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Iraq contains the Great Mesopotamian alluvial plain of the Euphrates and Tigris
rivers. Its regional vegetation phenological patterns are worthy of investigation
because relatively little is known about the phenology of semi-arid environments,
and because their inter-annual variation is expected to be driven by uncertain
rainfall and varied topography. In addition, in Iraq accurate discrimination of
different vegetation types using Earth observation data is challenging due to their
similar spectral responses and reliable ground information about croplands and
natural vegetation in such regions is generally scarce. Furthermore, inter-annual
variation in climatic factors (such as rainfall) and anthropogenic factors (such as
civil war) pose a major risk to crop production and in turn, food security in Iraq.
Therefore, this research aimed to i) assess and map the spatial variation in key
land surface phenology (LSP) parameters over the last decade and their relation
with elevation, ii) develop a phenology-based classification approach using
support vector machines for the assessment of space-time distribution of the
dominant vegetation land cover (VLC) types, iii) evaluate the potential of Moderate
Resolution Imaging Spectroradiometer MODIS-derived measures of greenness and
productivity, and information related to the phenology of crops to estimate crop

production and yield in the arid and semi-arid regions like Iraq.

Across all Iraq, a large spatiotemporal variation in the LSP parameters such as
start of the season (SOS), end of the season (EOS) and length of the season (LOS)
were observed. These variations are explained by the spatial distribution of
rainfall and temperature as a function of elevation. A positive coefficient of
determination was observed for SOS and EOS with elevation for all major land

cover types. In particular, raising the elevation by 500m leads to a delay in EOS by



around 22 or more days in all vegetation types. In addition, the dominant
vegetation land cover (VLC) types resulted from the phenology-based
classification have a strong similarity with the expected land cover types over the
region. The classification approach produced satisfactory classification accuracies
(generally > 85%, with relatively high Kappa coefficients >0.86) among the
dominant VLC types of Iraqg. In terms of regional accuracy assessment and areal
agreement with ground crop area data, the VLC classification outperformed the
global MODIS land cover dataset. This research also showed that the 2008
drought, the most extreme event during the last decade in Iraq. Despite testing
several methodological approaches, it was not possible to forecast crop yield at
the governorate level over Irag, mainly due to ground data quality and a coarse
spatial resolution. However, more precise estimates of crop production were
possible over the region. The result of the current research implies that the date
of the maximum vegetation index (VI) offered the most accurate forecast of crop
production. The date of MODIS normalized difference vegetation index (NDVI)
was the most accurate predictor of crop production in Irag with an average
R*=0.70 compared to the date of MODIS enhanced vegetation index (EVI) (Avg
R’=0.68) and a net primary productivity (NPP) (Avg R?=0.66) using the leave-one-
year-out approach. The research indicated that remote sensing indices could
characterize and forecast crop production more accurately than simple cropping
area, which was treated as a null model or benchmark against which to evaluate
the proposed approach. The results also point to the implementation of crop
forecasting models in arid and semi-arid environments, which have utility in

relation to tackling food insecurity.
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Chapter 1: Introduction

Agriculture is the world’s largest industry which employs over one billion people
and makes more than 1.3 trillion dollars’ worth of food annually (WWF 2016). The
agricultural sector does not contribute a large part of global gross domestic
product (GDP) but it is a vital component due to the fact that around one-third of
the world’s population gains its livelihood from agriculture with the major part in
Asia (FAO, 2013). Agriculture can make on average 29% of the GDP and employs
65% of the labour force on country basis (World Bank, 2008). Global expectations
of rising population and demand for food have insisted to look at the global and
regional food production seriously. In addition, many economic crises and food

insecurities have posed major risk on sustainable food production.

Generally, global agriculture may face several challenges in the future such as
providing an extra food for global population growth (global food security),
decreasing global poverty rate and sustainable natural resource management.
Meeting these challenges will need to generate a set of technologies, wise policy
and easy access to international and domestic markets for farmers. The world
population is expected to increase to around 9 billion people in 2050 (FAO,
2013). Recent studies have claimed that the world requires 70 to 100% more food
by 2050 to meet the growing demand (FAO, 2009a; World Bank, 2008; Royal
Society of London, 2009). To cope with these challenges, areas under agriculture
was expanded which have been a major driver of deforestation and other
decimating habitats, biodiversity and ecological destruction (Millennium
Ecosystem Assessment 2005). Therefore, unsustainable farming practice to

increase the production could threat the global environment and biodiversity.

War and conflict are among the major drivers of damage to the economy and
spread of disease, leading to forced emigration, refugee populations, a collapse
of social trust and severe food insecurity (WFP, 2011). In addition, war and
political conflicts can affect the land use practices, particularly agriculture in a
country and in turn could affect the availability of food grain and food security of
a country. Therefore, the evaluation and analysis of the factors which are making
a region’s food insecure is an important case in the world. For instance, there are
more than 870 million people undernourished in (2010-2012) in the world (FAO,
2012). Many reasons are involved into this: which include economic crises, high
food price, region of political instability and climate change. In fact, the main

factors of more than 35% of food emergencies from 1992 to 2003 were economic
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issues and conflict; in contrast, this value was 15% in the period between 1986
and 1991 (FAO, 2003a). However, conflict was the main cause of more than of

half of countries were undernourishment in the period of 1990s (FAO, 2003b).

On the other hand, throughout the human history, natural disasters such as
drought, floods and storms have played a major role in hindering agriculture
growth and economic cost. Since the 1950s, the economic losses by all natural
disasters have increased by 14 fold (World Disaster Report, 2001). Drought
occurs nearly in all climatic zones and describes as a slow onset natural disaster
and creeping phenomenon. Drought has been defined in different ways in respect
to different aspects as it affects different part of society in various ways. Tucker
and Choudhury (1987), and Wilhite and Glantze (1985) defined drought as a
distinct period which receives lower than average precipitation, as a result it has a
significant impact on vegetation growth. In addition, agriculture drought take
places when there is inadequate soil moisture to meet the needs of a specific
crop at a specific time, resulting in crop failure (American Meteorological Society,
2004). It is therefore important to understand the impact of drought on food

production to plan for adequate food stock to ensure food security.

Iraq has been established as one of the oldest agricultural countries in the world.
For instance, according to Meyers (1997), the village that called Jarmo, situated in
Iraqi Kurdistan Region, has been the oldest known agricultural and pastoral
community in the world, dated back to the seventh millennium (BCE). Looking
into the history indicated that in the past agriculture was the primary economic
activity of the people of old Mesopotamia and modern day in Iraq, since the
beginning of recorded time. For instance, agriculture played a crucial role in the
country’s major economic activity in the 1920s, but its contribution the gross
domestic product (GDP) fell from 42% in 1981 to 18% in 1990 (Jaradat, 2002).
Although agriculture is no longer have a significant contribution of the country’s
economy, it is a vital component of GDP (Schnepf 2004). This sector declined
considerably again during the last few decades due to some unfavourable factors
from both natural and anthropogenic impacts. For example, the contribution of
agriculture in GDP had dropped from around 9% in 2002 to 4% in 2008 (FAO,
2009) mainly due to drought; however, this value was increased to nearly 12% in

2010 because of some recent policy improvements in this sector (USAID, 2010).

Over last decade, crop production in Iraq has been subjected to a sequence of
major turbulences, both natural and anthropogenic leading to push the country

toward regional food insecurity. For instance, Iraq had been involved in a war
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‘Post-Gulf’ mainly to oppose the previous regime. Due to the political instability
and fear for the life during the war many farmers were unable to grow the crop.
In some places, the military activity and building military encampment
encroached up on agriculture land. In addition to the war, due to its geographical
location, the region is affected by irregularities in precipitation resulting in
frequent occurrence of drought (Al-Timimi, and Al-Jiboori). Both these factors
made the region vulnerable to sustained food production. Therefore, timely and
comprehensive method is highly required to monitor the outcome of those
factors on land use/land cover (LULC) changes and crop production during last
decade.

Remote sensing has been used widely in both agriculture and agronomy. The
monitoring of agricultural activity is challenging due to the very large area that
requires repeated coverage; thus, the employment of remote sensing is vital
(FAO, 2011). Agricultural production is predictable based on monitoring of the
seasonal patterns of the growth phase of crops. Moreover, those seasonal
patterns (and, thus, agricultural production) are driven by several factors such as
climatic variables, the physical landscape and agricultural management. These
factors are subject to large changes in time and space. Therefore, timely

agricultural monitoring through the growth season via remote sensing is needed.

Globally there are various applications of remote sensing in the agricultural
sector, related to food production, aiming to provide reasonable spatial and
temporal data. These applications have been seen in different context like
increasing production would be the global challenges of the agriculture sector
which may have an impact on the environment. The current study will attempt to
use three remote sensing applications in agriculture sector in Iraq. All three
applications are aimed to support decision making in order to improve the
regional production and improve regional food security. Three different
applications have been selected such as land surface phenology, crop mapping
and crop area estimation, and yield estimation due to the fact these areas have
been subjected to a sequence of major turbulences during last decade, and on
the country level they have not been assessed yet. The unreliability of the
country’s official statistical data (USDA FAS 2008) and difficulties with access to
the country due to security problems mean that remote sensing is the only viable
method to map the country’s land cover types and estimate and forecast crop

yield across the country.
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In general, phenology has a long tradition in agriculture. The extracted
knowledge of the vegetation phenology can be used as a surrogate of climate
change (Menzel et al. 2006). The data can be used to accurate identification LULC
change, and identifying, mapping and estimating area of various land cover
types, particularly crop (Newstrom et al. 1994; Gu at al. 2010; Clerici et al. 2012;
Lupo at al. 2007). In addition, crop phenological observation can also play an
essential role in process that is relevant to estimate crop yield (Bolton and Friedl,
2013; Funk and Budde, 2009; Sakamoto et al. 2013). Moreover, LSP information
can help to improve agricultural management such as fertilization and irrigation
through aiming to establish a suitable relationship between the timing of plant
growth phases and carbohydrate consumption (Garcia-Tejero et al., 2010; Menke
and Trlica 1981; Mooney and Billings, 1960). Therefore, the current study mainly
relied on vegetation related phenology information to derive land cover

classification and crop production estimation.

This thesis monitors decadal land cover and crop production in Iraq using
time series remote sensing data. Chapter 1 provided a general introduction of
the work that included the importance of agriculture on a broad scale, then
looking down into Irag and why Iraq has been selected for the current study. In
addition, the importance of remote sensing to monitor agriculture activity,
particularly crop including crop mapping and crop yield forecasting via related

vegetation phenology information. Specifically, this work aimed to:

1-  Map and assess the spatial variation in key land surface phenology (LSP)
parameters across lraq over the last decade and explore their relation
with elevation (as a surrogate of temperature and precipitation).

2- Develop and apply a phenology-based approach for the assessment of
dominant vegetation land cover (VLC) types in Iraq, particularly croplands
from 2002 to 2012.

3-  Evaluate the potential of MODIS-derived measures of greenness and
productivity, and information related to the phenology of crops to
estimate crop production and yield in the arid and semi-arid regions like

Iraq

Chapter 2 will be mainly split into three sections. Section 2.1 will provide a
general description of food insecurity. In addition, short introduction of the arid
and semi-arid regions in term of climatic, location, crop area, and crop
production, in particular the contribution of these regions in the world food

production will be highlighted. This section also addresses the food insecurity in
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arid and semi-arid regions in the world and why it is important to evaluate these
vulnerable regions in term of crop production. Furthermore, the impact of the
main drivers such as rainfall, temperature, population growth and conflict on the
regional food insecurity in these regions will be explained. Section 2.2 focuses on
using remote sensing data for several applications such as classification, crop
condition and yield forecasting. This section also discusses different
methodological approaches for such applications and validation of the space
observation results with in situ data. Section 2.3 provides a historical data of
wheat and barley in term of harvested area and production in past 50 years in
Irag. Chapter 3 to 5 embody three analysis chapter which will be conducted in
three individual papers. Chapter 3 (research paper one) highlights the
spatiotemporal variation of dominant vegetation types phenology such as
croplands, grasslands and shrublands in Iraq and their relation with elevation.
Chapter 4 (research paper two) focuses on using several phenological parameters
to develop a phenology-based classification that can derive an accurate
vegetation land cover types for Iraq during last decade. In chapter five (research
paper three) several remote sensing based methodological approaches will be
tested to estimate and forecast crop yield/production at the governorate level
using different remotely sensed indices. Chapter 6 provides combine discussion
of the research findings for the papers generated in this work and assessing the
main uncertainties and variations with several suggestions for the future studies.
Final chapter (Chapter 7) highlights the most important conclusions derived from
this thesis.
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Chapter 2: Food insecurity in arid to semi-arid

regions

Throughout the history of civilisation, the foremost concern of human societies
has been to ensure that people have access to adequate food to survive and, in
the present day, to lead a healthy and active life. More than 30 definitions of the
term “food security” have been proposed in previous studies (Maxwell and Smith
1992). The most common definition of the term was made by the Food and
Agriculture Organization (FAO): “Food security is a situation that exists when all
people at all times have physical, social, and economic access to sufficient, safe,
nutritious food that meets their dietary needs and food preference for an active
and healthy life” (FAO 2001). The definition can be divided into three main
components: food availability, food access and food consumption. Availability
refers to adequate quantities of food available on a regular basis; access refers to
having enough resources to acquire satisfactory foods for a nutritious diet;
consumption refers to adequate utilization depended on knowledge of basic
nutrition of the food content and the ability of the body to use it effectively. The
concept of the food availability will be more explored in the context of estimation

methodology and controlling factor in the arid and semi-arid regions.

Food availability is determined by a combination local food production and food
imports. The food availability dimension of food security encloses issues of
global and regional food supply, and reminds us the simple question whether
enough food is available to feed our population efficiently. The import part
includes many aids from different aspects, which cannot be measured easily due
to constant trade and personal business to import food in various ways in some
regions. In addition, these aids are not on a regular basis and mainly occur in a
time of natural disasters and catastrophes. Therefore, the local production will be
mostly a target of our evaluation due to the fact that in many arid and semi-arid
regions, the local food productions can still be accounted as the main source of
food.

Grain crops and vegetables are the main component of the home food
production. One of the first priorities of the earliest settler’s communities arriving
in a place to obtain food was crop growing. According to recent FAO statistics,
more than 1.5 billion ha (around 12% of the world’s total land area) was dedicated

to crop production in 2013 (FAO 2013). To meet the basic calorific requirement
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of humans per day per capita, requires around 219 kg of grain annually (Palm et
al. 2010). “The world now produces enough food to feed its population. The
problem is not simply technical. It is a political and social problem. It is a problem
of access to food supplies, of distribution, and of entitlement. Above all, it is a
problem of political will” (Shaw 2007). Many people in arid and semi-arid regions
rely directly on agriculture for their basic source of food, and any negative
impacts on crop productivity can lead to overall food shortages at the local level.
Therefore, comprehensive information about grain crop production of region or
country will lead us to know how the food secure or insecure of that region or

country is and provides better base for making policy.

Arid regions can be described as areas where the ratio of mean annual rainfall to
mean annual potential evapotranspiration ranges between 0.05 to 0.020 and
semi-arid regions as those where the ratio varies between 0.2 and 0.5 (UNEP
1992). Arid regions occur within rainfall zones of 0-300 mm, with inter-annual
variability of 50-100%, whereas semi-arid regions occur within rainfall zones 300-
600 mm, with inter-annual variability of 25-50% (Barakat 2009; IFAD 2000). Arid
and semi-arid regions, situated in the tropical and sub-tropical zones of the
world, cover around 30% of the global total land and are inhabited by around 20%
of the total world’s population (Sivakumar 2005). At the continental level, arid
and semi-arid regions are home to around 23% of the total population of Asia,
24% in Africa, 11% in Europe, 6% in Australia and Oceania, and 17% in the
Americas and the Caribbean (UNDP/UNSO 1997). Arid and semi-arid regions are
highly vulnerable to disruption of local grain crop production due to climatic
fluctuations, which cause such regions to have unstable annual crop production

such that food insecurity is always present and famine is a constant risk.
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Figure 2-1 Global distribution of arid and semi-arid regions (FAO 2002).
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Drylands, refer to arid, semi-arid and dry sub-humid area, have a ratio of average
annual precipitation to potential evapotranspiration of less than 0.65 (UNEP
1992). In drylands, food security is essential in the global fight against hunger, as
drylands is the home for 60% of the world’s food insecure population and more
than 80% of the rural population in this region is reliant on livestock and
agriculture for both food and income (ELLA 2011). It was also reported that
drylands are accommodating around 40% of the world population where over half
of the world’s livestock are grown (UNIC 2011). Therefore, a sustainable
agricultural monitoring system is highly required to provide comprehensive
information to exile these risks in drylands where arid and semi-arid region are

part of them.

2.1 Main Drivers of food insecurity in arid and semi-arid

regions

2.1.1 Precipitation

In part, due to the likelihood of unfavourable climatic events across many regions
around the world, local communities are often food insecure and at risk of
famine. Environmental conditions have a direct impact on food availability. For
example, weather extremes such as droughts and flood and sudden climatic
changes can negatively affect the storage and distribution of food (Haile 2005;
Wheeler and von Braun 201 3). Biophysically, crop production is affected by
climatic variables such as temperature and precipitation. However, their effect on
agricultural production varies across the globe, in some regions positive and
negative in others. In arid and semi-arid regions, the amount and pattern of
rainfall are among the most important factors that affect cropping systems, since
rainfall is marginal and erratic, exacerbated by large runoff and evaporation
losses, which can constrain crop production. In these regions, rainfall patterns
are unpredictable and highly variable in time, amount, duration and space, and
are subject to large fluctuations. Thus, water is the leading factor affecting
agricultural and biological activities in these areas. For example, historically, lack
of rainfall has been a major cause of famines and food shortages in Ethiopia
(Bewket 2009). Time-series data on rainfall and crop production from 1994 to
2003 indicated that sorghum production had the largest inter-annual variability,

as it is cultivated in arid and semi-arid parts of the country. Simple linear
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correlation and standardized multiple-regression analyses were conducted to
show the correlation of precipitation and temperature with grain yields in
Lebanon, in which barley grain yield was correlated positively with precipitation
(r=0.70), and the rainfall distribution index (¥=0.71), but negatively with
temperature (Yau and Ryan 201 3). Most case studies suggested that in arid and
semi-arid regions, fluctuation in crop production is closely linked to variability in
rainfall, which may cause food insecurity. However, this might vary with the types
of crops cultivated, types and characteristics of soil, and climatic condition of a

given area.

2.1.2 Temperature

Temperature, and particularly increasing trends in temperature, is another main
constraint on crop production in arid and semi-arid regions. On a regional basis,
strong warming trends have been observed around the world since 1980,
especially in the Middle East, northern half of China, Japan and Europe (Gourdji et
al. 2013). The output from 23 global climate models reveals that there is a 90%
chance that growing season temperature will exceed the most extreme seasonal
temperature record in the tropics and subtropics by the end of 21st century
(Battisti and Naylor 2009). In the arid and semi-arid regions of Asia, the projected
area-averaged annual mean warming is expected to be 1.6 £ 0.2°C in the 2020s
and rising up to 4.6 + 0.4°C by 2080 (Sivakumar, 2005). This will add further
pressure on crop production, as crop ecologists found that for each 1°C increase
in temperature above the optimum during the growing season grain yields will
decline by 10% (Brown 2006). A study also revealed that changes in climate such
as increasing temperature and reducing levels and distribution of rainfall are
more likely to lead to a decline in yields of wheat, maize, rice and other food
crops in the semi-arid regions of the world (Lobell et al. 2009). Therefore, besides
production reduction in response to global warming, rising temperature may
affect all aspects of the hydrological cycle resulting in the frequent occurrence of

severe droughts in arid and semi-arid regions.

A great challenge to crop production and food price stability is global warming
and it’s resultant of severe drought events. Increasing aridity, more frequent and
intense meteorological drought, and extended periods without precipitation are
common components of future climatic projections for many arid and semi-arid
regions (Seager et al. 2007). For example, the 2009 drought in California’s San

Joaquin Valley affected of 285,000 acres of land resulting in loss of around
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10000 jobs, and $340 million in revenue (Howitt et al 2011), the same event also
caused a reduction of 20% in the value of irrigated agriculture in Australia (Kirby
et al. 2012). In 2000 and 2001, drought posed significant social and economic
issues in central Asia especially in Tajikistan, Turkmenistan and Uzbekistan where
only in Tajikistan, for example, the direct economic cost of agricultural
production was estimated at around 5% of national GDP (World Bank, 2006). The
recent drought in 2008-2009 also caused sizeable declines in crop yields which
cost $1-2 billion and affected over 435,000 farmers in Turkey as well as reducing
by 45% the total wheat production in Irag compared to the previous year (Table
2.1) (USDA FAS, 2008). Therefore, agriculture and related sectors in arid and
semi-arid regions have been challenged by drought and its frequency, which can
eliminate or reduce food production, and adversely affect food prices, market

access, trade, employment and farm income (FAO, 2013b).

Regional Wheat Production {Million Tons)

Country 2007/08 2008/09 |change From Percent

Last Year Change
Afghanistan 3.80 1.50 -2.30 -60.53%
Azerbaijan 1.43 1.60 0.18 12.28%
Iran 15.00 10.00 -5.00 -33.33%
Irag 2.34 1.30 -1.04 -44 52%
Israel 0.15 0.06 -0.09 -58.62%
Jordan 0.04 0.02 -0.02 -50.00%
Pakistan 23.30 21.50 -1.80 -71.73%
Syria 4.00 2.00 -2.00 -50.00%
Tajikistan 0.53 0.40 -0.13 -24 53%
Turkmenistan 1.60 1.20 -0.40 -25.00%
Uzhekistan 6.20 6.00 -0.20 -3.23%
Total 58.38 45.58 -12.80 21.93%

Table 2.1 The impact of drought on the regional wheat production (million tons)
(USDA FAS, 2008).

2.1.3 Population growth

Of seven people around the world, one is chronically hungry. The recent FAO
report indicated that around 850 million people are estimated to be chronically
undernourished in 2012-2014 in the world (FAO, IFAD and WFP, 2014). The report
also stated that Asia has the largest number of undernourished, and Sub-Saharan
Africa has the highest prevalence of undernourishment (one in four people). One

of the reasons could be rapid global population growth, particularly in arid and
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semi-arid regions, which has caused a considerable increase in demand for
agricultural lands and a growing consumption of food. The world’s population
living in arid and semi-arid regions was estimated at around 15% of the global
population (841 million), of which about 524 million live in semi-arid regions.
Arid and semi-arid regions have the most rapid population growth in the world,
which has led to dense habitation of these regions in recent decades (Barakat,
2009). This rapid population growth, with increasing demand for food is a major
driver of land conversion. For example, 70% of tropical forests, 70% of
Mediterranean forests and 60% of temperate broadleaved forests have been
converted to agricultural/grazing land (Millennium Ecosystem Assessment 2005).
Thus, rapid population growth in arid and semi-arid regions has the potential to
cause regional food insecurity, producing an environment in which people cannot
guarantee both physical and economic access to adequate food to fulfil their

needs. This, in turn, may make these regions politically unstable.

2.1.4 War/conflict

The causes and consequences of conflict might induce food insecurity. Food
availability can be reduced because of conflict by influencing agricultural
production through demolition of agricultural assets and infrastructure (FAO,
2000; Deininger and Castagnini 2006). In the 21st century, food security in
developing countries has been impacted by the exclusive phenomenon of civil
war (Hendrix and Brinkman, 2013), and the fact that a relationship exists between
both chronic food insecurity and civil war with poverty (Collier et al. 2003),
because food insecurity can be fuelled by conflict itself. Experience from other
world regions reveals that Arabic countries in transition such as Egypt, Tunisia,
Yemen, and Libya are at a high risk of entering extended phases of conflict
(Maystadt et al. 2014). The analysis also showed that among these countries, at
the macro dimension of food security, Libya performed well (due to its oil wealth),
but the remaining the countries will need to focus on macro food security,
whereas only Tunisia showed a relative good performance at the household level
food security. The recent conflict and drought in Syria led to a large reduction in
winter cereal cropped area in 2013/2014 of around 21% lower than the planned
level, maintained a significant food price inflation, and raised the number of
displaced people from 4.25 million to 6.5 million in July 2013, with more than 2.7
million refugees registered in nearby countries of the region (FAO, 2014).

Therefore, the previous examples and many other researchers suggest that
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shocks to regional security due to extreme conflict events may increase regional

food insecurity.

In addition to previous factors, there are many other drivers which may push the
region toward food insecurity such as farming background, water scarcity,

corruption, pests and livestock disease.

2.2 Monitoring crop by remote sensing

To meet a reasonable regional food security, the previous mentioned drivers have
to be monitored and updated to target a sustainable food production. One of the
most crucial technical options for regional food insecurity mitigation in
agriculture is improving cropland management and timely monitoring of yield to
provide robust data to be prepared for any unfavourable events. In this regard,
the traditional method relied on the classical field based statistical data collection
both on the regional and sub-regional level. Agricultural production has different
characteristics which are different to other sectors such as large area, high spatial
variation, different environmental condition, and substantial intra-annual and
inter-annual seasonal variation. Due to these properties, consistent survey and
traditional monitoring approach are not adequate to provide an accurate and low
cost agricultural statistical data set to fulfil the agricultural production and
management needs in time. Furthermore, subjectivity in sampling and data
collection and lack of spatial distribution are the most common issues of the

existing sample survey approaches.

Land surface can be monitored periodicity, macroscopically and economically
through remotely sensed data. Remote sensing can provide numerous
opportunities in the field of crop monitoring and management. In addition there
has been increased interest in using space based observation due to the ability to
offer crop information with greater spatial coverage, potentially at the global
scale with high degree of availability. Providing timely comprehensive crop
information by remotely sensed data can provide key information to help decision
maker act to mitigate food insecurity. Here, three main applications of remote
sensing in crop monitoring such as crop area estimation and identification, crop

condition, and crop yield estimation will be explored.
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2.2.1 Crop area estimation and identification

Prior information on cropped area plays crucial role in different applications
ranging from economy, environment to policy (Wardlow et al. 2007). As the world
population is growing rapidly, more food and irrigation water is required. Crop
type maps are among the crucial datasets in yield estimation because it is needed
by policy makers in the global food market (Doraiswamy et al. 2004; Thenkabail
et al. 2009). Due to rapid agricultural development and scarcity in water
resources, irrigation water management and planning face several challenges.
Meanwhile, crop classification can facilitate irrigation timing and water planning
(Xie et al. 2007; EI-Magd and Tanton 2003). In this regard, remote sensing data
can offer and facilitate crop type identification and area estimation due to mainly
large spatial coverage and frequent revisiting. For instance, Gallego (2006)
reported the evaluation of three activities to estimate crop area which was
conducted in Monitoring Agriculture ResourceS (MARS) project; i) combining
ground survey and satellite image to generate regional crop inventories, ii) ignore
the ground survey and estimate a rapid crop area change and iv) stratification of
a large resample of points by photo-interpretation on areal orthophotos for
Eurostat’s LUCAS 2006 survey. The results indicated that the third activity
outperformed the other two. Regarding to the attempt of using the remote
sensing data and ignoring the ground survey, the effort did not reach the cost
efficiency at that time. However, the author deduced that as more improved

sensors are generating, the future cost efficiency might change a swell.

With development of remote sensing technology, land cover classification
estimation using remote sensing based approaches have become widely used
over last few decades particularly in crop area estimation. According to Gallego
(2008), the timing of estimating crop area or advance area prediction is based on
following factors; i) the spatial differences in sowing practice, ii) the time after
sowing a crop can be exposed by remote sensor, iii) spatial and temporal
properties of remote sensors, iv) regional crop calendar, v) an appropriate date
when the crop can be identified in the field, vi) time required for ground data
collection and vii) time required to process the ground data. However, lack of
quality in ground data is still one of the key issue to achieve a better classification
accuracy. Although, many efforts have been made in methodological
improvement and potential of remote sensing for estimating land cover area, still
quality of ground survey is crucial. Instead, high spatial resolution imageries are

sometimes replaced for ground surveys if the regions have time, budget and
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access restrictions. However, less success was mostly observed for these efforts.
For instance, less encouraging results were revealed when Gallego (2006) and
Narciso et al. 2008 attempted to avoid or minimize ground data collection

substituting by high spatial resolution imagery.

2.2.1.1 Classification

For the purpose of the classification, single date imagery and multi-temporal
imagery (time series) have been used to identify or classify crop. Reducing the
number of the images to be acquired and less processing requirement are the
main advantages of the single date classification. The object-oriented
classification, with a single date of Polarimetric Synthetic Aperture Radar (POLSAR)
imagery in North-eastern Ontario, Canada, was able to classify five crop types
with an overall accuracy of 95% and Kappa of 0.93 (Jiao et al. 2014). In Tavakkoli
et al. (2006) noticed that classification accuracy is strongly based on acquisition
date and land use type, for instance each crop can be distinct on some images
better than on other, on the other hand extracting some crops is sufficient in
each image than other crops. In the semi-arid region, Thiruvengadachari, (1981)
demonstrated that croplands irrigated by surface water could be discriminated
visually from those irrigated by ground water in a single Landsat image, however
discriminating of different crop types is much harder. In addition, Masialeti et al.
(2010) and Wardlow et al (2007) claimed that crop mapping using single date
image is a real challenge as most of the time overlapped signature of various
crops exist in a same date. Therefore, in arid and semi-arid regions, single date
capture remotely sensed data might be insufficient to track large temporal

variability and frequent spatial land cover changes among vegetation types.

