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ABSTRACT
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Mathematical Sciences

Master of Philosophy

NOISE PROCESSING BY NETWORKS
by Styliani Kontogeorgaki

Cell behaviour is determined by complex molecular regulatory networks. Sig-
nalling networks are particularly important since they are responsible for the robust
transmission of noisy environmental information to the cell’s nucleus. However, al-
though important signalling pathways have been well studied, and the manner of noise
propagation through regulatory networks has been discussed, the relationship between
network architecture and the cell’s ability to process environmental noise is not well
understood. To approach this problem in this thesis we derive a mathematical formula
relating a network’s structure to its noise processing ability. We find that noise pro-
cessing is highly affected by the networks complexity, and in particular by the number
and length of the weighted paths from the noisy input(s) to the output. In order to ex-
plore the utility of this mathematical expression, we apply it to the regulatory network
for pluripotency in mouse embryonic stem (ES) cells and assess the effects of network
topology on the propagation of noise through this system. We conclude by using the
underlying theory to explain the interaction patterns in the ES cell’s transcriptional

circuit.
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Chapter 1

Introduction

Recent research developments in cell biology increasingly show the utility of networks
for better understanding and exploring the cell’s organisation and function [9-11].
Regulatory signalling pathways and their underlying networks are particularly impor-
tant for their role in transmitting noisy environmental information to the cell nucleus
[6, 12-15]. However, a malfunction in signal transduction is commonly associated
with cancer, as well as with deficiencies in embryonic development [16-20]. Although
specific molecular mechanisms that are involved in noise signalling, along with the
dynamics of these functions, are well defined and studied, the role by which signalling
networks receive environmental noisy signals remains ambiguous [21-26]. To address
this problem we focus on exploring the relation between these networks’ architecture
and their effect on environmental noise processing; the graph representation of such
networks can shed light on their latent properties and allows the assessment of the
important pathways. To gain insight into the way signals propagate across such or-
ganizations, we will use tools from graph theory and stochastic differential equations
(SDEs). In this thesis, we consider and model ‘noise’ as the inherent stochasticity of
the system, as well as the external environmental noisy signals, which could be thought
of as bearing essential information or just random environmental fluctuations. First
we discuss biochemical systems considering the former type of noise, which has been
studied at length [27-29]. Later we focus on common signalling motifs to explore the

relationship between network structure and noise transduction from a noisy input(s).

1.1 Biological Networks

Biological systems can be represented by networks in order to reveal and understand
the underlying biological processes, as well as to interpret interactions or states of
biomolecules that are provided in biological data [30, 31]. The analysis of biological
networks elucidate the behaviour of such complex systems. Therefore, biological sys-

tems with a large copy number of proteins, genes, molecular species or signals can be
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Figure 1.1: The image shows how proteins (different colours) pass the membrane of
the cell into the cytoplasm and move into the inner cell, transferring external signals.

Image source [2].

better understood, controlled and predicted. Important properties such as topology,
expression patterns, interactions, or signal transduction can be revealed [30, 32]. Im-
portant functions in the inner cell are described via a variety of complex molecular
networks [9, 12]. These functions can be metabolic, DNA synthesis or repair, protein
to protein interactions, or information processing. They are implemented by transcrip-
tion regulatory networks or signal transmission networks among proteins, transcription
factors, genes and other regulatory molecules [3, 11, 30, 33—-36]. Here we are discussing
some important biological networks such as protein to protein interactions, transcrip-
tion regulatory networks, and we are focusing on interactions among molecules in

signalling networks.

1.1.1 Protein-Protein Interaction Networks

Proteins are biomolecules that consist of a long sequence of twenty different types of
amino acids. The position of each amino acid in the sequence determines the protein’s
unique three-dimensional structure, specifying their activity [31, 36]. The role of pro-
teins is constitutive not only because they are elementary units of the cell, but also
for the reason that they perform an abundance of functions within the cell. Proteins

can act as enzymes and incite the activity of chemical reactions involved in metabolic
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Figure 1.2: Protein-protein interaction network in yeast. The structure of highly
connected proteins is three times more important than the proteins that are not highly

connected [3].

processes. Other proteins either are responsible for the cell’s structure and organi-
zation, or implement transcriptional regulation. Alternatively, proteins can deliver
signals among cells or from the membrane to the cell’s nucleus [2, 12, 30, 31, 36, 37].
Fig. 1.1 illustrates different proteins that transmit signals from the cell’s membrane
into the inner cell. Proteins interact with other proteins in order to form protein com-
plexes. The collection of all protein-protein interactions (PPI) forms a protein-protein
interaction network [30, 31, 36]. In order to identify physical PPI, many experimental
techniques have been developed [3, 38-41]. The structure of PPI networks can play
an important role [3, 42]. For example, in yeast the robustness of the system against
mutations not only is affected by the structure of PPIs, but also on how strongly pro-
teins are connected. The more highly the proteins are linked, the more fundamental
is their role in the network; in highly connected proteins (see Fig. 1.2), their structure

is three times more important than the proteins that are not highly connected [3].

1.1.2 Transcription Regulatory Networks

The way a cell responds to internal or external stimuli can be described by gene regu-
latory networks and signalling pathways [31, 43]. Cells contain the genetic information
in their nucleus as sequences of nucleic acids. All the cells have the same deoxyribonu-
cleic acid (DNA), which in its turn encodes genes as required to function [11, 36, 43].

The way the cell decides how to function depends on the regulation of the genetic
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Figure 1.3: Transcription process. Image is taken from [4].

material in the DNA. This genetic information is transcribed through the process of
gene expression [2, 36].

The first level of gene expression is the transcription, which is the bridge from
DNA to ribonucleic acid (RNA). The enzyme RNA polymerase along with the tran-
scription factors (TFs) execute the transcription process. TFs are molecules charac-
terized by the property of binding on a segment of DNA, in order to produce a copy of
it into mRNA. This copy is formed by the RNA polymerase, which first separates the
DNA helix and then develops a new RNA strand. During the transcription process,
if the DNA unwinds, the mRNA copies the genetic information in the nucleus of the
cell. Fig. 1.3 describes how a transcription factor binds on a sequence of DNA and

regulates the gene’s decision (activates a gene) for a production of a protein [35, 36].

If a gene is encoded by a transcription factor, the information contained in the
mRNA is transcribed into a protein; this process is the translation. The whole process
occurs in the ribosome, which is the machinery of the synthesis of proteins. In more
detail, once mRNA has transcribed the genetic information, it travels out of the nucleus
into the cytoplasm; then, mRNA decodes the information in the ribosome and creates
an amino acid chain that is translated into a protein. The entire process from DNA

to proteins, transcription to translation is depicted in Fig. 1.4.

1.1.3 Signalling Networks

Signals in the cell are received and processed by signalling pathways from its external
local micro-environment, as well as from various parts within the cell. In mammalian
organisms, cell signalling pathways intercommunicate with each other and complex net-
works structures arise [12, 44, 45]. These signalling networks affect the coordination of
cell activities and the signal processing in the cell’s environment [3, 31, 46-50]. Such

networks give information about the nature of the interactant molecules, along with
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Figure 1.4: Transcription and translation process. Image is taken from [5].

their orientation, timescale and the influence on the targets of interest. Signalling net-
works are of particular importance in maintaining robust cellular identities, since they
mediate noisy environmental information from the local cellular micro-environment to
the cell nucleus [3, 46-50]. In order to perform this task effectively, they must be able
to transmit complex environmental information robustly; a failure to do this has been
connected to cancer initiation and progression [51-53], as well as causing deficiencies

in embryonic development [12, 54, 55].

A great amount of our knowledge about signalling networks arises from the de-
tailed analysis of their constituent signalling pathways. A variety of these pathways
have been studied in great detail, and the core components and biochemical mecha-
nisms of signal transduction in pathways such as wingless-integrated (Wnt), transform-
ing growth factor beta (TGF-3) and mitogen-activated protein kinase (MAP Kinase)
signalling are well defined [51, 52, 54, 56, 57]. Considering the example of the Wnt
signalling pathway, we can describe how signals might be transmitted in the cell nu-
cleus. The key effector of canonical Wnt signalling in the nucleus is the multitasking
protein [-catenin, which plays an important role in cell-to-cell adhesion and in gene
transcription. It is well known that the absence of Wnt signalling stimulation from
[B-catenin leads to the repression of the target genes, while the binding of it helps
the signal pass into the nucleus [51, 52, 54, 58, 59]. They negatively regulate Wnt
signalling by binding to Wnt receptors. Although the knowledge of specific molecular
mechanisms that contribute or respond to noise in signalling and the dynamics of these
functions are well defined and studied, the role by which signalling networks receive

environmental noisy signals remains unclear [21, 22, 60].
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Figure 1.5: Pluripotent network of ES mouse cells showing the most important tran-
scription factors and their interactions [6, 7]. The size of the nodes indicates the level

of their connection to the other nodes. Image is taken from [7].

1.1.4 Pluripotent Network

Stem cells can be found in the pre-implantation embryo, as well as in various tissues in
adults. They are distinguished for their capability in repairing tissue, self-renewal and
differentiation. Embryonic stem (ES) cells are a type of mammalian stem cells which
live in the inner cell mass inside the blastocyst. They have the ability to be adapted to
many different functions or activities. ES cells can self-renew indefinitely in vitro and
produce any kind of cell type and tissue [14, 36]. This property, namely pluripotency,
renders ES cells distinctive [11, 34, 61-64]. The pluripotent state is characterized by
a network of specific interactions between proteins and transcription factors [65, 66].

Gene expression is described by the signalling pathways of such regulatory factors.

Specific transcription factors are well known for their importance in the mainte-
nance of the pluripotent state in ES cells. TFs such as Oct3/4, Sox2 and Nanog are
the main body of the transcriptional circuit in both mouse and human embryonic stem
(ES) cells [67-70]. Despite the fact that the signalling pathways in mouse and human
ES cells vary, the TFs mentioned above are noticeably maintained [62, 63]. The fac-
tors Oct3/4, Sox2 and Nanog are essential for the pluripotent state and in conjunction
with Myc, Tfcp2ll, KlIf4, Lin28 and Esrrb are the fundamental proteins involved in
the self renewal ability of ES cells [6-8, 61, 68, 70-73]. It has been established that

the forced expression of combinations of these factors in somatic cells is adequate to
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induce pluripotency de novo [61, 71, 74]. Although this core transcriptional circuit is
self-sustaining when shielded from external stimulation [75], it is known that a network
of signalling pathways which process extra-cellular environmental noise are also essen-
tial both to the maintenance of, and exit from, the pluripotent state [76]. Importantly,
while the core transcriptional circuitry is broadly similar in mouse and human pluripo-
tent cells [7], their dependency on external signalling is markedly different: mouse ES
cells are dependent on Lif/Stat signalling [77, 78], Bmp [79], and canonical Wnt [75]
to promote self-renewal, while Fgf/Erk signalling disrupts pluripotency [75, 80-82]; by
contrast human ES cell self-renewal is independent of Lif [83], yet requires Activin and
Fgf [84, 85] signalling and furthermore, human ES cells undergo differentiation when

exposed to Bmp [85].

In order to identify interactions between proteins and transcription factors in
vivo, various experimental methods have been developed, such as chromatin immuno-
precipitation with DNA micro-array (Chip-on-chip) [7, 65, 66, 68, 86, 87]. The aim of
the Chip-on-chip technique is to identify the DNA binding sites of the transcription
factors, and determine the protein to DNA interactions [61, 88].

1.2 Noise and Stochasticity

Cells live in complex biochemical environments, which are inherently noisy due to
chemical reactions among constitutive proteins and other regulatory molecules. Noise
is the variation in the expression of these molecules that interact, along with the cell
to cell variability. The way an individual protein or gene is expressed can vary because
of the probabilistic nature of the cell; this can lead to the distinction of states or
properties of even identical cells in the same environment [89-92]. A fundamental

question to consider is ‘ What is the origin of this noise?’

