tamura, M., Gu, Z. H., Matsushita, B., & Eklundh, L. (2004). 

A simple method for reconstructing a high-quality NDVI time-series data 

set based on the Savitzky-Golay filter. Remote Sensing of Environment, 

91(3-4), 332-344. 

Chen, W., Foy, N., Olthof, I., Latifovic, R., Zhang, Y., Li, J. Stewart, H. M. (2013). 

Evaluating and reducing errors in seasonal profiles of AVHRR vegetation 

indices over a Canadian northern national park using a cloudiness index. 

International Journal of Remote Sensing, 34(12), 4320-4343. 

Christou, P., & Twyman, R. M. (2004). The potential of genetically enhanced 

plants to address food insecurity. Nutrition Research Reviews, 17(1), 23-

42. 

Chuanfu, X., Jing, L., & Qinhuo, L. (2012). Monitoring vegetation phenology in 

China using time-series MODIS LAI data. IGARSS 2012 - 2012 IEEE 

International Geoscience and Remote Sensing Symposium, 48-51. 

Chung-Te, C., Teng-Chiu, L., Su-Fen, W., & Vadeboncoeur, M. A. (2011). Assessing 

growing season beginning and end dates and their relation to climate in 



 

169 

Taiwan using satellite data. International Journal of Remote Sensing, 

32(18), 5035-5058. 

Churkina, G., Schimel, D., Braswell, B. H., & Xiao, X. M. (2005). Spatial analysis of 

growing season length control over net ecosystem exchange. Global 

Change Biology, 11(10), 1777-1787. 

Cihlar, J., Ly, H., Li, Z. Q., Chen, J., Pokrant, H., & Huang, F. T. (1997). 

Multitemporal, multichannel AVHRR data sets for land biosphere studies - 

Artifacts and corrections. Remote Sensing of Environment, 60(1), 35-57. 

Cihlar, J., Tcherednichenko, I., Latifovic, R., Li, Z., & Chen, J. (2001). Impact of 

variable atmospheric water vapor content on AVHRR data corrections over 

land. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 173-

180. 

Clerici, N., Weissteiner, C. J., & Gerard, F. (2012). Exploring the Use of MODIS 

NDVI-Based Phenology Indicators for Classifying Forest General Habitat 

Categories. Remote Sensing, 4(6), 1781-1803. 

Collier, P, Elliott, V L, Hegre, H, Hoeffler, A, Reynal-Querol, M and Sambanis, N 

2003. Breaking the Conflict Trap: Civil War and Development Policy. World 

Bank and Oxford University press. 

Colombo, R., Busetto, L., Fava, F., Di Mauro, B., Migliavacca, M., Cremonese, E., di 

Cella, U. M. (2011). Phenological monitoring of grassland and larch in the 

Alps from Terra and Aqua MODIS images. Italian Journal of Remote 

Sensing-Rivista Italiana Di Telerilevamento, 43(3), 83-96. 

Comber, A. J., Fisher, P. F., & Wadsworth, R. A. (2005). Identifying land cover 

change using - a semantic statistical approach. 

Cortes, C., & Vapnik, V. (1995). Support Vector Networks. Machine Learning, 

20(3), 273-297. 

COSIT. Central Organization for Statistics and Information Technology in Iraq, 

2011 Area and Number of Holdings by Land Use on National Level and 

Governorates According to the Agricultural Censuses of the Year 2001  

http://www.cosit.gov.iq/en/, (accessed on Jan. 16, 2015) 

Crist, E. P., & Malila, A. (1980). A temporal spectral analysis technique for 

vegetation applications of Landsat. Paper presented at the In: 14th 



 

170 

International Symposium on Remote Sensing of Environment., San Jose, 

Costa Rica. 

Curran, P. J., Dungan, J. L., & Gholz, H. L. (1990). Exploring the relationship 

between reflectance red edge and chlorophyll content in slash pine. Tree 

Physiology, 7(1-4), 33-48. 

Currit, N. (2005). Development of a remotely sensed, historical land-cover change 

database for rural Chihuahua, Mexico. International Journal of Applied 

Earth Observation and Geoinformation, 7(3), 232-247. 

Dadhwall, V. K., & Ray, S. S. (2000). Crop assessment using remote sensing -Part 

II: Crop condition and yield assessment. Indian Journal of Agriculture 

Economy, 2 (1947-4, 55-67.  

Dai, A. G. (2013). Increasing drought under global warming in observations and 

models. Nature Climate Change, 3(1), 52-58. 

Dash, J., and P. J. Curran. 2007. “Relationship between the MERIS Vegetation 

Indices and Crop Yield for the State of South Dakota, USA.” Proceedings 

Envisat Symposium, Montreux, April 23–27 (ESA SP-636, July 2007). 

Dash, J., Jeganathan, C., & Atkinson, P. M. (2010). The use of MERIS Terrestrial 

Chlorophyll Index to study spatio-temporal variation in vegetation 

phenology over India. Remote Sensing of Environment, 114(7), 1388-1402. 

de Beurs, K. M., & Henebry, G. M. (2004). Land surface phenology, climatic 

variation, and institutional change: Analyzing agricultural land cover 

change in Kazakhstan. Remote Sensing of Environment, 89(4), 497-509. 

De Pauw, E. (2005) Chapter 16: Monitoring Agricultural Drought in the Near East, 

In: V.K. Boken, A. P. Cracknell, and R.L. Heathcote, eds., Monitoring and 

Predicting Agricultural Drought, Oxford University Press: New York. 

De Wit, A. J. W. and Boogaard, H. L. 2001. Monitoring of Crop Development and 

Crop Model Optimization Using NOAA –AVHRR: Towards an Integrated 

Satellite and Model‐based Crop Monitoring System in the European 

Context, Delft: Beleids Commissies Remote Sensing (BCRS). BCRS Report 

2000: USP‐2, Report 2000, 00–12. 



 

171 

Dean, A. M., & Smith, G. M. (2003). An evaluation of per-parcel land cover 

mapping using maximum likelihood class probabilities. International 

Journal of Remote Sensing, 24(14), 2905-2920. 

Deininger, K., & Castagnini, R. (2006). Incidence and impact of land conflict in 

Uganda. Journal of Economic Behavior & Organization, 60(3), 321-345. 

Delrue, J., Bydekerke, L., Eerens, H., Gilliams, S., Piccard, I., & Swinnen, E. (2013). 

Crop mapping in countries with small-scale farming: a case study for West 

Shewa, Ethiopia. International Journal of Remote Sensing, 34(7), 2566-

2582. 

Ding, M., Zhang, Y., Sun, X., Liu, L., Wang, Z., & Bai, W. (2013). Spatiotemporal 

variation in alpine grassland phenology in the Qinghai-Tibetan Plateau 

from 1999 to 2009. Chinese Science Bulletin, 58(3), 396-405. 

Ding, M., Zhang, Y., Sun, X., Liu, L., Wang, Z., & Bai, W. (2013). Spatiotemporal 

variation in alpine grassland phenology in the Qinghai-Tibetan Plateau 

from 1999 to 2009. Chinese Science Bulletin, 58(3), 396-405. 

Doraiswamy, P. C., Hatfield, J. L., Jackson, T. J., Akhmedov, B., Prueger, J., & Stern, 

A. (2004). Crop condition and yield simulations using Landsat and MODIS. 

Remote Sensing of Environment, 92(4), 548-559. 

Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield 

assessment from remote sensing. Photogrammetric Engineering and 

Remote Sensing, 69(6), 665-674.  

Doraiswamy, P. C., Sinclair, T. R., Hollinger, S., Akhmedov, B., Stern, A., & 

Prueger, J. (2005). Application of MODIS derived parameters for regional 

crop yield assessment. Remote Sensing of Environment, 97(2), 192-202. 

Dunn, A. H., & de Beurs, K. M. (2011). Land surface phenology of North American 

mountain environments using moderate resolution imaging 

spectroradiometer data. Remote Sensing of Environment, 115(5), 1220-

1233. 

Duro, D. C., Franklin, S. E., & Dube, M. G. (2012). A comparison of pixel-based 

and object-based image analysis with selected machine learning 

algorithms for the classification of agricultural landscapes using SPOT-5 

HRG imagery. Remote Sensing of Environment, 118, 259-272. 



 

172 

Eastman, J. R., Sangermano, F., Machado, E. A., Rogan, J., & Anyamba, A. (2013). 

Global Trends in Seasonality of Normalized Difference Vegetation Index 

(NDVI), 1982-2011. Remote Sensing, 5(10), 4799-4818. 

Economic and Social Commission for Western Asia (ESCWA) (2005) ESCWA Water 

Development Report 1: Vulnerability of the Region to Socio-Economic 

Drought, United Nations: New York. 

El-Magd, I. A., & Tanton, T. W. (2003). Improvements in land use mapping for 

irrigated agriculture from satellite sensor data using a multi-stage 

maximum likelihood classification. International Journal of Remote 

Sensing, 24(21), 4197-4206.  

Enkhzaya, T., & Tateishi, R. (2011). Use of phenological features to identify 

cultivated areas in Asia.  International Journal of Environmental Studies, 

68(1), 9-24.  

Esquerdo, J. C. D. M., Zullo Junior, J., & Antunes, J. F. G. (2011). Use of 

NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. 

International Journal of Remote Sensing, 32(13), 3711-3727. 

Estes, J., Belward, A., Loveland, T., Scepan, J., Strahler, A., Townshend, J., & 

Justice, C. (1999). The way forward. Photogrammetric Engineering and 

Remote Sensing, 65(9), 1089-1093.  

Evidence and Lessons from Latin America (ELLA) 2011. Improving small farmers’ 

adaptive capacity in semi-arid regions. ELLA theme, adaptation in semi-

regions. 

Fahimnejad, H., Soofbaf, S., Alimohammadi, A., Zoej M., 2007. Crop Types 

Classification By Hyperion Data And Unmixing Algorithm. GIS 

development, Map World Forum, Hyderabad, India.  

Fan, J., Huang, J., & Zhang, M. (2013). Retrieval of Cropping Index in China Using 

Time Series of SPOT Vegetation NDVI. Sensor Letters, 11(6-7), 1134-1140. 

FAO, IFAD and WFP (2014). The State of Food Insecurity in the World 2014. 

Strengthening the enabling environment for food security and nutrition. 

Rome, FAO. 

Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S. D., Tucker, C. 