Due to the spatio-temporal variation in cropping area in arid and semi-arid
regions because of climatic variability and crop rotation practices, researchers
promote the use of time-series data in these regions. First, at different
phenological stages, time-series data can be selectively analysed to provide more
useful vegetation spectral information, whereas this information is limited in
single date imagery (Singh and Glenn 2009; Key et al. 2001). Second, temporal
analysis of crops can aid in the discrimination of various crop classes based on
differences in their growth patterns. Third, multi-temporal data may increase the
quality of the imagery as the Sun angle changes with the season, which affects
surface reflectance (Song and Woodcock 2003). Fourth, time-series data have the
potential to provide a larger number of predictor variables which can suit

machine learning classification approaches, thus, providing greater class accuracy
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(Pal and Mather 2005; Ham et al. 2005). Extracting data from Landsat TM and
ETM* sensors were employed in comparison between Hidden Markov Model
(HMM) and single date image for classifying various crops over state of Sao Paulo,
Brazil and the result showed a great achievement of HMM model by increasing the
accuracy from 58% to 86% (Leite et al. 2011). The percentage difference between
maximum NDVI and minimum NDVI was extracted from time-series data to
differentiate crop area from non-crop areas in central Arizona (Zheng et al 2015).
Then, a support vector machine (SVM), a machine learning classifier, was
employed to discriminate various crop types in a complex cropping system in the
region. The result showed an overall accuracy of >86% for crop classes and the
study demonstrated that multi-temporal Landsat data are capable of monitoring
cropping pattern and crop types over time in arid and semi-arid regions. The
hierarchical classification approach using MODIS 250 m NDVI data was used to
produce large-area crop mapping over the U. S. Central Great Plains (Wardlow and
Egbert, 2008). The classes were: a) crop/non-crop, b) general crop types, ¢)
specific summer crop types, and d) irrigated/non-irrigated crops, with
incorporation a series of quantitative and qualitative evaluations, the overall map
quality and misclassified area were assessed. The crop maps generally had
classification accuracy more than 80% and at the state level, the crop patterns
classified were consistence with general cropping pattern across Kansas. In
addition, for the most classes, the classified crop areas were usually within 1-5%

of the USDA reported area.

Remote sensing data can estimate and predict crop area in advance and the result
has relatively good agreement with the ground data. In Rio Grande do Sul state,
Brazil, MODIS crop detection algorithm (MCDA) using temporal profile of MODIS
EVI was developed to estimate soybean crop area in December, using images
from the sowing period, and March, using images from sowing and maximum
crop development (Gusso et al. 2012). The coefficients of determination ranged
from 0.91 to 0.95 were observed in comparison between results were obtained
from MCDA and official statistics. Unsupervised k-means approach was employed
to compute the integrated difference of two consecutive MODIS EVI images (one-
month part) for three EVI threshold cut-offs at monthly breaks from April to
October in order to estimate total winter crop area in Queensland, Australia
(Potgieter et al. 2010). The highest pixel accuracy was observed for July with
percent correctly classified for all thresholds of 94% and 98% for 2003 and 2005,
respectively. The results also indicated that early estimation of crop area using

multi-temporal approach could be confidently predicted at least one to two
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months prior to harvest. At the same area, the rigour of the harmonic analysis of
time series (HANTS) and early season metric produced high accuracy, 4 months
prior to harvest, at pixel and regional level with percent errors of -8.6% and -26%
for the 2005 and 2006 (Potgieter et al. 2011).

Over the past decade, research on land cover classification has involved the use
of vegetation phenological information to discriminate between land cover types.
Several phenological parameters, extracted from temporal profile of Landsat data,
have been proved considerable in discriminating between corn, wheat, soybean
and barley (Badhwar et al. 1982; Crist and Malila 1980). An innovative technique
of harmonic analysis was proposed by Jakubauskas et al. (2002) to identify crop
type from amplitude and phases of decomposed of Fourier component. The
technique was applied to NDVI time series data from AVHRR and the result
indicated its usefulness in detecting LULC changes during planting and
harvesting. In terms of the comparison, a phenological based classification to
map crop type was compared to the traditional maximum likelihood classifier and
the result showed a great advantage of the former approach (Zhong et al. 2011).
Although, discriminating cultivated and non-cultivated areas in arid and semi-arid
regions of northern Asia is challenging due to mainly their similar seasonal
change, several phenological parameters extracted from MODIS-NDVI can be
employed to detect cultivated area in these regions (Enkhzaya and Tateishi 2011).
In addition, multi-temporal time series analysis was used to estimate post-harvest
total and specific crop area in related to crop phenology attributes using different
fitting procedures (Potgieter et al 2013; Gongalton and Green 2009; Potgieter et
al 2010, 2007). Time series MODIS-NDVI was used to extract key parameters to
discriminate crop types over northern China (Zhang et al. 2008). The result
showed a well correlation between area estimated by MODIS and the statistics at
county level. A relatively high agreement regional LULC classification was
obtained using phenological based classification approach in Upper Pangani River
Basin, Eastern Africa, comparing to available detailed datasets for the region
(Table 2.1). Son et al (2014) reported a close relationship between MODIS-derived
rice area and rice area statistics (R? > 0.89) from 2001 to 2012 using phenology
based classification in Mekong Delta, Vietham. There were, however, slightly
overestimated areas, with a relative error in area (REA) from 0.9-15.9% (Table 2.2).
To sum up, having the knowledge of what kind of crop is going to be grown in
the country will help a region financially, as this information will lead the region

to have a pre-plan for importing and exporting of food product.
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Table 2.2 Comparison of land use land cover classification using phenological
variability MODIS vegetation with other sources of datasets such as Irrigation
survey was done by the irrigation department, Ministry of Water and Irrigation
(MOWI, 2009) and the surface areas of the water bodies (IUCN, 2003; PBWO/IUCN
(2008) in Upper Pangani River Basin, Eastern Africa (Kiptala et al. 2012).

S/No Classification Present study Other sources % Source
. (ha) (ha) Agreement
1 Zf;;' irrigated 459406 95823 74 MOWI (2009)
Irrigated
2 Suoarcane 8919 8480 95 MOWI (2009)
3 Water bodies 10525 7555-18800 72-179 :lZJ(C)g\lg()ZOO?,), PBWO/IUCN

Table 2.3 Results of regression analysis and the relative error in area (REA)
between the MODIS-derived rice area and the rice area statistics, REA=(MOD-
RAS)/RAS*100, where RAS= rice area statistics, MOD=MODIS-derived rice area
(Son et al. 2014).

Year R2 RAS (km?) MOD (km?) REA (%)
2001 0.90 3792 4393.4 15.9
2002 0.89 3834.8 4356.1 13.6
2003 0.89 3787.3 4136 9.2
2004 0.92 3815.7 4246.2 11.3
2005 0.95 3826.3 4095.6 7
2006 0.95 3773.9 4138.2 9.7
2007 0.96 3683.1 4060.2 10.2
2008 0.96 3858.9 4047.7 4.9
2009 0.97 3863.9 4121.2 6.7
2010 0.94 3945.9 4051.4 2.7
2011 0.94 4089.3 4126.3 0.9
2012 0.94 4181.3 4248.5 1.6

2.2.2 Crop condition

Monitoring crop condition, health, and seasonal progress are also essential in
securing regional crop production. Wang et al. (2010) stated that one of the most
crucial methods of yield estimation and food security is monitoring crop growth
condition. The traditional approach of crop growth condition in the field, as a
surrogate of the crop health, was limited in time and labour, and was subjected to
many factors. Remote sensing for evaluating crop condition is relied on the
relationship between multispectral reflectance, photosynthesis, temperature of
crop canopy and evapotranspiration (Seelan et al. 2003). Four main necessities

for remote sensing systems such as high temporal resolution, spatial resolution
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of 5-25 m, combining agronomic and meteorological data into an intelligent
system and quick data delivery were suggested by Bauer (1985) for farm
management. Hatfield and Pinter (1993) stated that thermal infrared obtained
from aircraft or satellite platform has the potential to provide a clue on crop

related to frost, water stress, insect and disease.

A wide range of commercial crops might be affected by plant diseases and pests,
which pose a major risk to final crop production. Globally, at least 10% of food
production is lost because of plant disease (FAO 2000; Christou and Twyman
2004). This can be controlled in time if disease and pest are timely monitored
and dealt locally. In this regard, the information of disease infected area is
required as early and precisely as possible. The traditional approach of
monitoring crop growth condition in the field, as a surrogate of crop health, is
time and labour intensive, and the results are subject to many factors. Remote
sensing data can supply relatively low cost data over wide spatial coverage of the
area which is infected by disease and pest. In last two decades, many remote
sensing based methods were developed to monitor crop condition in different
countries and most common methods such as image classification method (Li et
al. 20071; Li 2002), direct monitoring method through remote sensing indices
(Wang 19917; Liu and Zhang 1997), crop growth profile monitoring method (Zhang
and Wu 2004), same period comparing method (Zhao 2002; Zhang and Wu 2004)
and crop growing models method (Xie and Kiniry 2002). Hyperspectral data were
obtained for winter wheat using field spectroradimeter to evaluate severity of
yellow rust disease and both techniques of the partial least square (PLS) and
multiple linear regression (MLR) were employed to assess the suitability of the
bands and develop the spectral model (Krishna et al. 2014). The result revealed
that an accurate delineation and detection of yellow rust disease can be obtained
through the developed model. Near-infrared reflectance spectroscopy (NIRS) was
used to investigate early diagnosis of strip rust and leaf rust in incubation period
and disease period (Li et al. 2013). The results depicted that the identification
rate of training sets was 97% and the identification of testing sets was 96% using
distinguished partial least square (DPLS) model. The physiological variables such
as vegetation water content (VWC) and dry matter were obtained from MODIS
normalized difference water index (NDWI) and NDVI to assess crop condition over
the Yellow River, China (Yi et al. 2007). In general, NDWI was found to have great
potential for VWC and soil moisture change monitoring. Combined analysis
between NDWI and VWC indicated that wheat was under water stress at the end of

the growing season in 2006, which was supported by ground experiment.
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Fine spatial and temporal resolution remotely sensed data have been
demonstrated for crop condition monitoring, assessing crop damage in flood
areas (Zhang et al. 2013), assessing crop condition in relation to soil moisture
(Bolten et al. 2010), and monitoring crop condition in extreme events such as
drought (Krishna et al. 2009). In addition, good progress has been made in
estimation of crop phenological parameters which can facilitate crop condition
assessment resulting may provide more precise agricultural decision support
(Doraiswamy et al. 2004; Sakamoto et al. 2005). Meng and Wu (2008) stated that
having the crop condition information in pre-harvest stage can help to indicate
potential food shortages and surpluses, and related wise policy making-decision.
A crop suitability index was used to show that cropland suitability was at good
level, and an overall gradual improvement in cropland quality during the period
was observed but in some regions, the cropland quality had worsened over the
period mainly due to government policies and population growth. Besides
detecting the problems related to crop condition through the growing season, the
success of treatments can also be monitored. Nevertheless, identifying and
observing crop health and damage needs fine spatial, multi-spectral and multi-

temporal imagery.

2.2.3 VYield estimation

The need to model and forecast crop yield in arid and semi-arid regions is
increasing in parallel with recent and projected changes in land use and climate,
and with recent crises in food security occurring mainly because of rapid global
population growth (Antdnio et al. 2009). Forecasting crop yield and production
are essential for agricultural and economic stability of the region and are vital to
sustaining global food security. Farmers, policy-makers, investors and hedgers
need accurate and timely information on crop quality and supply. This
information will also help governors to ensure a strategic contingency plan to
redistribute food during times of crisis. It is important to consider which spatial,
temporal and spectral resolutions meet the requirements. For example, medium
to coarse spatial resolution satellite sensor data are commonly used in crop early
warning systems by many aid organizations such as FAO to mitigate food
insecurity (Hielkema, and Snijders 1994). In the context global agricultural
observation, the group on earth observation ‘s Global Agricultural Monitoring
(GEOGLAM) provides timely and accurate forecasts of agriculture production and
yield at national, regional and global scales through the use of Earth Observations
(EO) for which satellite and ground-based observation are included (GEO 2011;
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Whitcraft 2015). GEOGLAM covers four main cereal crops (wheat, rice, maize and
soy) within the main agricultural producing regions of the AMIS countries
(G20+7). In contrast, fine spatial and moderate temporal resolution imagery is
required if the study aims are localized at the farm level. In addition, Dadhwall
and Ray (2000) stated that in managing large agricultural areas, forecasting crop
yield is essential, and to achieve this remotely sensed data are required. This
could be more efficient for a region where yield data are either unreliable or non-

existent, often the case in war affected countries.

The advantage of using remote sensing data in crop yield assessment can be
divided into two main parts. Firstly, it can estimate crop yield at the sub-
region/region/global scale which could be useful for inaccessible countries in the
world where data are not available or not in a good quality. Secondly, yield can be
forecasted by remotely sensed data with supplying a precise, scientific and
independent forecast of crops’ yield in advance during the crop growing season
to predict any unfavourable events. The possibility of involving remote sensing
approaches to estimate crop yield and production have been demonstrated in
many studies (Singh et al. 2002; Funk and Budde 2009; Ren et al. 2008; Dadhwall
and Ray 2000; Tennakoon et al. 1992; Chang et al. 2005). In addition, as an
action against the recent food price instability and to improve information on
food supplies by international community, lunching satellite monitoring
observation system in various regions of the world was proposed in the G20
Agriculture Minister meeting held in Paris (Becker-Reshef et al. 2010a).

In some countries, weather data have been used to monitor and forecast crop
production (Andarzian et al. 2008; Liu and Kogan 2002; Paul et al. 2013; de Wit
and Boogaard 2001). Missing data, a lack of continuity in weather data and the
sparse spatial distribution of ground weather stations for a large diverse crop
area limit the utility of these approaches (Liu and Kogan 2002; Dadhwall and Ray
2000; de Wit and Boogaard 2001). At the same time, to predict yield before
harvesting, several empirical simulation crop models with incorporation of
remotely sensed data have been developed and established. Examples of crop
simulation models includes World Food Studies (WOFOST) (Vandiepen et al.
1989), Simulateur mulTldisciplinaire pour les Cultures Standard (STICS) (Brisson
et al. 1998) and Crop Systems Simulation (CROPSYST) (Van Evert and Campbell,
1994).
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2.2.3.1 Modelling (empirical)

The most widely used approach to forecast crop yield is empirical regression-
based models. In these models, crop yield is correlated to some selected
predictors such as vegetation indices (VIs) obtained from remote sensing data
and meteorological monitoring. The assumption behind regression-based models
is that photosynthetic activity, extracted from spectral Vis, is correlated with
eventual yield (Becker-Reshef et al. 2010). Thus, any positive or negative impact
on the crop growing season (photosynthetically active biomass) is likely to result
in a corresponding impact on the final crop yield. A linear regression model was
established by Hamar et al (1996) to estimate wheat and corn yield at a regional
level based on vegetation indices derived from Landsat MSS data. A strong
relationship between wheat yield and integrated NDVI over entire growing season,
and with late season NDVI variables was observed at region and farms scale in
Montana for the years 1989-1997 (Labus et al. 2002). Ren et al. (2008) found the
highest correlation between the spatial accumulation of MODIS-NDVI, at 40 days
ahead of harvest time of winter wheat, and regional winter wheat production in
Shandong, China. Similarly, spatial cumulative of SPOT NDVI has shown to have
suitable prediction capability of 20 and 30 days before harvest for the short and
long maize crop cycle in Kenya (Rojas, 2007). Normalized Difference Water Index
(NDWI) and two-band variant of the Enhanced Vegetation Index were employed to
predict the U. S. crop yield, and showed that including crop phenology related
information improved model prediction, and the best time to predict crop yield
were 65-75 days and 80 days after the MODIS derived green up for maize and
soybean, respectively (Bolton and Friedl 2013). The fact that statistical regression
remote sensing-based approaches are relied on the empirical relationship
between satellites derived vegetation index and historical yield data, thus this
relationship is typically localized and cannot be extended to other areas easily
(Moriondo et al. 2007; Doraiswamy et al. 2003). However, their limited data
requirements and simplicity to practice led them to be still most preferred

approaches in crop estimation and forecasting.

Different approaches with incorporation of phenological-based remotely sensed
data have been developed to estimate and forecast crop production. For instance,
a corn yield estimation model using time series MODIS Wide Dynamic Range
Vegetation Index (WDRVI) was developed by incorporating crop phenology
detection approach (Sakamoto et al. 2013). The study found that the smoothed
MODIS WDRVI (a=0.1), taken at 7-10 days before the MODIS deriving silking
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stage, accurately estimated corn grain yield as well as observed the spatial
patterns of corn yield all over the U. S. from 2000 to 2011. In north India,
phenological parameters such as length of the season and start of the season,
extracted from MODIS data, were used to measure the vulnerability of, and yield
falls in, the wheat crop to extreme heat events (Lobell et al. 2012). In addition,
many organization monitoring systems have employed the land surface
phenology (LSP) information as an essential key component to assess the food
security. For instance, NDVI as a surrogate of vegetation activity is used in the
Famine Early Warning System Network (FEWSNET) as a part of integrated early
warning system for food security (Ross et al. 2009). Furthermore, MODIS data
with incorporation of county level data from United States Department of
Agriculture (USDA) were employed to develop empirical models forecasting maize
and soybean yield in the USA (Bolton and Friedl 201 3). The results indicated that
the model performance was significantly improved within and across year with

inclusion of crop phenology information extracted from MODIS.

The remote sensing based approaches have been proved suitable for estimating
and forecasting crop yield at different scales by comparing to ground or other
official statistics data. For instance, Ferencz et al. (2004) presented two methods
for estimating the yield of different crops in Hungary from satellite remote
sensing data. A new vegetation index General Yield Unified References Index
(GYURI) was used for the first method using double-Gaussian curve to NOAA
AVHRR and other method was investigated by only using NOAA AVHRR county
level yield data. The R?>=0.75 was obtained for the correlation between GYURI and
the field level yield data. In the second method, the county level yield and the
deduced vegetation index, GYURRI, were examined for eight various crops over
eight years where high correlations were observed (R°=84.6-87.2). An advance
version of the method was developed by Bognar et al. (2011) to forecast corn and
wheat, several weeks before harvest, in Hungary from 1996 to 2000. The
difference between forecasted and reported yield data for wheat and corn were
not more than 5%, except in 1997 where the absolute error is around 8%. At the
provincial level in Italy, correlation coefficient equal to 0.77-0.73 were obtain
between observed and simulated wheat yield, with corresponding root mean
square errors (RSME) of 0.47 and 0.44 Mg/ha for Grosseto and Foggia,
respectively (Moriondo et al. 2007). At regional scale, Ren et al. (2008) proposed
a method of winter wheat yield estimation using MODIS-NDVI data. To validate
the method, the results were compared to the ground data and the errors of the

agro-climatic models. The results revealed that the relative errors of the predicted
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yield using MODIS-NDVI are between 4.62% and 5.40% and that measured RMSE
was 214.16 kg/ha lower than the RMSE (233.35 kg/ha) of agro-climatic models.
An approach for predicting rice crop yield was developed in Viethamese Mekong
Delta using MODIS enhanced vegetation index (EVI) and leaf area index (LAI) (Son
et al. 2013). Ten sampling districts were used to evaluate the robustness of the
model by comparisons between predicted yield and crop yield statistics in 2006
and 2007. The results in 2006 revealed that better predictions were obtained for
the spring winter crop (RMSE= 10.18%, mean absolute error (MAE) =8.44%, mean
biased error (MBE) =0.9%) compared with the autumn summer crop (RMSE=
17.65%, MAE=14.06%, MBE=3.52%). In 2007, the spring winter crop yielded better
results (RMSE= 10.56%, MAE=9.14%, MBE=3.68%) compared with the autumn
summer crop (RMSE= 17%, MAE=12.69%, MBE=2.31%). Three different
approaches: fine-resolution remote sensing imagery, the agro-meteorological
Simple Algorithm For Yield (SAFY) model and the combination of both were
evaluated to forecast crop yield in the semi-arid, low productivity regions of North
Africa (Chahbi et al. 2014). The result indicated a greater accuracy using fine-
resolution remote sensing imagery over others with a root mean square error
equal to 8.5 and 1160kg ha-1 between the predicted and ground measured data.
The regression-based models were built using MODIS-derived vegetation and
production indices to predict summer crop yield in semi-arid irrigated ecosystems
within the conflict-affected country of Syria (Jaafar and Ahmed 2015). The
research reported a significant correlation (p<0.05) between the predicted and
reported summer crop yield and demonstrated the potential of the approach to
forecast crop yields during conflict years where reported data could be
questionable.Therefore, remote sensing based methods are generally robust,

accurate and stable for predicting yield at county, region and country level.

Remote sensing-based approaches to estimate and forecast crop yield also have
some limitations which might not be able to achieve a high accuracy required in
agricultural monitoring. One of the main issues for any based on satellite
reflectance measurement is persistence of cloud cover during crop growing
seasonh which may prevent an accurate crop estimation or forecasting (Lobell et
al. 2003). Space observation remotely sensed data, such as satellite derived
vegetation indices, can provide a crop growth signal over the crop growing
season. This information can be used as an estimation of crop condition and crop
yield rather than directly its size, health and weight (Allen et al. 2002). In

addition, other limitations are related to the sensor attributes including limited
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spectral range, low frequent visit, and coarse spatial resolution (Moran et al.
1997).

Lack of the study with incorporation of remote sensing data in the arid and semi-
arid regions pose many challenges for local farmers and decision makers to
establish a proper policy to avert food insecurity. The necessity for surrogating
and modelling crop yield in arid and semi-arid regions is increasing parallel to the
vast changes in land use and climate with recent occurrence of crisis in food
security mainly because of rapid global population growth (Anténio et al. 2009).
In managing large agricultural land, estimating of its crop yield is very essential
(Hutchinson 1991), to achieve this involving remotely sensed data is the best
option (Dadhwall and Ray 2000). Satellite imagery data are potential tool for crop
acreage and biomass production assessments in arid and semi-arid regions due
to their ability to offer reasonable spatial and temporal knowledge’s of various
vegetation in these conditions (Teixeira et al. 2009). The design of operational
tool which has the ability to provide regional estimate of crop production may
maintain the regional food security. For instance, water scarcity is one of the
series problems in arid and semi-arid regions which restricted the crop
production. Quantifying crop production at regional level could help to simplify
the observation of crop water use and irrigation efficiency. In the context of semi-
arid regions, low productivity areas in North Africa, three approaches such as
high resolution remote sensing data, the agro-meteorological Simple Algorithm
for Yield Estimation (SAFY) model, and combination of remotely sensed data with
SAFY model were evaluated to estimate the dynamic and yields of cereal (Chahbi
et al. 2014). For wheat and barley, a strong correlation coefficient (R > 0.6) was
observed between NDVI, pre-time before the maximum growth (April), and grain

and straw.

2.3 Smoothing remote sensing time series data

The use of remote sensing time series for crop and vegetation monitoring often
needs a number of processing steps that include the temporal smoothing of the
cloud-impacted remote sensing signal. This is mainly because the reflected light
waves that satellite sensors detect coming from vegetation on the Earth's surface
can be altered or blocked by a variety of phenomena, which produce noise in the

raw data. To address this issue, raw data are processed using techniques that
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filter out noise and produce a clearer, more representative data set. Various
methods have been employed in smoothing out noise from remote sensing time
series data. They include Discrete Fourier Transformation (DFT) (Wagenseil and
Samimi, 2006), best index slope extraction (BISE) (Viovy et al., 1992), the double
logistic model (Zhang et al., 2004), Savitzky-Golay (5-G) (Chen et al., 2004) and
asymmetric Gaussian model (Jonsson and Eklundh, 2004). These approaches all
have their advantages and drawbacks which are also reliant on the frequency of
cloud contamination and seasonal variability of vegetation indices in the time
series (Atkinson et al. 2012). BISE was compared to maximum value compositing
(MVC) and concluded that BISI was performed better in terms of de-noising (Viovy
et al., 1992). DFT, BISE and S-G were highlighted as effective techniques for
constructing high quality NDVI (Chen et al., 2004). The S-G, changing-weight filter
(CW) and the Whittaker smoother (WS) techniques revealed better performance in

comparison to other tested techniques (Geng et al. 2014).

Any complex vegetation temporal profile can be decomposed through DFT into a
series of sinusoids of various frequency. Individual sinusoids and their
frequencies can be combined into a complex waveform for which noise has been
removed. In the current work, DFT is targeted to be employed as it has minimal
user interactions (only require to decide the number of harmonics to reconstruct
the time series) and have been implemented successfully to many regional to
global remote sensing time series data (Dash et al. 2010, Los et al. 2000).
Recently, Atkinson et al. (2012) compared several models including Fourier
analysis, and the asymmetric Gaussian, double logistic and Whittaker filter
models in terms of their ability to fit a smooth time-series of a vegetation index
such as to capture SOS (Atkinson et al. 2012). Several tests were applied including
the root mean square error, Akaike information criterion and Bayesian
information criterion and indicated that Fourier analysis is superior to other

tested techniques.

The DFT is given by:

2TUXx
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Where VI(t) is the input vegetation index value at time t in the time series, uis the

number of Fourier components, t is the composite number, T is the length of

time period (humber of composite), and here Tis equal to N.
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The effect of data smoothing on the time series for (a) crop, (b) shrub and (c)
grass is depicted in Figure 2-2. The FT was able to capture the broad phenological
pattern and major variation throughout a phenological cycle. Crop land cover type
has the highest NDVI value around 0.5 and more, whereas the NDVI value is
slightly lower for grass and much lower for shrub. It can be seen in the figure that
there are number of missing data and this increases toward the very high altitude
area in the region due to mainly cloud cover and snow. These were removed by
the data cleaning operation. The final smoothed curve was constructed from the
first five harmonics of the DFT.

Crop Shrub

S @ — Smoothed NDVI ) —— Smoothed NDVI
Raw NDVI Raw NDVI

0.5
0.30
1

0.4
0.25
1

NDVI
0.2
1
NDVI
0.15 0.20
1 1

0.1

T T T T T T T T
0 20 40 60 0 20 40 60

Composite period Composite period

Grass

04
I

(©) — Smoocthed NDVI
Raw NDVI

NDVI
0.3
1

01

T T T T
0 20 40 60

Composite period

Figure 2-2 Effect of smoothing on NDVI time series data for (a) crop, (b) shrub

and (c) grass.

46



2.4 Crop production in Iraq and role of remote sensing

Generally, Irag can be divided into two agro-zones in terms of crop area; the
north is mostly rain-fed and the central and southern parts are mainly irrigated
(FAO, 2003). Iraq has a total surface area of 438 320 km? of which around 77.7%
is not viable for agriculture in its current condition (UNEP 2007). Of the remaining
22%, around half is used for marginal agriculture and seasonal grazing. The area
under cultivated crops, including cereals, vegetables, and pulses, is estimated to
be around 3.5-4 million ha, of which wheat and barley account for 70%-85% of

the cropland in any given year (Gibson et al. 2012; Schnepf 2004).

2.4.1 Wheat

Winter wheat is planted generally between September and November across the
country, whereas the harvest time is varied, mainly between May and Jun in rain-
fed area and February and March in irrigated area. Figure 2.2 presents harvested
area of wheat in Iraq from 1960 to 2012. It is apparent that the three used data
set has similar trend. Figure 2.3 shows production of wheat in Iraq for the same
period. From 1990 the harvested area and production of wheat sharply increased
mainly due to the national policy to raise crop production to combat the
international economic sanctions. A clear decrease in harvested area can be seen
from 1980 to 1988 because of the international war between Irag and Iran which
were taken place in wide areas of Mesopotamian plain. The drop of harvested
area and wheat production in 2008 and 2009 was due to the impact of severe
drought over the region. Although, figure 2.3 shows an increase of wheat
production over the period, high inter-annual variation can be seen in the data.
This is mainly due to the variabilty of the climatic variable such as rainfall and

temperature, particularly in rain-fed area.
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Figure 2-3 Rain-fed and irrigated harvested area for wheat in Iraq extracted from
different sources (USDA-PSD, FAO-FAOSTAT and MOI-Gol) (Scoppe and Saleh
2012).
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Figure 2-4 Production of wheat (rain-fed and irrigated) in Iraqg (Scoppe and Saleh
2012).
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2.4.2 Barley

The growing season for barley falls within the same time as wheat in Iraq. Figure
2.4 shows the total harvested area of barley over 50 years in Irag. The impact of
Iran and lraq conflict cannot be clearly seen as declining harvested area of barley
as harvested area of wheat. This is likely due to the fact that barley is a fodder
crop, thus its cultivation and harvest time might not have an impact as a crop
grown for cereal production or human consumption (Scoppe and Saleh 2012).
Over last 50 years, barley harvested area fluctuated mostly between 400,000 ha
and 2,200,000 ha, whereas wheat harvested area fluctuated between 1,000,000
ha and 2,000,000 ha. Production of barley over past 50 year presents in figure
2.5. Larger fluctuation in barley production can be seen in the figure over the

period due to mainly the availability of water.
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Figure 2-5 Rain-fed and irrigated harvested area for barley in Iraq extracted from
different sources (USDA-PSD, FAO-FAOSTAT and MOI-Gol) (Scoppe and Saleh
2012).
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Figure 2-6 Production of barley (rain-fed and irrigated) in Iraq (Scoppe and Saleh
2012).

In Iraq, no previous study has investigated the possibility of using remote
sensing-based approach to surrogate crop yield over the country. The expected
fluctuation in crop production due to natural and anthropogenic stresses make it
more interesting to evaluate decadal crop yield estimation with the incorporation
of remotely sensed data. In general, to date there have been limited studies of
crop yield estimation remotely sensed-based approach in arid and semi-arid
environment in the subtropical region. The crop production in these regions is
driven mostly by water availability. Therefore, there is a growing interest to
characterise the agricultural production in these regions and identify the key
controlling factors. The non-existence of proper ground agricultural observation
and restricted access to the country due to security problems mean that remote

sensing is the only viable method to estimate and map crop’s area and yield.