In biology the definition of noise is distinguished by the inherent stochasticity
of the system, namely intrinsic noise, and by the effect of an external contribution
from the environment, the extrinsic noise. Intrinsic noise in the cell is characterized by
variability in gene expression on a molecular level, by fluctuations in signal transmission
in regulatory networks, usually in transcription and translation, or by specific factors
and mechanisms in the cell [36, 93-95]. Noise in gene expression is derived from
the way that the molecules interact and we will describe it later in Chapter 2 by
modelling biochemical reactions. As the whole process is stochastic, we can describe
it mathematically as probabilistic. The natural stochasticity (intrinsic noise) can arise
for multiple reasons: the small copy numbers of molecules in the cell, the different
states of the cell, or genetic mutations [91, 93, 96]. However, the extrinsic noise arises
from the random fluctuations in the environment of the cell (due to the noise in the
expression ability of the cell), from the signalling pathways, as well as from differences

in their concentration [94, 97, 98]. In large biochemical systems with many copies of
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Figure 1.6: The figures show the covariance of 2 random vectors x,y taken from a
multivariate normal distribution with mean zero and covariance matrix K = [2,1;1,4]
(left) and K =[1.2,1;1,1.2] (right). The red line shows linear regression.

molecules, the processing of the random fluctuations can be affected by the topology of
the network [28, 99]. Nevertheless, noise can play a beneficial role in the cell in many
levels [89]; in the coordination of gene expression for large copies of genes [100, 101],
in probabilistic division and differentiation into identical cells (i.e. bi-stability that
causes transition between cell fates) [90, 102, 103], as well as in evolution of the cell
[104, 105].

One way to measure noise is to calculate the variance (for one-dimensional sys-
tems) of the molecular species of interest, which express how much the fluctuations are
spread out from their expected value [94, 96, 106]. In multi-variant systems, similar

information is given by the covariance matrix K [106, 107]:

K(z,y) = ((x — (@), (y — (¥)"), (1.1)

where & and y are random vectors, and (x), (y) denote the mean value of x, y, respec-
tively. The diagonal elements of K give the variances, while the off-diagonal denote
the covariances of two random variables x, y, expressing a measure of their correlation
strength. The sign of K denotes the linear relationship of «,y, and a zero no corre-
lation. The normalised covariance or Pearson correlation coefficient of Eqn. (1.1) is
expressed by the coefficients [107]:

Q(wa y) = ) (12)
where its magnitude can vary between —1 < g(x,y) < 1; the sign of g stands for a

positive or negative correlation and a zero for no correlation.
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1.3 Mathematical Framework

It is possible to mathematically represent any network by its associated graph G(V, E),
where V' is the set of vertices (nodes) and (7,7) € E the set of edges that connect two
nodes 7 and j [108, 109]. The nodes can represent genes, proteins, transcription factors
or other regulatory molecules, and the edges represent the interactions between these
molecules. When G is considered to be directed, each edge has an orientation from
node v; to v;, with a sign corresponding to activation or inhibition. In the event that
G is regarded as undirected, all interactions are bi-directional. A vertex is adjacent
to another when there is an edge that connects them. Information about whether or
not there is such a connection is provided by the adjacency matrix, which is defined

as follows
a;; ER, i#£ 7
aij = 0, 1= j
The diagonal elements of A are zero, which is related to the fact that the graph G is

loop-less, such that no vertex is connected to itself.

As an example, the following directed graph can be expressed with its corre-

sponding adjacency matrix A accordingly:

0 al 0 as 0
0 0 as 0 0
A=10 0 0 0 0
0 ay 0 0 as
0 0 ae 0 0

In the case that in a graph all the interactions are bi-directional, the adjacency matrix

representation is symmetric.

In the following sections, in order to proceed further in noise modelling, we

introduce basic notions and methods that will be used later in calculations.

1.3.1 Conditional Probability

Considering n states y1,42,...,y, that a system may exist in at times 71 < 70 < ... <

Tn, we define the conditional probability p(yYn,Tn | Yn—1, Tn—1;Yn—2, Tn—2; - - - ; Y0, 70)
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[107], given the previous states, as follows

. . . . p(ynﬂ—n;yn—lv'rn—l;yn—277—n—2§---;yO;TO)

p(ynaTn | ynflalrnflayn72a7-n*2>"'7y077-0) - R . . :
p(yn—la Tn—ly yn—27 Tn—Qa Tt y07 TO() )
1.4

This probability in Eqn. (1.4) is conditioned on all previous states.

1.3.2 Markov Process

A stochastic process is said to satisfy the Markov property when it is memoryless

[106, 107], which means that any conditional probability of a system being in a state

Yn at time 7,, as defined in Eqn. (1.4), in this case depends only on the previous one,

and therefore satisfies

P(Yns Tns Yn—15 Tn—15 Yn—2, Tn—2; - - ~;y0770)' (1.5)
P(Yn—1,Tn-1)

p(ynaTn ’ yn—lyTn—l) =

1.3.3 Wiener Process

time

Figure 1.7: The left image shows one realisation of a 3-dimensional Brownian motion,
produced by a simulation for final time 7" = 1. The right figures are plots of the BM

in axis x (top), and y (bottom) against time.

A well known example of a Markov process is Brownian motion (BM) or the
Wiener process [106, 107]. It is observed that when particles are submerged in fluids
such as water or oxygen, they move randomly. This motion is caused by the collision
of the particles against the atoms in the fluid [110, 111]. The molecules in cells behave
in a similar way to these particles [36].

The Wiener process W (t) is a continuous-in-time Markov process, satisfying
the property in Eqn. (1.5). The most important properties of Wiener process are
highlighted as follows:

1. At time ¢t = 0, the Wiener process is W (0) = 0 with probability 1.
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2. At the time intervals 0 < t; <ty < ... <t;—1 <t; < T, the increment
AW (tj-1) = W(t;) — W(tj-1), (1.6)

is normally distributed according to N (0, ¢; —t;_1), with mean zero and variance
tj — tj_l.
3. For different time intervals the increments W (t;)—W (t;—1) and W (t;)—W (t;-1)

are independent for 7 # j.

1.3.4 Stationary Process
Consider the stochastic processes
a:(t) = {xz(tz),xz eSSt el i= 1,2...,n} (17)

x(t+7)={zi(ti+7), 2, €S, t;, 7€ T,i=1,2...,n}, (1.8)

where S and T are the sample space and the index set. Then « is a stationary process
when for a time shift 7 the probability distribution is unique and independent of time,

and hence satisfies:

P(xz;,t;) = P(a, t; + 1), fori=1,2,...,n. (1.9)

1.3.5 Ornstein-Uhlenbeck Process

An example of a well studied stochastic process is the Ornstein- Uhlenbeck process [106,
107, 112, 113]. It is a continuous in time Markov process with stationary probability
distribution and for n-multivariate random variables, denoted by the vector € R",
and defined by the stochastic differential equation (SDE):

dx(t) = —Max(t)dt + SAW (1), (1.10)

where matrix M € R™*™ and ¥ € R"*™. The vector W (t) = [W1, Wa, ..., W] denotes
m independent standard Brownian motions. The stationary solution of Eqn. (1.10) at
the time limit in infinity is a Gaussian process distributed according to N (e~ Mz, K (1)),

with mean zero and covariance matrix K (t) € R"*" defined as
K(t) = {x(t) — ((t)), (z(t) — (@(®)"). (1.11)

1.3.6 Ito Calculus

Let us consider a function A(t) and the Brownian motion W (t), as defined in Section
1.3.3 [106, 114]. Then, the stochastic integral of this function h(t) with respect to
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Brownian motion can be approximated in a similar way with a deterministic integral,

by the following sum

N

/OT h(B)AW (8) = D h(tj—1) (W (t)) = W (tj-1)), (1.12)

Jj=1

known as the It6 stochastic integral. The most important properties of It6 integral, as
defined in Eqn. (1.12) are the following:

1. The mean of It6 integral is zero, since

T N
([ moaw ) =3 a,0) W) - Wity =0 (3

J=1

2. The so-called Itd’s isometry is satisfied:

2

</0Th(t)dW(t)> :/OTh(t)th (1.14)

1.3.7 Euler-Maruyama Approximation

In order to find an approximate solution and simulate an SDE, we recall now the
Ornstein-Uhlenbeck process in Eqn. (1.10), which can be written as an It6 integral
using Eqn. (1.12):

x(t) = :Bo—i—/o Mac(s)ds—i—E/O dW (s) (1.15)
= moe_Mt—i—E/ e~ M=) aw (s), (1.16)
0

where x(0) = @ is the initial condition and ¢ € [0, T].

We take now the discrete interval At = T'/n and consider t; = jAt. Then, we
apply the It6 integral in Eqn. (1.15) for ¢; and ¢;_; and subtract to get

a:(tj)—m(tjl):/_jl Mac(s)ds+/_jl SAW (s), (1.17)

from which we derive the Euler-Maruyama approximation
2(t)) = @(tj-1) + Ma(t;_)At + = (W(t) - W(t;_1), j = Lo.on. (L18)

In our simulations in the next chapters we use the random variable &; ~ N(0, At), so

Eqn. 1.19 can be expressed as

x(t;) = x(tj_1) + Max(t;_1)At + VAL & 4. (1.19)
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Figure 1.8: Network motifs examples of positive auto-regulation, feed-forward loop,

cycle, multiple targets and inputs, feedback loop and a chain.

1.4 Motivation of the Thesis

The aim in this thesis is to try to explain how external fluctuations are mitigated by the
underlying network. In particular, we will focus on how extrinsic noise is propagated
through a signalling network with linear interactions, from a noisy source to a target
of interest. An intriguing question is to answer how the structure of a network is
related to its noise processing abilities. Because the cell is complex and consists of a
huge number of molecules, it is useful to consider smaller networks, or motifs. Some
of these are well studied, such as auto-regulation, positive or negative feedback loops,
feed-forward loops, chains, cycles, single or multiple input networks [21, 35]. In Fig. 1.8
we show some examples of common network motifs. In this work, we discuss a non
reversible chain and a feed-forward loop in order to relate the topology of the network
with the noise propagation and describe the mechanism by which our expression for

the variance functions.

The rest of the thesis is organized as follows. Chapter 2 explains the mathemat-
ical modelling of intrinsic fluctuations, and presents some computational algorithms.
Chapter 3 is focused on the extrinsic noise of a signalling network. In particular, we
consider modelling a network from another perspective, by using the adjacency matrix
in order to have a connection of the structure of the network with the covariance.
This noise is extrinsic and we focus on how it can be propagated through a complex
network. In Section 3.1.1 we establish a mathematical formula for the covariance at
the equilibrium that relates the noisy sources to any target node of particular inter-
est. There follows a discussion in Section 3.1.2 of different ways that stability can be
ensured in a biochemical system. Then, in Sections 3.2 and 3.3 we demonstrate our

result with two simple examples, a chain and a feed-forward loop. In Section 3.4, we
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apply the expression in a real signalling network of pluripotent cells and identify the
most important interactions in terms of the noise processing. Finally, the discussion
in Section 1.3 explains the underlying theory as to how the noise processing is affected

by the network’s architecture.



Chapter 2
Modelling Intrinsic Noise

In this chapter we will discuss different ways of modelling intrinsic noise. The molecules
inside the cell are moving randomly, as described by Brownian motion. The aim here
is to focus on the probability that a molecule will hit another, and therefore a chemical
reaction will occur. Firstly, some basic examples are given in order to calculate the
copy number of a species after the next reaction and the chemical master equation
is derived in detail. Furthermore, the stationary solution is derived analytically at
the equilibrium for the simple example of production-degradation of a species. This
solution is represented as a Poisson distribution, followed by figures that illustrate
the results. Moreover, the most important moments, expected value and variance
are derived, and the use of the generating function as a tool for the higher moments
is given. Furthermore, computational algorithms are described and their differences
are shown in corresponding figures. In the case of large copy number, we describe
approximations to simulate such systems. We derive the stochastic Langevin equation
and the deterministic reaction rate equation and simulate the comparison of their
solutions with the stochastic simulation algorithms. Finally, the chemical Fokker-
Planck is derived from the chemical master equation, and the stationary probability is
determined in the case of an one dimensional system. We conclude with a comparison
between the probability density functions obtained using the chemical equation with

the one obtained using the chemical Fokker-Planck.