Wessels, K. (2012). Greenness in semi-arid areas across the globe 1981-



 

173 

2007 - an Earth Observing Satellite based analysis of trends and drivers. 

Remote Sensing of Environment, 121, 144-158. 

Fensholt, R., Nielsen, T. T., & Stisen, S. (2006). Evaluation of AVHRR PAL and 

GIMMS 10-day composite NDVI time series products using SPOT-4 

vegetation data for the African continent. International Journal of Remote 

Sensing, 27(13), 2719-2733. 

Ferencz, C., Bognar, P., Lichtenberger, J., Hamar, D., Tarscai, G., Timar, G., 

Ferencz-Arkos, I. (2004). Crop yield estimation by satellite remote sensing. 

International Journal of Remote Sensing, 25(20), 4113-4149. 

Fisher, J. I., & Mustard, J. F. (2007). Cross-scalar satellite phenology from ground, 

Landsat, and MODIS data. Remote Sensing of Environment, 109(3), 261-

273. 

Fontana, F., Rixen, C., Jonas, T., Aberegg, G., & Wunderle, S. (2008). Alpine 

grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI 

time series - a comparison with in situ measurements. Sensors, 8(4), 2833-

2853. 

Food Agriculture Organization of the United Nations (FAO) (2000). The state of 

food insecurity in the world (SOFI ). Rome, Italy: FAO, UN. 

www.fao.org/FOCUS/E/SOFI00/sofi001-e.htm. 

Food Agriculture Organization of the United Nations (FAO) (2001) the state of 

food insecurity in the world. Rome, Food and Agricultural Organization of 

the United Nations, p 58. 

Food Agriculture Organization of the United Nations (FAO) 2003."Special report 

FAO/WFP crop, food supply and nutrition assessment mission to Iraq." 

(Accessed Jun 25, 2013) 

http://www.fao.org/docrep/005/j0465e/j0465e00.HTM 

Food Agriculture Organization of the United Nations (FAO) 2011."Country 

Pasture/Forage Resource Profiles". Rome, Italy. (Accessed October 23, 

2013). http://www.fao.org/ag/agp/AGPC/doc/Counprof/Iraq/Iraq.html 

Food Agriculture Organization of the United Nations Aquastat (FAO aquastst). 

2008. "IRAQ, Geography, Climate and Population." (Accessed July 15, 

2013). http://www.fao.org/nr/water/aquastat/main/index.stm 



 

174 

Food and Agriculture Organization of the United Nation (FAO, 2002). Land 

degradation assessment in drylands - LADA project. World Soil Resources 

Reports No. 97. Rome. 

Food and Agriculture Organization of the United Nation (FAO, 2003a). "The State 

of Food and Agriculture" in 32nd Session of the FAO Conference Rome, 

Italy. 

Food and Agriculture Organization of the United Nation (FAO, 2003b). "The State 

of Food Insecurity in the World. Monitoring progress towards the World 

Food Summit and Millennium Development Goals," Food and Agriculture 

Organization of the United Nations, Rome, Italy. 

Food and Agriculture Organization of the United Nation (FAO, 2009a). Global 

agriculture towards 2050. Rome. 

Food and Agriculture Organization of the United Nation (FAO, 2009b). Agriculture 

overview. 

Food and Agriculture Organization of the United Nation (FAO, 2011). Global 

strategy to improve agricultural and rural statistics. Rome, Italy. 

Food and Agriculture Organization of the United Nation (FAO, 2013a). World food 

and Agriculture. Rome, Italy. 

Food and Agriculture Organization of the United Nations (FAO) (2013b). Resilient 

livelihoods Disaster risk reduction for food and nutrition security. Rome, 

Italy. http://www.fao.org/docrep/015/i2540e/i2540e00.pdf. 

Food and Agriculture Organization of the United Nations (FAO) 2008. A Review of 

Drought Occurrence and Monitoring and Planning Activities in the Near 

East Region. National Drought Centre, University of Nebraska-Lincoln, 

Nebraska, USA. 

Food and Agriculture Organization of the United Nations (FAO) 2000. The state of 

food insecurity in the world. Rome, Italy. 

http://www.fao.org/docrep/x4400e/x4400e00.htm. 

Food and Agriculture Organization of the United Nations (FAO) 2014. Syrian Arab 

Republic: Continued conflict and drought conditions worsen 2014 crop 

production prospects. Rome, Italy. 

http://www.fao.org/giews/english/shortnews/Syria15052014.pdf. 



 

175 

Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J.-E., 

Yokota, T. (2011). New global observations of the terrestrial carbon cycle 

from GOSAT: Patterns of plant fluorescence with gross primary 

productivity. Geophysical Research Letters, 38. 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., 

& Huang, X. M. (2010). MODIS Collection 5 global land cover: Algorithm 

refinements and characterization of new datasets. Remote Sensing of 

Environment, 114(1), 168-182. 

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., 

& Huang, X. (2010). MODIS Collection 5 global land cover: Algorithm 

refinements and characterization of new datasets. Remote Sensing of 

Environment, 114(1), 168-182. 

Friedlingstein, P., Houghton, R. A., Marland, G., Hackler, J., Boden, T. A., Conway, 

T. J., Le Quere, C. (2010). Update on CO2 emissions. Nature Geoscience, 

3(12), 811-812. 

Friedlingstein, P., Houghton, R. A., Marland, G., Hackler, J., Boden, T. A., Conway, 

T. J., Le Quere, C. (2010). Update on CO2 emissions. Nature Geoscience, 

3(12), 811-812. 

Fritz, S., & Lee, L. (2005). Comparison of land cover maps using fuzzy agreement. 

International Journal of Geographical Information Science, 19(7), 787-807. 

Fritz, S., See, L., McCallum, I., Schill, C., Obersteiner, M., van der Velde, M., 

Achard, F. (2011). Highlighting continued uncertainty in global land cover 

maps for the user community. Environmental Research Letters, 6(4). 

Funk, C., & Budde, M. E. (2009). Phenologically-tuned MODIS NDVI-based 

production anomaly estimates for Zimbabwe. Remote Sensing of 

Environment, 113(1), 115-125. 

Galford, G. L., Mustard, J. F., Melillo, J., Gendrin, A., Cerri, C. C., & Cerri, C. E. P. 

(2008). Wavelet analysis of MODIS time series to detect expansion and 

intensification of row-crop agriculture in Brazil. Remote Sensing of 

Environment, 112(2), 576-587. 

Gallego, F. J. (2006) “Review of the Main Remote Sensing Methods for Crop Area 

Estimates Agriculture unit”, Compilation of ISPRS WG VIII/10 Workshop 



 

176 

2006, Remote Sensing Support to Crop Yield Forecast and Area Estimates, 

Stresa, Italy, Agriculture Unit, IPSC, JRC. 

Gallego, J.; Craig, M.; Michaelsen, J.; Bossyns, B.; and Fritz, S. (2008) “Workshop 

on Best Practices for Crop Area Estimation with Remote Sensing Data: 

Summary of Country Inputs”, Group on Earth Observations (GEO), GEOSS 

Community of Practice Ag Task 0703a, EC JRC, Ispra, Italy. 

Ganguly, S., Friedl, M. A., Tan, B., Zhang, X., & Verma, M. (2010). Land surface 

phenology from MODIS: Characterization of the Collection 5 global land 

cover dynamics product. Remote Sensing of Environment, 114(8), 1805-

1816. 

Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat 

and MODIS surface reflectance: Predicting daily Landsat surface 

reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 

2207-2218. 

Garcia-Tejero, I., Romero-Vicente, R., Jimenez-Bocanegra, J. A., Martinez-Garcia, 

G., Duran-Zuazo, V. H., & Muriel-Fernandez, J. L. (2010). Response of 

citrus trees to deficit irrigation during different phenological periods in 

relation to yield, fruit quality, and water productivity. Agricultural Water 

Management, 97(5), 689-699. 

Ge, J., Qi, J., Lofgren, B. M., Moore, N., Torbick, N., & Olson, J. M. (2007). Impacts 

of land use/cover classification accuracy on regional climate simulations. 

Journal of Geophysical Research-Atmospheres, 112(D5). 

Geerken, R. A. (2009). An algorithm to classify and monitor seasonal variations in 

vegetation phenologies and their inter-annual change. Isprs Journal of 

Photogrammetry and Remote Sensing, 64(4), 422-431. 

Geng, L. Y., Ma, M. G., Wang, X. F., Yu, W. P., Jia, S. Z., & Wang, H. B. (2014). 

Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor 

Time-Series NDVI Data Sets in the Heihe River Basin, China. Remote 

Sensing, 6(3), 2024-2049. 

Geng, L. Y., Ma, M. G., Wang, X. F., Yu, W. P., Jia, S. Z., & Wang, H. B. (2014). 

Comparison of Eight Techniques for Reconstructing Multi-Satellite Sensor 

Time-Series NDVI Data Sets in the Heihe River Basin, China. Remote 

Sensing, 6(3), 2024-2049. 



 

177 

Genovese, G., Vignolles, C., Negre, T., & Passera, G. (2001). A methodology for a 

combined use of normalised difference vegetation index and CORINE land 

cover data for crop yield monitoring and forecasting. A case study on 

Spain. Agronomie, 21(1), 91-111.  

Gibson, G. R., Campbell, J. B., & Wynne, R. H. (2012). Three Decades of War and 

Food Insecurity in Iraq. Photogrammetric Engineering and Remote Sensing, 

78(8), 885-895.  

Gimenez-Benavides, L., Escudero, A., & Iriondo, J. M. (2007). Reproductive limits 

of a late-flowering high-mountain Mediterranean plant along an elevational 

climate gradient. New Phytologist, 173(2), 367-382. 

Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red 

edge position and chlorophyll content by reflectance measurements near 

700 nm. Journal of Plant Physiology, 148(3-4), 501-508. 

Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red 

edge position and chlorophyll content by reflectance measurements near 

700 nm. Journal of Plant Physiology, 148(3-4), 501-508. 

Gomez-Chova, L., Zurita-Milla, R., Alonso, L., Amoros-Lopez, J., Guanter, L., & 

Camps-Valls, G. (2011). Gridding Artifacts on Medium-Resolution Satellite 

Image Time Series: MERIS Case Study. Ieee Transactions on Geoscience 

and Remote Sensing, 49(7), 2601-2611. 