Lack of the satellite based surveys across Iraq has obliged the federal government
organization and Kurdistan Region government to rely totally on the ground
information data. However, a report from USDA FAS (2008) proved that the
official Iraqi government statistics is unreliable. In addition, international
statistics data for the country for cultivated area and production are mostly
“unofficial” or shown as an estimated figure, and alternative sources have been

used to fill out missing data or uncovered areas (FAO 2012). Thus, the chance of
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margining error in crop yield estimation based on the ground data is considerably
high. In addition, to manage the agricultural activities across the country, Iraq’s
Ministry of Agriculture has assistance director at the governorate level. The entire
official agricultural related statistical and report announcement such as land use,
area and production are based on the governorate level. It is apparent from those
data that to compute the governorate level of crop yield which cover large diverse
area, only one average of crop yield was multiplied to the total crop area to
obtain the governorate crop yield level. This approach is ignoring the variation in
the yield of the different counties under this governorate level. Moreover, the
reliability of calculating the total and harvested crop area is also under the
question. Besides, a comprehensive and regular visiting to collect and update the
data is often missing across the country, might be due to consistent regional
instability. Therefore, up to date regional crop map and monitoring or forecasting

crop vyield could be helpful to improve the regional food security.

51






Chapter 3

Chapter 3: Spatiotemporal variation in the
terrestrial vegetation phenology of Iraq and its

relation to elevation

3.1 Introduction

Vegetation phenology, the study of the life cycle events of plants, has become a
key source of information for mapping, managing and monitoring the terrestrial
ecosystem at local-to-global scales. Several studies have revealed that the
phenology of plants and animals can be affected by climatic change (Sparks and
Carey, 1995). For instance, the study of long-term datasets (1953-2005) of
vegetation phenology events revealed an advance in the spring phenology and
delay in autumn phenology in Japan and South Korea, with rapid changes in the
timing of autumn phenology events compared to spring phenology events, due to
global warming (Ibanez et al. 2010). This research also found that there were
dissimilarities in temporal trends and vegetation phenological responses to
temperature between East Asia and comparable sites in Europe, where spring
events are varying more rapidly than autumn events. Jones et al. (2009) showed
that increasing the global mean temperature above 2°C increased the possibility
to lose forest cover in Amazonia. Thus, annual vegetation phenological variation
has been used as a sensitive indicator of climatic change (Chung-Te et al. 2011).
Moreover, variation in vegetation phenology may affect energy fluxes, the carbon
cycle and the water cycle, mainly through the processes of both
evapotranspiration and photosynthesis, which may affect the climate, and have
consequences for food security and water availability (Xiao et al. 2009).
Therefore, obtaining knowledge of current vegetation phenological responses can
lead to greater understanding of the long-term rhythms of plant communities

under various possible climatic regimes.

'"QADER, S. H., ATKINSON, P. M. & DASH, J. 2015. Spatiotemporal variation in the terrestrial
vegetation phenology of Iraq and its relation with elevation. International Journal of Applied
Earth Observation and Geoinformation, 41, 107-117.
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Vegetation phenology can be monitored either directly through ground
observation or indirectly through space observation. Although the former
approach is accurate for monitoring at point locations, it is time consuming and
has poor spatial coverage, both in terms of extent and intensity. Moreover, data
from ground observations may not be suitable for many global biogeochemical
models which require information across large areas (White et al. 1997). In
contrast, there has been increased interest in utilizing space observation due to
the ability to provide vegetation phenological information with greater spatial

coverage, potentially at the global scale.

Most space-based LSP studies rely on time-series of a vegetation index from
moderate to coarse spatial resolution satellite sensors (e.g. Medium Resolution
Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer
(MODIS), Advanced Very High Resolution Radiometer (AVHRR), Satellite Pour
I’Observation de la Terre Vegetation (SPOT VGT)) due to their high temporal
frequency (Boyd et al. 2011; Bobee et al. 2012; Chen et al. 2013; Fan et al. 2013).
A considerable amount of literature has been published in which the AVHRR
normalised difference vegetation index (NDVI) is used to estimate LSP due to its
daily revisit frequency and extensive spatial coverage, leading to long time-series
with which to map vegetation LSP parameters either at the regional scale (You et
al. 2013; Wessels et al. 2011; Running et al. 1994; Loveland et al. 1997; Bradley
and Mustard, 2008) or global scale (Brown et al. 2012; Nemani and Running,
1996; Eastman et al. 2013; Fensholt et al. 2012: Hansen and DeFries, 2004). For
instance, at a regional scale, the SOS estimated from AVHRR NDVI data for winter
wheat was in close agreement with in situ vegetation phenological observations
(Huang and Lu, 2009), and at a continental scale there was also positive

agreement particularly for homogeneous vegetation (Maignan et al. 2008).

Some studies have been conducted to assess the general compatibility of the
AVHRR data with other sensors such as MODIS and SPOT VGT. For instance,
Fontana et al. (2008) and Fensholt et al. (2006) compared the AVHRR-NDVI to the
NDVI from other sensors such as MODIS and SPOT. Although the disagreement
was small, the latter sensors’ VIs were more accurate than the AVHRR-NDVI. The
reasons for this could be that initially the AVHRR sensor was not designed for
monitoring vegetation (Teillet et al. 1997) and the NDVI from AVHRR is more
affected by water vapour due to the sensitivity of this sensor’s spectral bands to

water vapour in the atmosphere (Cihlar et al. 2001). Therefore, recent research

54



Chapter 3

has been directed to using alternative satellite sensor data such as MODIS, MERIS

and SPOT products to estimate LSP parameters.

Since 2000, satellite sensors such as MODIS have been available which offer
significant increases in terms of spectral and spatial resolution, and the quality of
cloud screening, geolocation, sensor calibration and atmospheric correction
(Soudani et al. 2008). These properties have made MODIS a common choice for
monitoring terrestrial vegetation and LSP in different geographic areas and
ecosystems (Xia et al. 2012; Hmimina et al. 2013). In addition, a close agreement
between MODIS LSP parameters and ground reference data has been
demonstrated (Kang et al. 2003; Sakamoto et al. 2005; Shuai et al. 201 3). Besides
demonstrating accurate estimation of LSP parameters by MODIS Terra and Aqua
compared to field observation, Colombo et al. (2011) used MODIS data to show
that the start of the growing season may advance or delay by as much as 10 days,
if the spring temperature changes by 1 C’. Therefore, time-series MODIS data
are a suitable choice for monitoring seasonal and inter-annual vegetation

phenological changes which may be affected by changes in local climate.

LSP extracted from remotely sensed data have been used as a sensitive indicator
of different drivers such as climate change (Chung-Te et al. 2011), and natural
and anthropogenic factors exerted through land use/land cover type (de Beurs
and Henebry, 2004) as well as affecting ecosystem carbon exchange (Churkina et
al. 2005). Moreover, LSP information can help to improve agricultural
management such as fertilization and irrigation through aiming to establish a
suitable relationship between the timing of plant growth phases and carbohydrate
consumption (Garcia-Tejero et al. 2010; Menke and Trlica 1981; Mooney and
Billings, 1960). Amongst all natural factors, changes in ground elevation have a
significant influence on the timing of LSP parameters. Some studies have been
carried out to show the relationship between individual LSP parameters and
elevation (Gimenez-Benavides et al. 2007 and Arroyo, 1990). For instance, Pellerin
et al. (2012) stated that elevation was the main driving factor leading to delayed
budburst and leaf unfolding dates of about 2.4 to 3.4 days per 100 m in the
Western Alps. Delayed SOS and EOS were observed during 2001-2010 in a
subtropical mountainous region in China due to the colder temperature at higher
elevation (Qiu et al. 2013).

There have been limited studies of land surface phenology in arid/semi-arid
environments in the subtropical region. The vegetation phenology in these

regions is driven mostly by the availability of rainfall, contrary to the phenology
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of much northern high latitude vegetation which is driven mostly by temperature.
Therefore, there is a growing interest to characterise the vegetation phenology in
these regions and identify the key controlling factors. Iraq, being situated in the
subtropical region with its highly seasonal precipitation patterns presents an
interesting area within which to study changes in vegetation phenology. In
addition, the changes in LSP parameters across Iraq have potentially been driven
by different environmental factors, both natural and anthropogenic, during the
last decade. The non-existence of ground vegetation phenology data and
difficulties with access to the country due to security problems mean that remote

sensing is the only viable method to estimate and map LSP across the country.

It is also possible that in Irag elevation is one of the main predictor variables
influencing the country’s LSP parameters. The northern part of Iraq is comprised
mostly of mountainous areas relying on rainfall while the Great Mesopotamian
alluvial plains of the Euphrates and Tigris rivers are located in the middle and
south parts of the country (FAO Aquastat, 2008). Therefore, the altitudinal-
phenology relationship may vary across the country based on local temperature

and rainfall conditions.

Therefore, the aim of this research was to assess and map the spatial variation in
key land surface phenology (LSP) parameters across Iraq over the last decade and
explore their relation with elevation (as a surrogate of temperature and

precipitation).

3.2 Material and Method

3.2.1 Study Area

Iraq is situated in the Middle East between the longitudes 38" to 48°E and
latitudes 29" to 37°, with an area of 437,072 km?, surrounded by Iran to the east,
Turkey to the north, Syria, Jordan and the Kingdom of Saudi Arabia to the west
and the Arabian gulf to the south (Figure 3.1). Climatologically, Iraq is described
as having a subtropical continental climate (except for some parts in the north)
with an extreme, hot summer (average maximum temp. in Aug. and Jul. around
43 °C) with no rainfall, and a short cool winter (FAO, 2011). Precipitation is highly
seasonal and more than 90% of the precipitation occurs between November and

April. The rainfall ranges from 1200 mm in the north and northeast to less than
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100 mm over the majority of the south, with an average annual rainfall of around

216 mm over the whole country (FAO Aquastat, 2008). Rainfall varies

considerably spatially based on altitudinal variation across the country.
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Figure 3-1 Map of Irag showing the boundaries of 18 administrative governorates.

Generally, Irag can be divided into two agro-zones in terms of crop area; the

north is mostly rain-fed and the central and southern parts are mainly irrigated

(FAO, 2003). Natural vegetation varies seasonally with rainfall. Grassland is

mostly located in the high elevation area in the north, but open shrubland is

distributed from the lowlands in the north to the south of the country (Figure

3.3a). In terms of the crop calendar, wheat and barley are the major winter crops;

where irrigation is available sorghum, corn, millet and rice are grown in the

summer. Winter crops are planted between September and November and

harvested between May and June; irrigated summer crops are planted between

April and May and harvested between August and September (Schnepf, 2004).
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3.2.2 MODIS Land Surface Reflectance Data

This study utilised the 8-day composite data of the MODIS land surface
reflectance level-3 data product, with a spatial resolution of 250 m (MOD09Q]1
V5) from 2001 to 2012. The data were downloaded from NASA’s Land Processes
Distributed Active Archive Centre (LP DAAC)
(https://lpdaac.usgs.gov/data_access). The Quality Assurance (QA) layer is a 16-
bit image that is composed of values ranging from 0-65535 representing
different permutations and combinations of MODIS land surface reflectance
quality parameters. The QA layer was used to remove contaminated pixels due to
sensor effects such as different orbits, adjacency, band quality, and MODLAND
QA and non-sensor effects such as cloud state and atmospheric noise. A number
of permutations and combinations were then conducted using the above criteria
to finalize which values in the QA flag image were retained to represent good
quality data. This ensures that only the best quality pixels were used in the
analysis. For detail of this QA assessment procedure please refer to MODIS land
products quality assurance tutorial on the LP DAAC website
(https://Ipdaac.usgs.gov/sites/default/files/public/mois/docs/MODIS_P_QA_Tuto
rial-1b.pdf).

For each time step (composting period) the NDVI was calculated as in equation

1):

NDVI= ((NIR-RED))/((NIR+RED)) (1)

where, NIR and RED are the spectral reflectances in the near infrared and the red
wavebands in the MOD09Q]1 product.

Generally, the vegetation growing season in Iraq starts in September and
continues until December in the next year (FAO aquastat, 2008; Schnepf, 2004).
Since, many LSP parameters cross the calendar year, to extract land surface
phenological variables for a specific year data from the previous year and
following year were considered in the “layer stack”. For example, the dataset for
2008 contained 8 day NDVI composites from July 2007 to January 2009 resulting
in 72 data layers (bands).
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3.2.3 Extraction of LSP parameters

The methodology for extracting LSP parameters can be divided into four main
steps: moving window averaging to remove dropouts, linear interpolation for gap
filling, data smoothing, and LSP parameter estimation. NDVI values in the study
period were affected by noise or errors (dropouts) in the data, particularly in the
Kurdistan Region, resulting from cloud cover, snow and local climate fluctuations
which, in turn, led to erroneous NDVI values. Thus, a temporal three point moving
window average was applied to each pixel as a first step to remove these

dropouts and the missing values were then interpolated linearly in time.

To estimate the LSP parameters, different smoothing techniques have been
applied to time-series vegetation index data to capture the annual growth cycles
(Hmimina et al. 2013; Clerici et al. 2012; White et al 2005; Viovy et al. 1992;
Zhang et al. 2003). Recently, several models were compared including Fourier
analysis, and the asymmetric Gaussian, double logistic and Whittaker filter
models in terms of their ability to fit a smooth time-series of a vegetation index
such as to capture SOS (Atkinson et al. 2012). Several tests were applied including
the root mean square error, Akaike information criterion and Bayesian

information criterion, mostly indicating the advantage of Fourier analysis.

The current study used Fourier-based smoothing due to minimal user interaction
and because it has been used widely in different regional-to-global AVHRR studies
(Cihlar et al. 1997). The Discrete Fourier Transform (DFT) was used to decompose
the information into a series of sinusoids of various frequencies (Jakubauskas et
al. 2001). Then, inverse a Fourier transform on the first few harmonics was used
to provide an appropriate reconstruction of the main vegetation phenological
signal. Jakubauskas et al. (2001) stated that for 50-90% of the variability in a
dataset, the inverse Fourier transform utilizing the first two harmonics is
required. Nevertheless, this can only represent annual and semi-annual vegetation
cycles. Natural vegetation phenological cycles require three to five harmonics for
adequate representation (Geerken, 2009). This means that the number of
harmonics might be changed due to the land cover type. For example, to reveal
the agricultural land phenological signal where double or triple cropping is

practiced, the first six Fourier components are required (Dash et al. 2010).

After smoothing the data, the LSP parameters can be estimated by one of several
methods. These methods can be categorized into three broad groups: trend

derivative methods, threshold-based methods and inflection point methods (Reed
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et al., 2003). As the threshold value may vary by land cover type, there is some
difficulty in implementing threshold-based methods over large areas (Reed et al.
1994). Regarding the trend derivative method, choosing a suitable moving
average time interval may be challenging as a large time interval results in less
sensitive trend detection and a small time interval may detect irrelevant trend
changes (Reed et al. 2003). In the current research the inflection point method
was applied due to easy implementation and the ability to discriminate multiple
growing seasons for different land cover types such as crops (Reed et al. 1994).
This technique captures LSP parameters while maximum curvatures occur in
plotted time-series data (Zhang et al. 2001). The algorithm searching for the
valley points in time checks the derivative information; the derivative at the
beginning of green up is positive, while it changes to negative at the senescence
stage. Thus, a time-series dataset can be searched for a continuous trend of four
consecutive rising NDVI values and four consecutive declining NDVI values to
define the key LSP parameters, SOS and EOS (Figure 3.2). However, due to local
fluctuations, some valley points may appear at larger values of NDVI which may
lead to unreliable detection of these parameters. Therefore, a condition that the
difference between the maximum NDVI and valley point must be greater than one
fifth of the maximum was applied to avoid this issue. The whole process was fully
automated using Matlab code. Through this process, the SOS and EOS were
mapped for each year, and then the Median was calculated and mapped for the

whole period.
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Figure 3-2 Estimating the key LSP parameters in the current study by applying the
inflection point technique to define the SOS and EOS from smoothed time-series

data for major vegetation types.

3.2.4 MODIS Land Cover Type

To identify the most predominant land cover types over the country and, in turn,
their LSP parameters, the MODIS land cover types (MCD12Q1) from 2001 to 2012
were downloaded from NASA’s LP DAAC (https://lpdaac.usgs.gov/data_access).
The reason for using 12 years of MODIS land cover type is that the country’s land
cover type is highly dynamic and has changed from one year to another due to

several natural and human factors.

The MODIS land cover product has a 500 m spatial resolution which provides
broad information on Iraq’s land cover types. Supervised classification
(Schowengerdt, 1997) was used to create the MODIS land cover classification
involving high quality land cover training sites. This approach was developed by
utilizing the combination of ground reference data and fine spatial resolution
imagery to increase the accuracy of the product (Muchoney et al. 1999). The
International Geosphere and Biosphere Programme (IGBP), which is a primary land
cover scheme, was used to identify the MODIS land cover classes: 17 classes, of
which 11 are natural vegetation, 3 are developed classes and the rest are non-
vegetation classes. To see the distribution of classes, the 2007 MODIS land cover

type is shown as an example in Figure 3.3a.
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Figure 3-3 Maps of (a) MODIS land cover type with a spatial resolution of 500 m

for 2007 (https://Ipdaac.usgs.gov/data_access) and (b) elevation, extracted from

SRTM data (Jarvis et al. 2008) for Irag with a spatial resolution of 250 m.

3.2.5 Calculating the standard deviation (STD) and

correlation between LSP parameters and elevation

After extracting Irag’s land cover from the MODIS product, it was apparent that

the most dominant vegetation types are croplands, open shrublands and

grasslands (Figure 3.3a). To present the temporal variation in the LSP parameters

among these classes over the last decade the standard deviation (STD) was

estimated for each pixel. The STD describes the variability in the LSP parameters

in each pixel and can highlight the most unstable areas in terms of LSP through

the time period of the study.

For the linear regression analysis described below, only those pixels which were

consistently allocated to the same class through time were used. Then

homogeneous areas were extracted for each permanent land cover type to reduce

the number of miss-classified areas. Elevation for Irag was estimated from the



Chapter 3

Shuttle Radar Topography Mission dataset (SRTM) (Jarvis et al. 2008) (Figure
3.3b). To be compatible, the estimated LSP parameters (250 m) and elevation
data (250 m) were resampled to the spatial resolution of the MODIS land cover
types (500 m). Then linear regression was applied to estimate, for each
permanent homogeneous land cover class, the coefficient of determination
between the LSP parameters (Median LSP) and elevation. The composite date was
converted to Julian days for the regression analysis. For example, the SOS may
start at the end of September of the previous year (around 280 days) and finish in
August (around 650 days) in the following year in homogeneous areas (Median

LSP). A schematic diagram of the methodology can be seen in Figure 3.4.
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Figure 3-4 Schematic diagram showing the research methodology adopted in this
study.
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3.3 Results

3.3.1 Phenological parameters for specific vegetation types

The spatial distributions of the SOS (Figure 3.5a), EOS (Figure 3.5b) and LOS
(Figure 3.5c¢) based on the multi-year median of each vegetation phenology
parameter across dominant vegetation types in Iraq are shown in Figure 3.5.
Generally, rainfall and elevation can be expected to influence the distribution of
the LSP parameters across lraq. Based on these factors and for ease of
explanation, we divide the study area into two main parts; the north including the
Kurdistan Region, Kirkuk and the northern part of Ninawa and Dyala, which are
mainly rain-fed, and the central and southern parts, which are mostly irrigated
(FAO aquastat, 2008; Schnepf, 2004).
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Figure 3-5 Median spatial distribution of different vegetation types for (a) SOS, (b)
EOS, and (c) LOS during 2001-2012 in Iraq. The median SOS and EOS were
presented in Julian days rather than composite period: the growing season starts

around September of the previous year and continues to December of the
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following year, for all vegetation types, to make the maps easier to read. LOS is
shown in number of days representing the duration of the median growing

season for all vegetation types.

A large amount of variation in the SOS across the country was observed. The
earliest SOS was detected in the central and southern parts of the country,
dominated by cropland, between the end of September and end of October due to
the availability of water. However, for the rest of the croplands in the central and
southern parts of the country, the SOS was detected from mid-to-late December.
This difference might be the result of different crop types grown in these areas.
For some areas in the central and southern parts of the country, the SOS was
delayed to the end of March to mid-May. This is an indication of the growing of
summer crops in these regions. However, the SOS of the shrubland cover type in
the central and southern parts seems to range between mid-to-end of November

(Figure 3.5a).

The EOS in the central and southern parts of the country is less variable, with the
majority of this area exhibiting an EOS between mid-April to mid-May (Figure
3.5b). The reason could be a lack of moisture and the approach of a hot summer
in the area. However, a relative delay in the EOS was detected for a few areas
which might be the result of the practicing of summer cropping (beginning-to-end
of June). From Figure 3.5c, it is apparent that the longest growing season was
also detected for agricultural land that is connected to water in the central and
southern parts of the country (217 to 257 days) due to their earlier start. For the
remainder of the area, mainly occupied by shrubs, the LOS was between 137 to

161 days and 169 to 269 days for a mixture of shrub and crop land cover types.

The predicted key LSP parameters in the northern part of the country were much
more heterogeneous than in the middle and southern parts (Figure 3.5a). The SOS
was detected around mid-to-end of November for various places in the north
dominated by open shrubs and a few areas of crops with a long growing season
of 217 to 241 days (Figure 3.5¢). However, these areas exhibited an EOS from
beginning-to-end of May, the same as for most of the shrubland land cover type
(Figure 3.5b). The SOS of cropland areas was detected for the majority of places
from mid-to-end of January. The corresponding EOS of crops in this area was
towards the beginning-to-mid June. However, towards Kirkuk, the southern part
of Erbil and the middle of Ninawa governorates it became more difficult to
discriminate between open shrublands and croplands in the period start-to-mid-

January because of the similar timing of the LSP parameters. Finally, the grassland
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cover type is another dominant class in this area and its SOS fell into three
different periods due to elevation. A very late SOS was detected for very high
elevations between the end of March to end of May, mostly located at the border
of this region; the beginning to middle of March was recorded for an average
elevation and mid-to-end of February for relatively low elevation compared to the
previous two classes. As for SOS, the grassland cover’s EOS can be divided into
three classes. A very late EOS between the middle of September to December was
detected for the first class; the beginning-to-mid July was detected for the second
class and mid-to-end of June was recorded for the majority of the grassland cover
type. Although grassland had a very late EOS compared to the other classes, the
LOS for the majority of its area was very short; between 105 to 129 days due to a
delay in the SOS.

From Figure 3.5, most parts of the country have no LSP parameters as there was
no or very sparse vegetation cover. This result may be explained by the fact that
more than 40% of the western part of the country is desert (FAO Aquastat, 2008)
and in other places, LSP parameters are hard to detect because of variable or

unclear vegetation phenology patterns.

3.3.2 Analysis of decadal changes in LSP parameters

To present the inter-annual variability of the LSP parameters such as SOS EOS and
LOS, the STD was calculated for the entire study area for the period from 2001 to
2012 (Figure 3.6). As shown in Figure 3.6, the SOS is much more variable than
the EOS. The STD of the SOS for most of the country ranges between 0 and 72
days (Figure 3.6a). However, this value increases dramatically towards the
lowlands in the north to about 80 to 120 days. Some areas, which are connected
directly to water, exhibited the largest STD. Generally, these areas of highly

variable SOS are mostly occupied by the cropland and shrubland cover types.
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Figure 3-6 Standard deviation of LSP parameters (a) SOS (b) EOS and (c) (LOS) from
2001 to 2012.

In contrast, a relatively small STD can be observed in EOS across the country
(Figure 3.6b). The STD of EOS for the majority of the country ranged between 0 to
32 days. However, the value seemed to increase to 40 to 80 days in some areas
close to the source of water, particularly in the central and southern parts of Iraq.
This result might be because of practicing different crop types in these areas
between years. As for SOS, some areas connected directly to available water
exhibited the largest STD of EOS.

As expected, it is apparent from Figure 3.6c that the STDs of LOS for natural

vegetation cover types such as shrubland and grassland are relatively small,
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especially in the northern part of the country which is mostly rain-fed (0 to 32
days). In contrast, a relatively large STD of LOS was detected for croplands
(around 56 days and more), particularly in the middle and southern parts of the

country, which are mostly irrigated areas.

3.3.3 The relation of LSP parameters of dominant

vegetation types to elevation

Over the whole of Iraq, the most dominant land cover types such as cropland,
shrubland and grassland were analysed to assess the effect of elevation on the
LSP parameters (Figure 3.7). Because the country’s rainfall and temperature vary
considerably based on elevation, amongst other factors, elevation can be
considered as one of the main factors potentially driving spatial variation in the
LSP parameters. Generally, as expected, considerable variation in the SOS and EOS

was found with elevation for all land cover types across the country (Table 3.1).

Table 3.1 Linear regression parameters defining the coefficient of determination
between the median LSP parameters (SOS, EOS, LOS) and elevation.

No. of Y-intercept Slope R?

Type
samples SOS EOS LOS SOS EOS LOS SOS EOS LOS

Crop 99313 346.80 510.43 175.07 0.06 0.045 -0.027  0.539 0.638 0.155
Grass 41207 354.07 530.15 176.14 0.047 0.024 -0.021 0.528 0.588 0.161

Shrub 75256 325.501 502.19 160.20 0.064  0.048 0.001 0.481 0.685 0.07

The largest positive coefficient of determination between the SOS and elevation
was found for croplands (R?=0.539, p<0.05) (Figure 3.7a). It seems possible that
this result is due to the existence of irrigation water at the beginning of the
season in the south (lowlands) to irrigate croplands, which led to an earlier green
up, and weather conditions varying with respect to elevation in the north
(highlands), which delayed green up. In other words, the SOS was delayed with
respect to elevation from the south to the north of the country which resulted in a
relatively large positive coefficient of determination compared to the other

classes. Similarly, grassland produced a positive coefficient of determination
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between SOS and elevation (R? =0.528, p<0.05) (Figure 3.7d). This might be due
to the location of this land cover type in mountainous areas with high relief. The
temperature in this region is relatively cold, especially in winter, which delays the
start of the season compared to the rest of the country. In comparison to the
other classes, shrubland produced a small positive coefficient of determination
(R?=0.481, p<0.05) due to the fact that this class is divided almost equally into
lowlands and (relatively) highlands (Figure 3.7g). Thus, excluding the very high
mountainous area for this land cover type may lead to a relatively small
coefficient of determination compared to the other classes for SOS. However, the
coefficient of determination between EOS and elevation was the largest compared
to the other parameters, particularly for shrublands and croplands (R?=0.685 and
R?=0.635, p<0.05, respectively) (Figure 3.7b and 3.7h). The reason could be that
half of these classes are located in the lowlands and this area is expected to have
an earlier EOS compared to the rest of the country. In contrast, this coefficient of

determination was smaller for grasslands (R>= 0.588, p<0.05) (Figure 3.7e).

Very small positive coefficient of determination were observed between the LOS
and elevation for cropland, grassland and shrubland vegetation types (R*=0.155,
R’=0.161 and R?*=0.07, respectively, p<0.05) (Figure 3.7c, 3.7f and 3.7i). Low
elevation is effectively being used as a proxy for irrigation, which cancels out the
normal effect of elevation on LOS. Although EOS in the lowlands occurred early,
the source of water at the beginning of the season made the LOS in this area
longer than for the rest of the country. On the other hand, a very late EOS at high
elevation did not mean that the vegetation types of this area had a long LOS

because the plants need to complete their growing season, which started later.

Because the MODIS land cover type is a global land cover classification, at
regional level the product might not be able to adequately classify the required
local land cover types. Therefore, the possibility of misclassification in some
areas should be taken into account in the present study. For instance, in very
high elevation areas, a large delay in EOS was recorded for some areas of
shrubland which, in reality, might be caused by a mix of grassland and other
cover types (Figure 3.7h). Finally, increasing the elevation by 500 m will delay the
SOS in cropland and shrubland by around 30 days, and grassland about 25 days
as well as delay EOS by around 22 days in cropland and shrubland, and grassland

by around 12 days.
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Figure 3-7 Changes in SOS, EOS and LOS for three major vegetation types with
elevation variation in lraq {(a, b and c for cropland), (d, e and f for grassland) and
(g, h and i for shrubland)}. For SOS and EQS, values on the y axis up to 365 days
belong to the previous year and above belong to the following year, due to the

timing of the growing season in Iraqg.

3.4 Discussion

In arid and semi-arid regions, LSP parameters can vary considerably spatially
depending on variation in water availability, climate, soil type, and vegetation
composition. Remote sensing is the only viable means of characterising and
monitoring vegetation phenology at the country-scale (Ganguly et al. 2010; Dunn
and De Beurs, 2011; Chuanfu et al. 2012), and this is particularly true of Iraq
where access is restricted due to security issues. However, validation of the LSP
parameters estimated from remotely sensed data is often absent. Both direct
evaluation and indirect evaluation, through comparison of LSP estimated from

remotely sensed data and in situ observations upscaled through fine spatial
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resolution remote sensing data, have been applied in many cases (Zhang et al.
2006; Fontana et al. 2008; Hmimina et al. 2013; Fisher and Mustard, 2007).
However, validation of the results presented here is challenging because (i) this
research attempted to establish for the first time a comprehensive
characterisation of the vegetation phenological characteristics of the major
vegetation types over Iraq; (ii) a very limited number of earlier studies of the
vegetation phenology across Iraq were attempted or available at the local scale

and (iii) no ground vegetation phenological stations exist across Iraq.