2.1 Chemical Master Equation

In this chapter intrinsic noise is modelled by the well studied chemical master equation
(CME). Consider a spatially homogeneous biochemical system of N species S, So, ..., Sy
that interact via M chemical reactions. This system can be modelled using a set
of linear ordinary differential equations (ODEs): the chemical master equation [27—
29, 106, 107, 115]. Due to the inherent random nature of molecular interactions, the

noise that is emerging from the biochemical reactions is intrinsic. The CME charac-

15
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terises the time evolution of the probability of the system having n copies of a species at
time t. We will denote this probability as p(n, t). Furthermore, we consider the temper-
ature of the system to be constant while reactions take place in a fixed volume V. Then
the concentration of the S; species is given by X;(t) = n;(t)/V, where n; is the number
of molecules of S; at t. Let us denote with n(t) = [n1(t), na(t),...,nn(t)]", n(t) € RY,
the state vector, where each n;(¢) is the number of molecules of species S; at time t.
Every time a reaction takes place, n(t) changes due to the consumption or production
of the interacting molecules. This change is described by the stoichiometric column
vectors v; € ZN,j = 1,2,..., M, and the set of v = {;;} € Z¥*M which forms the
stoichiometric matrix. If v;; is negative then this implies a loss of molecules for the
i-th species, while a positive indicates a gain, when the jth reaction occurs. When a
species does not take part in the reaction, we have that v;; = 0. The opposite is not
always true, since a zero does not always correspond to not interacting species. For

example, for the following reactions:

S1 + So 5 283, (2.1a)
S3 4+ S3 BN Sy + 253 4+ 354, (2.1b)
the corresponding stoichiometric vectors are vq = [—1,—1,2,0]” and v5 = [0, 1,0, 3.

In vy, the zero entry in the 3rd element indicates that the gain in the molecules of

species S3 is equal to its loss.

The value of the state vector n(t) depends on v;, since the former changes from
n(t) to n(t) + v;. Let dt be the infinitesimal time that it takes a reaction to fire with
reaction rate r € R. The coefficients that connect the rates r to the number of molecules
of the reactant species are the propensity functions oj(n(t)). The probability that the
j-th reaction will occur in the next dt is given by «;(n(t))dt, namely the transition
probability [106]. Depending on the reaction rates and the molecules that interact, it
can take various forms. The propensity function «;(n(t)) of a reaction is the product of
the constant rate r and all possible combinations of the number of molecules consumed.
In the above example, the propensity function in the reaction Eqn. (2.1a) takes the
form

a1(n(t)) = ring (t)na(t), (2.2)

while in Eqn. (2.1b) it is given by

az(n(t)) =re

o) =1 _, (o)) (23)

Derivation of chemical master equation Let us assume that the event A that
characterises the system is in a state with n copies at time ¢ 4+ dt. In addition let us
assume that H;,j = 1,..., M denote the event that only the j-th reaction occurs in
the interval [t,t + dt], while in addition Hjys41 is the event that two or more reactions

happen in this interval. The aim is to obtain the transition probability p(n,t + dt),
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which satisfies the Markov property (1.5) [107]. Consider the null event Hj so that
at time ¢ the system is at the state with n copies. Then two events are possible: no

reactions fired with probability

P(A | Hy) =1-— f:aj(n)dt, (2.4)
j=1
or only the j-th reaction fired with probability:
P(A | Hj) = aj(n — vy)dt. (2.5)
We also find the following probability, which more than one reaction occurred

P(A | Hyt1) =0, (2.6)

since only one reaction can occur in [t,t + dt). Combining Eqns. (1.5), (2.5), (2.4)
and the law of total probability [28, 106]:

M+1
B(A) = S P(A| H))B(H,), (2.7)
j=0

we obtain the transition probability p(n,t + dt) as follows

M M
pnt+dt) = [1-) aj(n)dt | xp(n,t)+ > aj(n —v;)dt x p(n — v;,t)2.8)
j=1 Jj=1
M M
= p(n,t) — Z aj(n)dt x p(n,t) + Zaj(n —vj)dt x p(n —v;,{2.9)
j=1 Jj=1

After simple rearrangements in order to obtain the derivative of the probability p(n,t),

the limit of dt to zero gives the general CME in higher dimensions (N):

M
dp(;:, t) — Z (aj(n —vj)p(n —vj,t) — aj(n)p(n,t)). (2.10)
j=1

The CME can be solved given the initial condition as the Kronecker delta:

1, if n = ny,
p(no,0) = (2.11)
O, 1fn7£n0

Example: We now describe the CME for a specific chemical system, where two
species S1 and SS9 interact with a constant production rate r4 to produce S3. More-
over, the reaction goes reversibly with decay rate r_. The system is described by the
following chemical reactions:

S1+ 85 == S, (2.12)
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According to the notation introduced, N = 3 is the number of the species, taking part
in M = 2 reactions and the state vector is formed by n(t) = [ni(t),na(t), n3(t)]’.
The corresponding stoichiometric vectors for the system (2.12) are vy = [—1,—1,1]7
and vy = [1,1,—1]7. The propensity function for the forward reaction is given by
a1(n(t)) = reni(t)na(t) and for the backward as(n(t)) = r—_ns(t). The non-negative
integers m,n, and [ represent the copy numbers that are present at time ¢, and
p(m,n,l,t) the probability that ni(t) = m, no(t) = k and ng(t) = [ at t. Apply-
ing the formulae (2.10) and (2.12), the time evolution of Eqn. (2.12) can be described
as follows:
dp(m, k,1,t)

dt = al(m+17k+1) p(m+17k+17l_ 17t) _a1<m7k) p(m7k7l7t)

+ as(l+1) p(m —1,k— 1,14+ 1,t) — as(l) p(m, k,1,t)
= T+(m+ D(k+1)p(m+1,k+ 1,1 —1,t) — rymk p(m, k,1,t)
r—(l+1)pm—1,k—1,1+1,t) —r_l p(m,k,1,t)
= m_(m—i—l)(k 1) p(m+1,k+1,1—1,t)
r—(l+1)pim—1,k—1,14+1,t) — (rymk + r_1) p(m,k,1,t).
(2.13)

The CME derived in Eqn. (2.13) for the example (2.12) has a second order
reaction, and hence can be difficult to solve it analytically. Therefore, ones needs to
resort in numerical simulations to study its properties. This is covered in the next

section, where an exact stochastic simulation algorithm is discussed.

Example Stationary solution: We next consider the production-degradation ex-

ample that has only first order reactions

S = . (2.14)

T2

Assuming that we are only interested in S with copy number n, the stoichiometric
quantities are v; = —1 and vy = 1, with propensities a1(n) = rn and ag = r9. The

probability that at time ¢ we have n molecules in the system is given by:

dp(n,t) 2
dt, = Z aj(n —vj)p(n —vj,t) Z:
(n,

= ozl(n+1) (n+1,t) — ar1(n)p(n,t) + asp(n — 1,t) — asp(n, t)
= r(n+1Dp(n+1,t) +rop(n —1,t) = (rin + ra)p(n, t). (2.15)

In order to find the stationary distribution we take the limit ¢ at the infinity as

p*(n) = lim p(n,t). (2.16)

t—o0
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Here, p*(n) can be calculated analytically by solving Eqn. (2.15) for stability, which
gives
ri(n+1)p*(n+1) — (rin+re2)p*(n) +rep*(n — 1) = 0. (2.17)

Now setting the initial condition for having zero copies of a species and assuming that

p*(—1) =0, we have

* T2 4
pi(1) = 2p*(0), (2.18)
1
and for any n > 1
TN + T2 T2
* 1)=—=p*(n) — ————p*(n—1). 2.1
Pt D) = SR ) — e ) (2.19)

Then by setting p*(0) = 1 in Eqn. (2.18) for convenience and by calculating Eqn. (2.19)

for n > 1 we solve the recurrence relation

P =c = <”>n (2.20)

n! \ ry

where c is a constant. By considering that all probabilities sum to 1, i.e.

> pf(n) =1, (2.21)
n=0

we can calculate ¢ = e~"2/™ and derive the stationary distribution of Eqn. (2.15)

p(n) = 1<T2>ne‘:f. (2.22)

n!\ ri
Hence, in the limit of ¢ — 0o, n ~ Pois(re/r1), where Pois (\) denotes the Poisson dis-
tribution with probability mass function Pois (\) = A\"e~*/n!. (2.23)
Expected value: The expected value of a species S; is given by [116]:

— ikp(ni = k,t). (2.24)
k=0

In order to derive an evolution equation for the mean value of each species, we multiply
CME in Eqn. (2.10) with n;:

d
nzp n,t) Z niaj(n —v; —vj,t) Z nia;(n)p(n,t). (2.25)

Then, by taking the infinite sum of the molecules of a species x; we write:

M oo
dt anp (n,t) Z anaj —vj)p(n —vj,t) — Z Zniaj(n)p(n,t). (2.26)
j=1n;= j=1n;=0

Rearranging, we have

y=n-—-vj=n=y+vj, (2.27)



Chapter 2. Modelling Intrinsic Noise 20

fﬁ\ | Béﬂles;pie
01t f \—analytic ]

\

0.05¢ 1

0

stationary distribution

0O 4 8 12 16 20 24
molecules

Figure 2.1: The figure shows a comparison of the stationary distribution with the Gille-
spie algorithm. The pink line is the exact stationary solution derived in Eqns. (2.18)
and (2.19). The grey area is the implementation of the Gillespie algorithm for 10°
realisations, for time T = 1. The rates used are r1 = 0.004 and ro = 0.04, and initial

value ng = 0 molecules.

and hence for every n;:

Ny = Yi + Vij. (2.28)
Then Eqn. (2.26) takes the form:
d oo M oo M oo
7 > nip(n,t) = Z > i+ vi)oy(Wp(y,t) = > Y niaj(n)p(n,t)
n;=0 j=1vy;=0 j=1n;=0
M oo
= Z Z vigos (y)p(y, ). (2.29)

Now summing over the remaining sum, we get

M
1) = _vij{a;(n(0), (2.30)
j=1

and we obtain the evolution equation for the mean of the state vector n:

M
) =D _vila;(n(t) = via(n(t)). (2.31)
j=1

Second moment: The evolution equation for the second moment can be calculated

in a similar manner [107, 117]. Now, we apply the mean equation from Eqn. (2.24) to

’I’LTLT
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(ntn®)"),; =Y > mnp(nt), (2.32)

n;=0 n;=0

and use the CME in Eqn. (2.10) to get:

d d o0 oo
o —(nnT), i = d— an]p n,t) (2.33)
0n

M oo
= ZZ an]ak —vi)p(n — v, t)

k=1n;=0
M oo

- ZZ an]ak p(n,t) (2.34)
k=1n;=0 n;=0

Changing the variables now by using Eqns. (2.27) and (2.28), we get:

i<nnT>,-j = ZZ D i+ v (yy + vir)aw(y)p(y, 1)

dt
k=1n;=0 nj =0

M oo 00
— E Z anjak p(n,t) (2.35)

k=1n;,=0 n;=
M oo [e'¢) M oo o0

= > > Zywjkock P t) + > > viyjon(y)p(y, t)
k=1mn;=0 k=1mn;=0 n;=0
M oo 00

+ Y. ) Z VikVikak(Y)p(y, t). (2.36)
k=1mn;=0 n;=

Therefore, Eqn. (2.36) can be written as follows:

d T
o —(nn"),

Finally, Eqn. (2.38) can be written in the form [117]

i (ua(n)nT)ij + (n(ua(n))T>ij + (v diag(a(n))uT>ij. (2.37)

— (h(n)n"),

ij T <nh(n)T>ij + <B(n)>ija (2.38)

where, h(n) = va(n) and the difussion matrix B(n) = vdiag(a(n))v?.

Generating function: In general, we cannot always obtain analytical solution for
the probability distribution with the CME. However, the generating function give us
this benefit, and plays an important role in directly estimating the higher moments by

using its derivatives [106, 107, 118]. In one dimension it is defined as follows:

o0

G(s,t) =) s"p(x,1). (2.39)

=0
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Considering the random variables driven from a Poisson distribution P(z, \) = —e™",
x

the generating function is

L (As)Te
G(s,t) = Z(“ﬂ.
x=0

The higher moments can be derived by differentiating with respect to s and setting
s =1 in Eqn. (2.39)

(&) cer] =[G o] e o

=1

where the factorial moment is
(2™ p = (z(z —1)...(x —n)(z —n+1)).