Gongalton, R. C., & Green, K. (2009). Assesing the Accuracy of Remotely Sensed 

Data. New York: 2nd ed. CRC Press. 

Gourdji, S. M., Sibley, A. M., & Lobell, D. B. (2013). Global crop exposure to 

critical high temperatures in the reproductive period: historical trends and 

future projections. Environmental Research Letters, 8(2). 

Groten, S. M. E. (1993). NDVI – crop monitoring and early yield assessment of 

Burkina-Faso. International Journal of Remote Sensing, 14(8), 1495-1515.  

Group on Earth Observations (GEO) (2011) GEO-GLAM (Global Agriculture 

Monitoring Initiative). http://www.earthobservations.org/geoglam.php. 

Accessed 02 December 2016. 

Gu, Y., Brown, J. F., Miura, T., van Leeuwen, W. J. D., & Reed, B. C. (2010). 

Phenological Classification of the United States: A Geographic Framework 



 

178 

for Extending Multi-Sensor Time-Series Data. Remote Sensing, 2(2), 526-

544. 

Guan, K., Berry, J. A., Zhang, Y., Joiner, J., Guanter, L., Badgley, G., & Lobell, D. B. 

(2016). Improving the monitoring of crop productivity using spaceborne 

solar-induced fluorescence. Global Change Biology, 22(2), 716-726. 

Guanter, L., Alonso, L., Gomez-Chova, L., Amoros-Lopez, J., Vila, J., & Moreno, J. 

(2007). Estimation of solar-induced vegetation fluorescence from space 

measurements. Geophysical Research Letters, 34(8), 5. 

Gusso, A., Formaggio, A. R., Rizzi, R., Adami, M., & Theodor Rudorff, B. F. (2012). 

Soybean crop area estimation by Modis/Evi data. Pesquisa Agropecuaria 

Brasileira, 47(3), 425-435. 

Haile, M. (2005). Weather patterns, food security and humanitarian response in 

sub-Saharan Africa. Philosophical Transactions of the Royal Society B-

Biological Sciences, 360(1463), 2169-2182. 

Ham, J., Chen, Y. C., Crawford, M. M., & Ghosh, J. (2005). Investigation of the 

random forest framework for classification of hyperspectral data. IEEE 

Transactions on Geoscience and Remote Sensing, 43(3), 492-501. 

Hamar, D., Ferencz, C., Lichtenberger, J., Tarcsai, G., & FerenczArkos, I. (1996). 

Yield estimation for corn and wheat in the Hungarian great plain using 

Landsat MSS data. International Journal of Remote Sensing, 17(9), 1689-

1699.  

Hannerz, F.; Lotsch, A. Assessment of Land Use and Cropland Inventories for 

Africa; Centre for Environmental Economics and Policy in Africa, University 

of Pretoria: Pretoria, South Africa, 2006. 

Hansen, M. C., & DeFries, R. S. (2004). Detecting long-term global forest change 

using continuous fields of tree-cover maps from 8-km advanced very high-

resolution radiometer (AVHRR) data for the years 1982-99. Ecosystems, 

7(7), 695-716. 

Hansen, M. C., Egorov, A., Potapov, P. V., Stehman, S. V., Tyukavina, A., 

Turubanova, S. A., Bents, T. (2014). Monitoring conterminous United 

States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). 

Remote Sensing of Environment, 140, 466-484. 



 

179 

Hansen, M. C., Egorov, A., Potapov, P. V., Stehman, S. V., Tyukavina, A., 

Turubanova, S. A., Bents, T. (2014). Monitoring conterminous United 

States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). 

Remote Sensing of Environment, 140, 466-484. 

Hatfield, J. L., & Pinter, P. J. (1993). REMOTE-SENSING FOR CROP PROTECTION. 

Crop Protection, 12(6), 403-413. 

Hatfield, J. L., & Prueger, J. H. (2010). Value of Using Different Vegetative Indices 

to Quantify Agricultural Crop Characteristics at Different Growth Stages 

under Varying Management Practices. Remote Sensing, 2(2), 562-578. 

Hayes, M. J., & Decker, W. L. (1996). Using NOAA AVHRR data to estimate maize 

production in the United States Corn Belt. International Journal of Remote 

Sensing, 17(16), 3189-3200.  

Hayes, M. J., & Decker, W. L. (1998). Using satellite and real-time weather data to 

predict maize production. International Journal of Biometeorology, 42(1), 

10-15. 

Hendrix, C and Brinkman, H 2013. Food Insecurity and Conflict Dynamics: Causal 

Linkages and Complex Feedbacks. Stability: International Journal of 

Security and Development 2(2):26. 

Hielkema, J. U., & Snijders, F. L. (1994). Operational use of environmental satellite 

remote sensing and satellite communications technology for global food 

security and locust control by FAO: The ARTEMIS and DIANA systems. Acta 

Astronautica, 32(9), 603-616. 

Hird, J. N., & McDermid, G. J. (2009). Noise reduction of NDVI time series: An 

empirical comparison of selected techniques. Remote Sensing of 

Environment, 113(1), 248-258. 

Hmimina, G., Dufrene, E., Pontailler, J. Y., Delpierre, N., Aubinet, M., Caquet, B., 

Soudani, K. (2013). Evaluation of the potential of MODIS satellite data to 

predict vegetation phenology in different biomes: An investigation using 

ground-based NDVI measurements. Remote Sensing of Environment, 132, 

145-158. 

Houborg, R., Cescatti, A., Migliavacca, M., & Kustas, W. P. (2013). Satellite 

retrievals of leaf chlorophyll and photosynthetic capacity for improved 

modeling of GPP. Agricultural and Forest Meteorology, 177, 10-23. 



 

180 

Houghton, R. A., Hackler, J. L., & Lawrence, K. T. (1999). The US carbon budget: 

Contributions from land-use change. Science, 285(5427), 574-578. 

Houghton, R. A., House, J. I., Pongratz, J., van der Werf, G. R., DeFries, R. S., 

Hansen, M. C., Ramankutty, N. (2012). Carbon emissions from land use 

and land-cover change. Biogeosciences, 9(12), 5125-5142. 

Howitt, R. E., MacEwan, D., & Medellin-Azuara, J. (2011). Drought, Jobs, and 

Controversy: Revisiting 2009: University of California Giannini Foundation. 

Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support 

vector machines for land cover classification. International Journal of 

Remote Sensing, 23(4), 725-749. 

Huete, A. R., Liu, H. Q., Batchily, K., & vanLeeuwen, W. (1997). A comparison of 

vegetation indices global set of TM images for EOS-MODIS. Remote 

Sensing of Environment, 59(3), 440-451. 

Hutchinson, C. F. (1991). Use of satellite data for famine early warning in sub-

Saharan Africa. International Journal of Remote Sensing, 12(6), 1405-1421.  

Ibanez, I., Primack, R. B., Miller-Rushing, A. J., Ellwood, E., Higuchi, H., Lee, S. D., 

Silander, J. A. (2010). Forecasting phenology under global warming. 

Philosophical Transactions of the Royal Society B-Biological Sciences, 

365(1555), 3247-3260. 

Inouye, D.W., Wielgolaski, F.E., 2003. Phenology at high altitude. In: Schwartz, 

M.D. (Ed.), Phenology: An Integrative Environmental Science. SPRINGER, 

Dordrecht, Netherlands, pp. 225–247. 

Intergovernmental Panel on Climate Change IPCC (2000). Land use, land-use 

change, and forestry. Special report (pp. 184). Cambridge: Cambridge 

University Press. 

International Disaster Database; Université Catholique de Louvain, Brussels, 

Belgium, 2011. Available online: www.emdat.be (accessed on 8 May 2015). 

International Fund for Agriculture Development (IFAD) (2000) “The rangelands of 

arid and semiarid areas.” (14/01/2015). 

http://www.ifad.org/lrkm/theme/range/arid/arid_2.htm. 

IPCC (2007): Climate Change 2007: The Physical Science Basis. Contribution of 

Working Group I to the Fourth Assessment Report of the 



 

181 

Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. 

Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller 

(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New 

York, NY, USA, 996 pp. 

Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2001). Harmonic analysis of 

time-series AVHRR NDVI data. Photogrammetric Engineering and Remote 

Sensing, 67(4), 461-470.  

Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2001). Harmonic analysis of 

time-series AVHRR NDVI data. Photogrammetric Engineering and Remote 

Sensing, 67(4), 461-470.  

Jakubauskas, M. E., Legates, D. R., & Kastens, J. H. (2002). Crop identification 

using harmonic analysis of time-series AVHRR NDVI data. Computers and 

Electronics in Agriculture, 37(1-3), 127-139. 

Jaradat, A. A. 2002. Agriculture in Iraq: Resources, Potentials, Constraints, and 

Research needs and priorities. NCSC research lab, ARS-USDA. Washington, 

D. C., USA. 

Jarvis, A., H.I. Reuter, A. Nelson, and E. Guevara. 2008. "Hole-filled SRTM for the 

globe Version 4, available from the CGIAR-CSI SRTM 90m Database." 

(Accessed December 12). http://srtm.csi.cgiar.org. 

Jeganathan, C., Dash, J., & Atkinson, P. M. (2010). Mapping the phenology of 

natural vegetation in India using a remote sensing-derived chlorophyll 

index. International Journal of Remote Sensing, 31(22), 5777-5796. 

Jeganathan, C., Dash, J., & Atkinson, P. M. (2010a). Characterising the spatial 

pattern of phenology for the tropical vegetation of India using multi-

temporal MERIS chlorophyll data LANDSCAPE ECOLOGY, 25(7), 1125-1141.  

Jeganathan, C., Ganguly, S., Dash, J., Friedl, M., & Atkinson, P. M. (2010). 

Terrestrial vegetation phenology from MODIS and MERIS sensor data. 

Proceedings 2010 IEEE International Geoscience and Remote Sensing 

Symposium (IGARSS 2010), 2699-2702. 

Jia, K., Li, Q. Z., Tian, Y. C., Wu, B. F., Zhang, F. F., & Meng, J. H. (2012). Crop 

classification using multi-configuration SAR data in the North China Plain. 

International Journal of Remote Sensing, 33(1), 170-183. 



 

182 

Jiang, Z. Y., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-

band enhanced vegetation index without a blue band. Remote Sensing of 

Environment, 112(10), 3833-3845. 