Due to its climatic and topographic variation, Iraq is a land of different vegetation
types. For example, in only four governorates in the Kurdistan region 67 species
were detected distributed in 32 genera, 16 families and 9 orders (Aziz, 2011).
Thus, spatial mixing of vegetation types at finer classification levels (e.g., species,
genera) in Irag is common. In addition, the small agricultural field size in Iraq
compared to the coarse spatial resolution of the data used in this study may to
lead to mixed vegetation types in the area (e.g., where adjacent fields are covered
by different vegetation types). A second issue is that the land cover classification
used for the current research was a global land cover classification. Thus, it might
be possible that the product was not able to provide accurate mapping at a
regional level for some land cover types. Pflugmacher et al. (2011) and Acharya
and Punia (2013) reported some disagreement with MODIS land cover types for
some vegetation covers at a local level over Northern Eurasia and India. They
pointed out that the uncertainties could be related to the classification process
using the training dataset. Moreover, the sample size of each class and its
adjustment process led to high uncertainty resulting in overestimation or
underestimation. However, the overall pattern of LSP parameters observed has a
strong similarity with the expected phenological pattern for the dominant
vegetation types. For example, in the cropland and shrubland areas, an earlier
SOS for the central and southern parts and delayed SOS for the north were
detected. This result may be explained by the fact that generally the area is
divided into two agro-zones; the central and southern parts are mostly irrigated
and the majority of the north is rain-fed (FAO, 2008; Schnepf, 2004). This makes
the possibility for advancing SOS in the central and southern parts due the
availability of the water at the beginning of the season and delaying SOS in the
north (rain-fed) due to rainfall and temperature constraints which depend on
elevation. Moreover, the late SOS and EOS with a short LOS were detected for
grasslands located in the high elevation area. A possible explanation for this

might be that a very short growing season and reduced photosynthetic activity
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can be attributed to high elevation areas due to weather conditions such as snow
and limited rainfall (Inouye and Wielgolaski, 2003). The current research also
found that the EOS in the central and southern parts was earlier than in the north.
This could be the result of moisture scarcity and temperature increasing from the
north to the south of the area due to changes in elevation. In terms of vegetation
phenological patterns, the current findings are consistent with those of other
studies where the vegetation phenology pattern of some spatially restricted parts
of Iraqg (including rain-fed and irrigated areas) were shown (Griffin and Kunz
2009; Gibson et al. 2012).

The STD was used to indicate the most variable locations through the last decade
in terms of specific LSP parameters. It was apparent that variation in the SOS was
more obvious compared to EOS, particularly in the north. There are several
possible explanations for this result. The most likely explanation is that the area
is mostly reliant on rainfall for starting the growing season either directly in rain-
fed areas or indirectly to recharge the two main rivers in irrigated areas (Schnepf,
2004). Another possible explanation is that these areas are under the control of
human activity. Further, practising crop rotation and the traditional biennial
system to recharge the depleted soil are other reasons for the observed variation
(Schnepf, 2004). However, a relative homogeneity in STD for EOS may be the
result of sharing a common hot season around the time of the EQOS. The
heterogeneity indicated by the STD for LOS for cropland area is also due to mainly
human interactions such as application of different crop growing systems among
years and different policies for planting and harvesting which may affect the LOS.
In contrast, this variation is relatively small in natural vegetation types such as
shrubland and grassland, particularly in the north of the country. Because this
area is mainly reliant on rainfall, changing the timing of the start of rain might
not affect much the LOS, as plants need to complete their growing season,
whether SOS might be advanced or delayed. Besides, for natural vegetation less
variation in LOS is expected due to lack of human interaction compared to

croplands.

Relationships exist between the LSP parameters and elevation (Murray et al. 1989;
Gimenez-Benavides et al. 2007; Li et al. 2010). The findings of the current study
are consistent with those of Ding et al. (2013) who found that an increase in
elevation delayed the SOS, delayed EOS and shortened the LOS of grassland in the
Qinghai-Tibetan Plateau from 1999 to 2009. These findings further support the

observed regularity of the variation in LSP parameters along with elevation in
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areas of very high elevation compared to low elevation, which may reflect the
influence of human activity in the lowlands (Li et al. 2010; Ding et al. 2013). More
interesting is the large coefficient of determination between EOS and elevation for
all land cover types, in contrast to many studies which point to a general trend of
delayed EOS at lower elevation (Qiu et al. 2013; Jeganathan et al. 2010; Zhang et
al. 2004). The reason could be as a result of rapid declines in moisture and
rapidly rising temperatures in the hot season at the end of the vegetation growing

season, moving from south to north, as a function of variation in elevation in Iraq.

Several factors affected the coefficient of determination between the LSP
parameters and elevation. The main influence is likely to be the use of a global
land cover product with an overall accuracy of 75% to provide the country’s land
cover types especially given that the product was not able to provide accurate
mapping at the regional level for some land cover types. In addition, there are no
studies that assess the accuracy of MODIS land cover across Iraq. The error in
land cover classification might have some impact on the LSP characterisation of
individual land cover types presented in this study. Moreover, the 250 m spatial
resolution of MODIS land surface reflectance may also prevent capture of a pure
vegetation type’s phenology information in some areas since the size of
agricultural land parcels in Iraq is relatively small. The middle and southern parts
of the country are mainly flat, irrigated areas which are more managed in terms
of planting and harvesting, which may reduce the effect of elevation on

vegetation phenological variation.

3.5 Conclusion

For the first time LSP parameters of terrestrial vegetation were mapped across
Iraq at a spatial resolution of 250 m. The aim was to identify and map the
spatiotemporal variation in LSP parameters such as SOS, LOS and EOS across the
country between 2001 and 2012, and to explore their relation with elevation. The
median vegetation phenology (SOS, EOS and LOS) was mapped for different
vegetation types during 2001-2012.

This study quantified the spatial variation in LSP across the whole of Iraq for all
vegetation types, thus, providing an important example of mapping vegetation
phenology in a semi-arid environment, for which previous research has been

relatively lacking. Linear regression analysis revealed that elevation was positively
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correlated with all LSP parameters particularly EOS (R*=0.685, R*=0.638 and
R*=0.588, p<0.05 in shrubland, cropland and grassland, respectively). In contrast,
in most case studies in Europe the correlation coefficient between EOS and
elevation was negative due to the effect of low temperature at high elevations as
a driving factor in bringing the season to an early end. In Iraq, raising the
elevation by 500 m leads to a delay in EOS by around 22 or more days in all
vegetation types because conversely high temperature is the limiting factor
bringing the season to an end. The results of this investigation also indicate that
the relative lowland in the north of the country (mostly croplands and shrublands)
exhibited the greatest variability in terms of SOS during the last decade with a
STD of around 80 to 120 days, due mainly to the practice of crop rotation and the
traditional biennial cropping system. However, importantly, the variation in EOS
was very small, indicating an extremely consistent EOS across Iraq, implicating
the effect of high temperature, overwhelming other factors. So, while elevation
delays the EOS by postponing the approach of high, limiting temperatures, this

effect is applied in a highly consistent manner across years.

The research has several practical applications. Firstly, knowledge of the spatial
distribution of the timing of vegetation phenology events, in particular in the
agricultural regions of Iraq, can be useful for agricultural management practices.
For example, the timing of fertiliser application can be targeted for a few weeks
after the start of the season. Secondly, the variation in vegetation phenology
information from the current study can be used as a surrogate for identifying
areas of changing land cover or agricultural practices during the last decade. As
different land cover types have distinct phenological characteristics, changes in
land cover result in a large amount of variability (large standard deviation) in the

mapped phenological variables during the period.

It is recommended that future research should focus on the use of vegetation
phenology to classify land cover directly, and exploring the relations between

inter-annual phenological changes and climate changes in Iraqg.
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Chapter 4. Decadal vegetation land cover
monitoring in Iraq based on satellite derived

phenological parameters

4.1 Introduction

Monitoring crop area and crop condition, and the resulting yield, provides crucial
information for ensuring food security (FAO 2012; Tilman 2001). Rapid
population growth has resulted in increased global and regional demand for food
production. At the same time, the effects of climate change, pests, and disease
have added further pressures on the food production system to meet this rising
demand. Although increases in food production have been achieved by increasing
the area of land under agriculture over the last few decades, this has resulted in
negative impacts on the environment and ecosystems. For example, Tilman et al.
2011 found an increase in the demand for crops commensurate to increases in
the real income per capita since 1960 and this relationship forecasts a 100-110%
increase in global crop demand from 2005 to 2050. The research also indicated
that if current trends of greater agricultural intensification and extensification
continue, ~1 billion ha of land might be cleared globally by 2050, with CO,-C
equivalent greenhouse gas emissions reaching ~3Gt y' and N use ~250 Mt y.
Many studies also highlighted the danger of land use/land cover (LULC) change
driven by cropland expansion at the expense of other land cover types (such as
loss of biodiversity and modification to the biogeochemical cycle), (Sitch et al.
2005; Brink and Eva 2009; Pongratz et al. 2009; Akinyemi 201 3; Matinfar et al.
2013). Therefore, accurate information on LULC and its change over time is an
essential requirement for national and international agencies for policy
formulation. This information is even more important in areas affected by

climate, environmental or socio-political changes.

2QADER, S. H., DASH, J. & ATKINSON, P. M. (2016). Classification of vegetation type in Iraq
using satellite-based phenological parameters. IEEE Journal of Selected Topics in Applied
Earth Observation and Remote Sensing, 9(1), 414-424.
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Primary information of importance in various application areas such as food
insecurity, climate change impacts and agricultural management can be obtained
directly/indirectly from land cover maps (Running et al. 1994; Wardlow and
Egbert 2008; Ran et al. 2012; Potgieter et al. 2013). The environmental modelling
community could benefit from accurate maps of the spatial distribution of
croplands and natural vegetation to better parameterize biogeochemical (Burke et
al. 199171; Low et al. 2013), crop yield and water demand models Kastens et al.
2005). Furthermore, updated annual land cover maps can be utilized by policy
makers and scientists to improve regional scale agricultural management

practices under a variety of environmental problems.

This chapter focuses on the use of time-series remotely sensed information for
the classification of cropland area in arid and semi-arid regions, using Iraq as an
example. In Iraq, there is no reliable system for predicting cropland distribution
and area, and forecasting yield, and the official Iraqi government statistics may be
unreliable (USDA FAS 2008). Therefore, farmers and policy makers alike require
accurate classified land cover maps, particularly for croplands. In future,
quantifying cropland area could be essential to forecasting regional crop yield.
Iraq has been subjected to major natural and anthropogenic disturbances such as
drought and war during the last two decades. These factors together with an
unsustainable agricultural policy have led to exploitation of Iraq’s agricultural
lands with frequent changes in crop area and cropping types. For instance, the
impact of three decades of nearly continuous war and instability on the central
cultivated area was assessed using Landsat data and the results revealed a 20%
reduction in area during the Post-Gulf War period compared to the sanction
period (Gibson et al. 2012). Other estimates revealed an annual degradation of
around 40000 ha in arable land due to salinization, desertification, improper
management and implementation of traditional irrigation systems (National
development plan 2010). However, currently there is no reliable map of cropland
area across the country and it has been demonstrated that the official Iraqi
government statistics are likely to be unreliable (USDA FAS 2008). Therefore, a
rapid agriculture monitoring system is required to provide accurate and up-to-

date information to national policy makers.

Over the past decade, research on land cover classification has included the use
of vegetation phenological information to differentiate between land cover types.
In particular, land surface phenology (LSP) as observed by satellite sensors

provides the potential opportunity to map vegetated land cover at regional-to-
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global scales by identifying their distinct phenological characteristics (Lupo et al.
2007; Newstrom et al. 1994; Gu et al. 2010; Clerici et al. 2012). For example, to
exploit information related to the phenological variability of different land cover
types, the global MODIS land cover map employed around 135 features including
annual metrics (minimum, maximum and mean values) of the enhanced
vegetation index (EVI), land surface temperature (LST) and nadir BRDF-adjusted
reflectance (NBAR) as inputs to classify global land cover (Freidl et al. 2010). It is
also claimed that phenology-based classifications, which are based on analysis of
time-series data, can produce more accurate classifications compared to
traditional methods. First, at different phenological stages, time-series data can
provide more discriminatory information, compared to single date image (Key et
al. 2001; Singh and Glenn 2009). Second, multi-temporal data may increase the
quality of data as the Sun angle changes with the seasons, which affects surface
reflectance Song and Woodcock 2003). Lastly, time-series data have the potential
to provide a larger number of predictor variables which can be exploited by
machine learning approaches with the potential to provide more accurate and
more robust classification (Pal and Mather 2005; Ham et al. 2005). For instance, a
phenology-based approach to identify crop types, using phenological parameters
from MODIS-NDVI, was compared to the traditional maximum-likelihood
classification, revealing the advantages of the former approach (Zhong et al.
2011). Furthermore, the time-series MODIS-NDVI data were employed to estimate
key phenological parameters to discriminate crop types and their areas over
northern China (Zhang et al. 2008). A large coefficient of determination was
found between areas estimated by MODIS and statistics at the county level.
Besides the difficulties in discriminating cultivated and non-cultivated areas in the
arid and semi-arid regions of northern Asia due to their similar seasonal changes,
Enkhzaya and Tateishi (2011) claimed that several phenological parameters
estimated from MODIS-NDVI could be used to differentiate cultivated area in

these regions efficiently.

The complexity of land covers often means that LULC classification remains a
challenging task. Numerous classification algorithms have been applied to solve
complex classification problems for LULC monitoring (Wilkinson 2005; Lu and
Weng 2007). These techniques range from unsupervised algorithms (e.g.,
Vogelmann et al. 1998) to supervised algorithms such as maximum likelihood
(e.g., Dean and Smith 2003) and machine learning, non-parametric algorithms.
Unlike parametric algorithms, non-parametric algorithms do not require the data

to have a specific statistical distribution. In addition, the advantages of machine
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learning classification algorithms over traditional classification algorithms have
been demonstrated in many studies, particularly when the ground cover is
complex and different statistical distributions exist (Paola and Schowengerdt
1995; Mas and Flores 2008; Mountrakis et al. 2011; Batistella et al. 2012; Wang
et al. 2014). Furthermore, the incorporation of machine learning methods in
remote sensing-based classification has increased for various reasons including:
their ability to learn complex patterns, mostly non-linear; their ability to handle
incomplete or noisy data due to their high generalisation capacity; and their
independence with respect to the data statistical distribution, which makes it easy
to deal with data from various sources (Mas and Flores 2008; Rogan et al. 2008;
Mountrakis et al. 2011; Shao and Lunetta 2012).

The support vector machine (SVM) classifier, which has been utilized in many
studies for the classification of remotely sensed data (Rodriguez-Galiano and M.
Chica-Rivas 2012; Jia et al. 2012; Duro et al. 2012), was employed in this study.
Initially, the SVM was developed by Cortes and Vapnik (Cortes and Vapnik 1995),
and a detailed description of the SVM method is given by Burges (1998).
Comparative studies have been conducted previously to examine the relative
performance of different classification algorithms including the SVM. For
instance, thematic mapping accuracies were compared using four classification
algorithms: decision trees, (three-layer backpropagation) neural networks,
maximume-likelihood and SVM classifiers (Huang et al. 2002). In general, the
accuracy of the SVM was greater than the other three classifiers. Recently Shao
and Lunetta (2012) examined the ability of the SVM classifier in terms of training
sample size, landscape homogeneity (purity) and sample variability using MODIS
time-series data. In this research, the SVM was compared to nonparametric
classification algorithms: the multi-layer perceptron neural network and

classification and regression trees (CART).

There have been limited studies of phenology-based classification in arid and
semi-arid environments in the subtropical regions. Vegetation phenology in these
regions is driven mainly by the availability of rainfall, whereas in northern high
latitudes vegetation phenology is driven mainly by temperature. Due to their
similar spectral and phenological characteristics, accurate discrimination between
croplands and natural vegetation is challenging in these environments. In
addition, regular changes in agricultural area, particularly croplands, increase the
complexity of the task. Therefore, the current research aimed to develop and

apply a phenology-based classification approach for the assessment of dominant
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vegetation land cover types (VLC) in Iraq, particularly croplands from 2002 to
2012.

4.2 Methods

4.2.1 Study area

Iraq has a total surface area of 438,320 km? of which around 77.7% is not viable
for agriculture in its current condition (UNEP 2007) ((Figure 4.1). Of the remaining
22%, around half is used for marginal agriculture and seasonal grazing. Recent
political instability, soil degradation, and the practice of leaving land fallow has
led to further reductions in the area of land suitable for agriculture (FAO 2012).
Climatologically, Iraq is described as having a subtropical continental climate with
an extreme, hot summer with no rainfall, and a short, cool winter (FAO 2011).
Precipitation is highly seasonal and more than 90% occurs between November and
April. The north and northeast parts have the largest range of rainfall (1200 mm)
with less than 100 mm over the majority of the south, and an average of about
2016 mm over the entire region (FAO 2008). Altitudinal variation drives the

rainfall considerably from north to south.

Generally, Irag can be divided into two agro-ecological-zones in terms of crop
area; the north is mostly rain-fed and the central and southern parts are mainly
irrigated (FAO 2003). The area under cultivated crops, including cereals,
vegetables and pulses, is estimated to be around 3.5 to 4 million ha, of which
wheat and barley account for 70% to 85% of the cropland in any given year
(Schnepf 2004; Gibson et al. 2012). Due to a recent proliferation of plant disease
and pests, mono-cropping is practiced more commonly over the country. In terms
of the crop calendar, winter wheat and barley are planted in autumn (mainly
October-November) and harvested in the late spring (April-June) in accordance
with the rainfall pattern, whereas irrigated summer crops such as sorghum, corn,
millet and rice are planted in April-May and harvested in September-October,
depending on the crop type (Schnepf 2004; FAO 2011).
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Figure 4-1 Map of the study area. The country is composed of 18 governorates.

4.2.2 Data pre-processing

A time-series of 8-day composites of the MODIS land surface reflectance level-3
data product, with a spatial resolution of 250 m (MOD09Q1 V5) from 2002 to

2013, was used to analyse seasonal phenological features. The data were

downloaded from NASA’s Land Processes Distributed Active Archive Centre (LP
DAAC) (NASA LP DAAC 2013). The information in the QA layer in the MOD09Q]1

product was used to remove contaminated pixels due to sensor effects such as

different orbits, adjacency, band quality, and MODLAND QA, and non-sensor

effects such as cloud state and atmospheric noise. Then, for each time step

(compositing period) the NDVI was calculated from the near infrared (NIR) and red

surface reflectance. Although, MODIS has a NDVI product, the VLC classification

used NDVI calculated from the MODIS land surface reflectance as it has a finer

temporal resolution (8-day).
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Global MODIS land cover maps (MCD12Q1) at a spatial resolution of 500 m from
2002 to 2012 were acquired from NASA’s LP DAAC (NASA LP DAAC 2013) for
comparison with the annual VLC classification. Currently, the global MODIS land
cover map is the only annual-based land cover map for the country with a
hierarchical thematic class legend consisting of 17 classes, of which 11 belong to
natural vegetation, three are developed classes and the rest are non-vegetation
classes. After extracting the country’s land cover types, it was apparent that
cropland, shrubland and grassland are the dominant land cover types over the

country.

Elevation was considered as an input to the VLC classification. The elevation data
for Iraq were extracted from the Shuttle Radar Topography Mission (SRTM) (Jarvis
et al. 2008), and to be compatible, the nearest neighbour method was used to
resample the elevation data to the spatial resolution of MODIS land surface
reflectance (250 m). Historical agricultural activities, including a yearly
agricultural statistical record, have been managed through agricultural directors
at the governorate level (Abi-Ghanem 2009). Therefore, official government
statistics on land use, area and other agricultural activities are aggregated to the
governorate level [58]. For the purpose of comparison, the current study
employed the area of wheat and barley, as they are the major crops for the first
season over the country, from 2002 to 2012 at the governorate level (COSIT
2011).

4.2.3 Estimation of Phenological Parameters and Elevation

The methodology for estimating LSP parameters can be divided into four main
steps: (i) moving average window to remove drop outs, (ii) linear interpolation for
gap filling, (iii) data smoothing and (iv) LSP parameter estimation. For the purpose
of data smoothing, the current study used Fourier-based smoothing due to its
minimal requirement for user interaction and because it has been used widely in
different regional-to-global studies (Cihlar et al. 1997; Atkinson et al. 2012). The
inflection point method was also employed for LSP parameter estimation, due to
its easy implementation and the ability to discriminate multiple growing seasons
for different land cover types such as crops (Reed et al. 1994). In this process, the

start of season (SOS), end of season (EOS) and length of season (LOS) were
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estimated per pixel, on an annual basis (the detailed methodology was given in
Qader et al. 2015).

Based on these basic parameters, several secondary parameters were estimated
from the vegetation phenological pattern to provide additional information for
discriminating the vegetation types over the country. In this regard, parameters
such as maximum NDVI (max-NDVI), time maximum NDVI (Tmax-NDVI), 75%
maximum NDVI (75% max-NDVI), time 75% pre-maximum NDVI (TPRmax-NDVI),
time 75% post-maximum NDVI (TPOmax-NDVI), cumulative NDVI, average NDVI
(cumulative NDVI/TD3), time difference between max-NDVI, time difference
between TPOmax-NDVI and SOS (TD1 and TD2), time difference between

TPOmax-NDVI and TPRmax-NDVI (TD3) and time difference between EOS and SOS

(LOS) were also estimated from the NDVI time-series profile for each pixel, per

season (only season one) ((Figure 4.2).
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Figure 4-2 Schematic representation of the various phenological parameters
estimated in this research. The acronyms are: max-NDVI (maximum NDVI), 75%
max-NDVI (75% of maximum NDVI), Tmax-NDVI (time of maximum NNDI),
TPRmax-NDVI (time of 75% premaximum NDVI), TPOmax-NDVI (time of 75%
postmaximum NDVI), SOS (start of the season), EOS (end of the season), LOS
(length of the season), TD1 (time difference between Tmax- NDVI and SOS), TD2
(time difference between TPOmax-NDVI and SOS), and TD3 (time difference
between TPOmax-NDVI and TPRmax-NDVI).

84

80



The parameters can be categorised as belonging to either the NDVI temporal
profile or the timing of the phenological events. Maximum NDVI, which provides
an index of the greenness of the vegetation at the time of optimum greenness,
can be used as a differentiating variable among vegetation types, as mostly crops
have the largest value, followed by grasses and shrubs, respectively. The 75%
max-NDVI is located around peak growth, and can be used as a means of
classifying vegetation types as crop phenology has a steep slope when
approaching the maximum compared to natural vegetation. Average NDVI,
indicates the overall greenness while cumulative NDVI indicates the total
greenness: both are employed because they are larger in crops compared to
grasses and shrubs. Relative parameters such as TD1, TD2, TD3 and LOS were
also incorporated. These parameters could be beneficial as different vegetation
type’s exhibit differences in completing their growing seasons. Apart from the
vegetation phenological parameters, elevation was incorporated as an input
variable because the region has high altitudinal variation from north to south,
which is likely to be a strong influence on the country’s land cover distribution
(e.g., as a surrogate for the direct influences of temperature and precipitation)
(Qader et al. 2015).

4.2.4 Ground reference data collection

Two independent reference datasets were obtained. The first dataset was derived
using the fine spatial resolution image layer in Google Earth, including on-screen
identification of broad vegetation phenological stages of various vegetation types.
To obtain this dataset, a grid with spacing equivalent to a pixel of MOD9AQ1 was
overlaid and grid locations with a nearly 100% coverage for the dominant classes
(i.e. cropland, shrubland, grassland) were selected as training sites. In total,
around 500 samples per year (2003 and 2006) were acquired randomly, in which
250 samples were cropland, 150 samples were shrubland and 100 samples were

grassland.

The second dataset was obtained via fieldwork conducted in spring 2013, mainly
in the Kurdistan region (Sulaimani, Erbil and Duhok), and excluding the remainder
of Irag due to security restrictions. In total, 104 samples were obtained during
the fieldwork, of which 59 samples were cropland and 45 samples were natural
vegetation (Figure 4.3a). The samples were taken in homogeneous areas of
vegetation classes and these patches were larger than the spatial resolution of

the dataset (250 m). Information on the area and height of vegetation types,
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along with a field photo per sample, was obtained at each location (Figure 4.3b).
In addition, coordinates were also recorded for each sample with a global
positioning system (GPS) handheld receiver unit (e-Trex German International Inc)

with greater than 12 m accuracy.
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Figure 4-3 Distribution of fiel[dwork samples over the northern Iraq region, of
which 59 sample sites were cropland and 45 sample sites were natural

vegetation. (b) Example photographs of crops and natural vegetation in April
2013.

4.2.5 Classification

The SVM classifier has the ability to find the optimal non-linear separating
boundary (hyperplane) between classes. The samples located on or close to the
hyperplane are known as support vectors where the separability is very low. It
may be apparent that there is no ideal solution if the data cannot be separated
without error. Therefore, a penalty value C for misclassification errors is
introduced (Huang et al. 2002). The adjustment between the complexity of SVMs
and the number of separable examples is controlled by C. If the linear approach
is not sufficient, non-linear transformation (via kernels) of the feature space into a
higher dimensional space (called a Hilbert space) is undertaken, where the data

are linearly separable (Muller et al. 2001).
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This research employed the radial basis function (RBF) type of SVM where several
parameters need to be optimized. The optimization of these parameters has to be
sufficient to obtain generalizable models; therefore, care needs to be exercised to
not over-fit or under-fit the data. For constructing the SVM model, the cost
parameter (C) was explored between 0.1 and 100, at 0.1 intervals, and the

gamma parameter between 0.05 and 1, at 0.05 intervals.

For the fine spatial resolution data from Google Earth (500 samples per year;
2003 and 2006), around 375 samples were assigned randomly for training the
classification model and the rest were used for validation (see section 2.6). Then,
a trained SVM classifier in 2003 was applied to predict the dominant VLC types in
2002, 2003 and 2004, and the trained SVM classifier in 2006 was applied to
predict for the remaining years. The 2013 predicted dominant VLC types are not
shown as the corresponding ground reference statistical data were not available

during this research.

4.2.6 Accuracy assessment

Accuracy assessment of the VLC classification maps was conducted based on
independent datasets obtained from (i) fine spatial resolution imagery from
Google Earth and (ii) fieldwork data. A confusion matrix was constructed for both
datasets to assess the overall accuracy of the predicted VLC classes and the
Kappa coefficient per class. For the purpose of accuracy assessment using the
fieldwork data, all natural vegetation classes were combined into one class, as the
reference samples separated only cropland and natural vegetation, and the
assessment was conducted for the northern region of Irag (Kurdistan region). In
addition, to further evaluate the accuracy, the cropland area predicted from the
VLC classification at governorate level for each year was compared with estimates
obtained from (i) official statistics on cropland area (COSIT 2011) and (ii) global
MODIS land cover types. In this regard, linear regression was applied to show the
agreement between the crop area estimated from the VLC classification and the
official statistics and the global MODIS land cover types at the governorate level
(18 governorates) from 2002 to 2012. A flowchart illustrating the research

methodology is given in Figure 4.4.
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Figure 4-4 Schematic diagram representing the processing steps undertaken in
this research.

4.3 Results

4.3.1 Vegetation phenological patterns

Figure 4.5 (a, b and c) gives typical phenological patterns, as depicted by NDVI
time-series, for three dominant vegetation land cover types (cropland, grassland
and shrubland) in Irag. In general, the NDVI values for the cropland vegetation
type are higher compared to grassland and shrubland. For cropland, there is a
sharp increase in NDVI value in January (SOS), a peak at the beginning of April
followed by a decrease in NDVI, which reaches a minimum by the beginning of
July (EOS) (Figure 4.5a). Grassland is generally found in the rain-fed area and its
phenology is controlled by the availability of rainfall. The grassland vegetation
type, shown in Figure 4.5b, also has a relatively well defined phenological
pattern, particularly in the area where it mixed with sparsely distributed oak
trees. Generally, grassland has a late start of the growing season compared to

other vegetation types, a less sharp increase in NDVI values from February (SOS),
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a peak during May, and a subsequent decrease which reaches a minimum by the
end of August (EOS). Shrubland vegetation exhibits an early SOS around

November, a peak during the end of February and a decrease which reaches a
minimum by the end of May.

It is apparent from Figure 4.5 that there are marked differences in these selected
parameters between the vegetation types. Figure 4.5 (d) illustrates the differences
amongst the vegetation types in terms of the 75% of maximum NDVI, where it is
apparent that cropland has the largest range compared to grassland and
shrubland. In general, cropland has the largest value of maximum NDVI which
can be used as one of the parameters to separate vegetation types over the
region (Figure 4.5e). In addition, the average NDVI parameter across the growing
season also provides a good separability between the three classes of interest
with the largest value belongs to cropland then grassland and shrubland (Figure

4.5f). Furthermore, these differences in parameters for three land cover types
were statistically significance (p<0.05).
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Figure 4-5 Examples of representative MODIS NDVI time-series for the dominant
VLC types that have been classified for the study area: (a) cropland; (b) grassland;
and (c) shrubland. Ten pure pixels were selected for each land cover type. The
bold line represents the Median and the dotted envelopes represent the
interquartile range (first and third quartiles). Differences among cropland,
grassland, and shrubland classes for selected three parameters used in
classification: (d) 75% of maximum NDVI; () maximum NDVI; and (f) average

NDVI. Each box embodies the first and third quartile. The bold horizontal line
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represents the median, whiskers are situated at the maximum and minimum of

each group, and white points denote outliers.

4.3.2 Spatial distribution of VLC type in Iraq during 2002-
2012

The annual maps of the dominant VLC classes for Irag from 2002 to 2012 are
presented in Figure 4.6. Three distinct types of vegetated area were predicted
based on phenological information as well as another class which represents
mainly non-vegetated area (or lacked a clear phenological pattern). It is clear from
Figure 4.6 that the dominant VLC classes are cropland, shrubland and grassland.
Grassland occupies mainly the higher altitudes, particularly in the north and the
north-east border. Regular precipitation in the areas occupied by grasslands
made this class appear more consistently, inter-annually compared to other VLC
classes during the period. Shrubland can be seen commonly amongst the
cropland (at low elevation) and may exist also in some areas of unplanted
cropland where the traditional biennial cropping system is practiced. Rain-fed
croplands are limited in distribution by climate variability and slope. However,
accessibility to water from the main rivers (Tigris and Euphrates) together with
other conditions such as salinization act as the main drivers of the extension of
croplands in the middle and southern parts of Iraq. However, the existence of
many phenological similarities makes it difficult to divide croplands into rain-fed

and irrigated areas at this spatial resolution, and this is not attempted here.
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Figure 4-6 Annual maps of the dominant VLC classes for Irag from 2002 to 2012.
(OPD=out of phenological detection).