The normalization condition is also applied
oo

G(1,t) = plx,t) = 1. (2.41)
=0

The probability distribution can also be expressed by the generating function

o(n) = % [(i)nG(s,t)} R (2.42)

Applying Eqn. (2.40) on the production-degradation example in Eqn. (2.15), we

can derive the expected value

(n) = [dG(S’t)} - inpn, (2.43)

ds

with evolution equation

d;? = ;(—rm +r2)pn = —r1{n) + 12, (2.44)

where the solution of the mean is

(n) = %(1 — e, (2.45)

The corresponding equations for the variance are:

o* = (n?)—(n)? )
S (50)
n=0 n=0
FR P e

ds? ds ds |,

and its evolution equation
do?

—r = —2r10% + r1{n) + 1. (2.47)
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Figure 2.2: The figure illustrates the expected value in comparison with SSA, for the
production - degradation example in Eqn. (2.14). Each of the colours represent one
the five different realisations, simulated by Gillespie’s algorithm. The dark line is the
mean equation derived in Eqn. (2.45). The parameters used are similar to the Fig. 2.23,

r1 = 0.004 and r9 = 0.04, with initial copy number zero.

2.2 Stochastic Simulation Algorithms

In order to simulate the dynamics of a continuous time Markov chain system described
by the CME, in this section we study and compare two methods: the discrete Gillespie
algorithm and the 7-leaping method.

2.2.1 Gillespie’s Algorithm

Gillespie’s algorithm or the stochastic simulation algorithm (SSA) [27-29, 117-120],
is a discrete algorithm that simulates the exact solution of the CME by taking into
account every reaction that takes place in the underlying chemical system. Instead
of solving the CME, Gillespie’s algorithm calculates realisations of the state vector in
such a way that it agrees with the probability distribution from the CME solution.
The SSA can simulate the stationary distribution ps(ni,...,ny) = tli}rgop(nl, vy N, 1)

as time approaches infinity. The SSA algorithm is summarised in the following box.
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Gillespie’s algorithm

1. Calculate the propensity functions o; = aj(n(t)) for i =1,2,..., M and

M
s = Zaj. (2.48)
i=1

2. Generate two independent random numbers &1, €2, uniformly distributed
between 0 and 1.
3. The time for the next reaction is ¢ + 7. Generate a random variable 7

exponentially distributed, with probability density ase™ %7, such that

r=a, 'In (1> (2.49)

4. In order to choose the next j* reaction with probability ozjozs_l, select an

integer p € [1, M| for the random variable &2, which satisfies

p—1 M
ZO&j < 62043 < Zaj. (2.50)
=1 =1

5. Then substitute the next time ¢t = ¢t 4+ 7 so that n(t + 7) = n(t) + v;, and

iterate the algorithm by calculating the new propensity functions up to the

final time.

In Fig. 2.3 a simulation of Gillespie algorithm is illustrated for the example in
Eqn. (2.12) for the initial conditions X; = 200, Xy = 150, and X3 = 0, and rate
constants 71 =4 x 1074, 79 = 2 x 1072,

2.2.2 r7-leaping Method

The Gillespie algorithm is exact as it draws samples from the CME in an unbiased
way. However, it can be slow, since the propensity functions are updated for every
new time ¢ + 7. For large copy numbers this could lead to high computational cost,

since the updated time random variable 7 can be very small.

An alternative providing a faster way to simulate the CME is the 7-leaping
method [28, 116, 120]. Here, for every subinterval [¢, t 4+ d7| we approximate how many
reactions are fired until the next one, by choosing a random variable P(«;(n(t), 7) from
Poisson distribution, with mean A = 7a;(n(t)). In other words, we are treating tau-
leaping as continuous in the sense that it counts the number of reactions that have been

fired of each type M by jumping from one subinterval [t,t + 7] to the next, and then
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updating the state vector v;. Then the algorithm approximates the random variable
by Pj (aj(n(t),7)),j =1,..., M, which represents the number of reactions that have
fired at that time, as shown in Eqn. (2.51), by calculating their mean «;(n(t))r and
then updates all the reactions simultaneously as shown in Eqn. (2.52). In this way,
the main idea is to select a small enough 7, so that n(¢ + 7) change is infinitesimally
small to maintain the propensity functions. The main points of 7-leaping algorithm

are summarised in the following box.

T-leaping algorithm

1. Choose random variables from the Poisson distribution for each reaction j

[P (as(nt), 7))}, (2.51)

2. For the next time ¢t = ¢ + 7 one obtains

M
n(t+7)=n(t)+> v;Po;(n(t),)). (2.52)
j=1

The algorithm then iterates from the first step or stops.

An important difference between these two algorithms is that the SSA updates
the system for the next reaction for every subinterval, while in 7-leaping all reactions

at the same time. Moreover, the questions for the SSA are the following;:
(1) When does the next reaction fire?

(2) Which is the next reaction that fires?

However, in the case of 7-leaping there is only one:

(1) In the interval [t,t 4+ 7] how many reactions are fired?
In order to compare Gillespie algorithm and 7-leaping method, we calculate the cpu
time in each simulation for the top left Figs. 2.3 and 2.4. We can conclude that by
using the 7-leaping algorithm with a chosen 7 = 0.04 the computational cost is reduced

from 1.211 sec that calculated in Gillespie, to 0.150 sec in cpu time.
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Figure 2.3: The top left figure is a simulation using the Gillespie’s algorithm for the
chemical system (2.12). The parameters used for the simulation are r, = 4x1074,7_ =
2 x 1072, for the initial copy numbers z; = 200, 25 = 150 and x3 = 0 for final time 100.
The histograms are the stationary distributions for each species for 108 realisations for

time T = 50.
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Figure 2.4: The top left figure is a comparison of the Gillespie and the 7-leaping
algorithm for the chemical system (2.12). For the 7-leaping simulation is used 7 = 0.04.
The parameters used for the simulation are ry = 4x 1074, r_ = 2x 1072, for the initial
copy numbers z1; = 200,22 = 150 and x3 = 0 for final time 100. The histograms are

the stationary distributions for each species for 10° realisations for time 7" = 50.
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2.3 Chemical Langevin Equation

One way to simulate a stochastic process of chemical reactions with large copy num-
bers is to consider a continuous process. The chemical Langevin equation (CLE)
[28, 106, 107, 121, 122], based on the 7-leaping method, is a system of non-linear
stochastic differential equations (SDEs) that describes how the system evolves in time.
Its dimension is determined by the number of species involved in the reactions. The so-
lution of each one of the SDEs is associated with the population of a species after time
7. Let 7 be infinitesimally small so that the propensity functions will be approximately

the same, i.e.
a;(t+7) =~ aj(t). (2.53)

The random variable (a;(n(t)), 7) that represents the number of times a reaction fires
after 7 has a Poisson distribution Eqn. (2.23) with mean 7aj(n(t)). According to
Eqn. (2.52), the random variable x; at the next time step 7 will be

n(t+7) )+ ZVJ (aj(n(t),7)). (2.54)

Although we require 7 to be small enough for no changes to occur in the propensities,
it is suggested that the approximation is better under the condition that a;(n(t))r can
take a large enough value [28, 121, 122]. This assumption allows each random vari-
able driven by the Poisson distribution P(a;(n(t), 7)) to be expressed with a normal

random variable (; ~ N (0, 1), leading to

aj(n(t))T + 4/ (a;(n(t)7) - (2.55)

Then, it follows that Eqn. (2.52) takes the form

n(t+7) )+ ZV]O[] )T+ ZVJ )T) G- (2.56)

After rearranging and take the derivative limit of = for 7 — 0, we find

M
n(t) =Y vio;(n(t))dr + Zuﬂ/ ) dW; (1), (2.57)
j=1

where dr is the time step and W;(t) are independent Brownian motions. The formula

(2.57) is the Euler-Maruyama approximation in [to representation.

Alternatively, chemical Langevin equation can be obtained directly from the
Fokker-Planck Eqn. (2.68) that we discuss in the Section 2.5. Setting the propensity

quantities with appropriate matrices
vioy(n(t) = Aj(n.t), (2.58)

vjy/aj(n(t))

Il
&
—~
S

~
~—
—~~

[\

[N

=)
~—
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Figure 2.5: The left figure is a simulation of the chemical Langevin equation compared
with the reaction rate equation. We use the Euler-Maruyama approximation for 10°
realisations, with dt = 0.01. Parameters used r; = 0.1 and ro = 1 and initial condition
no = 0. The histogram is the probability distribution for a long simulation of 106

realisations, for fixed time T = 10.

Eqn. (2.57) can be expressed as

M M
dn(t) =Y Aj(n,t)dr + Y /Bj(n,t) dW;(t). (2.60)
=1 i=1

Applying CLE in Eqn. (2.60) we can write the coresponding SDE for the production-
degradation example [123] of Eqn. (2.14) as follows

dn(t) = (ro — rin(t)) dr + /ro dW1i(t) — \/rin(t) dWa(t), (2.61)

where dWi(t),dWs(t) are two independent Brownian motions. In order to simulate
the CLE we use Euler-Maruyama method and a simulation is illustrated in Figs. 2.5
and 2.6.

2.4 Reaction Rate Equations

The reaction rate equation (RRE) is a set of ODEs, each one for a molecular species
that can be derived by setting the stochastic part in the Langevin equation (2.57) to

Zero.

M
dn(r) = vja;(n(t))dr. (2.62)
j=1

Applying the reaction rate equations in production-degradation example [123] de-
scribed in Eqn. (2.14) the RRE from Eqn. (2.62) takes the form

dn(t) = (rg — rin(t)) dr. (2.63)
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Figure 2.6: The figure is a simulation of the chemical Langevin equation compared
with the reaction rate equation, described in detail in Section 2.3. We use the Fuler-
Maruyama approximation for 10* realisations, with dt = 0.01. Parameters and initial
conditions similar to Fig. 2.3. The comparison with the simulation in Gillespie algo-
rithm in Fig. 2.3 shows that the approximation applied in CME obtains more robust

results, by running for a long enough time.

The solutions are shown in Fig. 2.3 against the stochastic simulations of the Gillespie’s
algorithm, and in Fig. 2.6 against the 7- leaping method. Another way to derive the

RRE is to follow the law of mass action. The rate of a reaction is proportional to the

product of the copy number of the reactants [28, 107], such that the following equation
is satisfied: ,
np?’

.
C— nr®’

J J

(2.64)

where p;, d; are the production and the decay coefficient and np, nr the copy numbers

of products and reactants.

2.5 Chemical Fokker-Planck Equation

The chemical Fokker-Planck equation (CFPE) is a second order partial differential
equation that can approximate the chemical master equation [106, 107, 124]. Using

the Taylor expansion on

aj(n —vj)p(n —vj,t)
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up to second order, we obtain
V 5?2

o onz® aj(n)p(n, t)+O0L3).

(2.65)

In the large volume limit an appropriate scaling shows that it is reasonable to ignore

aj(n—vj)p(n—vj,t) = oj(n)p(n, t)—uj%aj (n)p(n,t)+-

the higher order terms. The Fokker-Planck equation for a multivariate system of M

reaction types is obtained as follows:

dp(drz,t) _ Z (Oéj(n)p(n,t) - Vjaanaj(n)p(n,t) - aj(n)p(n,t)>
j=1 J
M M viv; O
+ 22 9 anianjo‘j(")p("’t) (2.66)
M
- z;yjaijaj( Z}Zu" J@nlanj ( ) (n’t)(2'67)

Setting vja;(n) = A;(n) and vvja;(n) = Bij(n) in Fig. (2.66), we get the general
form of the Fokker-Planck equation

I e &2
Z an n t)) + 5 Zzljzl W(Bij(n)p(n’t))’ (2'68)

where the matrices A;, B;; are real, with B;; non-negative and symmetric.

We now fix the starting time ¢y = 0 and set the initial condition for all x as

hm p(n,t) H5 — njo). (2.69)

By choosing reflecting boundary conditions [106, 107] and defining with J; the proba-
bility flux J; as

1 0
Ji(n,t) = Aj(n)p(n,t) — B Z %(Bij (n)p(n,t)), (2.70)
» J
j
the Fokker-Planck equation (2.68) takes the form
Op(n,t) 0
=5 2 J(nt 2.71
where we consider J;(n,t) = 0. The stationary distribution ps(n) can be derived as
follows
0= Ay(mns(m) = 5 S pu(m) o Biy(n) = 3 3 Byln) plm). (272)
= Aj Ps 9 ; Ps (9”]‘ ij 5 : ij anjps . .