Jianhong, L., Yaozhong, P., Xiufang, Z., & Wenquan, Z. (2014). Using phenological 

metrics and the multiple classifier fusion method to map land cover types. 

Journal of Applied Remote Sensing, 8, 083691 (083615 pp.)-083691 

(083615 pp.). 

Jianqiang, R., Su, L., Zhongxin, C., Qingbo, Z., & Huajun, T. (2008). Regional yield 

prediction for winter wheat based on crop biomass estimation using multi-

source data. 2007 IEEE International Geoscience and Remote Sensing 

Symposium, IGARSS 2007, 805-808. 

Jiao, X. F., Kovacs, J. M., Shang, J. L., McNairn, H., Walters, D., Ma, B. L., & Geng, X. 

Y. (2014). Object-oriented crop mapping and monitoring using multi-

temporal polarimetric RADARSAT-2 data. Isprs Journal of Photogrammetry 

and Remote Sensing, 96, 38-46. 

Joiner, J., Yoshida, Y., Vasilkov, A. P., Yoshida, Y., Corp, L. A., & Middleton, E. M. 

(2011). First observations of global and seasonal terrestrial chlorophyll 

fluorescence from space. Biogeosciences, 8(3), 637-651. 

Jones, C., Lowe, J., Liddicoat, S., & Betts, R. (2009). Committed terrestrial 

ecosystem changes due to climate change. Nature Geoscience, 2(7), 484-

487. 

Jonsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to 

time-series of satellite sensor data. Ieee Transactions on Geoscience and 

Remote Sensing, 40(8), 1824-1832. 

Jonsson, P., & Eklundh, L. (2004). TIMESAT - a program for analyzing time-series 

of satellite sensor data. Computers & Geosciences, 30(8), 833-845. 

Justice, C., & Becker-Reshef, I. (2007). Report from the Workshop on Developing a 

Strategy for Global Agricultural Monitoring in the framework of Group on 

Earth Observations (GEO). Rome, Italy: Geography Department, University 

of Maryland. 

Justice, C.; Becker-Reshef, I. Report from the Workshop on Developing a Strategy 

for Global Agricultural Monitoring in the framework of Group on Earth 



 

183 

Observations (GEO) 16–18 July 2007, FAO, Rome; University of Maryland: 

College Park, MD, USA, 2007. 

Kandasamy, S., Baret, F., Verger, A., Neveux, P., & Weiss, M. (2013). A comparison 

of methods for smoothing and gap filling time series of remote sensing 

observations - application to MODIS LAI products. Biogeosciences, 10(6), 

4055-4071. 

Kang, S. Y., Running, S. W., Lim, J. H., Zhao, M. S., Park, C. R., & Loehman, R. 

(2003). A regional phenology model for detecting onset of greenness in 

temperate mixed forests, Korea: an application of MODIS leaf area index. 

Remote Sensing of Environment, 86(2), 232-242. 

Kastens, J. H., Kastens, T. L., Kastens, D. L. A., Price, K. P., Martinko, E. A., & Lee, 

R. Y. (2005). Image masking for crop yield forecasting using AVHRR NDVI 

time series imagery. Remote Sensing of Environment, 99(3), 341-356. 

Key, T., Warner, T. A., McGraw, J. B., & Fajvan, M. A. (2001). A comparison of 

multispectral and multitemporal information in high spatial resolution 

imagery for classification of individual tree species in a temperate 

hardwood forest. Remote Sensing of Environment, 75(1), 100-112. 

Kirby, M., Connor, J., Bark, R., Qureshi, E., & Keyworth, S. (2012). The economic 

impact of water reductions during the Millennium Drought in the Murray-

Darling Basin. Paper presented at the Australian Agricultural and Resource 

Economics Society Annual Conference 2012, Freemantle, Australia. 

Kitoh, A., Yatagai, A., & Alpert, P. (2008). First super-high-resolution model 

projection that the ancient “Fertile Crescent” will disappear in this century. 

Hydrological Research Letters, 2, 1-4.  

Knight, J. F., Lunetta, R. S., Ediriwickrema, J., & Khorrarn, S. (2006). Regional scale 

land cover characterization using MODIS-NDVI 250 m multi-temporal 

imagery: A phenology-based approach. Giscience & Remote Sensing, 43(1), 

1-23. 

Kogan, F., Kussul, N., Adamenko, T., Skakun, S., Kravchenko, O., Kryvobok, O. 

Lavrenyuk, A. (2013). Winter wheat yield forecasting in Ukraine based on 

Earth observation, meteorological data and biophysical models. 

International Journal of Applied Earth Observation and Geoinformation, 23, 

192-203. 



 

184 

Kogan, F., Salazar, L., & Roytman, L. (2012). Forecasting crop production using 

satellite-based vegetation health indices in Kansas, USA. International 

Journal of Remote Sensing, 33(9), 2798-2814. 

Kouadio, L., Newlands, N. K., Davidson, A., Zhang, Y. S., & Chipanshi, A. (2014). 

Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield 

Forecasting at the Ecodistrict Scale. Remote Sensing, 6(10), 10193-10214. 

Krishna, G., Sahoo, R. N., Pargal, S., Gupta, V. K., Sinha, P., Bhagat, S., 

Chattopadhyay, C. (2014). Assessing Wheat Yellow Rust Disease through 

Hyperspectral Remote Sensing. In V. K. Dadhwal, P. G. Diwakar, M. V. R. 

Seshasai, P. L. N. Raju & A. Hakeem (Eds.), Isprs Technical Commission Viii 

Symposium (Vol. 40-8, pp. 1413-1416). Gottingen: Copernicus 

Gesellschaft Mbh. 

Krishna, T. M., Ravikumar, G., & Krishnaveni, M. (2009). Remote Sensing Based 

Agricultural Drought Assessment in Palar Basin of Tamil Nadu State, India. 

Journal of the Indian Society of Remote Sensing, 37(1), 9-20.  

Labus, M. P., Nielsen, G. A., Lawrence, R. L., Engel, R., & Long, D. S. (2002). Wheat 

yield estimates using multi-temporal NDVI satellite imagery. International 

Journal of Remote Sensing, 23(20), 4169-4180. 

Leite, P. B. C., Feitosa, R. Q., Formaggio, A. R., da Costa, G., Pakzad, K., & 

Sanches, I. D. (2011). Hidden Markov Models for crop recognition in 

remote sensing image sequences. Pattern Recognition Letters, 32(1), 19-

26. 

Leroux, L., Jolivot, A., Begue, A., Lo Seen, D., & Zoungrana, B. (2014). How 

Reliable is the MODIS Land Cover Product for Crop Mapping Sub-Saharan 

Agricultural Landscapes? Remote Sensing, 6(9), 8541-8564. 

Li, J. (2002). Crop Condition Monitoring and Production Prediction System with 

Meteorological Satellite Data. Meteorological Science and Technology, 

30(2), 108-111 

Li, J., Zheng Y. & Ying, J. (2001). Application of 3S to Growth Vigour Monitoring 

for Late Rice of Double Harvest. Journal of Nanjing Institute of 

Meteorology, 24 (1), 106-112 



 

185 

Li, L., Friedl, M. A., Xin, Q. C., Gray, J., Pan, Y. Z., & Frolking, S. (2014). Mapping 

Crop Cycles in China Using MODIS-EVI Time Series. Remote Sensing, 6(3), 

2473-2493. 

Li, M., Qu, J. J., & Hao, X. (2010). Investigating phenological changes using MODIS 

vegetation indices in deciduous broadleaf forest over continental U.S. 

during 2000-2008. Ecological Informatics, 5(5), 410-417. 

Li, X. L., Ma, Z. H., Zhao, L. L., Li, J. H., & Wang, H. G. (2013). Early diagnosis of 

wheat stripe rust and wheat leaf rust using near infrared spectroscopy. 

Spectroscopy and Spectral Analysis, 33(10), 2661–2665. 

Lin, C., Gao-huan, L., Chong, H., Qing-sheng, L., & Lin, C. (2014). Phenology 

detection of winter wheat in the Yellow River delta using MODIS NDVI time-

series data. 2014 Third International Conference on Agro-Geoinformatics, 

5 pp.-5 pp. 

Liu, K. & Zhang, X. (1997). Study on Monitor of Rice Growing And Rice Yield 

Estimation By Remote Sensing In Jianghan Plain. Journal of Central China 

Normal University (Nat. Sci.), 31(4), 482-487. 

Liu, L. Y., Wang, J. H., Huang, W. J., Zhao, C. J., Zhang, B., & Tong, Q. X. (2004). 

Estimating winter wheat plant water content using red edge parameters. 

International Journal of Remote Sensing, 25(17), 3331-3342. 

Liu, W. T., & Kogan, F. (2002). Monitoring Brazilian soybean production using 

NOAA/AVHRR based vegetation condition indices. International Journal of 

Remote Sensing, 23(6), 1161-1179. 

Lobell, D. B. (2013). The use of satellite data for crop yield gap analysis. Field 

Crops Research, 143, 56-64. 

Lobell, D. B., Asner, G. P., Ortiz-Monasterio, J. I., & Benning, T. L. (2003). Remote 

sensing of regional crop production in the Yaqui Valley, Mexico: estimates 

and uncertainties. Agriculture Ecosystems & Environment, 94(2), 205-220. 

Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop Yield Gaps: Their 

Importance, Magnitudes, and Causes Annual Review of Environment and 

Resources (Vol. 34, pp. 179-204). 

Lobell, D. B., Sibley, A., & Ivan Ortiz-Monasterio, J. (2012). Extreme heat effects on 

wheat senescence in India. Nature Climate Change, 2(3), 186-189. 



 

186 

Long, S. P., Zhu, X. G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in 

photosynthesis increase crop yields? Plant Cell and Environment, 29(3), 

315-330. 

Los, S. O., Collatz, G. J., Sellers, P. J., Malmstrom, C. M., Pollack, N. H., DeFries, R. 

S., Dazlich, D. A. (2000). A global 9-yr biophysical land surface dataset 

from NOAA AVHRR data. Journal of Hydrometeorology, 1(2), 183-199. 

Loveland, T. R., Merchant, J. W., Brown, J. F., Ohlen, D. O., Reed, B. C., Olson, P., & 

Hutchinson, J. (1995). Seasonal Land-Cover Regions of the United States. 

Annals of the Association of American Geographers, 85(2), 339-355.  