Winter croplands in Iraq are estimated to cover around 2.5 to 3.5 Mha annually in
normal years (UNEP 2007), and the current VLC classification also predicted
within that range (Figure 4.7). An average year constitutes 2.8 Mha of cropland,
7.16 Mha of shrubland and 2.01 Mha of grassland in Iraqg. A significant decrease

in all vegetation types (except shrubland) was observed in 2008 and this is
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associated with a severe drought affecting most part of the country (USDA FAS
2008; Abi-Ghanem et al. 2009). The overall spatial pattern in the VLC classes
accords with expectations, showing that dense grassland occurs in the high
altitude, high relief northern part of Iraq, whereas areas with generally lower relief

and the alluvial plains alongside rivers are occupied mostly by cropland and

shrubland.
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Figure 4-7 Dominant VLC types predicted by SVM classification shown against
official statistics on harvested cropland of Iraq from 2002 to 2012.

4.3.3 Accuracy assessment using fine spatial resolution

The overall accuracies estimated using Google Earth fine spatial resolution
imagery for 2003 and 2006 were 93.55% and 91.06%, with Kappa coefficients of
0.901 and 0.864, respectively (Table 4.1). Producer’s and user’s accuracies of the
individual categories were consistently high with relatively higher Kappa
coefficients per class (Table 4.1). The cropland class had larger errors of omission
(0.096) than the shrubland and grassland classes, which suggests some
difficulties in differentiating this class from natural vegetation. Most misclassified
croplands were mixed pixels located in the borders of agricultural areas in the
lowlands. These areas are more challenging to classify accurately due to similar
phenological response or an integrated spectral response from multiple VLC
types. Consequently, this could be the reason for the relatively high commission

error (0.120) of grassland compared to cropland and shrubland.
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Table 4.1 Confusion matrix obtained using fine spatial resolution Google Earth

imagery for cropland, grassland and shrubland in 2003 and 2006.

Confusion Matrix 2003

Overall Accuracy 93.55%
Kappa Coefficient 0.9015
Producer User
Class Omission Commission Kappa
Accuracy Accuracy error error Coefficient
(%) (%)
Croplands 90.38 95.52 0.096 0.040 0.84
Grasslands 96.67 87.88 0.033 0.120 0.95
Shrubland 95.24 95.24 0.047 0.047 0.93
Confusion Matrix 2006
Overall Accuracy 91.06 %
Kappa Coefficient 0.864
Producer User
Class Omission Commission Kappa
Accuracy Accuracy error error Coefficient
(%) (%)
Croplands 86 93.48 0.140 0.065 0.78
Grasslands 90.63 93.55 0.093 0.064 0.87
Shrubland 97.56 86.96 0.024 0.130 0.96

4.3.4 Accuracy assessment using field data

Accuracy assessment using field reference data for cropland and natural
vegetation in the northern part of the country is shown in Table 4.2 for 2013. The
overall accuracy for the northern region map for 2013 was 88.46%, with a Kappa
coefficient of 0.80 (Table 4.2). User’s and Producer’s accuracies were generally
greater than 85%, with a Kappa coefficient of 0.86 for cropland and 0.70 for
natural vegetation. The source of high omission error (0.200) in the natural
vegetation class might arise from confusion when discriminating this VLC type
from cropland due to their relatively similar phenological patterns. The classified

map and distribution of the fieldwork data are shown in Figure 4.8.
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Table 4.2 Confusion matrix obtained using fieldwork data in 2013 for the

northern region of Iraq (Kurdistan).

Confusion Matrix 2013

Overall Accuracy 88.46 %
Kappa Coefficient 0.80
P
roducer User
Omission Commission Kappa
Class Accuracy Accuracy error error Coefficient
0,
) (%)

Croplands 94.92 86.15 0.050 0.138 0.86

Natural vegetation 80 92.31 0.200 0.076 0.70
N
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Figure 4-8 (a) Classified land covers types in 2013 for the northern region of Iraq
(Kurdistan), (b) the distribution of fieldwork points over the northern region of

Irag (Kurdistan) in 201 3.
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4.3.5 Comparison between predicted VLC cropland, the
global MODIS land cover cropland, and official government

statistical data.

The VLC cropland and the global MODIS cropland predictions were compared to
the governorate crop reference data to evaluate their agreement over last 12
years at the governorate level (18 governorates) (Fig. 8). Overall, the predicted
VLC cropland area at the governorate level produced a larger coefficient of
determination with government statistics than the MODIS cropland map. At
governorate level, the average coefficient of determination between the VLC
cropland area and the government statistics over the last 12 years was 0.7
(p<0.05), whereas it was 0.35 (p<0.05) for the MODIS cropland. The largest
positive coefficient of determination for the VLC cropland area prediction was for
2010 (R?=0.825, p<0.05). In contrast, the same coefficient of determination in
2010 for the MODIS cropland area was the smallest (R*=0.074, p<0.05). Figure
4.9 also shows that the coefficient of determination values for the VLC prediction
were more stable compared to the MODIS cropland area, which fluctuated during
the period. The smaller coefficient of determination for the MODIS cropland area
is entirely expected as it is a global product. Indeed, it is this very fact that
motivated this study. Further, on a regional basis, with Iraq as an example, the
global MODIS land cover dataset often overestimates cropland area. In summary,
the coefficient of determination of the predicted VLC cropland area with official
data supports the methodology developed here based on LSP parameters and

SVM classification.
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Figure 4-9 Coefficient of determination between official statistics obtained at the
governorate level (18 governorates) and 1) the VLC cropland area and 2) the
MODIS cropland area predictions per year from 2002 to 2012.

4.4 Discussion

4.4.1 Interannual stability of phenological parameters

Traditionally, ground data collected for a given year are used to support
classification from remote sensing data for the same year. However, it may be
challenging to collect yearly training data for a study area, especially when
working on a historical dataset covering last 15 years. Therefore, it could be
useful if training samples from a given year could be applied to estimate the land
cover types of other years within a restricted time period (e.g., 4 to 5 years). It
can also be argued that, since plant developments are broadly correlated with
environmental conditions, years with similar climatic condition may have similar
vegetation phenological response. On this basis, the current research trained the
classifier for a given year using several phenological parameters and applied this
to other periods. These phenological parameters for a given class may vary inter-

annually based on (both natural and anthropogenic) environmental conditions.
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However, within-class variation in these phenological variables is likely to be

much smaller than the overall variation between classes.

The relatively high accuracy of the land cover maps produced for most years is an
indicator of limited inter-annual variation in the phenological parameters for the
major vegetation types within the study period. However, lower than normal
rainfall in 2008 and 2009 led to a deviation in the phenological parameters
compared to the training data and resulted in a lower accuracy. As very few
acquisition dates were available for the fine spatial resolution Google Earth
imagery for those drought years, we were unable to train the classifier to take
into account these conditions. Beside of the phenological parameters, the
elevation data was incorporated in the current research. This could be explained
by the fact that elevation can reduce the miss-classification, particularly in
northern part between cropland and grassland, since the grassland occupies the

highest altitude area.

4.4.2 The VLC cropland mapping outperformed the MODIS

land cover mapping

The accuracy assessment pointed to the need for a more accurate
characterisation of croplands in Irag and demonstrated clearly the need to map
Irag’s dominant land covers while global land cover classifications for the country
already exist. Compared to the global MODIS land cover classification, the current
VLC classification led to greater potential separability and greater classification
accuracies for the dominant VLC types, particularly croplands. One interesting
finding is that the current VLC cropland classification produced a coefficient of
determination with the official statistical crop data at the governorate level that
was double that of the global MODIS land cover classification. There are several
possible explanations for this result. The reason may be mainly because MODIS
land surface reflectance (MODO09Q]1 V5) has a finer spatial resolution (250 m) than
the MODIS land cover dataset (500 m). This may help to capture more detailed
phenological characteristics of the VLC types, which, in turn, helps to classify the
regional dominant VLC types more accurately than the MODIS dataset. The coarse
spatial resolution of the global MODIS land cover classification may make it
challenging to estimate Iraq’s land cover types, especially for croplands where the

average field size is small compared to a 500 m pixel. In addition, in relation to
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the spatial distribution of the training data used in the MODIS dataset, Irag might
be the only country that was actually excluded (Fried| et al. 2010). Most
importantly, the MODIS land cover dataset is a global product with an overall
accuracy of 75% (Friedl et al. 2010) with the expectation that the product may not
be able to provide very accurate agreement at the regional level for some land
cover types. The findings of the current research support those of Pflugmacher et
al. (2011) and Acharya and Punia (201 3) who reported some disagreements with
the global MODIS product for some specific land cover types at the local level

over India and Northern Eurasia.

4.4.3 Why use phenological parameters and two years of

training data?

Initially, we attempted to classify the VLC types using a classifier trained with only
a single reference dataset over the entire period, but the accuracies were low.
This result may be explained by the fact that the region has been subjected to
many disturbances during the last decade (due to both natural and anthropogenic
factors) which may affect the phenological response of a pixel. In addition, due to
its geographical location the region is affected by irregularities in precipitation
resulting in the frequent occurrence of drought (the most recent one in 2008)
(Griffin and Kunz 2009; Al-Timimi and Al-Jiboori 2013). The combination of these
factors makes it challenging to classify the last 11 years of land cover based on
one trained classifier for the entire period. Therefore, to produce VLC
classifications for the 11 years of interest, the SVM classifier was trained for two
years (2003 and 2006) and these models were then applied to classify the
dominant VLC types for the rest of the period. These two specific years were
selected for particular reasons that are worth reporting. The primary reason is
that the majority of the fine spatial resolution imagery in Google Earth across the
country was available for these two years, which assures that the selected
samples are assigned to the correct classes (note: in most years, the image
acquisition dates were not available). In terms of the climatic condition, each year
has a similar climatic condition with one of the two training years. This
implementation agrees with the ideas of other studies, in which the classification
models were trained in a certain year and these used to predict the LULC types of

a relevant period (Friedl et al. 2010; Hansen et al. 2014).

Due to its potential to provide high classification accuracy, phenological-based

classification has been employed in many recent studies (e.g., (Zhong et al. 2011;
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Zhong at al. 2012; Son et al. 2014; Jianhong et al. 2014; Yan et al. 2015).
Incorporation of multi-temporal and phenological-based data led to comparable
or increased accuracies relative to traditional approaches based on spectral
information alone (Knight et al. 2008; Singh et al. 2009). The phenological-based
VLC classification approach developed here for the assessment of the dominant
vegetation land cover types of Iraq, particularly cropland, is commensurate with,

and adds knowledge to, these studies.

The distribution of land cover types was consistent with expectations. In addition,
the annual predictions of cropland area matched well with the official ground
statistical data. Therefore, it can be said that the VLC classification methodology
developed here based on SVM classification of phenological parameters can be

generalizable to other regions with similar environments.

4.4.4 Change in the spatial distribution of VLC classes over

the period

As presented in Figure 4.6, the land cover class distribution differed considerably
across the country with areas dominated by cropland, grassland and shrubland.
The most stable land cover during the period was grassland. This class is
confined entirely to the high altitude region of the country which makes it less
easily influenced by human activities. This region has a high rainfall rate and a
more conducive temperature in summer than the remainder of the country, which
makes this land cover type more resilient to drought and other factors. In
addition, the sparse distribution of oak trees in grasslands provides some
stability in the face of unfavourable climatic conditions by controlling the local
micro climate. In contrast, the intervening valleys are mostly occupied either by
cropland or shrubland. Surprisingly, the distribution of cropland was found to be
spatially varied and decreased overall in area during the period. There are several
possible explanations for this result. Due to excessive salinity, around 2.5 million
ha of Iraq’s irrigated cropland had become degraded by 1973, and in every
subsequent year another 6,000 to 12,000 ha were lost to salinization (Schnepf
2004). Traditionally, a biennial fallow system was practiced over Iraqg to recharge
the depleted soil and reduce the effect of pests and diseases (Schnepf 2004; FAO
2011). This means that a winter crop of wheat and barley was planted only once

in every two years. In addition, a lack of inputs of fertilizers and pesticides with
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poor crop management policy limited cropland planting to every other year.
Furthermore, natural and anthropogenic factors have also accelerated the
magnitude of temporal variation in croplands. For example, due to political
instability and insecurity during the last decade, many farmers were unable to
grow crops. In addition, the region is regularly subjected to drought and its
consequences. Therefore, Irag might have a relatively consistent total annual
cropland area, but this might vary spatially which can be detected efficiently

through phenological-based classification.

Several important limitations need to be considered. The small agricultural field
size in Irag compared to the coarse spatial resolution of the data used in this
study may lead to mixed vegetation types in the area (e.g., where adjacent fields
are covered by different vegetation types). Thus, some areas may be challenging
to classify accurately because of a similar phenological response or an integrated
spectral response from multiple cover types. It is worth noting that regional
instability and insecurity limited our fieldwork extent to the north of Iraqg. Lastly,
the unreliability of official statistical data also limited the ability to assess the
accuracy of the classified maps in the current study, although as a function of

this, the accuracies obtained can be seen as conservative (USDA 2008).

4.5 Conclusion

Land cover mapping in arid and semi-arid regions is required for a wide range of
applications, including grand challenges such as agricultural intensification and
food insecurity. However, land cover maps in arid and semi-arid regions are
scarce, with a major obstacle to production being the lack of spectral separability
between classes when observed at a single point in time. A limited number of
studies have demonstrated the potential of vegetation phenology information for
land cover classification generally, but until now this has not been applied to arid
and semi-arid regions. This research demonstrated that vegetation phenology
estimated from MODIS NDVI time-series at 250 m spatial resolution can provide
consistent, high accuracy, regional-scale land cover mapping in arid and semi-arid
countries such as Irag. The application of Fourier-based smoothing provided
useful phenological information for each year studied. Despite significant
limitations on ground data availability due to political instability in the country,

the results presented here are convincing. The SVM classifier approach produced
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satisfactory classification accuracies (generally > 85%) among the dominant VLC
types of Irag. In terms of regional accuracy assessment and areal agreement with
ground crop area data, the VLC classification outperformed the global MODIS land
cover dataset. Correlation of VLC cropland area during the last decade with
ground statistical data revealed an average coefficient of determination of 0.7
(p<0.05), whereas the average agreement for the MODIS product cropland class
was 0.35 (p<0.05). This research also showed that the 2008 drought, the most
extreme event during the last decade in Iraq, led to a considerable decline in all
dominant VLC types. VLC instability, particularly for croplands, was evident, most
likely due to more than a decade of regional instability and natural disasters
across the country coupled with variable quality agricultural management
practices.
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Chapter 5: Forecasting wheat and barley crop
production in arid and semi-arid regions
using remotely sensed primary productivity

and crop phenology: a case study in lraq

5.1 Introduction

At present, 15% of Earth’s population (841 million people) is living in arid and
semi-arid regions, of which about 524 million live in semi-arid regions (Barakat,
2009). Rapid population growth (Barakat, 2009) together with rising living
standards in arid and semi-arid regions imply that more food will be required to
meet the demands of these populations. This is a major driver of land conversion
to agricultural and grazing land within these regions (Millennium Ecosystem
Assessment, 2005). Therefore, crop production forecasting is potentially a crucial
tool for tackling food insecurity in arid and semi-arid regions. However, this is
considered one of the most challenging tasks in crop research because of the

highly variable climate in arid and semi-arid regions.

In many part of the world, wheat and barley are major grain crops and their
production influences local food security in the majority of developing countries
(Macdonald and Hall 1980; FAO 2003a). Vast swathes of agricultural land across
the world are occupied by wheat and barley. For instance, at the global scale,
more than 219 Mil and 49 Mil ha (harvested area) were dedicated to growing
wheat and barley, respectively, of which over 715Mil and 143Mil tonnes of cereal
were produced in 2013 (FAOSTAT, 2013). Furthermore, wheat and barley play an
essential role in international trade, and it has been reported that food shortages
are commonly attributable to a lack of wheat and barley (Mellor, 1972). In both
developing and developed country contexts, timely and accurate estimation of
wheat and barley yield and production before harvesting are, therefore, vital at
different governance levels including regional, national and international levels.

Such forecasts could increase regional food security, through improved policy

3QADER, S. H., QADER, S. H., DASH, J. & ATKINSON, P. M. (submitted). Forecasting wheat
and barley crop production in arid and semi-arid regions using remotely sensed
primary productivity and crop phenology: a case study in Iraq. ISPRS Journal of
Photogrammetry and Remote Sensing.
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setting and local decision-making, as well as playing a crucial role in informing

international markets (Justic and Becker-Reshef, 2007).

In part due to the likelihood of unfavourable climatic events across many arid
and semi-arid regions around the world, local communities are often food
insecure and at risk of famine. Weather extremes such as droughts, floods and
sudden climatic changes can have a direct impact on food production and can
negatively affect the storage and distribution of food (Haile 2005; Wheeler and
von Braun 2013). For example, the drought in 2008-2009 caused sizeable
declines in crop yields, which cost $1-2 billion (USDA FAS, 2008a). In Turkey,
435,000 farmers were affected while in Iraq total wheat production was reduced
by 45% compared to the previous year (USDA FAS, 2008a). It was also found that
increasing aridity and more frequent and intense meteorological droughts are
projected for many arid to semi-arid regions (Seager et al. 2007). Thus, timely
crop monitoring and forecasting is crucial to evaluate and quantify the magnitude
of any shortfall in production and warn policy-makers and local decision-makers

about the possible consequences.

Another factor which makes many of the regions in the world food insecure, and
in particular regions in the Middle East such as Iraq, is political instability and its
consequences. War and conflict can damage the economy and incomes, disease,
forced immigration, refugee populations, a collapse of social trust, and severe
food insecurity (WFP, 2011). Conflict was the main cause of undernourishment in
more than half of the Middle East countries in the 1990s (FAO, 2003b). There are
many reasons for this, including economic crises, high food prices, regions of
political instability and climate change. The main drivers of more than 35% of
food emergencies from 1992 to 2003 were economic issues and conflict; in
contrast, this value was 15% in the period between 1986 and 1991 (FAO, 2003a).
Therefore, timely monitoring and forecasting of crop production is especially
required in regions where the potential for drought occurs in the context of

conflict.

Over the last decade crop production in Iraq has been negatively affected by both
natural and anthropogenic events. For instance, Iraq was involved in a war ‘Post-
Gulf’ mainly to oppose the previous regime. Due to political instability during the
war, many farmers either abandoned their land or were unable to grow their
crops effectively, and this affected overall crop production in the country. In
addition, due to its geographical location, Iraq is affected by irregularity in

precipitation resulting in the frequent occurrence of droughts. Both factors have
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made the region vulnerable to irregularities in food production. However, the
impacts of disaster such as drought and war could have been mitigated if
decision-makers were warned in advance. For example, the NDVI as a surrogate
of vegetation greenness is used in the Famine Early Warning System Network
(FEWSNET) as a part of an integrated early warning system for food security (Ross
et al. 2009). Such early warning systems would be useful to provide early
monitoring data and forecasts of crop production and yield to local authorities to

avert regional food shortages.

A wide range of the techniques to estimate and forecast crop yield have been
employed during the past decades with different degrees of utility and accuracy.
Crop yield estimation in many countries still relies on traditional approaches
based on data collection on the ground and reporting (crop cutting experiments).
Such data are frequently time consuming, costly and prone to large errors
because of incomplete ground observations, leading to uncertain crop area
estimation and crop yield assessment (Reynolds et al. 2000). Delayed availability
of the data from such traditional approaches delays the ability to make early
interventions to avoid food shortages, resulting in regional food insecurity. Crop
yield can also be forecasted through either statistical or agronomic models based
on historical weather, crop management and crop production data. In some
countries, weather data have been employed to monitor and forecast crop
production (Andarzian et al. 2008; Liu and Kogan 2002; Paul et al. 2013; de Wit
and Boogaard 2001). Missing data, a lack of continuity in weather data and the
sparse spatial distribution of ground weather stations for a large diverse crop
area limit the utility of these approaches (Liu and Kogan 2002; Dadhwall and Ray
2000; de Wit and Boogaard 2001).

With the development of satellite sensors, there has been increased interest in
utilizing satellite remote sensing data for crop monitoring and crop production
forecasting due its ability to provide data synoptically, with greater spatial
coverage, potentially at the global scale. In addition, remote sensing can provide
timely (and potentially real-time) and objective data on crop growth at relatively
low cost. In this regard, the NDVI has a long history of use for monitoring crop
condition and estimating crop yield (Doraiswamy et al. 2004; Groten, 1993;
Kastens et al. 2005). Either remote sensing data can be used as an input to crop
simulation models or remotely sensed biophysical variables measured within-
season can be used as a surrogate of crop production for use in monitoring and

forecasting. One such approach involves biophysical crop simulation models,
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which are calibrated and driven through remotely sensed information on crop
characteristics within-season. Examples of crop simulation models includes World
Food Studies (WOFOST) (Vandiepen et al. 1989), Simulateur mulTldisciplinaire
pour les Cultures Standard (STICS) (Brisson et al. 1998) and Crop Systems
Simulation (CROPSYST) (Van Evert and Campbell, 1994). These models assimilate
several factors that affect crop growth and development such as temperature,
wind, water availability and type of management practice which lead them to be
capable of capturing soil-environment-plant interactions (Moriondo et al. 2007).
However, the high computational and data demands of these models makes them
generally difficult to use in some regions for which data are sparse. In addition,
their complexity, method of analysis and large number of tuning parameters have
led them to be impractical, particularly capturing field level information in an

heterogeneous landscape.

The most widely used approach to estimate crop yield at the regional scale is
based on simple regression between a satellite-derived vegetation index within-
season and actual crop yield (Wall et al. 2008). A linear regression model was
established by Harmmar et al (1996) to estimate wheat and corn yield at the
county level based on vegetation indices derived from Landsat multispectral
scanner system (MSS) data in Hungary. Similarly, a relatively large coefficient of
determination between wheat yield and NDVI integrated over the entire growing
season, and with late season NDVI, was observed at the regional and farm scales
in Montana for the years 1989-1997 (Labus et al. 2002). Ren et al. (2008) found
the largest coefficient of determination between county level winter wheat
production and the spatial accumulation of MODIS-NDVI, 40 days ahead of
harvest time, and the accuracy was within 10% of official statistics in Shandong
Province, China. NDVI, normalized difference water index (NDWI) and a two-band
variant of the enhanced vegetation index (EVI2) were employed to predict the US
crop yield, and showed that including crop phenology-related information
increased the regression model accuracy (Bolton and Friedl 2013). The study
indicated that the best dates to predict crop yield were 65-75 days and 80 days

after the MODIS derived green up for maize and soybean, respectively for the US.

Because statistical regression-based approaches model the empirical relation
between a satellite-derived vegetation index and historical yield data, the model is
typically localized and cannot be generalised to other areas readily (Moriondo et
al. 2007; Doraiswamy et al. 2003). In addition, if photosynthetic capacity at the

time of measurement is not the main driver of the eventual crop yield, forecasting
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may be inaccurate (Becker-Reshef et al. 2010). However, the low demand for data
and simplicity of implementation has led to regression being the most widely

used approach for estimating crop yield.

There have been limited attempts to monitor and forecast crops in arid and semi-
arid regions based on remote sensing data. Forecasts of crop production and
yield are needed by policy-makers, the academic community and crop insurance
companies. In particular, due to population increases, regional instability and
natural disasters, there is a growing need for micro-level forecasting of crop
production and yield over Irag. This forecasting should warn local authorities
about potential changes in crop production and yield, leading to appropriate
import and export decisions. Therefore, the current research aims to evaluate the
potential of MODIS-derived measures of greenness and productivity, and
information related to the phenology of crops to estimate crop production and

yield in the arid and semi-arid regions like Iraq.

5.2 Methods

5.2.1 Study area

Iraq is predominantly an agricultural country, and has long been recognised as
one of the oldest agricultural countries in the world (Figure 5.1a). For instance,
according to the Meyers (1997), the village called Jarmo, situated in the Iraqi
Kurdistan Region, is the oldest known agricultural and pastoral community in the
world, dated to the seventh millennium (BC), and agriculture was the primary
economic activity of the people of old Mesopotamia. For example, agriculture
played a crucial role in the country’s economic activity in the 1920s, but its
contribution to the gross domestic product (GDP) fell from 42% in 1981 to 18% in
1990 (Jaradat, 2002). Although the agricultural sector is no longer the most
significant contributor to the country’s economy, it is a vital component in the
country’s GDP (Schnepf 2004). The contribution of agriculture in GDP declined
considerably again during the last few decades due to some unfavourable natural
and anthropogenic impacts. For example, the contribution of agriculture in GDP
decreased from around 9% in 2002 to 4% in 2008 (FAO, 2009) mainly due to
drought. However, this has increased to nearly 12% in 2010 because of some

improvements in the sector (USAID, 2010).
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Of 3.5 to 4 million ha cultivated crops, 70% to 85% is dedicated to plant wheat
and barley in any given year (Schnepf 2004; Gibson et al. 2012). By international
standards, Irag has low crop yields. One third of the country’s cereals are
produced under rain-fed conditions and the remaining cereal production occurs
within irrigated areas between, and along, the Tigris and Euphrates rivers (FAO
2008). The climate varies dramatically through the year from very cold winters to
extremely hot and dry summers. The region has large spatial variability in
expected rainfall from less than 100 mm year-1 to 1000 mm year-1 (FAO 2008).
Estimating and forecasting crop production and yield is a key challenge as the
region is still vulnerable to natural factors that impact the yield and production
level of major crops. As a result, large inter-annual fluctuations in yield and
production can be seen. For example, the production of wheat in 2011 was
around 5.1 MT, whereas less than 2 MT and around 3 MT were recorded in 2008
and 2009, respectively (COSIT 2011). This fluctuation can be seen largely among
the governorates with respect to climate, soil, water availability and workforce

capability.
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Figure 5-1 Maps (a) study area and (b) an example of phenology-based
classification map with spatial resolution of 250 m for 2006 (Qader et al. 2016).
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5.2.2 Data and pre-processing

A time-series of 8-day composites of the MODIS land surface reflectance product
(MOD09Q1) at 250 m and MODO09A1 at 500 m spatial resolution from 2002 to
2012 were used to estimate NDVI, EVI, and the seasonal phenological parameters.
The data were downloaded from NASA’s Land Processes Distributed Active
Archive Centre (LP DAAC) (https://lIpdaac.usgs.gov/data_access). The NDVI has
been used widely for crop monitoring and the production of agricultural statistics
(Hatfield and Prueger, 2010; Becker-Reshef et al. 2010; Benedetti and Rossini,
1993). NDVI tends to saturate at large biomass, whereas EVI has increased
sensitivity in this region (Huete, 1997). In addition, by incorporating the
reflectance in the blue band of the electromagnetic spectrum, EVI reduces the
impact of the soil background and atmosphere (Rocha and Shaver, 2009; Jiang et
al. 2008; Huete et al. 1997). For crop yield forecasting, both indices have been
applied widely (Kouadio and Newlands, 2014; Kogan et al. 2012; Moriondo et al.
2007; Doraiswamy et al. 2005).

The information in the quality assurance (QA) layer in the MOD09Q]1 and
MODO9A1 products was used to remove contaminated pixels due to sensor
effects such as different orbits, adjacency, band quality, and MODLAND QA, and
non-sensor effects such as cloud state and atmospheric noise (atmospherically
corrected and clear cloud state). Then, for each time step (compositing period)
the NDVI and EVI were calculated from the surface reflectance data. A temporal
moving average window function was applied to correct errors in specific weeks,
a linear interpolation approach was applied for gap filling, and Fourier
transformation was used to smooth the data (Dash et al. 2010; Qader et al.
2015).

In addition to the vegetation indices, the MODIS Net Primary Productivity (NPP)
product was also employed as a predictor of crop production and yield. The term
primary productivity refers to the rate at which light energy is converted to plant
biomass. The overall converted energy is known as gross primary productivity
(GPP). The difference between GPP and energy lost during plant respiration is
called NPP. NPP plays a crucial role in studies of global vegetation changes,
particularly for global biomass mapping and crop yield estimation (Jiangiang et al.
2007). Satellite-derived NPP has been demonstrated to have a large coefficient of
determination with regional crop production. For example, less than 4% error was

recorded between forecasted yield and actual yield using NPP extracted from TM
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images in the Yaqui Valley, Mexico (Lobell et al. 2003). The NPP model was fitted
to the relation between winter wheat yield and a function of MODIS NPP, and the
absolute error of estimated yield was 232.7 kg.ha-1 with a relative error of 4.28%

(Jiangiang et al. 2007).

NPP (MOD17A3) is an annual product provided from 2002 to 2010 with a spatial
resolution of 1000 m (https://Ipdaac.usgs.gov/data_access). To retain the best
quality pixels, the information in the QA flag layer was also applied for this
product (only include pixels falling into the following categories, perennial salt or
inland fresh water body cover type, perennial snow or ice cover type, permanent
wetlands/inundated marshland, urban/built up and unclassified pixel)
(https://lpdaac.usgs.gov/data_access). The product is affected mainly by cloud
contamination. Valid annual QA values range from 0 to 100; the higher the

number the more the cloud contamination.

5.2.3 Crop statistics data

For winter wheat and barley, data on the total area planted, total area harvested,
production and yield from 2002-2012 were obtained from Statistics Iraq (COSIT
2011). In Iraq, agricultural activities are managed through agricultural directors at
the governorate level (Abi-Ghanem et al. 2009). Thus, official governorate
statistics on agricultural activities such as crop yield, production and area are
aggregated to the governorate level. Irag consists of 18 governorates (Figure
5.1a). The crop data were utilized to fit regression models between winter wheat
and barley production and yield and the predictor variables, including various
spectral indices derived from MODIS such as NDVI, EVI and NPP at the

governorate level.