Rearranging we get

el Z%U =3 By(n)peln). (2.73)
J j J
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Dividing by ps(n) and assuming that B;;(n) is invertible as to
0 ) —— = 3" Bl (n)24,(n) = 3 2B,y (n) (2.74)
;" pa(n) — ATk 7 ey '

so that we can write

ai Inps(n) =Y Byl(n) |24x(n) =) a‘z_BM(n) = F(A,B,n),  (2.75)
J & j J

where the right term in Eqn. (2.75) needs to satisfy the potential conditions [106] :

OF; OF,
871@ N 871]‘.

Stationary probability in one dimension: In order to calculate analytically the

probability density we consider the one dimensional Fokker-Planck equation

n 2
WD) D A, ) + - (Blm)pln, ). (2.76)

ot on
. . Op(n, t)
After combining the results from Eqns. (2.69), (2.75) and (2.76), and taking e

0, the stationary solution ps(n) is:

ps(n) = chl(n) exp 2/nA(s)Bl(3)ds , (2.77)
0

where ¢ is a positive constant of integration. By setting

) / " A(s) B~ (s)ds = —(n), (2.78)

ps(n) is proportional to the function ®(n), which is defined as the potential, and we

get the stationary probability in the form

ps(n) = B (n)e *™ (2.79)

“+o00
= B '(n)e ®™ B~ (s)e ®G)ds | . (2.80)

0

This is called the stationary partition function, where ¢ is obtained by applying the
normalized ps(n) for all ¢ > 0:

“+o00
/ ps(s)ds =1, (2.81)
0
as
+0o0
c :/ Bil(s)efq)(s)ds, (2.82)

0
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Figure 2.7: The two figures represent a comparison of the chemical Langevin equation
(left image), and the Gillespie algorithm (right image), for a long simulation for 105
realisations, with the exact solution derived from the Fokker-Planck for the production-
degradation example in Eqn. (2.86). The parameters used are r; = 0.004,ry = 0.04,

starting with initial condition x¢y = 0 molecules, for a fixed time T = 1.

and Eqn. (2.80) is finally expressed as

ps(n) = B (n)exp /n2A(s)B1(s)dS /+OOBl(s) exp /nQA(s)Bl(s)ds ds.

0 0 0
(2.83)

The derivation of the Fokker-Planck equation as shown in Eqns.(2.80) and (2.81)
leads to the stationary distribution. The distribution can be derived from the Fokker-
Planck Eqn. (2.76) for the production-degradation example in Eqn. (2.14) as follows:

n 2
8p(8t7 t) = —aan ((TQ — rln) p(n, t)) + ;86,”2 ((7"2 + Tln) p(n, t)) . (2'84)

Now substitute in Eqn. (2.77) A(n) = r2 — rin and B(n) = (rg +rin)/2 from the
Fokker-Planck Eqn. (2.84) to obtain the potential in Eqn. (2.78)

Ty — 4
d(n) = —2/ Rl P [7“2 log(re +r1n) — Qn] , (2.85)
Tog —T18 T

and finally derive the stationary distribution

4
Ps(n) = 2cexp [<T2 - 1> log(re +rin) — Zn] , (2.86)
1
where the constant c is given by
-1
+o00 4
2c = / exp [<T2 — 1> log (7 + r1n) — 271] ds . (2.87)
1

0






Chapter 3

Noise Processing by Signalling
Networks

In this chapter we interpret a network from another perspective; we model the bio-
chemical reactions with the Ornstein-Uhlenbeck process and describe the network by
its equivalent graph. Whether or not two species interact is decided by the adjacency
matrix. The noise here is considered extrinsic and we focus on how it can be propa-
gated through a complex network. One question that we are interested to answer is:
‘What is the strength and the manner that extrinsic noise is circulated and transmitted
on nodes of particular interest, through a directed graph?’ In order to investigate the
effect of noise on any node of interest in a signalling network, we derive a mathematical
formula for the variance at the equilibrium. This equation relates the structure of the
underlying graph and the noise processing from a noisy input(s) to the output that we
are interested in. We examine the stability criteria of the underlying deterministic sys-
tem that is essential for the existence of an invariant measure. Under the assumption
of stability and that the noise is coming from one input we derived a mathematical
formula that allows us to calculate the variance of any node, depending on the paths

to that node from the input.

In the next section, in order to demonstrate the general expression of the vari-
ance, we look at two common biological motifs; a non-reversible chain and a feed-
forward loop. Applying the result from the variance in these examples, we can explain
with our formula and simulations how the structure determines the effect of noise. In
the last section we focus on the pluripotent signalling network. Our mathematical ex-
pression for the limiting variance is applied to a simplified version of the transcriptional
regulatory network for naive pluripotency. We justify and deduce the importance of
the length and the coherence of the walks, from the input to the target in the noise

propagation.

35



Chapter 3. Noise Processing by Signalling Networks 36

3.1 Noise and Structure of a Graph

Our concern here is with how a network G processes noise from an external source. In
the context of signalling networks the nodes in the network denote molecules in the
signalling cascades, and edges are regulatory interactions (e.g. phosphorylation etc.)
between molecules. Since signalling networks pass information from the cell exterior to
the nucleus, we assume that the network G is inherently directed: the presence of an
edge (i, 7) indicates that node i exerts a regulatory effect on node j but not necessarily
vice versa. Since regulatory interactions may be activatory or inhibitory we also allow
each edge to have positive or negative weight representing the strength of activation
or inhibition respectively. We denote the weight of edge (i,j) by a;;. Assuming that
there are n nodes in G the n x n adjacency matrix A then describes the strength of

all interactions in the system, as is defined in Eqn. (1.3).

The higher powers of A contribute essentially in the network’s organisation. The
square matrix A2 gives the number of the paths of length two from node i to j, when
i and j are connected. In general, the higher powers A™ of the adjacency A of a graph
G describe the strength of two nodes ¢ and j are connected via a walk of length n
[125], by counting the number of the corresponding length of walks. Considering now
the sum of all the powers of A scaled by 1/n! as the weighted sum of all the possible
walks between a pair of nodes, we come up eventually to the communicability measure
of the exponential of A [125-128] defined as:

o0

exp (A) = Z%A”. (3.1)
n=0

The exponential matrix of A is essential for the analytical calculations for the covari-
ance matrix K, as well as for our conclusions about significant walks and on important

interactions.

As an important ’centrality’ measure of G we consider the weighted degree d;
[125, 129, 130] of a node i, defined by

N N
di = lai| + > _lasil, (3.2)
j=1 j=1

which contains the number of adjacent nodes ¢ is connected, i.e. d; indicates the
number of edges ¢ is involved. In particular, in a directed graph G we distinguish
between the in-degree di* = Z;VZI laj;| and out-degree d9"* = Z;VZI |a;;| of a node i,
which counts the adjacent nodes entering and leaving 4, respectively [9, 131, 132].

In general, regulatory interactions may be highly non-linear. However, to better
understand the relationship between network structure and function we will assume
here that that the dynamics are linear. By doing so we are effectively considering

the linearisation near to a fixed point in the non-linear dynamics; this rationale for
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studying the linear case has been taken elsewhere [133]. We focus now on how noise
from one or multiple inputs is processed through the network described by graph G.
In order to investigate this we model the process of biochemical reactions with the
Ornstein-Uhlenbeck process that has been defined in Eqn. (1.10):

de(t) = —Mx(t)dt + XdW (t),
where & € R™ represents the species vector, and M € R™*"™ is defined as
M=dI — A, (3.3)

where I is the n x n identity matrix, and we have assumed that all nodes decay at
the same rate d, which is meant to represent the decay time scale for the dynamics.
Without loss of generality we may take d = 1 since this may always be achieved by

suitable re-scaling.

Given the linearity of this system there are only two possible types of long-term
behaviour: convergence toward a stable fixed point or divergence to infinity. We will
assume that only the first behaviour can happen, i.e. convergence to a stable fixed
point is the only physically realistic scenario. This occurs whenever the real parts of
the eigenvalues of M are all strictly positive, i.e. M is a positive definite. Then, the
SDE in Eqn. (1.10) is ergodic: there is a unique stationary distribution to which any
initial conditions Eqn. (1.10) can converge and therefore admits a unique invariant
measure[106]. Properties of the network G for which the associated deterministic of
Eqn. (1.10) has a stable solution have been discussed at length, and it is known that

sparse modular networks confer stability, for example [133, 134].

The matrix 3 € R™*™ has the noise coefficients, and W (t) is the m-dimensional
standard Brownian motion, as defined in Section. 1.3.3. The solution of Eqn. (1.10)

for initial condition x(0) = x¢ is given by
t
x(t)=e Mgy + / e M=) 33dW (s), (3.4)
0
with mean given by
((t)) = e My, (3.5)

and by applying Ité calculus [106, 112] covariance matrix K (t):

K(t):<w(t)—<fv(t)>7(w(t)—<w(t)>)T>Z/O e MU=IgsTeME=9 g5 (3.6)

If Eqn. (1.10) describes an ergodic process then

lim K(t) = K, (3.7)

t—o00

where K satisfies the Lyapunov equation [106]:

MK + KMT =xxT. (3.8)
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Figure 3.1: An acyclic graph that the source is passing a noisy signal to the target
through a number of paths.

Although this is the standard formulation [106], instead of working with Eqn. (3.8) we
will work directly with the Eqn. (3.6) as it ultimately allows for a more transparent
assessment on the effects of network structure on the stationary covariance of the

system.

Since our purpose is to determine the way in which input noise is processed
by the network G it is natural to consider a single noisy input to the system, which
represents the fluctuating extra-cellular environment, and a single output, representing
the computational core of the network. To do so we may, without loss of generality,
chose a labelling of the nodes such that the first node is the noisy input or the source,

and the n-th node is the output, namely the target. Thus, we set
¥ =(0,0,---,0)7 (3.9)

and we are interested in calculating the variance of the n-th node in the network, which
is given by K, relative to the magnitude of the input noise. Fig. 3.1 illustrates an

example of a network of interest.

The environmental noisy signals can be bearing essential information, thus can
be thought as a measure of the degree the target node can capture; or just random
environmental fluctuations that can be thought as a measure of the degree of the

network amplifies or suppresses that fluctuations.

3.1.1 Derivation of Limiting Variance

We will derive a formula that relates the limiting variance of the target with the

structure of the network of interest.

In particular, the K;;(t) element of the covariance in Eqn. (3.6), in index notation

is given by

K(t) = /0 t(e‘M“‘s))ﬂ(E)lk(zT)km(e—M<t—S>T)mjds. (3.10)
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Due to the fact that ¥ in Eqn. (3.9) has only one non-zero entry (X7, = o2 for
[ =m =1 and by using Eqn. (3.3), we obtain

2 ! —2(t—s) [ JA(t—s) AT (t—s)
K;j(t)=0 /0 e (e )il (e )13' ds. (3.11)
For the target of interest, i.e. the n-th node we replace it = j =n
¢
) —2(t—s) [ JA(t—s) AT (t—s)
Kon(t) =0 /0 e <e )nl (e )ln ds, (3.12)

which is equivalent with

t 2
K (t) = 02/ e~ 2t=s) (eA(t_5)> ds. (3.13)
0 nl

This expression connects strongly to the structure of the network via the fact that (i, j)-
th entry of the exponential of the adjacency matrix of a network is a weighted sum of all
walks between nodes ¢ and j, and so is a simple measure of network ‘communicability’
[125], as described in Section 3.1.

Before proceeding further with the Eqn. (3.13), we will consider the weight w(P)

of a walk P from node 7 to node j as the product of its edge weights,

H aij. (3.14)

(i,5)eP

If P is the set of walks of length k£ between nodes ¢ and j then the total weight of all

walks from node ¢ to node j with length £ is

ﬁz]k - a Zw Pk (315)

Combining Eqn. (3.1) and according to [99, 125], the exponential of the adjacency

matrix A in Eqn. (3.11) can be written as

s — Bij
(eA(t )>ij22 k”!k(t—s)’“. (3.16)

k=0

Using Eqn. (3.16) and the formulation of Eqn. (3.15), and by considering the convention
Bir = Prir and Bijo = i, Eqn. (3.11) takes the form

2 62]66][ k—i—l —2(t—s
ZZ/ il e 2t=9) g, (3.17)

k=0 1=0

or for the n-th node Eqn. (3.13) can be expressed as

222/ B?;:;gnl )k+l —2(t=9) 4. (3.18)

k=0 1=0
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If now we take the limit at ¢ — oo and consider the fact that

t

|
lim [ (t—s)e 2073 ds = e

dim | gnrT (3.19)

we simplify Eqn. (3.17) and obtain the limiting covariance

0P = 1 (k1
Kij = > Z Z SRl < / >5ik6jla (3.20)
k=0 1=0

or more specific the limiting variance of the target node n:

2

0 = 1 [k+1
k=0 =0

Since the variance of the noisy input is given by K17 = 02/2, we may investigate the

noise-processing ability of the network by considering the ratio

e 1 (k1
KH ZMZQ< )Bm, (3.22)

where we have further simplified notation by setting B,,x = Bk.