Low, F., Michel, U., Dech, S., & Conrad, C. (2013). Impact of feature selection on 

the accuracy and spatial uncertainty of per-field crop classification using 

Support Vector Machines. Isprs Journal of Photogrammetry and Remote 

Sensing, 85, 102-119. 

Lu, D., & Weng, Q. (2007). A survey of image classification methods and 

techniques for improving classification performance. International Journal 

of Remote Sensing, 28(5), 823-870. 

Lu, D., Batistella, M., Li, G., Moran, E., Hetrick, S., Freitas, C. d. C. Siqueira 

Sant'Anna, S. J. (2012). Land use/cover classification in the Brazilian 

Amazon using satellite images. Pesquisa Agropecuaria Brasileira, 47(9), 

1185-1208.  

Lupo, F., Linderman, M., Vanacker, V., Bartholome, E., & Lambin, E. F. (2007). 

Categorization of land-cover change processes based on phenological 

indicators extracted from time series of vegetation index data. 

International Journal of Remote Sensing, 28(11), 2469-2483. 

Macdonald, R. B., & Hall, F. G. (1980). Global crop forecasting. Science, 

208(4445), 670-679. 

Mahey, R. K., Singh, R., Sidhu, S. S., Narang, R. S., Dadhwal, V. K., Parihar, J. S., & 

Sharma, A. K. (1993). Preharvest state-level wheat acreage estimation 

using IRS-IA LISS-I data in Punjab (India). International Journal of Remote 

Sensing, 14(6), 1099-1106. 

Maignan, F., Breon, F. M., Bacour, C., Demarty, J., & Poirson, A. (2008). 

Interannual vegetation phenology estimates from global AVHRR 



 

187 

measurements - Comparison with in situ data and applications. Remote 

Sensing of Environment, 112(2), 496-505. 

Mariotti, A., Zeng, N., Yoon, J.-H., Artale, V., Navarra, A., Alpert, P., & Li, L. Z. X. 

(2008). Mediterranean water cycle changes: transition to drier 21st century 

conditions in observations and CMIP3 simulations. Environmental Research 

Letters, 3(4). 

Mas, J. F., & Flores, J. J. (2008). The application of artificial neural networks to the 

analysis of remotely sensed data. International Journal of Remote Sensing, 

29(3), 617-663. 

Maselli, F., Romanelli, S., Bottai, L., & Maracchi, G. (2000). Processing of GAC 

NDVI data for yield forecasting in the Sahelian region. International Journal 

of Remote Sensing, 21(18), 3509-3523. 

Masialeti, I., Egbert, S., & Wardlow, B. D. (2010). A Comparative Analysis of 

Phenological Curves for Major Crops in Kansas. Giscience & Remote 

Sensing, 47(2), 241-259. 

Matinfar, H. R., Panah, S. K. A., Zand, F., & Khodaei, K. (2013). Detection of soil 

salinity changes and mapping land cover types based upon remotely 

sensed data. Arabian Journal of Geosciences, 6(3), 913-919. 

Maxwell S, Smith M (1992) Household food security: a conceptual review. In: 

Maxwell S, Frankenberger T (eds) Household food security: concepts, 

indicators, measurements. IFAD and UNICEF, Rome and New York. 

Maystadt, J. F., Tan, J. F. T., & Breisinger, C. (2014). Does food security matter for 

transition in Arab countries? Food Policy, 46, 106-115. 

McCallum, I., Obersteiner, M., Nilsson, S., & Shvidenko, A. (2006). A spatial 

comparison of four satellite derived 1 km global land cover datasets. 

International Journal of Applied Earth Observation and Geoinformation, 

8(4), 246-255. 

McCallum, I., Obersteiner, M., Nilsson, S., & Shvidenko, A. (2006). A spatial 

comparison of four satellite derived 1 km global land cover datasets. 

International Journal of Applied Earth Observation and Geoinformation, 

8(4), 246-255. 



 

188 

Mellor, J. W. (1972). Accelerated Growth in Agricultural Production and 

Intersectional Transfer of Resources: Department of Agricultural 

Economics Cornell University, No 34. 

Meng, J.-h., & Wu, B.-f. (2008). Study on the crop condition monitoring methods 

with remote sensing. 

Menke, J. W., & Trlica, M. J. (1981). Carbohydrate reserve, phenology, and growth 

cycles of 9 Colorado range species. Journal of Range Management, 34(4), 

269-277. 

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Zust, A. (2006). 

European phenological response to climate change matches the warming 

pattern. Global Change Biology, 12(10), 1969-1976. 

Meyers, E. M. (Ed.). (1997). The Oxford Encyclopedia of Archaeology in the Near 

East. United Kingdom: Oxford University Press. 

Michael E. B. (2007). Comparison of Estimating Crop Yield at the County Level. 

United States Department of Agriculture (USDA), National Agricultural 

Statistics Service. RDD-07-05. Washington DC 20250. Pp2. 

Michishita, R., Jin, Z. Y., Chen, J., & Xu, B. (2014). Empirical comparison of noise 

reduction techniques for NDVI time-series based on a new measure. Isprs 

Journal of Photogrammetry and Remote Sensing, 91, 17-28. 

Middleton, E. M., Corp, L. A., & Campbell, P. K. E. (2008). Comparison of 

measurements and FluorMOD simulations for solar-induced chlorophyll 

fluorescence and reflectance of a corn crop under nitrogen treatments. 

International Journal of Remote Sensing, 29(17-18), 5193-5213.  

Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: 

Biodiversity Synthesis. World Resources Institute, Washington, DC. 

Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: 

Biodiversity Synthesis. World Resources Institute, Washington, DC. 

Mkhabela, M. S., Bullock, P., Raj, S., Wang, S., & Yang, Y. (2011). Crop yield 

forecasting on the Canadian Prairies using MODIS NDVI data. Agricultural 

and Forest Meteorology, 151(3), 385-393. 

Modarres, R., & da Silva, V. D. R. (2007). Rainfall trends in arid and semi-arid 

regions of Iran. Journal of Arid Environments, 70(2), 344-355. 



 

189 

Mooney, H. A., & Billings, W. D. (1960). The annual carbohydrate cycle of alpine 

plants as related to growth. Amer Jour Bot, 47((7)), 594-598. 

Moran, M. S., Alonso, L., Moreno, J. F., Mateo, M. P. C., de la Cruz, D. F., & 

Montoro, A. (2012). A RADARSAT-2 Quad-Polarized Time Series for 

Monitoring Crop and Soil Conditions in Barrax, Spain. IEEE Transactions on 

Geoscience and Remote Sensing, 50(4), 1057-1070. 

Moriondo, M., Maselli, F., & Bindi, M. (2007). A simple model of regional wheat 

yield based on NDVI data. European Journal of Agronomy, 26(3), 266-274. 

Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E. A., 

Abatzoglou, J., . . . Liang, L. (2009). Tracking the rhythm of the seasons in 

the face of global change: phenological research in the 21st century. 

Frontiers in Ecology and the Environment, 7(5), 253-260. 

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote 

sensing: A review. Isprs Journal of Photogrammetry and Remote Sensing, 

66(3), 247-259. 

Muchoney, D., Strahler, A., Hodges, J., & LoCastro, J. (1999). The IGBP DISCover 

confidence sites and the system for terrestrial ecosystem 

parameterization: Tools for validating global land-cover data. 

Photogrammetric Engineering and Remote Sensing, 65(9), 1061-1067.  

Mulianga, B., Begue, A., Simoes, M., & Todoroff, P. (2013). Forecasting Regional 

Sugarcane Yield Based on Time Integral and Spatial Aggregation of MODIS 

NDVI. Remote Sensing, 5(5), 2184-2199. 

Muller, K. R., Mika, S., Ratsch, G., Tsuda, K. & Scholkopf, B. (2001). An 

introduction to kernel-based learning algorithms. IEEE Transactions on 

Neural Networks, 12(2), 181-201. 

Murray, M. B., Cannell, M. G. R., & Smith, R. I. (1989). Date of 15 three species 

Britain following climatic warming. Journal of Applied Ecology, 26(2), 693-

700. 

Narciso, G., Baruth, B., Klisch, A. (2008) “Crop Area Estimates with Radarsat: 

Feasibility Study in the Toscana Region – Italy”, Internal report, JRC, IPSC – 

Agriculture Unit. 



 

190 

NASA Land Processes Distributed Active Archive Centre (LP DAAC). MODIS land 

surface reflectance (MOD09Q1) and MODIS land cover type (MCD12Q1) 

2014. (https://lpdaac.usgs.gov/data_access). 

National development plan, “Republic of Iraq, ministry of planning,” Baghdad, 

Iraq, 2010. 

Nemani, R., & Running, S. W. (1996). Implementation of a hierarchical global 

vegetation classification in ecosystem function models. Journal of 

Vegetation Science, 7(3), 337–346.  

Newstrom, L. E., Frankie, G. W., & Baker, H. G. (1994). A new classification for 

plant phenology based on flowering patterns in lowland tropical rain-

forest trees at La-Selva, Costa-Rica. Biotropica, 26(2), 141-159. 

Ozdogan, M. (2010). The spatial distribution of crop types from MODIS data: 

Temporal unmixing using Independent Component Analysis. Remote 

Sensing of Environment, 114(6), 1190-1204. 

Pahlevan, N., & Schott, J. R. (2013). Leveraging EO-1 to Evaluate Capability of New 

Generation of Landsat Sensors for Coastal/Inland Water Studies. Ieee 

Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing, 6(2), 360-374. 

Pal, M., & Mather, P. M. (2005). Support vector machines for classification in 

remote sensing. International Journal of Remote Sensing, 26(5), 1007-

1011. 

Paola, J. D., & Schowengerdt, R. A. (1995). A detailed comparison of 

backpropagation neural-network and maximum-likelihood classifier for 

urban land-use classification. IEEE Transactions on Geoscience and Remote 

Sensing, 33(4), 981-996. 

Parazoo, N. C., Bowman, K., Fisher, J. B., Frankenberg, C., Jones, D. B. A., Cescatti, 

A., Montagnani, L. (2014). Terrestrial gross primary production inferred 

from satellite fluorescence and vegetation models. Global Change Biology, 

20(10), 3103-3121. 

Pau, S., Wolkovich, E. M., Cook, B. I., Davies, T. J., Kraft, N. J. B., Bolmgren, K., . . . 