5.2.4 Crop map

To allow utilization of MODIS Vis and NPP in crop production and yield
forecasting, it is necessary to identify the areas under cropping. The crop map for
the current research is based on previous work (Qader et al. 2016) in which a
phenology-based classification approach was developed to map annually the
dominant vegetation land cover types over Irag such as cropland, grassland and
shrubland (Figure 5.1b). The approach employed several phenological parameters

together with elevation data to discriminate the dominant vegetation land cover
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types using a support vector machine (SVM) classifier. The classification approach
was assessed using reference data taken from fine spatial resolution Google Earth
imagery and independent testing data obtained through fieldwork. Overall the
accuracies were generally >85% with relatively high Kappa coefficients (>86) over
all the classified land cover types. To be compatible, the nearest neighbour
method was employed to resample the crop map data (250 m) to the spatial
resolution of the MODIS EVI (500 m) and MODIS NPP (1000 m). To depict the
impact of the spatial resolution on spatial correlation between biophysical
variables and crop production at the governorate level, the NDVI (250m) data was
up scaled to 500m and 1000m using the nearest neighbour approach to be
comparable with EVI (500m) and NPP (1000m) data.

5.2.5 The threshold of indices value utilized to forecast crop

yield/production

Several studies indicated that the correlation between final crop production (and
yield) and VIs changes through the crop growing season (Doraiswamy et al. 2005;
Ren at al. 2008; Huang et al. 2013). Therefore, using crop phenology can have a
significant benefit for remote sensing-based crop yield models as crop yields
change as a function of time throughout the growing season (Mkhabela et al.
2011; Sakamoto et al. 2013; Bolton and Friedl 2013; Meng et al. 2014). Crop
phenology varies spatially and inter-annually and, therefore, forecasting of crop
yield based on a VI at a fixed calendar date is not optimal (Bolton and FriedlI
2013). In the current research, three different approaches were applied to find
the phenological parameters, which have the optimal correlation with crop

production and yield at the governorate level in Iraq (Figure 5.2).

The maximum NDVI and EVI were estimated from the smoothed time-series data,
which is equal to the peak value for each growing season, and from these
maxima, seven (8-day) composite values before and after each maximum were
defined. Using this information, time-series values of NDVI and EVI with an 8-day
interval, which starts at the seventh 8-day composite before maximum (Maxb?7)
and ends at the seventh 8-day composite after maximum (Maxa7) over the
growing season were extracted (Figure 5.2).

Generally, three different types of Vis variables were suggested in the literature to

correlate with final yield such as the original value (Rojas 2007; Esquerdo et al.
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2011), integrated value over the growing season (Mkhabela et al. 2005; Wall et al.
2008; Balaghi et al. 2008) and average value (Boken, Shaykewich 2002; Mkhabela
et al. 2005). Some studies (e.g. Ren et al. 2008; Becker-Reshef et al. 2010)
regressed crop production statistics at the county level on spatially-accumulated
NDVI. Other studies (e.g. Tucker et al. 1980; Rojas, 2007) showed that seasonally
integrated Vls, could forecast production more accurately than single measures. It
has also been demonstrated that VIs around the time of maximum have a large
coefficient of determination with final yield (Tucker et al. 1980; Benedetti and
Rossini 1993). Therefore, three different approaches were employed in the

current research:

1. Approach 1: spatial sum of the single parameter (original value) from
Maxb7 to Maxa7 at the governorate level (Figure 5.2 and Table 5.1).

2. Approach 2: cumulative, integrated spatial sum of the parameters from
Maxb7 to Maxa7 over the growing season (Figure 5.2 and Table 5.1).

3. Approach 3: integrated spatial sum of the vegetation indices for four
composite periods before and four composite periods after the maximum
value (Figure 5.2 and Table 5.1).
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Figure 5-2 The proposed three approaches to determine the phenological
parameters which have the largest coefficient of determination with crop

production or yield at the governorate level.

The three algorithms search during the growing season to find the time of the
phenological event that has the largest coefficient of determination with crop
production or yield at the governorate level. The description of VIs, NDVI as an
example, and their calculation are presented in Table 5.1. However, as NPP is an
annual product, only one spatial sum NPP value can be correlated with crop
production or yield at the governorate level. The main purpose of applying three
different approaches is to determine which indices and phenological parameters

can estimate crop production or yield most accurately in advance.

Table 5.1 Description of the employed variables, equations, and NDVI as an

example.
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NDVI

Description of equations

variables
Approach one Approach two Approach three
The seventh 8-day
NDV Inaxp7 composite before NDV lnaxo7 NDV lnaxo7
NDV lmax
The sixth 8-day
NDV Inaxbs composite before NDVlmaxor-6 ~ (NDV lmaxtr+ NDV Imaos)
NDV lmax
The fifth 8-da
NDVlmaxps | composite bef)(/)re NDV Inaxt7-65 (NDV o7t NDV Imasos +
NDVI NDV hracs)
max
The fourth 8-day (NDVlpaxt NDV e+
NDVlyase | composite before NDV Inaxr-os (NNDD\X 'WTNNDD\X 'm““§+ NDVlnacos  NDVinaoz+ NDVImaos+
NDV'max maxb5’ maxb4, NDVImaxb4)
The third 8-day (NDV lnaxor+ NDV laxps+
NDVlmaxns | composite before NDVlaor-bs ~ NDVlmaxps+ NDV Iaxps+ NDV limax-b3 &ND%L:::;’\II\I%\\//IT;::&
NDV lmax NDV lnaxss)
The second 8-day (NDV lnaxs7+ NDV | maxps+
NDVlnawz | composite before NDVlmaxorb2 ~ NDVaxos+ NDV Imaxoa+ NDV o &NDDQ{WM; NDV lnaxpr +
NDV Iaxe NDV Inazz+ NDV linasz) M2
- NDVImaxb7+ NDVImaxb6+
The first & day NDV oot NDV o
NDV laxb1 composite before NDV Imaxb7-p1 NDVI + NDVI n NDV lImax-b1 (NDV Inaxt NDV lnaxb1)
NDV'max NDVI:::) maxb2’
(NDVImaxb7+ NDVImaxb6+
NDVlw | Maximum NDVI r’:'a'xjv'maxw' HB&::::ZZI HB&:ZE;‘: NDVlpse  NDVina
NDV Inaspr+ NDV Inax)
(NDVImaxb7+ NDVImaxb6+
The first 8-day NDV linaxbs+ NDV Imaxnat
NDV Imaxa1 composite after NDVlinawza1  NDVlnaxost NDV lmaxp2+ NDV Imax-a1 (NDVlmaxt NDV Imaxa1)
NDV'maX NDVImaXb1+ NDVImax+
NDVImaxal)
(NDVlmaxb7+ NDVlmaxb6+
The second 8-day NDV Imaxpst NDV Iaxpat
NDVlmnasa2 | COmposite after NDVlmaswr-a2 ~ NDVlmaxpz+ NDV Inaxnot NDV e §\INDD\>1Imax'; NDV Inaxar
NDV linaxe NDV Imaxprt NDV Ipax+ maxa2,
NDVImaxal+ NDVImava)
(NDVImaxb7+ NDVImaxb6+
The third 8-day Nyt Ayl
NDVlaes | composite after NDV Imaxo7-23 NDVImain + NDVImaXiZ NDVlnaces  (NDV st NDVaart
NDVlnax NDVIaort NDV et NDV Inaxaz+ NDV Iavas)
NDV lmaxas)
(NDVImaxb7+ NDVImaxb6+
The fourth 8-day N Duyresy N DY e (NDV It NDV It
NDVinaas | COMposite after NDV Imaxt7-a4 NDVI::Z; NDVI::T NDVlnacas  NDVlnaxazt NDV Ipaxast
NDV i NDV st NDV oz NOV o)
NDVImaxa3+ NDVImaxaA)
(NDVImaxb7+ NDVImaxh6+
NDVImaxb5+ NDVImaxb4+
The fifth 8-day NDV laxps+ NDV laxpz+
NDV Imaxas composite after NDVlimaxoras ~ NDVlnaxort NDV lmaxt
NDVImax NDVImaxa1+ NDVImaXaZ+
NDVImaXa3+ NDVImaxa4+
NDV laas)
(NDVImaxb7+ NDVImaxb6+
NDVImaxb5+ NDVImaxb4+
The sixth 8-day NDV lnaxos+ NDV laxpz+
NDV Imaxas composite after NDVlmaxpr-a6 ~ NDVlnaxort NDV lmaxt
NDV lmax NDV Inaxar+ NDV Inaxa+
NDV|maxa3+ NDVImaxa4+
NDVImaxa5+NDVImaxa6)
(NDVlmaxb7+ NDVlmabe+
NDVImaxb5+ NDVImaxh4+
The seventh 8-day mg&:m“m: “Bx:m”‘f
NDVlnawr | composite after NDV Inaxt7-a7 maxbl max

NDV lmax

NDV Imaxal+ N DVImava+
NDV Imaxa3+ NDV Imaxa4+
NDV linaxas+NDV linaxas+
NDV Imaxar)
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5.2.6 Model development

The first stage in fitting a model to forecast crop production or yield is to decide
how to relate the vegetation indices (VIs) to the final production or yield. Several
approaches were considered in the current research to select the data in the

remote sensing-based crop production or yield model:
(i) the three approaches already mentioned (Figure 5.2) and annual NPP

(ii) average Vls for the previous three approaches (Figure 5.2) and average NPP at

the governorate level.

(iv) applying the log transformation to the previous three approaches and NPP at

the governorate level, and

(v) the regression model was developed according to the procedure used by
Kogan et al. (2012).

These approaches were tested in two ways; (i) the coefficient of determination
was estimated between official statistics on production or yield and transforms of
the VIs among all governorates within one year, and (ii) the same based on each

governorate during the period.

5.2.7 Model validation

Validating the performance of the model is an essential part of the remote
sensing-based crop production or yield modelling. In this regard, several
approaches to validate the model have been suggested primarily based on
removal of a year or a period and then its re-estimation (Mkhabela et al. 2011;
Bolton and Friedl 2013; Kouadio et al. 2014). The current regression-based

models were validated in three different ways:
(i) leave-one-year-out

(ii) leave-two-years-out

(iii) leave-half-period-out

Based on the following model, using the maximum NDVI, EVI and annual NPP,

crop production and yield were estimated for each governorate during the period:
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Y=a+2Zb X + ¢ (1)

where Y is the estimated production or yield of winter wheat and barley at the
governorate level, the Xi are the spatially accumulated indices (maximum NDVI,
maximum EVI and NPP) of winter wheat and barley at the governorate level, and a

and b are coefficients.

5.2.8 Regression modelling

Regression models were applied separately for each year at the governorate level.
The country consists of eighteen governorates. Regression was applied using
decadal composite VIs and annual NPP values (independent variables) to estimate

crop production or yield (dependent variable).

For each year of the study period, the fitted regression models used all the
historical data excluding one year to estimate the crop production or yield for
that missing year. For estimating crop production or yield and to be comparable
using the leave-one-year-out approach, only the data from 2002 to 2010 were

used as the NPP product is only available until 2010.

Model accuracy assessment is crucial in scientific research. Here, the performance
of the models was assessed by comparing the estimated against the actual crop
production or yield. The coefficient of determination and relative error were
calculated between the estimated and actual crop production or yield for the held-

out-year as follows:

PPi — APi
(PPi—4PY)

100 1
APi M

Relative Error% =

where PPi is the forecasted production and APi is the actual crop production.
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5.3 Results

5.3.1 Estimating phenological parameters for forecasting crop production

Crop production was affected by the growing condition throughout each crop
stage and over different years. Regression models were fitted between crop
production and the spatial accumulated 8-day NDVI, EVI and annual-based NPP at
the governorate level. A large coefficient of determination was found between
crop production and the remotely sensed indices (Figures 5.3 and 5.4). Figure
5.3a, b and c show the multi-year average coefficients of determination obtained
from linear regression utilizing the NDVI and EVI to forecast crop production at 8-
day intervals over the growing season for three different approaches from 2002
to 2012. Figure 5.3a presents the multi-year average coefficients of determination
for the spatial sum of a single variable (original VIs value) from Maxb7 to Maxa7
at the governorate level (approach 1). From figure 5.3a, it is apparent that the
largest coefficient of determination between crop production and the remotely
sensed Vs occurred at the maximum, with NDVI producing a slightly larger
coefficient of determination than EVI. Figure 5.3b presents the multi-year average
coefficients of determination for the integrated spatial sum of the VIs from
Maxb7 to Maxa7 over the growing season (Approach 2). The largest coefficient of
determination was recorded for the period around the maximum over the
growing season, with NDVI producing a slightly larger coefficient of
determination than EVI. Figure 5.3c presents the multi-year average coefficients
of determination for the integrated spatial sum of the VIs from the maximum
(@approach 3). There is a clear trend of increasing coefficients of determination
from the beginning of the growing season until the peak of the growing season,

then decreases from the maximum towards the end of the growing season.
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Figure 5-3 Plots showing the multi-year average coefficient of determination (y-
axis) between crop production and Vls for different dates (x-axis) at the
governorate level from 2002 to 2010, for three different approaches (a, b, ¢), and

(d) maximum NDVI, maximum EVI and NPP

However, as the NPP product is annual-based, it cannot be compared at this stage
with Vs (the coefficients of determination for Vs are an average of 8 years for
each variable). Therefore, maximum Vls as the best predictor should be compared
to the annual NPP value. Figure (5.3d) depicts the comparison of the coefficients
of determination among the maximum Vls (as the best predictor to estimate crop
production over the growing season) and annual based NPP over the period. It can
be seen from the figure that generally all indices produce relatively large
coefficient of determinations, with NDVI producing a larger coefficient of
determination (Avg. R’=0.70) than EVI (Avg. R’=0.68) and NPP (Avg. R?=0.66). In
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general, fluctuation through the years can be seen in the figure with the smallest
correlations in 2008 and 2009.

The aim here is not to compare amongst indices: such a comparison would not be
fair because of differences in spatial resolution. The current research tended to
use the finest spatial resolution for each product to estimate crop production as

the region has a small agricultural field size.

Figure 4-5 represents the coefficients of determination between maximum (a)
500m spatial resolustion of NDVI and EVI and (b) 1000m spatial resolustion of
NDVI and NPP with crop production, at the governorate level from 2002 to 2010.
It can be seen from the figure that after upscaling the NDVI (250) to 500m and
1000m, still sum of maximum NDVI data has better coefficient of determination
with crop prodution compare to EVI and NPP. However, with the decrease of
spatial resolution from 250m to 500m and 1000m, the average coefficients of
determination bewteen maximum NDVI and crop production at the governorate
level was decreased from 0.70 to 0.69.
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Figure 5-4 The coefficients of determination between maximum (a) 500m spatial
resolustion of NDVI and EVI and (b) 1000m spatial resolustion of NDVI and NPP

with crop production, at the governorate level from 2002 to 2010.

As the climatic conditions are varied from the north to the south of the region,

phenological events across the country are heterogeneous spatially. In the north

of the region, the maximum occurred from 7th to 23rd April, while in the central

region it occurred around 22nd to 30th March and in the south of the region it

occurred around 26th February to 14th March. Therefore, the present results

imply that the VIs at the time of the maximum are among the predominant



predictors that can be used to forecast crop production at least one and a half

months before harvesting.

5.3.2 Regression model results and accuracy assessment

Considering the climatic conditions and the phenology of winter wheat and barley
in Iraqg, the spatial accumulated Vis from the maximum over the growing season
were found to be the best predictors to forecast crop production as it exhibited
the largest coefficient of determination with production. Thus, maximum Vis and
annual NPP were used to build the model to forecast crop production. Table 5.2
provides some summary statistics for the fitted regression models using the
leave-one-year-out method to estimate crop production over the region for each
year from 2002 to 2010. A large coefficient of determination was found using the
leave-one-year-out method for the regression model between the maximum Vls
and annual NPP and crop production at the governorate level for each year (Table
5.2). These coefficients of determinations were larger with NDVI compared to EVI
and NPP. The regression models for each year in Table 5.2 were used to estimate

crop production at the governorate level.

Table 5.2 Linear regression models for estimating wheat and barley production
between crop production and the spatially accumulated remotely sensed indices
(NDVI, EVI and NPP) at the governorate level. The regression models were trained
on eight years of the data to forecast crop production in the hold-out year (shown

in the left column).

NDVI EVI NPP

Year Model R? Model R? Model R?

2002 y=20.296x 0.74 y=38.089x 0.68 y=568.8x 0.68
2003 y=21.568x 0.70 y=36.968x 0.69 y=604.55x 0.67
2004 y =21.96x 0.73 y=37.749x 0.72 y=607.58x 0.70
2005 y =21.33x 0.73 y=36.646x 0.73 y=596.07x 0.71
2006 y=21.067x 0.72 y=35.704x 0.72 y=582.25x 0.68
2007 y=21.481x 0.72 y=36.362x 0.72 y=594.04x 0.70
2008 y=21.074x 0.72 y=36.415x 0.72 y=586.07x 0.70
2009 y=21.15x 0.74 y=36.527x 0.74 y=588.52x 0.72
2010 y=20.542x 0.69 y=34.981x 0.70 y=569.11x 0.67

n=114

Figure 5.5 shows the linear relation between forecasted crop production using the

developed regression-based models in Table 5.2 and official estimates of crop
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production at the governorate level from 2002 to 2010. It can be seen from the
figure that the data are linearly correlated. Table 5.3 presents the summary
statistics for the forecasted and actual crop production for each year over the
region. In general, it can be seen from the data in Table 5.3 that R?is large, but
there is variation amongst years and amongst Vls. Generally, large coefficient of
determinations were observed for each year for all input indices employed for the
modelling; R? values ranged from 0.65 to 0.88. However, the smallest coefficient
of determinations were recorded for 2008 and 2009 (drought years). The largest
coefficient of determination was obtained for NDVI (Avg R’=0.70) followed by EVI
and NPP (Avg R’=0.68 and Avg R’*=0.66). As table 5.3 shows, there is a clear
increase in relative error for forecasting crop production with a decreasing spatial
resolution of the data (NDVI 250 m, EVI 500 m and NPP 1000 m). When
comparing winter wheat and barley production forecasts made using NDVI
against official statistics, the relative error ranged from -20 to 20%. Meanwhile for
estimated production using EVI, the relative error ranged from -45 to 28% and it
ranged from -48 to 22% for estimating crop production using NPP. In general, the
drought years (2008 and 2009) were found to have the largest relative error over

the period.

Table 5.3 Coefficients of determination and the relative error between forecasted

and actual crop production for all models.

NDVI EVI NPP

Year Forecasted  Actual R Error  Forecasted  Actual R Error  Forecasted  Actual R Error

MT MT % MT MT % MT MT %
2002 3.86 4.33 0.76 -11 5.44 4.33 0.84 26 3.74 4.33 0.77 -14
2003 4.22 3.83 0.87 10 4.03 3.83 0.85 5 4.13 3.83 0.85 8
2004 4.46 3.73 0.75 20 4.14 3.23 0.78 28 3.93 3.23 0.70 22
2005 3.72 3.79 0.72 -2 3.11 3.79 0.65 -18 3.38 3.79 0.66 -11
2006 3.97 3.92 0.76 1 2.92 3.92 0.76 -26 3.45 3.92 0.80 -12
2007 4.09 4.21 0.79 -3 3.31 4.21 0.78 -21 3.57 4.21 0.77 -15
2008 1.59 1.94 0.42 -18 1.06 1.94 0.26 -45 1.01 1.94 0.22 -48
2009 2.50 3.04 0.33 -18 2.04 3.04 0.32 -33 2.08 3.04 0.30 -32
2010 4.02 5.00 0.87 -20 3.38 5.00 0.86 -32 3.69 5.00 0.85 -26
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Figure 5-5 Scatterplots of official estimates of production against remotely sensed forecasts of production made using the leave-one-year-out
approach, and using (a to i) NDVI from 2002 to 2010; (j to r) EVI from 2002 to 2010; (s to ab) NPP from 2002 to 2010. 1:1 line shown for

comparison.
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5.3.3 Crop yield estimation

The first set of analyses examined the ability of the employed remotely sensed
Vis and several approaches to forecast crop yield at the governorate level in Iraq.
The same methodology as presented in section 5.2.6 was used to forecast crop
yield over the region. However, based on the available data, we found that crop
yield could not be estimated at the governorate level in Iraq. The results of the
regression analysis for two examples are shown in Figure 5.6. Figure 5.6a shows
the coefficient of determination between crop yield and the average maximum
NDVI for all governorates within each year. Very small coefficient of
determinations were found for each year, except for 2002. In the second
example, it can be seen that the coefficients of determination between crop yield
and the average maximum NDVI during the period for each governorate are very
small (Figure 5.6b). However, a slightly larger positive coefficient of
determination was observed for the Kurdistan governorates (Sulaimani, Erbil and
Duhok).
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Figure 5-6 (a) the coefficients of determination between crop yield and the
average maximum NDVI for all governorates within each year, (b) the coefficients
of determination between crop yield and the average maximum NDVI during the
period for each governorate ((1) Anbar, (2) Babil, (3) Baghdad, (4) Basrah, (5)
Duhok, (6) Dyala, (7) Erbil, (8) Karbala, (9) Kirkuk, (10) Muthana, (11) Mysan, (12)
Najaf, (13) Ninawa, (14) Qadsia, (15) Salahadin, (16) Sulaimani, (17) Wasit and (18)
Ziqgan)).
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5.4 Discussion

A regression-based model was fitted between actual crop production and yield
based on official crop statistics from Irag and remotely sensed measures of
winter wheat and barley productivity within-season. As yield presents the amount
of production per area, many researchers have reported crop yield instead of
production (Quarmby et al. 1993; Singh et al. 2002; Ferencz et al. 2004;
Sakamoto et al. 2013). Meanwhile, other researchers have reported only crop
production or both. For instance, the combined use of AVHRR-NDVI and drought
indices at various time-scales were used to forecast wheat and barley production
four months before harvest and the predictive models explained 88% and 82% of
the temporal variability in wheat and barley production, respectively (Vicente-
Serrano et al. 2006). The regression-based model was used to forecast winter
wheat production in Kansas and then applied directly to forecast winter wheat
production in the Ukraine (Becker-Reshef et al. 2010). The predicted crop
production in Kansas and Ukraine closely matched the official reported

production with a 7% and 15% error, respectively.

Although this research tested several methodological approaches, it was not
possible to forecast crop yield at the governorate level over Irag. There are
several possible explanations for this result. It has been demonstrated that the
official Iraqi government statistics are likely to be unreliable (USDA FAS, 2008b). It
has also been reported that international statistics data for Iraq for production,
yield and harvested area are often “unofficial” or estimated figures, or other
sources have been used to estimate uncovered or missing data (FAO 2012). To
support this point, this research demonstrated that the coefficient of
determination between the average maximum NDVI and crop yield for 2002 was
much larger compared to the rest of the period (Figure 5-6a). This result could be
explained by the fact that besides more regional instability, at that time the Food
Agriculture Organization (FAO) conducted a more accurate ground survey over
the region. In addition, as the Kurdistan region is more stable in terms of security
compared to the rest of Iraq during the last decade, slightly larger coefficient of
determinations were found for Slaimani, Erbil and Duhok (Figure 5-6b). However,
double counting in the agricultural statistics at the governorate level for the
disputed areas between Kurdish Government and Central Government has led to
the coefficient of determinations remaining very small. In addition, for many
areas in Irag access was restricted by the local authority due to security issues.

Thus, for such areas the ground survey was replaced by estimation. Another
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possible explanation for the lack of correlation is the coarse spatial resolution of
the data used in this study compared to the small agricultural field size in Irag. A
coarse spatial resolution could prevent capture of the phenology of a pure crop in
some areas since the region has small agricultural field sizes. Another source of
uncertainty might be related to the crop map used for the current research, which
was not able to separate wheat and barley due to their similar crop calendars and
phenological responses in the region (Qader et al. 2015). Due, in part, to greater
variability of their yields from one year to the next, yield forecasting is more
challenging for both together. Another possible explanation for this could be the
large inter-annual variation in terms of croplands at the governorate level as the
traditional biennial fallow system is practiced widely in the region to recharge the
depleted soil and decrease the impact of pests and disease particularly in the
north (FAO 2011; Schnepf 2004).

Interestingly, winter wheat and barley production were highly and linearly
correlated with the spatial accumulated NDVI and EVI obtained during maximum
green canopy cover at the governorate level in Iraq, compared to the other
variables. Therefore, the seasonal maximum NDVI and EVI were selected as this
enabled timely forecasting of crop production around a month and half prior to
harvest. These results are in line with previous studies that found similar results
with either crop production or yield (Becker-Reshef et al. 2010; Doraiswamy and
Cook 1995; Mahey et al. 1993; Tucker 1980). In terms of comparison amongst
the employed indices, it is apparent from statistical evaluation of the results that
NDVI could have an advantage relative to the EVI and NPP for forecasting crop
production in the region using the leave-one-year-out approach. A possible
explanation for this might be that MODIS-NDVI has a finer spatial resolution (250
m) than MODIS-EVI (500 m) and MODIS-NPP (1000 m). This might make the NDVI
data more sensitive to annual variation and capture the detailed phenological
characteristics of cropland cover type. In general, a large relative error was
obtained for forecasting crop production for 2008 and 2009 when the region
experienced a severe drought (Schnepf 2004; Griffin and Kunz 2009). This is
potentially a limitation of the remotely sensed-based regression model, and this
has been pointed out in several studies where it has not been possible to capture

the impact of extreme events (Kouadio et al. 2014; Becker-Reshef et al. 2010).

It might be argued that production is driven mainly by crop area and using
remote sensing indices might not have much impact on improving the forecast of

final crop production beyond knowledge of the cropped area. Thus, we
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investigated the relationship between final crop production and both (i) actual
crop area and (ii) estimated crop area at the governorate level from 2002 to 2010.
The average R? between final crop production and actual crop area was 0.58 and
with estimated crop area was 0.63 at the governorate level from 2002 to 2010.
However, using the remote sensing indices increased the average coefficient of
determination to NDVI=0.70, EVI=0.68 and NPP=0.66. This indicates that the
remote sensing indices could characterize and forecast crop production more
accurately than simple cropping area, which was treated as a null model or
benchmark against which to evaluate the proposed approach. In addition,
multiple regression model was also fitted between crop production and (VIs +

cropped area), but it did not lead to a significant increase in accuracy.

There is room for further progress in forecasting crop production and yield at the
governorate level in Iraqg. To increase the quality of data, an accurate and
intensive ground survey with a robust experimental design is needed to obtain
accurate data on crop yield. It is also important to note that low intensity
agriculture and the widely practiced traditional biennial fallow system is difficult
to detect at the 250 m spatial resolution of MODIS. The land cover classification
map used in this study also was unable to separate wheat and barley over the
region. Identification of winter wheat and barley area is a vital component to
modelling and forecasting crop production and yield using remote sensing data.
For example, a significant increase in the accuracy of crop yield forecasts was
observed while a crop map was applied to mask NDVI values as an input to a crop
yield model (Maselli et al. 2000; Genovese at al. 2001; Ren et al. 2008). In
addition, the low accuracy may be related to the high sensitivity of photosynthetic
activity to environmental factors. This might be improved by using Vls sensitive
to chlorophyll content as they have less tendency to saturate at high biomass
compared to other Vls sensitive to leaf area index (LAI) (Zhang and Liu 2014). As
the region has an extreme climatic condition and crop production and yield vary
considerably with the amount of rainfall, further studies, which consider climatic

variables, will need to be undertaken.

5.5 Conclusion

Regression models were developed to forecast crop production in Iraq, as an

example of an arid and semi-arid environment, using within-season remotely
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sensed metrics of vegetation productivity. To do this, several methodological
approaches using different remotely sensed indices were investigated to forecast
annual crop production and yield at the governorate level. The main aim was to
evaluate the potential of MODIS-derived measures of greenness and productivity,
and information related to the phenology of crops to estimate crop production
and yield in the arid and semi-arid regions like Iraq.

This research identified that over the winter wheat and barley growing seasons,
crop production was most correlated with the maximum Vs at the governorate
level compared to other MODIS derived information related to the timing of crop
phenology. This research also demonstrated that the MODIS NDVI offers a more
accurate basis for forecasting crop production relative to MODIS EVI and MODIS
NPP. The research also found that the average R? between final crop production
and actual crop area was 0.58 and with estimated crop area was 0.63 at the
governorate level from 2002 to 2010. Meanwhile, using the remote sensing
indices increased the average coefficient of determination to NDVI=0.70,
EVI=0.68 and NPP=0.66. When winter wheat and barley production were
forecasted using NDVI, EVI and NPP and compared to official statistics, the
relative error ranged from -20 to 20%, -45 to 28% and -48 to 22%, respectively.