When R > 1 noise is amplified by the network; when R < 1 noise is suppressed
by the network. Importantly, if the process described by Eqn. (1.10) is ergodic then R
is finite and depends only on the structure of the network G. This formula therefore
provides an explicit connection between network architecture and noise-processing; our
interest is to determine how R is affected by different network architectures. To do so
we note that Eqn. (3.22) has a natural interpretation in terms of random walks on G,

as follows.

Since each walk P from the input to the target has an associated weight w(P),
a pair of possibly intersecting walks P, from the input to the target also has an
associated weight w(P, Q) = w(P)w(Q), the product of the edge weights involved. If
we write P, and P, for arbitrary walks from the input to the target of length k&, and [
respectively, then the product f;f5; (see Eqn. (3.21)) can be written as

BB =Y w(Py) Y w(P) =Y w(P,P). (3.23)
P, P, Py, P,

Substituting this into Eqn. (3.22) and rewriting the second sum in terms of m = k +1

gives,
L2535 S Db () T A1 (3.20

m=0 k=0 Py,P,,_§

from which it can be seen that R is a weighted sum of all pairs of walks through G
from the source node to the target, with the relative importance of each walk-pair
determined by a coefficient drawn from a binomial distribution B(m,1/2), where m is

the length of the walk-pair.
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The appearance of binomial probabilities arises as the natural probability mea-
sure for pairs of random walkers on the network G. This can be discerned by a simple
example: let us consider two independent walks starting at the same time at the input
node. At each time step a node is selected with equal probability 1/2; this walker
decides through available edges in G the with equal probability; i.e. if the walker
is at node i each possible edge is chosen with probability 1/d", where d;°"" is the
out-degree of node i, as defined throughout Eqn. (3.2). Then, after m = k + [ steps
both walks reach the target node with probability (7;)2*’”. Now, we can think the
sum ZPk,Pm—k in Eqn. (3.24) as the expected weight of a pair of walks from input to
target, with respect to the probability for two independent random walks; since K (t)
in Eqn. (3.11) depends on two exponential terms, eAt=5) and eAT(t_s), is attributed

to the fact that we have two random walks.

How the ratio in Eqn. (3.24) grows depends strongly on the graph’s G structure;
a directed acyclic graph for example will have no feedback loops, and thus the sum
Yoo in Eqn. (3.24) is finite, due to the finite length of each walk. On the other
hand, a graph with cycles may have arbitrarily long walks, and one needs to take
infinite terms into account in Eqn. (3.24). Therefore, positive feedback adds infinitely
positive terms to Eqn. (3.24), and deliver more noise in the target than a corresponding
acyclic; similarly, negative feedback adds infinitely both positive and negative terms to
this sum; however, may amplify or diminish noise, depending on the distinct patterns

of inhibitory interactions in the network.

3.1.2 Stability of a Graph

Stability of the underlying deterministic system is necessary for the existence of an
invariant measure. Let us consider the simplest case in a directed graph G when all
weights have the same magnitude «, for the matrix M = oA — I (here d = 1, see
Eqn. (3.3)). One way to ensure stability and hence ergodicity is to consider the strength

of the weights a as follows
1
— 3.25
@ max;(d;)’ (3.25)
where here max;(d;) is the maximum degree of a node i (d; defined in Eqn. (3.2) ).

Although this is a sufficient but not a necessary condition for stability.

Another sufficient criterion for stability is an acyclic graph, as is depicted in
Fig. 3.1. In this case, the adjacency matrix A, which is strictly upper triangular,
guarantees stability and Eqn. (1.3) takes the form
a;; ER, 1<y
A= QrasR sl (3.26)
aij =0,12>j
where its eigenvalues are the entries on the main diagonal. That ensures that all the

eigenvalues of matrix —M from Eqn. (3.3) have negative real parts, i.e. \; = =1 Vi.
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Figure 3.2: The images illustrate the area the eigenvalues are bounded in the complex
plane, according to the Gershgorin circle theorem. The left figure shows the eigenvalues
of a random matrix with normally distributed entries, while the right represents the

eigenvalues of an upper triangular matrix (with distinct diagonal entries), as it is in

an acyclic graph.

A way of eigenvalues estimation of a matrix is by using the Gershgorin circle
theorem, which gives the area the eigenvalues are bounded. For real square matrix A,

each eigenvalue ); is localized in the disk

n
i — il <> lagl, (3.27)

i=1

i#j
and is centred on the diagonal element a;;, with the radius the sum of the absolute
values of the non-diagonal entries in every row. Therefore, since every eigenvalue \; of
A lies on C, can be represented as a point in the complex plane of distance dist; from

a;; as follows
dist; ={z € C: |z — aii| <}, (3.28)

where r; is Z?:h.#j la;j|. The Gershgorin disks are illustrated in Fig. 3.2 for two
random matrices with normally distributed elements. The right figure indicates that
all the real parts of the eigenvalues of an upper triangular matrix are negative, as
could be in an acyclic graph. The images show that least one eigenvalue lies in each
disk. Gershgorin circle theorem indicates a sufficient but not necessary condition for
stability, since every stable system satisfies the theorem, but the reverse is not always

true.

In the case of a real square n x n matrix A, with normally distributed elements
and eigenvalues \;, Girko’s circular law is satisfied [135, 136]. As n approaches infinity

the normalised quantity
Ai

NG

(3.29)
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Figure 3.3: The images illustrate how the normalised eigenvalues of a square real

matrix form the unit disk, as n gets large. The figure describes the Girko circular law.

is uniformly distributed on a disk with centre zero and unit radius. This property is
illustrated in Fig. 3.3; as n gets larger the unit disk that the quantities from Eqn. (3.29)

form can be obviously seen.

The mathematical equation proved in Section 3.1.1 in Eqn. (3.20) can be applied
in any system that is considered stable. In the next sections we consider two examples
that the graphs are acyclic, and therefore satisfy the stability criterion, as well as an

example of the pluripotent network considering condition in Eqn. (3.25).

3.2 Chemical Reaction Chain

In order to illustrate the general expression of the variance as is derived in Eqn. (3.20),
we give two examples, starting with the simplest and considering a non-reversible chain.
A species x; produces x;4+1 with production rate a;. The chemical chain in Fig. 3.4 of

n species is modelled as follows

dri(t) = —x1(t)dt +odW (t)
d:El(t) = (ai,lxi,l(t)—a:i(t))dt, (3.30)

or is equivalent with the Eqn. (1.10), where matrix M = I — A takes the form

1, fori=1j
M == *0«171, fOI‘ ] = Z + 1 (331)

0, otherwise.
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Figure 3.4: An acyclic graph that the source x; is passing a noisy signal to the target

xy through a weighted path of length ny.

Here there is only one path P from the source to the target of length n — 1, of weight
given by

n—1
Bi =B = H@iv fori=j=n
=1

Bi=8=0, fori#j#n.

The limiting variance derived in Eqn. (3.20), expanded the binomial coefficient, takes

w(P) = (3.32)

the form

-1

RO =

Knn =0 ooy [[ @ (3.33)
=1

Our result concurs with the expression derived in [99], where a; = k, Vi. Now by using
the ration R from Eqn. (3.22) we obtain

n—1
R= (273! 2% IT <2 (3.34)
i=1
In Eqns. (3.34) and (3.33), we keep the decay rates equal and allow positive and nega-
tive distinct values for the production rates a; for each node. The result indicates that
for a fixed noise coefficient o, for small enough a;, satisfy a; < 1, K,,,, is decreasing
logarithmically; thus the longer is the chain the smaller K,,,, becomes. Nevertheless,
larger a; > 1 can amplify K,,,; the product can exceed the binomial term and hence
reinforce the variance of the target. The signs do not affect the convergence of the
variance, as indicated from the square weights in the product H?;ll a?, and this sym-
metry is illustrated in Fig. 3.5. Fig. 3.5 depicts the variance of the n-th node against

the weights for a; = a and the number of nodes n in the chain.

We now proceed with analysing more the case when a; = a, in order to investigate
how the magnitude of a affects the noise processing abilities of the underlying network.
Then for large n we can use the Stirling’s approximation and can be shown that the
ratio in Eqn. (3.34) can be simplified in the form

2(n—1)

vn

a

~

(3.35)

Now we can show that if
la| < (zn) /470 (3.36)

the signalling pathway suppresses noise. By using Stirling’s approximation:

n! ~v2mn (E>n, (3.37)
e
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Figure 3.5: The log of the variance of the n-th node in a linear chain against the

weights with same magnitude a and the number of nodes n.

we can prove that the ratio R converges for a large n as follows:

/ 2n)2n
477”( ) La2(n71)

™ (3.38)
2, ( )2 22n
a2(n—1)
= . 3.39
= (3.39)
Then, if and only if a*™ Y < 7n, and by taking the limit to the infinity:
| 4,2(n—1) 2(n—1)
lim R = lim 2 = lim 2 = 0. (3.40)
n—o00 n—oo nl? 22n n—00 V@Fﬁ

The limit at which n approaches infinity is less that one, hence R converges.

3.2.1 Uncorrelated Normal Distributed Random Weights

We have shown that for fully correlated weights a; = a, and for any a; < 1 the chain
can suppress the noise in the n-th node, under specific conditions. It is interesting
now to assume the random weights taken from a normal distribution. In the follow-
ing calculations the weights a; are considered independent and identically distributed
(ii.d.), so that a; ~ N(0,7?). In order to draw conclusions for the weights a;, we
derive the mean and the variance of the limiting variance in Eqn. (3.33). Then, the

second central moment of their product is given by

n—1 n—1
E[] [ a1 = [[Ele] = ", (3.41)
i=1 i=1

Then the mean of the variance K, is given by:

2 (2n 5 2n)! 1 o
E[Ku] = o |2 22n+1 H n|2 22n+17(n . (3.42)
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Figure 3.6: The figures are the contour plots of the log of the variance K, against
v < 1 (left) and v > 1 (right), respectively. The weights a; are considered independent
and identically distributed (i.i.d.), so that a; ~ N(0,72).

In order to have a finite expected value of variance K,,,, variance 72, of the weights a;
needs to satisfy the condition v2 < 1, so that lim,, . E[K ] = 0. Then the variance

of K, is derived as follows

Var(K,,) = E[K2,]—E*Kpu) (3.43)

2n) 1 \? . e
= 04((n!2> 22n+1) (Byhyt =4t (3.44)

where 37 is the forth order central moment [106]. By using now Stirling’s approxi-

mation we can rewrite Eqn. (3.43) as follows

0'4 1

Var(Kpn) ~ 1 [(39)" 71 = (4] = J—4(31/ 4y)tn=D), (3.45)

4mn

Interestingly, we found that while the mean of the variance K, in the chain is finite,
as it is shown in Eqn. (3.41), the variance can be infinite, for v satisfying the condition
34y > 1.

As a measure of variability we consider now the coefficient of variation CV (K,,,),

which describes the degree of variability relative to the mean, and is calculated as

OV (Kyy) = YY) i L gy, (3.46)

Eqn. (3.46) shows that as well as the variance of K, approaches infinity for the limit
of n — o0, and is independent of v. We conclude that normally i.d.d. weights i.e.
a; ~ N(0,7?) can amplify the noise, since for a finite mean the magnitude of K,

variance can be burst to infinity for |y| > 371/4.