Cleland, E. E. (2011). Predicting phenology by integrating ecology, 

evolution and climate science. Global Change Biology, 17(12), 3633-3643. 



 

191 

Paul, R. K., Prajneshu, & Ghosh, H. (2013). Statistical modelling for forecasting of 

wheat yield based on weather variables. Indian Journal of Agricultural 

Sciences, 83(2), 180-183.  

Pflugmacher, D., Krankina, O. N., Cohen, W. B., Friedl, M. A., Sulla-Menashe, D., 

Kennedy, R. E., Kharuk, V. I. (2011). Comparison and assessment of coarse 

resolution land cover maps for Northern Eurasia. Remote Sensing of 

Environment, 115(12), 3539-3553. 

Polgar, C. A., & Primack, R. B. (2011). Leaf-out phenology of temperate woody 

plants: from trees to ecosystems. New Phytologist, 191(4), 926-941. 

Pongratz, J., Reick, C. H., Raddatz, T., & Claussen, M. (2009). Effects of 

anthropogenic land cover change on the carbon cycle of the last 

millennium. Global Biogeochemical Cycles, 23. 

Potgieter, A. B., Apan, A., Dunn, P., & Hammer, G. (2007). Estimating crop area 

using seasonal time series of Enhanced Vegetation Index from MODIS 

satellite imagery. Australian Journal of Agricultural Research, 58(4), 316-

325. 

Potgieter, A. B., Apan, A., Hammer, G., & Dunn, P. (2010). Early-season crop area 

estimates for winter crops in NE Australia using MODIS satellite imagery. 

Isprs Journal of Photogrammetry and Remote Sensing, 65(4), 380-387. 

Potgieter, A. B., Everingham, Y. L., & Hammer, G. L. (2003). On measuring quality 

of a probabilistic commodity forecast for a system that incorporates 

seasonal climate forecasts. International Journal of Climatology, 23(10), 

1195-1210. 

Potgieter, A. B., Lawson, K., & Huete, A. R. (2013). Determining crop acreage 

estimates for specific winter crops using shape attributes from sequential 

MODIS imagery. International Journal of Applied Earth Observation and 

Geoinformation, 23, 254-263. 

Potgieter, A., Apan, A., Hammer, G., & Dunn, P. (2011). Estimating winter crop 

area across seasons and regions using time-sequential MODIS imagery. 

International Journal of Remote Sensing, 32(15), 4281-4310. 

Prasad, A. K., Chai, L., Singh, R. P., & Kafatos, M. (2006). Crop yield estimation 

model for Iowa using remote sensing and surface parameters. 



 

192 

International Journal of Applied Earth Observation and Geoinformation, 

8(1), 26-33. 

Qader, S. H., Atkinson, P. M., & Dash, J. (2015). Spatiotemporal variation in the 

terrestrial vegetation phenology of Iraq and its relation with elevation. 

International Journal of Applied Earth Observation and Geoinformation, 41, 

107-117. 

Qader, S. H., Dash, J., Atkinson, P. M., & Rodriguez-Galiano, V. (2016). 

Classification of Vegetation Type in Iraq Using Satellite-Based Phenological 

Parameters. Ieee Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 9(1), 414-424. 

Qiu, B., Zhong, M., Tang, Z., & Chen, C. (2013). Spatiotemporal variability of 

vegetation phenology with reference to altitude and climate in the 

subtropical mountain and hill region, China. Chinese Science Bulletin, 

58(23), 2883-2892. 

Quarmby, N. A., Milnes, M., Hindle, T. L., & Silleos, N. (1993). The use of 

multitemporal NDVI measurements from AVHRR data for crop yield 

estimation and prediction. International Journal of Remote Sensing, 14(2), 

199-210.  

Ran, Y. H., Li, X., Lu, L., & Li, Z. Y. (2012). Large-scale land cover mapping with 

the integration of multi-source information based on the Dempster-Shafer 

theory. International Journal of Geographical Information Science, 26(1), 

169-191. 

Rasmussen, M. S. (1997). Operational yield forecast using AVHRR NDVI data: 

Reduction of environmental and inter-annual variability. International 

Journal of Remote Sensing, 18(5), 1059-1077. 

Reed, B. C., Brown, J. F., Vanderzee, D., Loveland, T. R., Merchant, J. W., & Ohlen, 

D. O. (1994). Measuring phenological variability from satellite imagery. 

Journal of Vegetation Science, 5(5), 703-714. 

Reed, B. C., White, M., & Brown, J. F. (2003). Remote sensing phenology. 

Phenology: An Integrative Environmental Science, 39, 365-381.  

Reeves, M. C., Zhao, M., & Running, S. W. (2005). Usefulness and limits of MODIS 

GPP for estimating wheat yield. International Journal of Remote Sensing, 

26(7), 1403-1421. 



 

193 

Ren, J. Q., Chen, Z. X., Zhou, Q. B., & Tang, H. J. (2008). Regional yield estimation 

for winter wheat with MODIS-NDVI data in Shandong, China. International 

Journal of Applied Earth Observation and Geoinformation, 10(4), 403-413. 

Reynolds, C. A., Yitayew, M., Slack, D. C., Hutchinson, C. F., Huete, A., & Petersen, 

M. S. (2000). Estimating crop yields and production by integrating the FAO 

Crop specific Water Balance model with real-time satellite data and 

ground-based ancillary data. International Journal of Remote Sensing, 

21(18), 3487-3508. 

Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & 

Toomey, M. (2013). Climate change, phenology, and phenological control 

of vegetation feedbacks to the climate system. Agricultural and Forest 

Meteorology, 169, 156-173. 

Rocha, A. V., & Shaver, G. R. (2009). Advantages of a two band EVI calculated 

from solar and photosynthetically active radiation fluxes. Agricultural and 

Forest Meteorology, 149(9), 1560-1563. 

Rodriguez-Galiano, V. F., & Chica-Rivas, M. (2014). Evaluation of different machine 

learning methods for land cover mapping of a Mediterranean area using 

multi-seasonal Landsat images and Digital Terrain Models. International 

Journal of Digital Earth, 7(6), 492-509. 

Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C., & Roberts, D. (2008). 

Mapping land-cover modifications over large areas: A comparison of 

machine learning algorithms. Remote Sensing of Environment, 112(5), 

2272-2283. 

Rojas, O. (2007). Operational maize yield model development and validation 

based on remote sensing and agro-meteorological data in Kenya. 

International Journal of Remote Sensing, 28(17), 3775-3793. 

Ross, K. W., Brown, M. E., Verdin, J. P., & Underwood, L. W. (2009). Review of FEWS 

NET biophysical monitoring requirements. Environmental Research Letters, 

4(2), 10. 

Royal Society of London (2009). Reaping the benefits: science and the sustainable 

intensification of global agriculture. 



 

194 

Running, S. W., Loveland, T. R., & Pierce, L. L. (1994). A vegetation classification 

logic-based on remote-sensing for use in global biochemical models. 

Ambio, 23(1), 77-81.  

S. Griffin and E. Kunz, "Data fusion and integration of high and medium 

resolution imagery for crop analysis," in ASPRS 2009 Annual Conference, 

A. S. f. P. a. R. Sensing, Ed., ed. Baltimore, Maryland, 2009. 

Sakamoto, T., Gitelson, A. A., & Arkebauer, T. J. (2013). MODIS-based corn grain 

yield estimation model incorporating crop phenology information. Remote 

Sensing of Environment, 131, 215-231. 

Sakamoto, T., Yokozawa, M., Toritani, H., Shibayama, M., Ishitsuka, N., & Ohno, 

H. (2005). A crop phenology detection method using time-series MODIS 

data. Remote Sensing of Environment, 96(3-4), 366-374. 

Scepan, J. (1999). Thematic validation of high-resolution global land-cover data 

sets. Photogrammetric Engineering and Remote Sensing, 65(9), 1051-

1060.  

Schnepf, R. (2003). Iraq’s Agriculture: Background and Status, Congressional 

Research Service Report for Congress, The Library of Congress. 

Washington, D.C. 

Schnepf, R. (2004). Iraq Agriculture and Food Supply: Background and Issues, 

Congressional Research Service. Washington, D.C.: The Library of 

Congress. 

Schowengerdt, R. A. (1997). Remote sensing models and methods for image 

processing (2 ed.). San Diego. 

Schut, A. G. T., Stephens, D. J., Stovold, R. G. H., Adams, M., & Craig, R. L. (2009). 

Improved wheat yield and production forecasting with a moisture stress 

index, AVHRR and MODIS data. Crop & Pasture Science, 60(1), 60-70. 

Seager, R., Liu, H. B., Henderson, N., Simpson, I., Kelley, C., Shaw, T., Ting, M. F. 

(2014). Causes of Increasing Aridification of the Mediterranean Region in 

Response to Rising Greenhouse Gases. Journal of Climate, 27(12), 4655-

4676. 



 

195 

Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., Naik, N. (2007). Model 

projections of an imminent transition to a more arid climate in 

southwestern North America. Science, 316(5828), 1181-1184. 

Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote 

sensing applications for precision agriculture: A learning community 

approach. Remote Sensing of Environment, 88(1-2), 157-169. 

Seneviratne, S. I. (2012). Climate science, historical drought trends revisited. 

Nature, 491(7424), 338-339. 

Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural 

network, and CART algorithms for the land-cover classification using 

limited training data points. Isprs Journal of Photogrammetry and Remote 

Sensing, 70, 78-87. 

Shaw, D. J. 2007. World food security: a history since 1945, New York, Palgrave 

MacMillan. 

Sheffield, J., Andreadis, K. M., Wood, E. F., & Lettenmaier, D. P. (2009). Global and 

Continental Drought in the Second Half of the Twentieth Century: Severity-

Area-Duration Analysis and Temporal Variability of Large-Scale Events. 

Journal of Climate, 22(8), 1962-1981.  

Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought 

over the past 60 years. Nature, 491(7424), 435. 

Shuai, Y., Schaaf, C., Zhang, X., Strahler, A., Roy, D., Morisette, J., Davies, J. E. 

(2013). Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) 

products for monitoring vegetation phenology dynamics. International 

Journal of Remote Sensing, 34(16), 5997-6016. 

Singh, N., & Glenn, N. F. (2009). Multitemporal spectral analysis for cheatgrass 

(Bromus tectorum) classification. International Journal of Remote Sensing, 

30(13), 3441-3462. 