As Iraq is continually experiencing various natural and anthropogenic impacts on
crop production, it is potentially food insecure. Therefore, quantifying its regional
crop production in advance could help policy-makers, scientists and decision-
makers to improve agricultural management and food security under a variety of
environmental conditions. The model developed here for Iraqg, as an example of
an arid and semi-arid region, should be extended and tested for other similar

regions.
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Chapter 6: Discussion

This chapter aims to supply a combination discussion of the individual research
papers (i.e., chapters 3, 4 and 5). The current research is based on three main
research papers to address the main objectives established in the introduction. In
chapter three, for the first time a comprehensive characterisation of the
vegetation phenological characteristics of the dominant vegetation types was
established in Irag. Then, the major phenological parameters such as SOS, EOS
and LOS for the dominant vegetation types were correlated to the altitudinal
variation in the country (as a surrogate of precipitation and temperature). As in
arid and semi-arid regions such as Iraq, accurate discrimination of various
vegetation types is challenging due to their similar spectral signature. In addition,
reliable information about croplands and natural vegetation in such a region is
scares and the ground data might not be reliable. Therefore, in the fourth
chapter, phenology-based classification approach using SVM was developed for
the assessment of space-time distribution of the dominant VLC types in Irag.
Meanwhile, in the arid and semi-arid regions of Iraq, inter-annual variation in
climatic factors (such as rainfall) and anthropogenic factors (such as civil war)
pose a major risk for food security. The combination of these factors makes it
challenging in this region to sustain food production. Therefore, an operational
crop production estimation and forecasting system is required to help decision-
makers make early estimates of the potential food availability and plan for annual
imports. In fifth chapter, different MODIS spectral vegetation indices in
collaboration with official crop statistics were combined to develop an empirical
regression based model to estimate and forecast winter wheat and barley
production in Iraq at the governorate level. These individual papers already
provided the main research finding, method assessments, work limitations and
discussion. Meanwhile, the aim here is to show the relevancy of the research
papers, bigger scale discussion of the finding for entire thesis and locating them
into context. In addition, further research are suggested based on assessment of
the research finding and limitations.

128



6.1 Uncertainties in extracting phenological parameters

6.1.1 Uncertainties and high spatiotemporal variation of LSP parameters

In semi-arid regions, several factors such as climate, water availability, soil type,
and vegetation composition can affect the spatial distribution of the LSP
parameters. In order to monitor and characterise the LSP variation at the country
level, remote sensing is the only viable means (Chuanfu et al. 2012; Dunn and de
Beurs 2011; Ganguly et al. 2010), and this is especially efficient for Iraq as the
region has been almost in a continuous war during last three decades. Although,
numerous efforts have been made during last two decades to characterise of
vegetation phenology through remote sensing data, still its validation with situ
data is challenging. This is particularly true for Irag because (i) limited access to
the country due to restricted security issues; (ii) for the first time this research
attempted to establish a comprehensive characterisation of the vegetation
phenology at local scale over the country; (iii) a very limited number of earlier
studies of the vegetation phenology attempted for the region and (iv) no ground

vegetation phenological stations exist across the region.

Despite an overall pattern of LSP parameters observed having a strong similarity
with the expected phenological pattern for the major vegetation types (Figure
3.5), some uncertainties can be found in the results such as spatial mixing among
vegetation types. Some of the issues emerging from this finding relate specifically
to the coarse spatial resolution of the data used in the current study compare to
the small agriculture field size in Irag. In addition, due to its climatic and
topographic variation, Iraq is the land of various vegetation types. Therefore, low
spatial resolution and small agriculture field size led to spatial mixing of
vegetation types at finer classification scale. In order to characterise the dominant
LSP parameters, global MODIS land cover type is the only available annual based
land cover classification over the region (Friedl et al. 2010). It is apparent that the
product is a global land cover classification which make it possible that there
might be some disagreement at the local scale for some classes. The coarse
resolution of the product (500 m) compare to the small agriculture field size in
Iraq, make it possible that the product might not be able to discriminate some
land cover types over the region. Sobrino et al. 2015 stated that the uncertainties
and errors of the global MODIS product might be large as arid and semi-arid
regions have large spatial and temporal variations in surface emissivity and less

information is known regarding to emissivity variations with viewing angle. The
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lower spatial resolution of MODIS data (i.e. 500m), for example, causes a high
degree of heterogeneity, particularly in croplands because of mixing of small

patches of natural vegetation.

To assess the spatial and temporal variation in term of specific LSP parameters,
STD was computed and mapped to show the most variable locations during last
decade (Figure 3.6). The SOS and LOS are varied noticeably throughout the
country compare to EOS, especially in the north part (rain-fed) (Figure 3.6). The
STD of the SOS for most of the country ranges between 0 and 72 days (Figure
3.6a). Whereas, this value rises dramatically towards the lowlands in the north to
about 80 to 120 days. In contrast, a relatively small STD can be observed in EOS
across the country. It is apparent from the Figure 3.6c that STDs of LOS is closely
related to the type of the vegetation as less varied for natural vegetation and
relatively higher for croplands. These results are likely to be related to the fact
that in both rain-fed area directly and irrigated area indirectly to recharge the
main two rivers, rainfall is the main driver of start of the growing season. Any
disruption in the rainfall would lead to change in time of starting the growing
season, particularly in the north part of the country. There are, however, other
possible explanations for these variations such as human interaction, different
crop growing system among years, different policies for planting and harvesting,
widely practicing crop rotation and traditional biennial system to recharge the
depleted soil (Schnepf 2003 and 2004). As natural vegetation is less impacted by
human activity, its LOS is less varied compare to SOS. The variation in SOS is
mostly driven by changing the timing of the start of rainfall which is not much
compared to cropland as plants need to complete the growing season, whether
SOS might be advanced or delayed. Meanwhile, a relative homogeneity in STD for
EOS can be seen throughout the region compare to other LSP parameters. This
result may be explained by the fact that the region is facing a common hot

season around the time of the EOS.

As temperature and precipitation varied considerably across the region based on
the altitudinal variation, this research explored the relationship between spatial
variations in key LSP parameters and elevation (as a surrogate of temperature and
precipitation) (Figure 3.7). Li et al (2010) demonstrate that inter-annual variability
of SOS is greater at higher latitudes than lower latitudes at the same elevation,
whereas the impact of elevation is clearer when the range of altitude achieves
more than 1000m. Ding et al. (2013) also showed that the phenology of

grasslands in the Qinghai-Tibetan Plateau is driven closely by elevation. For every
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1000 m rise in elevation between 2500 and 5500 m, start of growth season is
delayed by 9 days, end of growth season is advanced by 1 day, and length of
growth season is shortened by 9 days. In the current research, a positive
coefficient of determination was observed for SOS and EOS with elevation for all
major land cover types with EOS producing the largest positive coefficient of
determination (R? = 0.685, R?=0.638 and R?= 0.588, p < 0.05 in shrubland,
cropland and grassland, respectively). It is also found that the magnitude of delay
in SOS and EOS increased in all land cover types along a rising elevation gradient
where for each 500m increase, SOS was delayed by around 25 or more days and
EOS delayed by around 22 or more days, except for grassland. More interesting is
the large coefficient of determination between EOS and elevation for all land
cover types, in contrast to many studies which point to a general trend of delayed
EOS at lower elevation (Qiu et al. 2013; Jeganathan et al. 2010; Zhang et al.
2004). With low moisture availability, rise in temperature and decline in elevation
from north to south of the region, EOS advancement appear gradually. According
to Dry Adiabatic Rate, for each 1000 m increase in elevation will result in 9.8
drop in temperature will be dropt. Since the EOS of vegetation is sensitive to the
temperature change in the region, there is a gradually earlier pattern from low to
high altitude. Our results indicate that water deficit and temperature condition
could drive the lowland LSP variation for the major vegetation types, while this

variation in high-altitude environments are more stable over time.

6.1.2 Smoothing techniques

The main purposes of applying smoothing techniques on time series data are to
reduce residual cloud contamination and upcoming noise because of compositing
and resampling procedures (Boyd et al. 2011). Approaches of estimating
phenological parameters and smoothing the time series data are a source of
uncertainties and yet have not been standardized (White et al. 2009). Thus,
special consideration has to be taken to select smoothing technique (Boyd et al.
2011). Several model have been developed and fitted to smooth time series
vegetation index from various satellite data to estimate vegetation phenological
parameters. However, comparisons among these techniques indicated that each
has its own advantages and disadvantages (Viovy et al. 1992; Lu et al. 2007; Hird
and McDermid 2009; Atkinson et al. 2012; Kandasamy et al. 2013; Geng et al.

2014). In addition, fine-tuning of parameters such as number of harmonic, size of
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temporal neighbourhood and the noise-threshold are required for most models
(Atkinson et al. 2009). Michishita et al. (2014) compared seven noise reduction
techniques for NDVI temporal profile, and found that Hanning smoothing
(RMMEH) and iterative Savitzky-Golay filters performed best. Jonsson and Ekundh
(2002) revealed relatively better performance of a Gaussian function-fitting
technique compare to a Fourier transform technique and Best Index Slope
Extraction (BISE) filter (Viovy et al. (1992).

The accuracy of estimating phenological parameters might have a large influence
through the type of smoothing techniques. However, assessing the impact of the
type smoothing techniques on extracting phenology and annual variation are
infrequent in the literature. Ten models for estimating SOS were compared and
found that individual methods varies in average day of the year by + 60 days and
in STD by + 20 days (White et al. 2009). de Beurs and Henebry (2010) tested
several spatiotemporal statistical approaches to determine the SOS and EOS using
a time series of remote sensing data and lack of general consequences
associating model significance, nomenclature, error structure and uncertainty was
revealed. The research also indicated that over a diverse landscape, it would be
challenging to find a set of parameters appropriate for all the vegetation types.
Therefore, the purpose of the study mainly drive a choice of the smoothing
techniques (Hird and McDermid 2009).

6.2 Uncertainties and main challenges of estimating VLC

types

Monitoring LULC and its change in arid and semi-arid regions is becoming a
crucial issue across different fields of development and sustainable management.
In Iraq, there is no reliable system for predicting cropland distribution and area,
and forecasting yield, and the official Iragi government statistics may be
unreliable (USDA 2008). In addition, depending on the political, historical, social
and technological contexts and environmental, the spatial extend of VLC types

are highly variable between and within the years, particularly croplands.

Throughout the growing season, the area planted for harvesting of a given crop
might vary. These variations could be as result of multiple events such as severe
weather damage, abandonment or unexpected economic condition resulting
might have an impact on final crop production estimation. For instance, area

estimation can create problems particularly in regions prone to security problems
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and flooding or drought issues. These events in any regions can drive false
calculation of the production as inaccurate harvested area can be observed due to
either inaccessibility or economic infeasibility. In addition, planting more than
one crop, which may have similar timing of the growing season and spatial
mixing within the same pixel add more complexity to the classification.
Furthermore, landscape factor such as soil type and altitudinal variation may
cause problems too. Therefore, producing high accurate classification product

over the region is challenging.

Classification errors of the croplands largely occurred because of confusion with
the natural vegetation classes in the arid and semi-arid regions. This is mainly
due to their similar spectral and phenological characteristics. Spatial proximity
can be accounted as the first reasons because many cropland areas were
intermixed with natural vegetation classes. Other studies reporting the same
difficulties to discriminate crops in an area with small scale farming. For example,
although, hard classification of fine spatial resolution (30 m) images produced
accurate results for commercial farming, it could not deal with mixed pixels
because of the small agricultural field size in Ethiopia (Delrue et al. 2013). For the
countries located in semi-arid zones such as Zambia, Niger and Cameroon in
Africa, croplands are mostly confused with savannas and grasslands, followed by
shrublands and woodlands. The results indicated that in highly heterogeneous
and intermixed land uses, moderate spatial resolution data have intrinsic
limitations (Hannerz and Lotsch 2006). Part of this confusion might be related to
differences in crop calendars; classification might be affected as some
agricultural practices might be advanced or delayed in some areas. For instance,
if different crops or the same crop is planted at different times and ununiformed
agriculture managements are applied to the lands resulting may add more
complexity to the classification process as their growth process influences the
reflectance signal. In addition, the spectral resolution of satellite sensor data also
plays a vital role in controlling the level of detail at which land cover can be
classified. The broad spectral, and coarse spatial, resolutions of MODIS land
surface reflectance (MOD09Q1 V5) might not be adequate for mapping land cover

types, particularly crop, at a finer level of detail in Iraq.

In addition to the spatial mixing of croplands with natural vegetation,
discriminating crop types, in particular wheat and barley, in Iraq is a great
challenge. This is mainly due to the small agriculture fields used to plant both

crops. In addition, the NDVI time series of both wheat and barley presented very
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similar patterns with almost similar peak over the crop growing season using the
current data. This result is in line with Griffin and Kunz (2009) where the Indian
Remote Sensing (IRS) AWIFS sensor was used with 56 m spatial and 4 nm spectral
resolution, the spectral signature of wheat and barley was shown to be almost
identical in Iraq. Currit (2005) also reported the same identical signature issue
among crops such as wheat and barley using Landsat data in Chihuahua, Mexico,
as both crops typically are planted and harvested at the same time. The
classification was therefore not efficient for discriminating the wheat and barley
over Iraq at the spatial and spectral resolution of MODIS 250 m. This might have

an impact on the classification accuracy of the product and its certainties.

It is not by chance that the global MODIS croplands are not good as the MODIS
(250m) croplands as the differences in their spatial resolutions poses various
classification challenges. The reason may be mainly because MODIS land surface
reflectance (MODO09Q1 V5) has a finer spatial resolution (250 m) than the global
MODIS land cover dataset (500 m). This may help to capture more detailed
phenological characteristics of the VLC types, which, in turn, helps to classify the
regional dominant VLC types more accurately than the MODIS dataset. The coarse
spatial resolution of the global MODIS land cover type may make it challenging to
estimate Iraq’s land cover types, especially for croplands where the average field
size is small compared to a 500-m pixel. The overall accuracy for recent global
MODIS land cover types is stated to be around 70-80% (Friedl et al. 2010).
However, the accuracy level might be much lower when the product used for a
particular region such as East Africa (Ge et al. 2007). This might affect the
classification accuracy and produced exaggerated estimates of pixels that have
truly changed (Cambell 2002). For instance, Fritz et al. 2011 found that around
360 Mha, which is equivalent to 20% of the global cropland area, are classified as
cropland in GlobCover (300 m) but as non-cropland in MODIS land cover types.
Another source of uncertainty may be that the official Irag’s statistical data dose
not account fallows in their statistics, whereas global MODIS includes mostly the
fallows (Leroux et al. 2014). Wu et al. (2014) stated that fallow areas are often not
included in cropland classes because of their confusion with other vegetation

types and temporal dynamics.

To monitor crops efficiently, a high temporal revisit frequency over large
geographic areas is required. Meanwhile, this limits the spatial resolution of the
data. A coarse spatial resolution is problematic where pixels are mixed, meaning

that several signals corresponding to different land cover types occur within a
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single pixel due, for example, to small agricultural field sizes. In monitoring
remote sensing-extracted crop phenology, crop maps and crop growth dynamics,
such data with spatial resolution of 250m (Wardlow and Egbert 2008; Zhong et al.
2011), 500 m (Zhang et al. 2008; Li et al. 2014) and coarser resolution (Atzberger
and Rembold 2013) were regularly employed. In small agricultural field sizes, this
variability is especially problematic as the spectral reflectance in gridded products
such as the MODIS and MEdium Resolution Imagine Spectrometer (MERIS) may
represent a mix of different land covers and heterogeneous cropping patterns
(Tan et al. 2006; Gomez-Chova et al. 2011). Figure 6.1 depicts the spatial
coverage differences between gridded Landsat-8 (30 m) and MODIS (250 m) over
the fine spatial resolution Google Earth imagery for some agricultural lands in
north-west of Mosul, Ninawa, Iraq. The figure shows clearly that the individual
MODIS pixels cover several agricultural land covers, which may be used to plant
different crops. Even if the same crop is planted in several fields covered by a
MODIS pixel, within-pixel variability in crop phenology timing may exist as
different agricultural management practices are applied. The mismatch in spatial
resolution between remotely sensed data and the small agricultural field sizes
makes it challenging to accurately derive crop phenology, identify crop types and
estimate crop vyield. In Iraq, agriculture field sizes are varied from the rain-fed
area to the irrigated area. Although robust information regarding to the land
holdings sizes is missing, in general the land holding areas may range from few
donoms to around 50 donom (1dounm=2500 m?). The largest land holding are
located in rain-fed, whereas in irrigated areas, farmers have much smaller lands.
The typical footprint of a 250 m gridded MODIS pixel is 25 donom (62500 m?).
Means majority of the agricultural lands cannot be detected by this resolution in
Iraqg. In contrast, general land cover types including agriculture can be mapped
successfully in US and Brazil with MODIS 250 m. In addition, given to the region’s
large field sizes, Wardlow et al. (2007) demonstrated that in the Central Great
Plains, U.S. fields are frequently 324,000 m? or larger can be mapped with MODIS
250 m, although it encompassed around five 250 m spatial resolution MODIS

pixels.
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(a) True colour composite of Landsat-8 in north-west Mosul, Ninawa, Iraq. (Date: 25/04/2015)

(b) Outlinc of Landsat-8 30 m pixels products over agriculture (c) Outline of MODIS land surface reflectance 250 m
lands extracted from high spatial Google Earth imagery in pixels products over agriculture lands extracted from high
north-west Mosul, Ninawa, Traq. spatial Google Earth imagery in north-west Mosul, Ninawa, Iraq.

Figure 6-1 (a) depicts the true colour composites of Landsat-8 for acquisition date
25" of April, 2015, (b) shows grid cell outlines from Landsat-8 (30 m) products
over a small agriculture field size, and (c) represents grid cell outlines from

MODIS (250 m) products over a small agriculture field size, in Iraq.

In addition to the previous factors, many other sources of uncertainty can be
considered in deriving an accuracy assessment of land cover classification. First it
has to be noticed that it can be challenging to generate a land cover map which is
completely satisfies all the needs (Brown et al. 1999). The sampling design used
to select the reference data is of the fundamental importance and must be
considered when conducting accuracy assessment (Stehman and Czaplewski

1998). Another source of uncertainty is the nature of the classifier used to derive
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land cover from the remotely sensed data. Part of the misclassification might be
related to the quality of the ground or reference data rather than a mistake in the
classification employed to produce the map. Thus, including some measure of
confidence could be useful in the ground data used (Estes et al. 1999; Scepan
1999). In addition, the class labels used in both image classification and ground

data should have the same meaning (Strahler et al. 2006).

To sum up, in the validation phase, the relative difference between the
classification model and ground based estimates of wheat and barley area might
be associated with one or more of the following factors: i) the spatial resolution
(250 m) of the used MODIS data may not be efficient for all the crop fields as
most of the agriculture fields size in Iraq are small and heterogeneous in nature,
ii) due to various climatic conditions over the regions, the initial/transplanting
stage might have a few weeks shifting in some areas, iii) the official statistical
data of the crop area obtained through ground visits have been claimed to be
unreliable (USDA FAS 2008), (iv) percentage of occurrence of pure or mixed pixels

and (v) spectral resolution of the chosen data.

6.2.1 Uncertainties of estimating crop yield.

Generally, the product of crop production forecasts is based on two essential
components: area harvested and yield per unit area (Michael and Atkinson 201 3).
Thus, an accurate estimating of harvested area and yield will guarantee to
generate an accurate crop production estimation. In several cases, the results of
predicting yield using remote sensing data are generally in a good agreement
with the field data. This is mainly due to the availability of the data such as
ground data, reference data and images in term of quality and quantity which
make the possibility to drive a better crop yield prediction. For instance, in
Canadian Prairies, regression based model using MODIS NDVI was developed to
predict crop yield and the difference of the predicted from the actual crop yield
was within +10% (Mkhabela et al. 2011). In China, Independent validation
between stepwise regression based models for the remotely sensed rice yield
predictions and observed data found that the overall relative error is nearly
5.82%. Most assessments of remote sensing yield predictions are on the broader
scale rather than individual fields by comparing counties or district predicted
yield and official statistics (Doraiswamy et al. 2005; Becker-Reshef at al. 2010;
Lobell et al. 2010). The accuracy of predicted yield with ground data might be

varied based on the level of the prediction and the spatial resolution of the data
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used. For instance, using 1Tkm MODIS data, yield was estimated sufficiently ( <5%
deviation from actual yield) at the state level in Montana and North Dakota,

whereas very low accuracy was yielded at the county level (Reeves at al. 2004).

In contrast, obtaining such accurate information in arid and semi-arid regions
through remote sensing is a challenge. This is mainly due to: (i) lack of reliable
administrative data, (ii) high inter-annual variation in yields, (iii) limited numbers
of survey data (Michael 2007), (iv) the heterogeneity of the landscape, (v) extreme
weather including droughts and (vi) the coarse spectral and spatial resolutions of
the available remote sensing data. This clearly implies for Iraq as the country
meets own issues which are difference to other regions. The region is still
influenced by natural factors on determining the yield and production level of the
major crops. This leads to have a strong fluctuated yield and production
according to the year. For instance, the production of wheat in 2002 was around
2.6 millions tons and the productivity of the donom (1 donom= 2500 m?) was
around 329 kg, whereas less than 1 million tons and 172 kg of production and
productivity were recorded in 1997 (National Development Plan 2020). This
variation can be seen largely among the governorates with respect to climate,
water resources and soil as well as work force capabilities. In addition, due to its
insecurity issues, the region is affected by lack of quality and quantity of the
ground survey data. Thus, the international statistics data for Iraq for production,
yield and harvested area are often “unofficial”’, or estimated figures or other
sources have been used to estimate uncovered or missing data (FAO 2012).
Production might be miss-leaded when an appropriate ground survey is not
conducted which can create a problem for space observation validation. This is
particularly true for Iraq as severe events such as drought and political instability
can take harvested area out of production. The influence of regional instability
and related wheatear factors on yearly crop yield in addition to the quality of the
ground data make it a real challenging to estimate and predict crop
yield/production at the governorate level in Irag and drive the main uncertainties

in computing agriculture productivity.

Another source of uncertainty might emerge due to the type of vegetation index.
NDVI was the most widely used VI for crop monitoring and yield forecasting
(Groten 1993; Benedetti and Rossini 1993; Labus et al. 2002; Doraiswamy et al.
2003; Huang et al. 2013). The most common approach to forecast crop yield at
the regional scale is based on simple regression between a satellite-derived

vegetation index within-season and eventual crop yield (Prasad et al. 2007; Wall
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et al. 2008). These approaches are based on the assumption that measures of the
photosynthetic capacity from spectral vegetation indices are strongly correlated
to the eventual crop yield. Several studies revealed that prediction accuracy can
be improved by using cumulative NDVI over a growing season as grain yield is
normally represented by the cumulative photosynthetic activity (Hayes and Decker
1996 and 1998; Maselli et al. 2000; Rent et al. 2008). However, the high
sensitivity of photosynthetic activity to environmental factors is a serious issue in
forecasting crop yield based on such Vis particularly in arid and semi-arid

regions.

Some of the works mentioned earlier forecasted crop yield depended on variables
related to crop growth variables such as biomass and LAI. An alternative way to
increase the accuracy of yield forecasts, particularly in arid and semi-arid regions
as the environment is highly variable, is to use vegetation biochemical and
biophysical parameters to surrogate crop yield. Long at al. (2006) found that
increase in leaf photosynthesis is closely related with similar increase in yield.
However, relatively fewer studies have considered remotely sensed Vls as
estimate for vegetation biochemical and biophysical parameters to surrogate crop
yield at regional scale. Chlorophyll is a key biochemical parameter, which has
large correlation with crop productivity (Gitelson et al. 2006). Photosynthesis is
the process underpinned by chlorophyll. In addition, many studies revealed the
close relationship between chlorophyll content and the GPP (Gitelson et al. 2006
and 2008, Houborg et al. 2013). Thus, compared to the leaf area index (LAI) or
biomass, the content of chlorophyll might be more associated to crop yield. The
chlorophyll content of vegetation, which is a function of the biochemical variables
of chlorophyll concentration and the biophysical variable of LAI, can be
surrogated by the MERIS Terrestrial Chlorophyll Index (MTCI) (Dash and Curran
2007). Thus, the stronger relationship between yield and MTCI would be
expected. Zhang and Liu (2014) assessed the potential of a MTCl-based model for
crop yield forecasting compared to NDVI in Henan Province, China from 2003 to
2011. Their results revealed several advantages for the MTCl-based model
compared to an NDVI-based model such as (i) larger significant correlation
coefficient and smaller error, (ii) crop yield can be forecasted 30 days earlier than
using the NDVI-based model. Although, the results were not compared to other
Vis, a significant correlation between MTCI and crop yield was found at regional
scales for the state of South Dakota, USA (Dash and Curran 2007). Crop yield
forecasting relied on remote sensed chlorophyll content might be more efficient

than remote sensed LAI. Therefore, employing a VI sensitive to chlorophyll
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content in the current research might have the potential to improve the accuracy

of the prediction model.

6.3 Spatiotemporal variation of Vegetation land cover

types in Iraq during the period

Different natural and anthropogenic factors such as war and drought in arid and
semi-arid regions led to instable LCLU types during last decade. Iraq is
geographically located in an arid to semi-arid region and has been struggling with
different anthropogenic and natural factors resulting to have an inconsistent land
cover types during the last decade. To assess the class stability, the areas
consistently allocated within the same class through time were used to calculate
its stability regarding to the average area of the same class during the period.
The least stable land cover type was found for cropland (9.367%) during last
decade (Table 6.1). It can be seen from figure 6.2 that the spatial distributions of
stable crop areas are mainly situated in the areas close to available water.
However, the highest stable vegetation class was detected for grassland
(74.464%) as this class was mainly located in high altitude areas. Grasslands were
more resilient in very high altitude area than low land. The absence of grasslands
at the top border of the country may refer to presence of ice and cloud from year
to year which might occurred as a result of exclusion of those pixels during flag
quality assessment (Figure 6.1). Shrublands were the second category with the
largest instability, with an 11.155% over the period. In general, annual variation of
croplands is not much among the normal years, whereas its interannual spatial
variation is considerably high. The figure 6.1 shows the spatial location of
different land cover types that has been allocated within the same class during

last decade over Iraq.
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Table 6.1 Land covers instability in Iraq during 2002-2012.

Class stability

Consistent areas with the Average land cover areas
Class same class during the period during the period
1000 ha %
1000 ha
Cropland 262.509 2802.555 9.367
Grassland 1503.623 2019.271 74.464
Shrubland 798.122 7167.978 11.135

- Croplands 0 80 160 320 km
I T T T I N
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Figure 6-2 Spatiotemporal variations of (a) croplands and (b) crop production,

during last decade in Iraq.

As presented in figure 4.6, land covers distribution varied considerably across the
country with area dominated by cropland, grassland and shrubland. The most
stable land cover during the last decade was grassland. This class is confined
entirely to the high altitude region of the country which made difficult to be
influenced by human interaction. This region has high rainfall rate and adequate
temperature in summer than rest of the country which made this land cover type
more resilience to drought and other factors. In addition, the sparse distribution
of Oak trees in grassland helped this class to be more challengeable to
unfavourable climatic conditions. Differently, the intervening valleys are mostly
occupied either by cropland or shrubland. Surprisingly, cropland was found as the
least stable land cover types over the period. These factors may explain the
relatively good correlation between croplands and its instability. Due to excessive
salinity, around 2.5 million hectares of Iraq’s irrigated cropland had become
degraded in 1973, and that every year another 6000 to 12000 hectares were
vanished to salinization (Schnepf, 2004). Traditionally, a biennial fallow system
was practiced in crop system over the country to recharge depleted soil and
reduce the effect of pests and diseases (FAO, 2011; Schnepf, 2004). It means a
winter crop of wheat and barley was planted once in every two years. In addition,
lack inputs of fertilizers and pesticides with poor crop management policy limited
the agricultural land to be planted every year. On the other hand, natural and

anthropogenic factors have also accelerated this land cover’s instabilities.

6.4 Why does Iraq have low crop yields by international

standards?

By international standards, Iraq has low crop yields. For example, the average
wheat yield in Iraq is 1.1 T/Ha, whereas the global average is around 2.8 T/Ha.
This might be related to a long history of regional instability and natural factors
which have devastated the agricultural infrastructure. For example, Iraq was
involved in nearly continuous conflict during the last three decades including the
Iran-lraq war from 1980 to 1988, the Gulf War from 1990 to 1991, sanctions and
economic warfare against Iraq from 1990 to 2003 and the recent Post-Gulf War

from 2003 to 2011. These wars had serious negative impacts on agricultural
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infrastructure by affecting: (i) human resources, (ii) the quality of agricultural
land, (iii) water for irrigation. For example, during the Irag-lran war, many farmers
were forced to join the army. The contribution of agriculture to GDP decreased to
around 14% in 1985 due to the impact of war. The main issues during the Gulf
war were air pollution due to oil well fires and incursion by oil into a wide area of
the coastline of the Gulf because of oil spills, which led to a decline in Gulf water
productivity (EI-Baz, 1992). After a short invasion of Kuwait by Iraqg, the United
Nations Security Council decided to set Irag under resolution 661, which imposed
inclusive sanctions on the country
(http://www.un.org/Depts/oip/background/index.html). Foreign companies were
prohibited to invest in the country and major restrictions were placed on
importing essential agricultural resources such as farm machinery, fertilizers,
herbicides and pesticides (Schnepf, 2004). Continuous war and its consequences
have increased the poverty rate over the region. Thus, the resolution 986 ‘Oil-for-
Food’ by the United Nations on 14 April 1995 gave permission to Iraq to sell
limited quantities of oil to provide primarily basic needs to the Iragi people.
(http://www.un.org/Depts/oip/background/index.html). Although this
programme reached its targets, albeit with some serious issues, it discouraged
local food production. In 2003, Iraqg was again involved in war (Post-Gulf War).
During the period, the agricultural sector suffered greatly; e.g., reduction in the
fertility of the land by mismanagement, limited access to fertilizers, farm
machinery and pesticides, and the devastation of the irrigation system (Schnepf,
2003). In the recent history of the Middle East, the new Iraq conflict was the
largest in terms of displacement, and this vast displacement has placed great
pressure on food security and human assistance in Syria and Jordan (Doocy,
2011).

In addition to the long periods of regional instability, other environmental
conditions should be considered that have affected the region’s productivity. The
north of Iraq is mostly rain-fed and its agriculture yields are generally poor and
change considerably with the amount of rainfall. Traditionally, a biennial fallow
system is practiced over the country to recharge the depleted soil and reduce the
effect of pests and diseases (Schnepf, 2004). In addition to crop rotation,
agricultural productivity suffers from lack of crop management practices,
fertilizers and pesticides. In addition, after neglecting the infrastructure of the
irrigation system for many years and overexploitation of the land to increase
production, widespread salinization and saturation were observed over the

region, which significantly reduced productivity (Mahdi 2000). Therefore,
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although Irag has a strong agricultural heritage, decades of war, political
instability, sanctions, mismanagement, and climatic variability have reduced the

region’s productivity.