These results are demonstrated in Fig. 3.6, which is a contour plot of the

logarithm of variance of the target node, Ky, for v < 1 (left) and v > 1 (right),
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Figure 3.7: Figure (a) plots the variance against n for v = 0.5 and v = 1.5 and
variance against vy for a fixed n = 40. Histograms (b) are depicting the probability
density functions produced by fixing the number of nodes in a chain of length n = 12,
(blue) and of length n = 100, (purple) for v = 0.5. The square mean of the weights
is fixed to v = 1.5 and n considered n = 12, (cyan) and n = 100 (yellow). The y
axis is the number of molecules. The histograms are produced for a simulation of 10*

realisations.

respectively. The shapes in the contour plot are the level sets that the function K,
is equal for the different combinations of matrix dimension and variance . Fig. 3.6
illustrates that for v < 1 the chain suppresses the noise for large n, while v > 1 ampli-
fies the noise as n gets larger. This results are also illustrated in Fig. 3.7; these plots
depict the variance against the length of chain n and the probability density functions
for v < 1and v > 1, in Figs. 3.7 (a) and (b) respectively. For v < 1 the variance of the
target goes to zero as the chain becomes longer. However, for v > 1 the variance K,

goes to infinity for larger n. The plots also confirm the conclusions in Eqn. (3.40).
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Figure 3.8: The image illustrates the fil motif (‘OR’ cascade), where the target node

(node 3) is regulated from the source (node 1) and an intermediate node (node 2).

3.3 Stochastic Feed-Forward Loop

Another example to consider is the well studied motif [21, 137], feed-forward loop
(fil), which is a directed graph of three nodes that is commonly found in transcription
regulatory networks within the cell. Two nodes regulate the third and each other,
as is shown in Fig. 3.8. A positive sign in a rate a; corresponds to an activation,
while a negative to a repression. fll is known for acting as a molecular timer, since
depending on the signs of the constant rates they accelerate or delay the response
time of the target [21]. Depending on the sign of the total product of the direct and
the indirect path from the source to the target, there are 8 different types. The four
incoherent types of fll accelerate the response time, while the other four coherent cause
a delay [21]. Here we consider the ’OR’ cascade of the fil motif, where the target is
either regulated by the source directly, or indirectly by an intermediate node with the

following linear ODEs

dri(t) = —ai(t)dt + odW (1) (3.47)
dra(t) = (arz1(t) — z2(t))dt (3.48)
dl’g(t) = (agl'g(t) + azxy (t) — l’g(t))dt. (3.49)

The adjacency matrix A takes the form

0 aj as
A=10 0 a (3.50)
0 0 0

There are two paths from the source to the target as shows Fig. 3.8, one of length

two and one of length one. Applying the formula in Eqn. (3.18) the variance of the
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Figure 3.9: The left figure is a simulation of the stochastic fil. The right figure is the
stochastic chain for three nodes. Noise from the source (blue line) is delivered to the
target (red line). As we can see from the comparison the the variance of the target in
the chain (red line) fluctuations do not exceed expression magnitude for 2.5 (grey line).
However, the fl process to the target node more noise (red line), since fluctuations can

reach a higher maximum magnitude, i.e. close to 4 (grey line).

target node is given by
Kss(t) = / Bi(t — )% 2" )ds
+ 02/0 ﬁgﬁ(t — s)te 2794
¢ 1
+ 02/ 261&5(15 — 5)3e2t=9)gs, (3.51)
0 .
and taking the limit to ¢ — oo and using Eqn. (3.20) we derive

3
Kg3 = 0'2,3% o T ﬂ2 o1 T a%ﬁzﬁ (3.52)

Equivalently expressed with the weights a1, a; and as

1
Ks3 = a2a§§ + o?(ayaz)? o + c2a1a0a3— 53" (3.53)
The ratio now R can be expressed as
R= 51 5 T 52 + /3152 (3.54)

If all edges are positive then 81, 82 > 0, then all paths in the network are positive and
the target receives a consistent signal from the source. In this case the fil is coherent.
However, if 51 < 0 or 82 < 0, which occurs if either one or three of the edges is negative,
then the target receives a inconsistent signal from the source. In this case, the fi is
incoherent. Denoting the noise processing ratios in the coherent and incoherent cases
by R™ and R~ respectively, it follows from Eqn. (3.54) that RT > R~ and therefore
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Figure 3.10: The log of the variance of the target node against the direct 51 (blue) and
indirect 5y (black) weighted paths. A positive coherent fil is illustrated by the figure
in the positive x axes, while an incoherent for the negative values of 51 and B3. The
figure is produced for a fixed values of By (blue) or f; (black) to 0.4.

that the incoherent feedback loop has the ability to suppress the noise in the target

node.

In Fig. 3.9 the stochastic fll is plotted using the Euler-Maruyama approximation
for 10* realisations. The noise from the source has strength ¢ = 1. Each line represents
the expression of each species for final time 7' = 200. In order to show the variation
in the number of molecules in the target, Fig. 3.9 shows the mean of the target that is
represented by the black line. In Fig. 3.10, we plot the variance of the target K33 against
the weighted paths 1 and B2. We fix one of the paths 1 or 52 and plot the variance
against the other. The changes in the contribution of the noise in the variance occur
when the weighted products take the same value, here at 0.5. Therefore, we conclude
that in this particular magnitude for the weighted path of length 1 |81| < 0.5, the
path of length 2 contributes more towards the variance K33, while 81 processes more
noise to the target for |B2| > 0.5. According to our formula in Eqn. (3.52), this is
explained by the length of the direct path from node 1 to 3, with contribution /6’% /4,
since the coefficient is larger than the one of the indirect path. Inhibition in one of the
paths leads to reduction of the magnitude in the variance of the target. This result
is explained by the combination of the paths (132, as described in Eqn. (3.52). This
result is not only in this special case but in general; the incoherent paths in the network

tend to play the most important role in noise processing.

Now, we consider the weights i.i.d., where a; ~ A(0,72). In the next Fig. 3.11
is shown how the variance K33 changes with the variance 72 of the random normally
distributed weights ao and as. Here the value for v varied from 0.001 to 2. It seems

that after a value that v exceeds 1, variance is amplified. The probability density in
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Figure 3.11: The left figure illustrates the variance of the target K,, of fli, given
in Eqn. (3.53), against the square mean 7 of the normally i.i.d. random variables
ai,as, a3, so that a; ~ N(0,7%). The following figures on the right, illustrate the
probability density of K,, for a fixed value of v = 0.5 and v = 1.5, respectively. In

these central and right figures y axis depicts number of molecules.

Fig. 3.11 shows a higher probability the variance will be close to zero for v = 0.5, than
in the right for v = 1.5.

3.4 Application to Transcription Regulatory Network

In this Section we consider the pluripotent network as defined and simplified in [§],
and demonstrated in Fig. 3.12. The underlying interactions have been selected ac-
cording to a Pearson correlation threshold, through which the assigned interacting
factors are highly expressed [8]. The behaviour of this network is determined by the
input stimulation of three extra-cellular factors commonly added to ES cells in cul-
ture media preparations: the cytokine Leukemia inhibitory factor (Lif), and selective
inhibitors of glycogen synthase kinase 3 (TGF-8) (Chiron99021, denoted CH) and
mitogen-activated protein kinase (Mek) (PD0325901, denoted PD) [8]. In this thesis,
in order to explore the relationship between network structure and noise transduction
from the noisy source Lif to the target Oct4, we modify the architecture regarding spe-
cific interactions. In particular, the role of distinguished interactions in noise propaga-
tion is examined in greater detail. The results are explained by using our mathematical

expression and the numerical simulations.

We consider the noise to be arising from a molecule in the membrane of the cell,
and processing through a signalling network to the output in the nucleus. As the noisy
source we choose Lif that is essential for the pluripotent cells to remain undifferentiated
in vitro. The protein encoded by the Lif gene binds onto the receptor of the signal
transducer and activator of transcription 3 (Stat3) [138, 139], and activates signalling
pathways that induce the transcriptional regulatory network [62, 69]. We select as the
target the octamer DNA binding transcription factor 4 (Oct4), which in coordination
with the factors Sox2 and Nanog interact accordingly to maintain the pluripotent
circuit [68, 140, 141]. The underlying network is illustrated in Fig. 3.12 B, which is
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Figure 3.12: The graph of the simplified regulatory network [8] at the top, and on the

bottom the version with LIF as the noisy source and the target Oct4. The red edges
denote the interactions that give feedback at the network. The arrows activation of a
factor, while circles indicate inhibition. The colour on the edges, ranged from light grey
to black, along with the thickness indicates the importance of the related interaction.

The variance of Oct4 takes it minimum value, when noise is processing from one source,

Lif (Table B.1).

composed of 11 factors and 20 interactions. There are 26 paths from Lif to Oct4,
including 3 cyclic paths.
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Variance of genes

Genes Noise processing  All possible Length of Number of
R paths from Lif shortest path cycles/feedback
Stat3 0.0112 1 1 0
Tfep2l1 2.5450e — 04 13 2 9
Klf4 2.4086e — 04 2 2 0
Gbx2 1.8984e — 04 2 0
KIf2 5.8979¢ — 06 5 3 5
Esrrb 5.0270e — 06 20 3 7
Sall4 4.8499¢ — 06 13 3 7
Sox2 1.2849e — 07 24 4 4
Nanog 1.2431e — 07 16 4 7
Oct4 5.9950e — 09 23 4 9

Table 3.1: The normalized variance of each gene by the variance of Lif, is denoted by
the ratio R, in the second column. The third column shows the number of all possible
paths from Lif to each node; the forth column indicates the length of the shortest path
each node participates; the fifth column identifies the number of cycles/feedback loops
that each node take part in the network. Factors are ordered by decreasing order of

the magnitude of R (column 2).

Although the sign of the interactions (i.e. whether they are activatory or in-
hibitory) is defined [8] their strength is unknown. In the absence of this information
we assume that all interactions are of equal unit strength since this represents the most
economic model. We consider the weights to magnitude a small enough value a < 1/6,
such that the stability condition in Eqn. (3.25) is satisfied. Then, the normalised vari-
ance R = Kyactor/Krig by the source Lif of each node is calculated and demonstrated
in the Table 3.1. Additionally, in the same table we count all the possible paths from
Lif to each factor. The transcription factors with the least noise are the ones that are
in the core of the nucleus of the transcriptional circuit in ES cells; Oct4, Nanog and
Sox2. The more connected factors with Lif are Sox2, Oct4, Esrrb and Nanog which
are all involved into cyclic paths with Oct4. In the last column of Table 3.1 are listed
the number of cycles (feedback) in the network; Tfcp2ll and Oct4 are engaged into 9
out of 11 cycles; Tfcp2ll into 3 negative and Oct4 into 4 negative cycles.

There are particular edges that are responsible for the development of feedback
in the network (see red lines in Fig. 3.12). In order for the flow to follow the same
direction, we construct the corresponding acyclic graph by changing the orientation of
three interactions: Oct4 — Nanog, Oct4d 4 Tfcp2ll and Esrrb — Tfcp2ll. The new
acyclic version includes 19 interactions and 29 paths from Lif to Oct4. To compare

the effect of no-cycles in the graph we consider the mean path length [9, 12, 142], as a
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Figure 3.13: The figure shows the ratio R/Ry,y for Oct4 against the probability of

removing each interaction, for 108 realisations.

measure of 'navigability’ in the graph. The smaller is the magnitude of the mean path
length, the faster is the flow of noise in the signalling network. The mean path length
for the unperturbed (denoted by (lorg)) and the acyclic (denoted by (lacyc)) graph is
calculated as (lorg) = 0.0576 and (lacye) = 0.0171, respectively. This result shows that
the acyclic version has the shortest paths from Lif to Oct4. Therefore, the noise in the
acyclic graph is mitigating faster than the original. There are also formed four extra
feed-forward loops in the acyclic case, illustrated in Fig. A.1. One conclusion can be
summarised from this outcome: the pluripotent ES cells have a preference to interact
in a distinctive way that form circuits and feedback loops in order to minimize the

noise.