Singh, R., Semwal, D. P., Rai, A., & Chhikara, R. S. (2002). Small area estimation of 

crop yield using remote sensing satellite data. International Journal of 

Remote Sensing, 23(1), 49-56.  



 

196 

Sitch, S., Brovkin, V., von Bloh, W., van Vuuren, D., Assessment, B., & Ganopolski, 

A. (2005). Impacts of future land cover changes on atmospheric CO2 and 

climate. Global Biogeochemical Cycles, 19(2).  

Sivakumar, M. V. K. (2005). Impacts of natural disasters in agriculture, rangeland 

and forestry: An overview. Berlin: Springer-Verlag Berlin. 

Siyuan, W., Bing, Z., Cunjian, Y., Yan, Z., & Hui, W. (2012). Temporal change and 

suitability assessment of cropland in the yellow river basin during 1990-

2005. International Journal of Geographical Information Science, 26(3), 

519-539. 

Sobrino, J. A. (2015). Fourth International Symposium on Recent Advances in 

Quantitative Remote Sensing PREFACE. International Journal of Remote 

Sensing, 36(19-20), 4775-4778. 

Son, N. T., Chen, C. F., Chen, C. R., Chang, L. Y., Duc, H. N., & Nguyen, L. D. 

(2013). Prediction of rice crop yield using MODIS EVI-LAI data in the 

Mekong Delta, Vietnam. International Journal of Remote Sensing, 34(20), 

7275-7292. 

Son, N. T., Chen, C. F., Chen, C. R., Duc, H. N., & Chang, L. Y. (2014). A 

Phenology-Based Classification of Time-Series MODIS Data for Rice Crop 

Monitoring in Mekong Delta, Vietnam. Remote Sensing, 6(1), 135-156. 

Song, C. H., & Woodcock, C. E. (2003). Monitoring forest succession with 

multitemporal Landsat images: Factors of uncertainty. IEEE Transactions 

on Geoscience and Remote Sensing, 41(11), 2557-2567. 

Soudani, K., Maire, G. l., Dufrêne, E., François, C., Delpierre, N., Ulrich, E., & 

Cecchini, S. (2008). Evaluation of the onset of green-up in temperate 

deciduous broadleaf forests derived from Moderate Resolution Imaging 

Spectroradiometer (MODIS) data. Remote Sensing of Environment, 112(5), 

2643–2655.  

Sparks, T. H., & Carey, P. D. (1995). The response of species to climate over 2 

centuries - an analysis of the marsham phenological record, 1736-1947. 

Journal of Ecology, 83(2), 321-329. 

Srikanth, P., Ramana, K. V., Shankar Prsad, T., KK Choudhary, K. K., 

Chandrasekhar, K., Seshasai, M., & Behera, G. (2011). nventory of irrigated 



 

197 

Rice Ecosystem using Polarimetric SAR dat. ISPRS Archives Vol. XXXVIII-

8/W20, p 46-49.  

Stehman, S. V., & Czaplewski, R. L. (1998). Design and analysis for thematic map 

accuracy assessment: Fundamental principles. Remote Sensing of 

Environment, 64(3), 331-344. 

Stehman, S. V., & Milliken, J. A. (2007). Estimating the effect of crop classification 

error on evapotranspiration derived from remote sensing in the lower 

Colorado River basin, USA. Remote Sensing of Environment, 106(2), 217-

227. 

Strahler, A., Boschetti, L., Foody, G. M., Fiedl, M. A., Hansen, M. C., Herold, M., 

Mayaux, P., Morisette, J. T., Stehman, S. V. & C. Woodcock (2006): Global 

Land Cover Validation: Recommendations for Evaluation and Accuracy 

Assessment Of Global Land Cover Maps, Report of Committee of Earth 

Observation Satellites (CEOS) - Working Group on Calibration and 

Validation (WGCV). 

Tan, B., Woodcock, C. E., Hu, J., Zhang, P., Ozdogan, M., Huang, D., Myneni, R. B. 

(2006). The impact of gridding artifacts on the local spatial properties of 

MODIS data: Implications for validation, compositing, and band-to-band 

registration across resolutions. Remote Sensing of Environment, 105(2), 

98-114. 

Tavakkoli, S. M., Lohmann, P., & Soergel, U. (2006.). Multi-temporal segment 

based classification of ASAR images of an agricultural area. Paper 

presented at the Proceeding of the 2nd Gottingen GIS and remote sensing 

days 2006, Germany. 

Teillet, P. M., Staenz, K., & William, D. J. (1997). Effects of spectral, spatial, and 

radiometric characteristics on remote sensing vegetation indices of 

forested regions. Remote Sensing of Environment, 61(1), 139–149.  

Teixeira, A., Bastiaanssen, W. G. M., Ahmad, M. D., & Bos, M. G. (2009). Reviewing 

SEBAL input parameters for assessing evapotranspiration and water 

productivity for the Low-Middle Sao Francisco River basin, Brazil Part B: 

Application to the regional scale. Agricultural and Forest Meteorology, 

149(3-4), 477-490. 



 

198 

Tennakoon, S. B., Murty, V. V. N., & Eiumnoh, A. (1992). Estimation of cropped 

area and grian-yield of rice using remote sensing data. International 

Journal of Remote Sensing, 13(3), 427-439.  

Thenkabail, P. S., Biradar, C. M., Noojipady, P., Dheeravath, V., Li, Y. J., Velpuri, 

M., Dutta, R. (2009). Global irrigated area map (GIAM), derived from 

remote sensing, for the end of the last millennium. International Journal of 

Remote Sensing, 30(14), 3679-3733.  

Thiruvengadachari, S. (1981). Satellite sensing of irrigation patterns in semiarid 

areas—An Indian study. Photogrammetric Engineering & Remote Sensing, 

47, 1493-1499.  

Thu, P. M., & Populus, J. (2007). Status and changes of mangrove forest in 

Mekong Delta: Case study in Tra Vinh, Vietnam. Estuarine Coastal and 

Shelf Science, 71(1-2), 98-109. 

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the 

sustainable intensification of agriculture. Proceedings of the National 

Academy of Sciences of the United States of America, 108(50), 20260-

20264. 

Tilman, D., Fargione, J., Wolff, B., DÕAntonio, C., Dobson, A., Howarth, R., 

Swackhamer, D. (2001). Forecasting Agriculturally Driven Global 

Environmental Change. Science, 292. 

Tucker, C. J., & Choudhury, B. J. (1987). Satellite remote sensing of drought 

conditions. Remote Sensing of Environment, 23(2), 243-251.  

Tucker, C. J., Holben, B. N., Elgin, J. H., & McMurtrey, J. E. (1980). Relationship of 

spectral data to grain-yield variation. Photogrammetric Engineering and 

Remote Sensing, 46(5), 657-666.  

UNDP 2014. Sustainable land management.  http://www.undp.org/drylands.       

UNDP/UNSO (1997). Aridity zones and dryland populations: An assessment of 

population levels in the world’s drylands with particular reference to 

Africa. UNDP Office to Combat Desertification and Drought (UNSO), New 

York. 

United Nations Environment Programme (UNEP 1992). World Atlas of 

Desertification. Edward Arnold. London. 



 

199 

United Nations Environment Programme (UNEP) 2007. UNEP in Iraq (Post-Conflict 

Assessment, Clean up and reconstruction). Nairobi, Kenya. 

United Nations Food and Agriculture Organization (UN FAO), 2012. Crop 

Production Statistics for Iraq. URL: http://faostat.fao.org   (access date: 

16/10/2014). 

United Nations Food and Agriculture Organization (UN FAO), 2012. Crop 

Production Statistics for Iraq. URL: http://faostat.fao.org   (access date: 

16/10/2014). 

United Nations Information Center (UNIC) 2011. Arid lands too degraded to 

provide subsistence are home to one billion of the world’s poorest, 

hungriest people. Washington, DC. http://www.unicwash.org 

(12/01/2015). 

United States Department of Agriculture Foreign Agricultural Service (USDA FAS) 

(2008). MIDDLE EAST & CENTRAL ASIA: Continued Drought in 2009/10 

Threatens Greater Food Grain Shortages. Commodity intelligent report. 

(20/01/2015) 

http://www.pecad.fas.usda.gov/highlights/2008/09/mideast_cenasia_dro

ught/. 

United States Department of Agriculture Foreign Agricultural Service (USDA FAS) 

(2008). MIDDLE EAST & CENTRAL ASIA: Continued Drought in 2009/10 

Threatens Greater Food Grain Shortages. Commodity intelligent report. 

(20/01/2015) 

http://www.pecad.fas.usda.gov/highlights/2008/09/mideast_cenasia_dro

ught/. 

United States Department of Agriculture Foreign Agricultural Service (USDA FAS) 

2008. Drought reduces 2008/09 winter grain production, URL: 

http://www.pecad.fas.usda.gov/highlights/2008/05/Iraq_may2008.htm 

(last date accessed: 7 December 2011). 

Van Evert, F. K., & Campbell, G. S. (1994). CROPSYST - A COLLECTION OF OBJECT-

ORIENTED SIMULATION-MODELS OF AGRICULTURAL SYSTEMS. Agronomy 

Journal, 86(2), 325-331.  



 

200 

Vandiepen, C. A., Wolf, J., Vankeulen, H., & Rappoldt, C. (1989). WOFOST - A 

SIMULATION-MODEL OF CROP PRODUCTION. Soil Use and Management, 

5(1), 16-24.  

Vicente-Serrano, S. M., Cuadrat-Prats, J. M., & Romo, A. (2006). Early prediction of 

crop production using drought indices at different time-scales and remote 

sensing data: application in the Ebro valley (North-East Spain). 

International Journal of Remote Sensing, 27(3), 511-518.  

Vicente-Serrano, S. M., Cuadrat-Prats, J. M., & Romo, A. (2006). Early prediction of 

crop production using drought indices at different time-scales and remote 

sensing data: application in the Ebro valley (North-East Spain). 

International Journal of Remote Sensing, 27(3), 511-518.  

Viovy, N., Arino, O., & Belward, A. S. (1992). The best index slope extraction 

(BISE)- a method for reducing noise in NDVI time-series. International 

Journal of Remote Sensing, 13(8), 1585-1590. 

Viovy, N., Arino, O., & Belward, A. S. (1992). The Best Index Slope Extraction 

(BISE): A method for reducing noise in NDVI time-series. International 

Journal of Remote Sensing, 13(8), 1585-1590.  