With the development of satellite, there has been increased interest in utilizing
space observation due to the ability to provide crop monitoring information with
greater spatial coverage, potentially at the global scale. Such a system could
monitor water quality and land and irrigation efficiency, quantify the type and
amount of agriculture crops, provide surrogates of crop yield and production.
Predicting crop yield before the harvest is one of the vital concerns in agriculture
since the inter-annual differences in crop yield affect international trade, market
prices and food supply (Hayes and Decker 1998). Early estimation of crop
production on the regional and global scales provides crucial information to
policy planners. In addition, appropriate identification of crop productivity is
important for sound economic policy and land use planning (Hayes and Decker
1996). Furthermore, an advance crop yield estimation is an essential base of
organising food aid missions, as it supplies adequate information about when

and where surpluses and shortages are expected to happen.

6.5 Main Causes of variations

6.5.1 Drought

Recently, regular and severe drought has become a major risk to agricultural
activity throughout Irag. For example, a severe drought affected the region during
2008, which resulted in a loss of production of more than 2 Mt (figure 6.4). Like
many other arid and semi-arid countries, rainfall in Iraq has been sparse
throughout the essential planting season with few areas receiving adequate rains
in the north. Figure (6.3) depicts the total harvested area of winter wheat and
barley and the total production of winter wheat and barley, along with the
average rainfall, from 2000 to 2010 for a) Iraq, b) Iraq excluding the Kurdistan
Region and c) the Kurdistan Region. As the Kurdistan Region is mostly rain-fed
and was not involved directly in the war during the study period, it is shown

separately.

Wheat and barley require a specific amount of water. In the north part of the
region (rain-fed area), wheat and barley mainly depend upon the amount and

frequency of rainfall as well as its temporal and spatial distribution. For instance,
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annually the region may receive adequate rain, but a surplus or shortage in
rainfall at any of the growing stages might have a significant impact on final crop
production. In Iraqg, the total harvested area and production of the cereals wheat
and barley fluctuate greatly inter-annually. The average rainfall also fluctuates
annually with a similar pattern and, therefore, is considered the main contributing
factor for wheat and barley production. Although, the majority of the country is
irrigated, rainfall is nevertheless considered the main driver of production. This is
likely related to the fact that rainfall is the major source of recharging the two
main rivers in the country, which are used to irrigate crops. Thus, any disruption
in the rainfall pattern can cause water deficiency, resulting in lack of production.
It is apparent from figure 6.3 that the smallest harvested area, production and
rainfall were recorded for 2000 and 2008 when the region experienced severe
droughts.
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Figure 6-3 Winter wheat and barley harvested area and production, with average
rainfall, from 2000 to 2010 for a) Iraq, b) Irag excluding Kurdistan Region and c)

Kurdistan Region.

Interannual rainfall variability considerably affects soil water availability in return
pose major risk on crop production. It has been reported that the recent droughts
in 2008 and 2009 caused sizeable declines in crop production in Iraq and the
reduction was estimated to be 45% from 2007 to 2008 (USDA 2008). This result
is consistent with data obtained in this study where the reduction is estimated to
be about 50%. To illustrate the impact of drought on regional crop production,

the estimated 2008 and 2007 crop production maps are estimated and
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compared. Figure 6.4 shows the distribution of the estimated crop production
(1000 tons) over lraq for (a) 2007, (b) 2008 and (c) the relative change
(percentage) between these two years. It is apparent from figure 6.4a that the
winter wheat and barley production were distributed normally over the region in
2007. Mostly, the north and the areas alongside the rivers are having the highest
amount of the production compare to very south, south-western and middle-
western parts of the country. In 2008, the region was experienced a severe
drought. In figure 6.4b there is a clear decrease of winter wheat and barley
production throughout the region due to the impact of drought. During the 2007-
2008 growing season, the vegetation indices and NPP were generally very poor.
As figure 6.4a and 6-4b cannot show which area had been impacted more due to
drought, the relative change between these years was computed. It can be seen
from figure 6.4c that the crop production decreased for all governorates except
Karbala and Baghdad. The north part of the region, which is considered as rain-
fed, is the most affected area by drought. The largest reduction in crop
production was recorded for Ninawa followed by Erbil, and Sulaimani (by -86%, -
74% and -62%, respectively) as these are mainly rain-fed areas. In total, the winter

wheat and barley production decreased by -50% from 2007 to 2008.
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Figure 6-4 The figure shows the impact of severe drought in 2008 on winter



6.5.2 War/Conflict

In Iraq, since the 1980s international cooperation and assistance in the
environmental sector has been limited due to political instability. Although, after
2003 the country was partially opened to some organizations, they had limited
powers and resources. Therefore, even today insufficient robust scientific data
exist to address natural and human issues in Iraq. The country has faced several
major turbulences where some of them are directly or indirectly related to recent

military conflicts during last decade.

The ‘Post-Gulf’ war, which started in 2003, lasted for around eight years. During
this time, due to political instability and insecurity, many farmers were unable to
grow crops. This, in turn, affected the overall crop production of the country. The
US Department of Defence estimated that around 1700 tonnes of depleted
uranium was used during the 2003 war which contaminated soil, water and air
with higher levels of radiation than normal (United Nations, 2013). The
consequence of these major turbulences have significantly polluted the
environment and this might have a negative impact on overall vegetation cover,
particularly crop production. Cordesman and Burke (2007) reported that the
Anbar, Baghdad and Salahadin governorates accounted for 80% of the total
attacks during 2006 to 2007. Therefore, these governorates were selected to
identify the extent to which regional instability has impacted on regional crop
production. The number of attacks was obtained from the individual reports to
Congress on measuring stability and security in Iraq (DOD, 2005-2007). The
“attacks” range from an individual insurgent executing an ineffective attack to a
coordinated attack with several insurgents using various weapons systems. The
crop production of these governorates in 2005 to 2007 was compared to the crop

production in 2002 when the region was relatively stable (Figure 6.5).

The recent conflicts in Iraq are complex and highly dependent on geographical
location. Some governorates in Irag faced more attacks than others, mainly due to
different sectarian and ethnic tensions. The peak in violence was reached during
2005 to 2007 and the most conflicted affected governorates were Baghdad, Al-
Anbar and Salahadin in term of the number of attacks. It is apparent from figure
6.5 that, in total, Baghdad had the largest number of attacks during the period
(27711) followed by Al-Anbar and Salahadin by 18058 and 14886, respectively.
Given large population displacements, and extensive disruption of markets and
trade flow, it might be expected that the governorates of Baghdad, Al-Anbar and

Salahadin might face elevated food insecurity levels over the period. The figure
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6.5 shows the amount of winter wheat and barley production for Baghdad, Al-
Anbar and Salahadin from 2005 to 2007 in comparison to 2002. Although
agriculture management has been improved and farmers have received more
support from the government since 2002, the winter crop production was
generally low during that period. These results are likely to be related to high

regional instability in those governorates over the period.
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Figure 6-5 The figure illustrates the impact of regional instability of the most
affected area on governorate crop production from 2005 to 2007 with the

comparison of 2012.

Surprisingly, we found that, although the region experienced a severe drought in

2008, crop production in Baghdad was greater than in 2007 when Baghdad
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experienced the largest number of attacks (this is also in line with statistical
ground data). This suggests that regional instability might have an impact similar
to extreme events such as drought. This result is likely to be related to the largest
number of attacks in the area. Baghdad is the capital city of Iraq, and it holds
around a quarter of Irag’s population. Since 2003, when the US forces arrived,
incidents started in Baghdad. In Baghdad, several districts experienced not only
ground fighting, but also revenge killings and bombings (Serdan, 2013). As a
consequence of being the most affected by conflict, Baghdad had the highest rate
of movement with 8% of household members leaving their dwellings (United
Nations WFP, 2008), which might have impacted the workforce in the agriculture

sector.

Due to their geographical locations, Anbar and Salahadin faced a large numbers
of incidents during the period and, thus, their food security was consistently at
risk. For example, one of the most violent governorates in the Coalitions in Iraq
was Anbar. Violent attacks increased to an average of 50 per day by August 2006,
up 57% from February, and this rate continued to rise (Lindsay and Roger, 2012).
In particular, inside Anbar, Fallujah suddenly arose as the major battleground of
the Iraqgi insurgency. Besides, it was the most heavily bombarded city during the
war (United Nations, 2013. “The insurgency has created complex patterns of
conflict that have become a broad struggle for sectarian and ethnic control of
political and economic peace’ (Cordesman and Burke, 2007). Therefore, the
deterioration of crop production in the three most attacked governorates during
the period, compared to production in 2002, could be attributed to their regional
instability.

4. Why drought has to be monitored?

Based on the human history, it can be seen that natural disaster such as drought
has had a substantial role in agriculture growth and economic cost. Drought can
have both direct impact such as water scarcity, hydropower supply and
agricultural losses, and indirect impact such as industry losses, expensive
payment for food imports, reduced export earnings (Benson and Clay 1994). The
level of the losses realised depends on the experience of the local society and the
vulnerability of the infrastructure of the country to the hazard (Below et al. 2007).
In term of the number of people killed globally over 100 years, drought

positioned number one among all natural hazards, and the most frequent
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occurrence of droughts taken place in Asia and Africa (Below et al. 2007). The
research also reported that Asia and the Middle East recorded the largest increase
in deaths by 25% followed by Africa (8%) over the period. Although increased in
economic losses was observed for all regions in the research, the 68% increase in
Asia and Middle East was double that of any other region. In developing
countries, drought was considered as the main cause of severe food deficiency

and was the cause of the majority of food emergencies (FAO, 2003).

Due to its geographical location, Iraq is affected by irregularities in precipitation
resulting in frequent occurrence of drought. At the 39 meteorological stations
over past 30 years (1980-2010), the SPI was computed at various time scales as
an indicator to determine the impact of drought severity over Irag (Al-Timimi and
Al-Jiboori 2013). They highlighted the years 1983, 1998, 1999, 2000 and 2008 as
the most impacted years by drought over the investigation period, whereas 2008
was announced the worst drought during the period. Barley production
fluctuation was evaluated from 1961 to 2000 in Iraq, Morocco, Syria and Turkey,
and found that severe fluctuations closely related to precipitation fluctuations (De
Pauw 2005). During 1999 drought, water level in Irag’s main rivers dropped by
more than 50 % and rainfall was 30% below average (ESCWA 2005). This led to a
70% failure in crop germination in rain-fed agriculture areas and reduction of 37%
and 83% of wheat and barley production, respectively in central and southern

parts of the country.

Drought is a common event in many arid and semi-arid regions due to the
prevailing climate. Many research and operational drought monitoring models
have been developed regionally and globally to estimate and predict drought. In
these models past, current and future condition with the frequency of drought
were evaluated. For example, model simulations under a low-to-moderate
scenario were used to investigate the magnitude and key drivers of drying land
globally (Figure 6.6) (Zhao and Dai 2015). The results indicated that over most
parts of East and West Asia, southern Africa, America, Australia and Europe, the
frequency of the SM-based moderate (severe) agricultural drought is expected to
increase by 50-100% (100%-200%) in a relative sense by the 2090s (Figure 6.6 ¢
and d). It was also expected that the runoff-based hydrological drought frequency
would increase by 10%-50% over the majority of lands. It can be seen from figure
6.6 that drought frequency, using the three drought measures, is expected to
increase over most areas including Iraq. These results are also in line with both

climatic models (Evans 2009; Evans 2010) and regional climatic simulations (Kitoh

152



et al. 2008; Mariotti et al. 2009; Jin et al. 2010; Seager et al. 2014) where
significant drying under future climate was projected for the Eastern
Mediterranean. In addition, Zakaria et al. (2013) employed the climatic model
CGCM3.1 (T47)2 to demonstrate the variation in average rainfall and temperature
in the countries of the Middle East and North Africa (MENA), with particular
emphasis on Iraq, by comparing historical (1990-2009) to future (2020-2100)
data. The study revealed that average future monthly temperature tends to be
higher and average monthly rainfall lower by 36.47% relative to the historical
record of rainfall for the same months (Figure 6.7 a and b). World Bank (2011)
also stated that MENA countries would face higher temperature because of
climate changes. Warmer climate and increased variability will lead to frequent
occurrence of both droughts and floods (Wetherald and Manabe 2002). Drought
is one of the most frequently issues for agriculture life and water supply in MENA
regions. This particularly effective in MENA countries as most of the agricultural
land is under rain-fed condition. For instance, one third of Iraq’s winter wheat and
barley production is produced under rain-fed condition (Schnepf 2004). Based on
previous evidence, Iraq might face further droughts and its consequences in the
future. Therefore, a comprehensive method to provide timely information, wide
adaptation and mitigation policy is required to make the region more drought

resistant.
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Figure 6-6 “Multimodel ensemble averaged changes of drought frequency
(defined as the percentage of the time in drought conditions, not percentage
changes) from 1970-99 to 2070-99 under the RCP 4.5 scenario, with drought
being defined locally as months below the (a),(c),(e) 10th and (b),(d),(f) 20th
percentile of the 1970-99 period based on monthly anomalies of (a),(b)
sc_PDSI_pm, (c),(d) normalized SM in the top 10-cm layer, and (e),(f) normalized
runoff R in individual model runs. The monthly anomalies of SM and R were
normalized using the standard deviation over the 1970-99 period. The stippling
indicates at least 80% of the models agreeing on the sign of change” (Zhao and
Dai 2015).
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Figure 6-7 Average annual (a) temperature (c’) and (b) rainfall (mm) over the

study area for historical and future periods in Iraq (Zakaria et al. 201 3).

6.6 Drought mitigation plan

In term of the agriculture drought mitigation, directly or indirectly the results of
the current research might have a significant contribution to improve the regional
agriculture management. In addition, previous researches have demonstrated that
using remote sensing data might help the region in supporting local and policy
making decisions. The results of the current work could improve the agriculture
practice management toward better drought mitigation plan. For example,
spatiotemporal variation in key land surface phenology parameters were assessed
and mapped across Iraq over last decade (Qader et al. 2015). Such information
can assist to improve agricultural management such as irrigation and fertilization
through aiming to establish a suitable relationship between the timing of plant
growth stages and carbohydrate consumption (Garcia-Tejero et al., 2010; Menke
and Trlica 1981; Mooney and Billings, 1960). The dominant vegetation land cover
types were classified over the region using automated phenology-based
classification approaches during the last decade (Qader et al. 2016). Updated

annual land cover maps can be employed by policy-makers and scientists to
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improve regional scale agricultural management practices under a variety of
environmental conditions. It was also found that the date of maximum MODIS
NDVI can be used to estimate crop production in Iraq using linear regression
model (Qader et al. in submission). Local crop production and yield needs to be
forecasted regularly using remote sensing data. This forecasting could help notify
local authorities about potential decreases in crop production and yield, leading
to appropriate import and export decisions (Garcia-Tejero et al., 2010; Menke and
Trlica 1981; Mooney and Billings, 1960). The results of LSP, VLC types and crop
production were mapped in the current research. The products consists of colour
maps, depicting which parts of Iraq are suffering from various degrees of
drought. The maps quantify the area and production loss over the region due to
the impact of drought. This could help the local authority to take careful
consideration to those areas which are more vulnerable or exposed to the impact

of drought.

Any reconstruction project aiming to improve agricultural conditions, including
based on developing an agricultural monitoring system, might be challenging in
Iraq until security conditions improve. In addition, reliable socioeconomic and
environmental information are needed to improve agricultural decision support
systems. For the current condition, an agricultural monitoring system based on
remotely sensed data is required to provide comprehensive information to local
farmers and policy makers. This system should have the ability to quantify the
type and amount of agricultural crops, monitor water quality, land quality and
irrigation efficiency, and estimate and forecast crop yield and production. A
drought early warning system should be at the top of regional plans and this
should be capable of characterising water supply and climate trends and
therefore identify the onset or likelihood of occurrence and severity of drought.
This could reduce the impact of drought if the information is delivered in time to
the right people, and mitigation and preparedness plans are put in place. Drought
mitigation and preparedness plan can be consisted of different components; i)
prediction can advantages from climatic studies, soil moisture and remote
sensing data, ii) monitoring based on the ground based knowledge such as
weather stations, iii) impact assessment can be obtained indirectly such land cove

types and iv) response by providing better management.

As the region is struggling with water scarcity, water conservation could be
another mitigation strategy to combat drought. This could be done by building

dams or holding surface water in reservoirs as the region has intense rainfall in
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winter resulting in the frequent occurrence of floods. The mitigation plan could
also be implemented through improving water use efficiency. Up to now, many
irrigated areas rely on traditional irrigation systems such as surface irrigation. In
this method, a massive amount of water is needed to irrigate crops. Therefore,
promotion of the irrigation system to modern systems such as drip and sprinkler
irrigation is potentially beneficial. In addition, the government and farmers could
consider adopting a range of plants that can tolerate dry conditions or using
genetically modified varieties that are more resistant to drought. Other strategies
for drought mitigation or relief should be considered such as cloud seeding, crop
rotation, and using recycled water as part of improving agricultural management.
Research should also be encouraged that seeks to find the optimal method to
mitigate drought by incorporating more technologies that can assess and forecast

potential crop production failures and provide possible solutions in the region.

6.7 Future work

The global impacts of land use land cover change might be as important or more
than those related with potential climate change over the coming decades (IPCC
2000). Over last 50 years, 33% of the total anthropogenic carbon emission
accounted for the contribution of LULC change (Houghton et al. 1999), from
19980s to 1990s was 20% of total emission (IPCC 2007), and was 12.5% over
2000 to 2009 (Friedingstein et al. 2010). Despite of less information regarding to
the rates and types of the land use land cover change, evidence of natural and
anthropogenic causes of such change are frequently missing (Turner et al. 1999).
Natural and anthropogenic factor are the main causes of LULC changes. Future
research on investigating rapid changes in land use/land cover are therefore
recommended in Iraq. These changes can be used as a surrogate of the impact of
natural factor such as drought and anthropogenic factor such as civil war over the
region. For instance, Stevens et al. (2011) used Landsat satellite images to
investigate the changes of forest area caused by civil war in Atlantic Coast of
Nicaragua from 1978 to 1993. The result revealed that the beginning of five to
seven years of the conflicts, the rate of reforestation is higher than deforestation,
as compare to the later years of conflicts where deforestation land was nearly
doubled to reforestation. In South Vietnam, the results obtained from GIS and
remote sensing data indicated that war caused the reduction of the total
mangrove area by one third because of using herbicides by US (Thu and Populus,
2007). Further research should also be undertaken to investigate which

combination of remotely sensed and phenological data results in the best

157



classification of abundant agriculture land in Iraq due to regional instability
(Alcantara et al. 2012). In addition, the smoothed MODIS time series can be used
to understand the degree of extensification and intensification in croplands
during last decade (Galford et al. 2008). With higher quality and more accurate
maps of agricultural lands, decision makers at the regional level will be much

better positioned to reliably assess land use policy.

The current regional land cover classification can serve as a start point. More
research efforts should be undertaken toward finding approaches to improve
regional VLC types. Although, moderate resolution such as MODIS 250m can be
employed to monitor area with large field sizes, higher spatial resolution data are
required with finer temporal resolution for monitoring agricultural lands with
smaller field size (Justice and Becker-Reshef 2007). A new data source for
monitoring land cover can be obtained from Landsat 8 which has the potential to
improve the characterization of land’s surface significantly. Compare to previous
Landsat data, the new data set has several new features such as two spectral
bands, two sensors, an improved spectral range for some bands, and refined
radiometric resolution from 8-bit to 12-bit (Pahlevan and Schott 2013. However,
validation of the future classification over Irag remains a crucial issue. This will
need larger involvement of experts on the ground and the obtaining a higher
quality and quantity of ground data. In addition, further input data in both
reference data and images might improve the performance of the classification.
The reference data in different agro-ecological zones and the ground reflectance
for various crop growth stages should be collected in order to achieve maximum
accuracy in crop mapping. One of the main sources of misclassification could be
related to the variations in planting and harvesting dates. In addition, in order to
improve the classification accuracy and discriminate different crop types such as
wheat and barley, using of the rich spectral data (hyperspectral data) is crucial.
For instance, in Iran, a neighbouring country with a similar environment, an effort
was made to discriminate wheat and barley using the hyperspectral sensor
Hyperion, which has 242 spectral bands and 30 m spatial resolution (Fahimnejad
et al. 2007). The results of the classification indicated that Hyperion data could
be used to discriminate both crops. Therefore, fine spatial and multi-spectral
remote sensing data are needed to identify and map crops in the arid and semi-

arid regions.

To overcome this issue and increase the accuracy, researchers have used fusion

approaches to combine the fine spatial resolution of Landsat with the high
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temporal frequency of coarse resolution data such as MODIS (Gao et al. 2006;
Lobel at al. 2013), which can be applied in arid and semi-arid regions. Such a
product could have additional value for many applications, which need both fine
spatial and temporal resolution such as land cover classification and forecasting
crop yield. One approach, called the spatial and temporal adaptive reflectance
fusion model (STARFM) is based upon a spatial relationship between Landsat and
MODIS spectral reflectance. The MODIS spectral reflectance can be downscaled to
the spatial resolution of Landsat obtained at the same dates (Gao et al. 2006). An
extension of STARFM was developed to enhance the accuracy of predicting the
surface reflectance of heterogeneous landscapes (ESTARFM) (Zhu et al 2010).
Linear mixture models were also used to downscale MERIS to a Landsat-like
spatial resolution and results indicated that vegetation dynamics, discrimination
of crop types, phenology and capturing rapid land cover types can be monitored
effectively (Zurita-Milla et al. 2009; Amoros-Lopez et al. 2013). In addition, new
products such as the Sentinel data provided by the European Space Agency (ESA)
have become accessible to the remote sensing community and increase the
spatial and spectral properties for services such as complex land cover/land use,
forest monitoring, and change detection. For example, Balzter et al. 2015
recently reveal that Sentinel-1 can be employed to recognise several land cover
classes of the CORINE Land Cover nomenclature. The Sentinel satellite missions
comprise five different satellite, one and two for agriculture interest, three for sea
and land surface temperature, ocean colour and land colour and sea surface
topography, and five for atmospheric monitoring. The data extracted from
Sentinel imagery can be used in isolation such as Sentinel-2 and 3, or both can be
combined, or both can be combined with MODIS and Landsat 8 through data
fusion techniques. This may also advance the LULC classification and forecasting

of crop yield in the future in arid and semi-arid regions.

Increasing global population to around 9 billion people by 2050 and impact of
climate change pose a major risk on the world’s agriculture, researchers are
seeking to develop space based technology to help maintain the global food
supply. Until now, we have focused on reflected light in the solar spectrum as the
main source of information about vegetation condition. However, there is an
extra source of information in the spectral range of optical and near infrared
which can provide information about vegetation productivity. This source of
information is associated to the emission of fluorescence of plant leaf chlorophyll
where it can be yielded as re-emitted energy as fluorescence because this part

cannot be utilized in carbon fixation. In addition, observational evidence in many
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studies revealed that chlorophyll fluorescence provides information content
independent of reflectance based spectral ViIs (Guanter et al. 2007; Middleton et
al. 2008). Recent advances in remotely sensed-based approaches to estimate
photosynthesis relied on the flux of chlorophyll fluorescence emitted by the
canopy, which has given opportunities to develop many satellite retrieval
algorithms (Joiner et al. 2011; Frankenberg et al. 2011; Parazoo et al. 2014).
Recently, Guan et al. (2016) for the first time provided a framework to correlate
solar-induced fluorescence (SIF) retrievals and crop yield. In their work, crop
productivity was estimated for 2007-2012 using spaceborne SIF retrieval from the
Global Ozone Monitoring Experiment-2 satellite in United States. Besides more
accurate and efficient measurement of crop productivity compared to traditional
crop monitoring approaches, the SIF was able to measure the impact of
environmental stresses on carbon use efficiency and autotrophic respiration, with
considerable sensitivity of both to high temperatures. These outcomes revealed
new opportunities to improve crop yield forecasting and increase understanding
of crop yield responses to different climatic conditions in arid and semi-arid

regions.

Furthermore, to forecast regional crop production and yield, as the region has
high climatic flactuations and crop production/yield are significantly vary with the
amount of rainfall, thus use of the crop forecasting model based on climatic data
should be considered in the future work in Irag. These models are mainly based
on two components, rainfall and temperature (Barnett and Thompson 1982) as
they are related to cop yield. Temperature and rainfall data can be obtained either
through meteorological stations or through satellite measurements. For instance,
AVHRR-NDVI data and SPI at different time scales was combined to predict wheat
and barley production in Middle Ebro valley (Vicente-Serrano et al. 2006). In Spain
and Kenya, The FAO Crop Specific Water Balance model (CSWB), SPOT-NDVI and
meteorological data were combined to improve the crop yield forecasting (Rojas
2007). Similarly. In lowa, USA, crop yield was assessed and predicted using the
combination of NDVI, soil moisture, rainfall and surface temperature (Prasad et al.
2006). In Morocco, predictive models, that combined NDVI, air temperature and
rainfall, were developed to forecast wheat yield (Balaghi et al. 2008).
Improvements were reported in all studies to predict and forecast crop yield.
Therefore, in the future works, the performance of the model can be improved by
combining MODIS-NDVI data with meteorological data such as SPI and

evapotranspiration (ET).
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Chapter 7: Conclusion

This chapter provides a list of key findings extracted from the three research
papers. These findings are all key to improve the regional crop production and
monitoring vegetation land cover types. In addition, primary information of great
importance to various applications such as food security, climate, agriculture
management, biodiversity, natural and anthropogenic impact and carbon cycle

modelling can be obtained directly or indirectly from these findings.

For the first time LSP parameters of terrestrial vegetation were mapped across
Iraq at a spatial resolution of 250 m. The spatial variation in LSP across the whole
of Iraqg for all vegetation types was quantified, thus, providing an important
example of mapping vegetation phenology in a semi-arid environment, for which

previous research has been relatively lacking.

e Greater spatial variation occurred in the SOS than end of season (EOS),
which may be due to the spatial distribution of rainfall and temperature
as a function of elevation.

e Linear regression analysis indicated that elevation was positively
correlated with all LSP parameters particularly EOS (R? = 0.685, R°=0.638
and R?=0.588, p < 0.05 in shrubland, cropland and grassland,
respectively). In contrast, in most case studies in Europe the coefficient of
determination between EOS and elevation was negative due to the effect
of low temperature at high elevations as a driving factor in bringing the
season to an early end.

e The magnitude of delay in SOS and EOS increased in all land cover types
along a rising elevation gradient where for each 500 m increase, SOS was
delayed by around 25 or more days and EOS delayed by around 22 or
more days, except for grassland.

e The SOS and EOS also varied temporally during the last decade,
particularly the SOS in the lowland, north of the country where the
standard deviation was around 80 to 120 days, due mainly to the practice

of crop rotation and the traditional biennial cropping system.

Reliable information about croplands and natural vegetation in such regions is
generally scarce. Such an information can be of interest to several applications
such climate, food security, biodiversity and agriculture management. Therefore,

a phenological-based classification approach using SVM at the regional scale for
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the first time was developed to derive dominant VLC types in arid to semi-arid

regions such as lraq, particularly croplands, from 2002 to 2012.

e The SVM classifier approach produced satisfactory classification
accuracies (generally > 85%) with relatively high Kappa coefficients (>
0.86) among the dominant VLC types of Iraq.

e Correlation of VLC cropland area during the last decade with ground
statistical data revealed an average coefficient of determination of 0.7 (p
< 0.05), whereas the average agreement for the global MODIS product
cropland class was 0.35 (p < 0.05).

e This research also showed that the 2008 drought, the most extreme
event during the last decade in Iraq, led to a considerable decline in all
dominant VLC types.

e VLC instability, particularly for croplands, was evident, most likely due to
more than a decade of regional instability and natural disasters across
the country coupled with variable quality agricultural management

practices.

Using the current crop area to mask croplands, this study combines the data from
NASA’s MODIS in collaboration with official crop statistics to develop an empirical
regression based model to forecast winter wheat and barley yield/production in
Iraq. Although, several methodological approaches were tested with using various
remotely sensed indices to estimate and forecast crop yield at the governorate
level, the research was unable to do so. This is due to mainly lack of the reliability
of the ground data and low spatial resolution data used in the current study
compare to the small agriculture field size in the country. However, better
estimation and forecasting of crop production were obtained at the governorate

level in Iraq.

e The result of the current research imply that time of the maximum Vis are
among the predominant predictors that can be used to predict crop
production at least one and half month prior to the harvest.

e The result indicated that MODIS NDVI offers a better basis for estimating
and forecasting crop production, with an average R?=0.70, relative to
MODIS EVI (Avg R?*=0.68) and NPP (Avg R*=0.66) using the leave-one-year-
out approach.

e This study has shown that remote sensing indices could characterize and

forecast crop production more accurately than simple cropping area,
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which was treated as a null model or benchmark against which to
evaluate the proposed approach.

e Generally, the results from this work suggest that remote sensing related
to vegetation phenology is valuable for agriculture monitoring, land cover
classification and crop production forecasting. For the homogeneous
pixels, the MODIS data are performed better for such application in the
region. However, due to its coarse spatial resolution compare to the small
agricultural field size, separating crop types and forecasting yield are

challenging in Iraqg.

Quantifying crop production is essential for the wide range of application such as
food security, management and carbon cycle modelling. This is particularly
crucial for such a region as Iraq, as its food security is always at risk due to the
impact of decadal natural and anthropogenic factors. Thus, such an estimation in
advance could help scientists and policy planners to improve regional agriculture

management and food security under a variety of environmental condition.
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