Results

To investigate the effect of network structure on noise processing, we look how the ratio
R (Eqn. (3.22)) changes upon targeted removal of different interactions, compared to
the unperturbed network, denoted by Rgg. In order to visualise how the magnitude
of the variance of Oct4 is affected by the structure of the network, we introduce the
probability p that an interaction is removed. Fig. 3.13 illustrates the evolution of Oct4
ratio R/ Ry, against the probability p that an edge is removed. Interestingly, we note
here that the maximum in Fig. 3.13, at probability p = 0.15 corresponds to the removal
of an average of three interactions. When all the edges removed simultaneously, the
network is disconnected, and this explains the zero in the magnitude of R/Rpyy for

probability one.
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Interaction Noise-processing Coherence Feedback
removed (R/Rpun) (c/eram) — (f/ fram)
Tfcp2ll — Sall4 0.02 0.68 0.64
Sox2 — Oct4 0.12 0.60 0.37
Sall4 — KIf2 0.18 0.98 0.45
Sall4 — Sox2 0.18 0.86 0.18
Stat3 — Gbx2 0.32 0.98 0
Gbx2 — Klf4 0.32 0.98 0
Nanog — Sox2 0.83 0.94 0.18
Klf2 — Nanog 1 1.10 0.27
Esrrb — Tfep2l1 1.12 0.95 0.36
Nanog — Esrrb 1.19 1.25 0.45
Klif4 — Tfep2ll 1.99 1.06 0
Stat3 — Klf4 4.70 0.98 0
Klif4 — KIf2 8.68 0.92 0
KIf2 — Oct4 12.10 0.86 0.18
Stat3 — Tfep2ll 12.18 1.03 0
Tfcp2ll — Esrrb 24.62 1.23 0.18
Esrrb -4 Oct4 25.68 1.53 0.27

Table 3.2: The effect of the removal of interactions on network’s noise processing. The
first column identifies the edge removed from the network; the second column shows
the effect of removal of the given edge on the ratio R by comparison with that of the
unperturbed network Rg,y; the third column shows the effect of the removal of the
given edge on network coherence; the fourth column shows the effect of the removal of
the given edge on network feedback. Edges that emanate from Oct4 do not contribute
to the noise processing capacity of the network and their removal does not affect R
so they are excluded from this table. Since all paths from Lif to Oct4 pass through
the edge Lif — Stat3 its removal disconnects the network; this edge is also accordingly

excluded from the table. Interactions are ordered by column 2.

To reveal the structural influence on noise processing we also calculated two
simple network measures based upon our interpretation of Eqn. (3.22): (1) ¢ =
pt/(p* + p~), where pT and p~ are the number of positive and negative paths from
Lif to Oct4 respectively. Therefore, ¢ gives a measure of coherence in the network,
and compared with values of the coherence in the unperturbed network, denoted by
crar; and (2) f, is the total number of feedback loops in the network, as a measure
of network complexity, and compared with the unperturbed network, denoted by fu.
These results along with the modification in the magnitude of the variance of Oct4 for

removing an interaction are demonstrating in detail in Table 3.2.
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Figure 3.14: Plots of the data from Table 3.2. Removal of edges that result in an in-
crease of coherence in the network tend to diminish the system’s noise processing abil-
ity, while removal of edges which reduce the overall feedback structure of the network
tend to improve the system’s noise-processing ability. Red lines show linear regression.

In the right figure interactions with no contributions to feedback are excluded.

The shortest paths from Lif to Oct4 in this network have length 4; there are
two such paths: (1) Lif — Stat3 — Tfcp2ll — Esrrb 4 Oct4; and (2) Lif — Stat3
— Klf4 — KIf2 — Oct4. The first of these paths in negative due to the inhibitory
interaction Esrrb - Oct4, while the second is positive. If we consider together this
pair of paths forms an incoherent feed-forward loop; since these are the shortest paths
in the network, we anticipate from Eqn. (3.22) that this incoherent feed-forward loop
will have an important role in noise-processing in this network. Indeed, according to
Table 3.2, if any of the elements of these paths are removed, then the noise-processing
capacity of this network is severely inhibited and the ratio R increases substantially
(Fig. 3.14).

It is well known that Tfcp2ll, Sall4 and Nanog play a critical role since their
existence reinforces the pluripotent state in ES cells [34, 72]. Although the interaction
Tfcp2l1l — Salld has the greater effect in the noise amplification, Tfcp2l1 is a typical
target induced by the source Lif, where its absence jeopardises the receptivity from
the protein Lif [88]. Conversely, the presence of the inhibitory interaction Esrrb —
Oct4 shows a substantial suppression in the Oct4 variance. This interaction takes
part in three cycles with Esrrb, in two activated by Nanog; furthermore, Esrrb is
stimulated by the core factor Tfcp2ll in order to form a circuit with Oct4, and is
activated directly by Nanog, sustaining the pluripotent state [143, 144]. Therefore,
the interaction is connected to the main body factors and a failure of this suppression
induces greater noise in the target Oct4. These two representative examples imply that
particular interactions existence tends to balance extreme noise amplifications; while
core interactions such as Tfcp2ll — Sall4 and Sox2 — Oct4 have a high aggregated
effect in noise processing, others such as Esrrb 4 Oct4 and Tfcp2l1 — Esrrb influence
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to harmonise this effect.






Discussion and Conclusions

In this Chapter, we focused on the signalling network, in which molecular factors govern
the pluripotent state in mouse ES cells [11, 34, 61-63, 69, 70]. Under the assumption
of stability and that the extrinsic environmental noise is coming from a single input,
we derived a mathematical formula that allows us to relate the structure and the
noise processing ability of the network; this is achieved by calculating the variance
of any node, depending on the weighted walks connecting that node to the noisy
input. Although, the conclusions can apply to any network with more noisy inputs
and the results can be also expressed numerically, following the same methodology. The
mathematical formula in Eqn. (3.20) for the variance at the equilibrium is a bridge
between the topology of the underlying network and the noise processing from a noisy

source(s).

We deduce that not only the number of components, but the length of the paths
from the noisy source to the target, plays a critical role in the noise propagation. Col-
lectively, results from the limiting variance in the examples of a signalling cascade and
a feed-forward loop lead to the conclusion that the structure does determine the effect
in noise processing. We report that under conditions such as fixed weight magnitude a,
satisfying |a| < 1, the shortest pathways in a signalling cascade bear the most decisive
role in the amplification of the ability of noise processing; therefore, the smaller the
length of a path the greater is its contribution in the variance of the target. Addition-
ally, incoherent feed-forward loops suppress noise processing. Interestingly, applying
our formula in Eqn. (3.20) on the transcriptional pluripotent network we found that
coherent feedback is influenced in principal by the core transcriptional factors essen-
tial for pluripotency maintenance [11, 145]. Nevertheless, other interactions between
auxiliary factors, which form incoherent feed-forward loops, function as a balance in
noise amplification, and ensure that environmental signals are robustly mediated in

this core circuit.

As has been anticipated from Eqn. (3.20), positive cycles and feed-forward loops
add extra positive terms to the variance of the target node, and then the sum in
Eqn. (3.24) can be infinite; that affects the target receiving constantly infinite noise.
However, negative feedback adds both positive and negative terms to this sum, while

may amplify or diminish noise processing, depending on the distinct organisation of
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inhibitory interactions in the network. We conclude that the special structure in
pluripotent ES cells tries to maximize the noise at an early level of interactions close
to the noisy source Lif. Nevertheless, this topology enhances the suppression of the
noise as interactions approach the transcriptional core and hence the target Oct4 (see

Table. 3.2, second column).

Generally, Eqn. (3.20) can be applied to any factor in the network shown in
Fig. 3.12, with the intention to examine and determine their variability with the noisy
source(s). In order to find the effect of noise from all the three sources in the pluripo-
tent network, we implemented the calculations computationally and the outcome is
presented in the Tables B.1-B.7. All the combinations of possible noisy inputs are
taken into account; the variance of Oct4 minimises its magnitude, when noise is pro-
cessing only from Lif, as indicated in Table B.1. This outcome occurs despite the fact

that the other noisy inputs, CH and PD, have a suppressing role in the graph.
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Motifs in the pluripotent

network

Feed-forward loops
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Figure A.1: The first two blue fil are in both graphs, while the other four red are added

in the acyclic.
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Figure A.2: The shortest paths from Lif to Oct4 in the network (1) Lif — Stat3 —
Tfcp2ll — Esrrb 4 Oct4 and (2) Lif — Stat3 — Klf4 — Kl1f2 — Oct4; together form

an incoherent feed-forward loop.
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Tables

Variance Oct4-different noisy sources

Variance of genes

Noisy Ratio R Length of Sign of the
sources Oct4 shortest path shortest path
CH 4.4306e — 06 3 —

Lif & CH 4.1756e — 06 3 from CH —

Lif & PH 4.1756e — 06 4 from Lif / PD -/ +
CH & PD 3.3596e — 06 3 from CH —

Lif, CH & PD 3.1477e — 06 3 from CH —

PD 8.5537¢ — 08 4 +

Lif 5.9950e — 09 4 —

Table B.1: The normalized variance of Oct4, by the variance of Lif, CH and PD, in all

different combinations of the noisy source(s).
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Three noisy sources

Variance of genes

Genes

Ratio R Length of
shortest path

Stat3
ERK
Tef3

0.0113 1 from Lif
0.0113 1 from PD
0.0089 1 from CH

Tfep2l1
Esrrb
Klf4
Nanog
Gbx2

9.0682¢ — 04 2 from Lif / CH
3.0991e — 04 2 from CH
2.4086¢e — 04 2 from Lif
1.9184e — 04 2 from PD
1.8984e — 04 2 from Lif

Sall4
Klf2

Sox2
Oct4

1.7204e — 05 3 from Lif / CH
7.2470e — 06 3 from Lif
5.9985e — 06 3 from PD
3.1477e — 06 3 from CH

Table B.2: The normalized variance of each gene, by the variance of Lif, CH and PD.
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Noisy source CH

Variance of genes
Genes Ratio R Length of
shortest path

Tcf3 0.0113

Esrrb 2.4806e — 04
Tfep2ll  2.5513e — 04
Oct4 4.4306e — 06
Sall4 4.8638¢ — 06
Nanog  6.4816e — 08
Sox2 7.6209e — 08
Klf2 9.6749e — 08

=R W W NN NN

Table B.3: The normalized variance of each gene, by the variance of the source CH.
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Noisy source PD

Variance of genes
Genes Ratio R Length of
shortest path

PD 1

ERK 0.0113
Nanog  1.9039¢ — 04
Tcf3 1.8984e — 04
Tfep211l  3.8019¢ — 06
Sox2 3.4581e — 06
Sall4 7.5199¢ — 08
Esrrb 7.2805e — 08
Oct4 8.5537e — 08
Klf2 1.5278e — 09

T = W W Wi NN =

Table B.4: The normalized variance of each gene, by the variance of PD.
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Tables

Noisy sources Lif and CH

Variance of genes

Genes

Ratio R Length of
shortest path

Stat3
Tef3
Tfep211

0.0113 1 from Lif
0.0113 1 from CH
0.0010 2 from Lif / CH

Sox2
Klf4
Esrrb

3.1751e — 04 4 from Lif / CH
2.4086e — 04 2 from Lif
1.8984¢ — 04 2 from CH

Gbx2
Oct4
Nanog

7.4267¢ — 06 2 from Lif
4.1756e — 06 3 from CH
1.9427¢ — 05 4 from Lif

Sall4
KIf2

4.0203e — 07 3 from Lif / CH
1.1046e — 08 3 from Lif

Table B.5: The normalized variance of each gene, by the variance of Lif and CH.
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Noisy sources Lif and PD

Variance of genes

Genes Ratio R Length of
shortest path
Stat3 0.0113 1 from Lif
ERK 0.0113 1 from PD
Tfep2l11 0,0011 2 from Lif
Sox?2 3.1751e — 04 3 from PD
Klf4 2.4086e — 04 2 from Lif
Esrrb 1.8984e — 04 3 from Lif / PD
Nanog  1,9427e — 05 2 from PD
Gbx2 7.4267e — 06 2 from Lif
Sall4 4.0203e — 07 3 from Lif
KIf2 1.1046e — 08 3 from Lif
Oct4 4.1756e — 06 4 from Lif / PD

Table B.6: The normalized variance of each gene, by the variance of Lif and PD.
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Noisy sources CH and PD

Variance of genes
Genes Ratio R Length of
shortest path

ERK 0.0113 1 from PD
Tef3 0.0089 1 from CH
Sox2 2.4162e¢ — 04 3 from PD
Tfep2ll  2.0076e — 04 2 from CH
Klf2 1.8523e — 04 4 from CH
Sall4 4.4816e — 06 3 from CH
Esrrb 3.7884e — 06 2 from CH
Oct4 3.3596e — 06 3 from CH
Nanog  7.4903e — 08 2 from PD

Table B.7: The normalized variance of each gene, by the variance of CH and PD.
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