Vogelmann, J. E., Sohl, T., & Howard, S. M. (1998). Regional characterization of 

land cover using multiple. Photogrammetric Engineering and Remote 

Sensing, 64(1), 45-57.  

Wagenseil, H., & Samimi, C. (2006). Assessing spatio-temporal variations in plant 

phenology using Fourier analysis on NDVI time series: results from a dry 

savannah environment in Namibia. International Journal of Remote 

Sensing, 27(16), 3455-3471. 

Wall, L., Larocque, D., & Leger, P.-M. (2008). The early explanatory power of NDVI 

in crop yield modelling. International Journal of Remote Sensing, 29(8), 

2211-2225. 

Wang, B. F., Meng, J. H., & Li, Q. Z. (2010). An integrated crop condition 

monitoring system with remote sensing. Transactions of the Asabe, 53(3), 

971-979.  

Wang, C., Liu, H. Y., Zhang, Y., & Li, Y. F. (2014). Classification of land-cover types 

in muddy tidal flat wetlands using remote sensing data. Journal of Applied 

Remote Sensing, 7. 



 

201 

Wang, Y (1991). Using Remote Sensing Technology for Rice Growth Monitoring 

and Yield Estimating in South Rice Region of China. Remote Sensing 

Technology and Application, 6(3), 1-6 

Wardlow, B. D., & Egbert, S. L. (2008). Large-area crop mapping using time-series 

MODIS 250 m NDVI data: An assessment for the US Central Great Plains. 

Remote Sensing of Environment, 112(3), 1096-1116. 

Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007). Analysis of time-series 

MODIS 250 m vegetation index data for crop classification in the US 

Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. 

Wessels, K., Steenkamp, K., von Maltitz, G., & Archibald, S. (2011). Remotely 

sensed vegetation phenology for describing and predicting the biomes of 

South Africa. Applied Vegetation Science, 14(1), 49-66. 

Wetherald, R. T., & Manabe, S. (2002). Simulation of hydrologic changes 

associated with global warming. Journal of Geophysical Research-

Atmospheres, 107(D19), 15. 

Wheeler, T., & von Braun, J. (2013). Climate Change Impacts on Global Food 

Security. Science, 341(6145), 508-513. 

Whitcraft, A. K., Becker-Reshef, I., & Justice, C. O. (2015). A Framework for 

Defining Spatially Explicit Earth Observation Requirements for a Global 

Agricultural Monitoring Initiative (GEOGLAM). Remote Sensing, 7(2), 1461-

1481. 

White, M. A., Hoffman, F., Hargrove, W. W., & Nemani, R. R. (2005). A global 

framework for monitoring phenological responses to climate change. 

Geophysical Research Letters, 32(4). 

White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology 

model for monitoring vegetation responses to interannual climatic 

variability. Global Biogeochemical Cycles, 11(2), 217-234. 

Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the Drought Phenomenon: 

The Role of Difinitions. Water International, 10(3), 111-120.  

Wilkinson, G. G. (2005). Results and implications of a study of fifteen years of 

satellite image classification experiments. IEEE Transactions on Geoscience 

and Remote Sensing, 43(3), 433-440. 



 

202 

World Bank (2006). Drought, management and mitigation assessment for central 

Asia and the Caucasus. Europe and Central Asia Region, Environmentally 

and Socially Sustainable Development Department.  

World Bank, Dorte Verner and Mme. Fatma El-Mallah (League of Arab States) 

(2011). Adaptation to a Changing Climate in the Arab Countries MNA 

Flagship report, Sustainable Development Department, Middle East and 

North Africa Region, Oct. 2011. 

World Bank, World Development Report 2008: Agriculture for Development (World 

Bank, Washington, DC, 2008). 

World Disaster Report, 2001. "International Federation of Red Cross and Red 

Crescent Societies". Geneva. 

World Food Program (WFP) 2011. Food Insecurity and Violent Conflict: Causes, 

Consequences, and Addressing the Challenges. Occasional paper n°24. 

(21/01/2015) 

http://documents.wfp.org/stellent/groups/public/documents/newsroom/

wfp238358.pdf. 

Wu, Z. T., Thenkabail, P. S., Mueller, R., Zakzeski, A., Melton, F., Johnson, L., 

Verdin, J. P. (2014). Seasonal cultivated and fallow cropland mapping 

using MODIS-based automated cropland classification algorithm. Journal 

of Applied Remote Sensing, 8, 17. 

 Xia, C., Li, J., Liu, Q., & Ieee. (2012). Monitoring vegetation phenology in China 

using time-series MODIS LAI data 2012 IEEE International Geoscience and 

Remote Sensing Symposium (pp. 48-51). 

Xiao, W., Sun, Z., Wang, Q., & Yang, Y. (2013). Evaluating MODIS phenology 

product for rotating croplands through ground observations. Journal of 

Applied Remote Sensing, 7. 

Xie, H., Tian, Y. Q., Granillo, J. A., & Keller, G. R. (2007). Suitable remote sensing 

method and data for mapping and measuring active crop fields. 

International Journal of Remote Sensing, 28(1-2), 395-411. 

Xie, Y. & Kiniry J R. A (2002). Review on the Development of Crop Modelling and 

its Application. Acta Agronomica Sinica, 28(2), 190-195. 



 

203 

Yan, E. P., Wang, G. X., Lin, H., Xia, C. Z., & Sun, H. (2015). Phenology-based 

classification of vegetation cover types in Northeast China using MODIS 

NDVI and EVI time series. International Journal of Remote Sensing, 36(2), 

489-512. 

Yau, S. K., & Ryan, J. (2013). Differential impacts of climate variability on yields of 

rainfed barley and legumes in semi-arid Mediterranean conditions. 

Archives of Agronomy and Soil Science, 59(12), 1659-1674. 

Yi, Y. H., Yang, D. W., Chen, D. Y., & Huang, J. F. (2007). Retrieving crop 

physiological parameters and assessing water deficiency using MODIS data 

during the winter wheat growing period. Canadian Journal of Remote 

Sensing, 33(3), 189-202. 

You, X. Z., Meng, J. H., Zhang, M., & Dong, T. F. (2013). Remote Sensing Based 

Detection of Crop Phenology for Agricultural Zones in China Using a New 

Threshold Method. Remote Sensing, 5(7), 3190-3211. 

Zakaria, S., Al-Ansari, N., & Knutsson, S. (2013). Historical and Future Climatic 

Change Scenarios for Temperature and Rainfall for Iraq. Journal of Civil 

Engineering and Architecture, 7(12). 

Zhang, B., Di, L. P., Yu, G. N., Shao, Y. Z., Shrestha, R., Kang, L. J., & Ieee. (2013). 

A Web Service Based Application Serving Vegetation Condition Indices for 

Flood Crop Loss Assessment. 2013 Second International Conference on 

Agro-Geoinformatics (Agro-Geoinformatics), 214-219.  

Zhang, F. & Wu, B, (2004). A Method for Extract Regional Crop Growth 

Information with Time Series of NDVI Data. Journal of Remote Sensing, 

8(6), 515-528. 

Zhang, M. W., Zhou, Q. B., Chen, Z. X., Liu, J., Zhou, Y., & Cai, C. F. (2008). Crop 

discrimination in Northern China with double cropping systems using 

Fourier analysis of time-series MODIS data. International Journal of Applied 

Earth Observation and Geoinformation, 10(4), 476-485. 

Zhang, S., & Liu, L. (2014). The potential of the MERIS Terrestrial Chlorophyll 

Index for crop yield prediction. Remote Sensing Letters, 5(8), 733-742. 

Zhang, X. Y., Friedl, M. A., Schaaf, C. B., & Strahler, A. H. (2004). Climate controls 

on vegetation phenological patterns in northern mid- and high latitudes 

inferred from MODIS data. Global Change Biology, 10(7), 1133-1145. 



 

204 

Zhang, X. Y., Friedl, M. A., Schaaf, C. B., & Strahler, A. H. (2004). Climate controls 

on vegetation phenological patterns in northern mid- and high latitudes 

inferred from MODIS data. Global Change Biology, 10(7), 1133-1145. 

Zhang, X. Y., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., 

Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote 

Sensing of Environment, 84(3), 471-475. 

Zhang, X., Friedl, M. A., & Schaaf, C. B. (2006). Global vegetation phenology from 

Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of 

global patterns and comparison with in situ measurements. Journal of 

Geophysical Research-Part G-Biogeosciences, 111(G4), G04017-04011-

04014. 

Zhang, X., Hodges, J. C. F., Schaaf, C. B., Friedl, M. A., Strahler, A. H., & Feng, G. 

(2001). Global vegetation phenology from AVHRR and MODIS data. IGARSS 

2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 

2001 International Geoscience and Remote Sensing Symposium (Cat. 

No.01CH37217), 2262-2264 vol.2265. 

Zhao, T. B., & Dai, A. G. (2015). The Magnitude and Causes of Global Drought 

Changes in the Twenty-First Century under a Low-Moderate Emissions 

Scenario. Journal of Climate, 28(11), 4490-4512. 

Zhao, Y. & Tang J. (2002). A Discussion on Growing State Survey and Yield 

Estimation of Paddy in Jiangsu Province by Means of Remote Sensing. 

Remote Sensing For Land & Resources, (53), 9 – 11. 

Zheng, B. J., Myint, S. W., Thenkabail, P. S., & Aggarwal, R. M. (2015). A support 

vector machine to identify irrigated crop types using time-series Landsat 

NDVI data. International Journal of Applied Earth Observation and 

Geoinformation, 34, 103-112. 

Zhong, L., Hawkins, T., Biging, G., & Gong, P. (2011). A phenology-based 

approach to map crop types in the San Joaquin Valley, California. 

International Journal of Remote Sensing, 32(22), 7777-7804. 

Zhu, X. L., Chen, J., Gao, F., Chen, X. H., & Masek, J. G. (2010). An enhanced 

spatial and temporal adaptive reflectance fusion model for complex 

heterogeneous regions. Remote Sensing of Environment, 114(11), 2610-

2623. 



 

205 

Zurita-Milla, R., Kaiser, G., Clevers, J. G. P. W., Schneider, W., & Schaepman, M. E. 

(2009). Downscaling time series of MERIS full resolution data to monitor 

vegetation seasonal dynamics. Remote Sensing of Environment, 113(9), 

1874-1885. 


