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Abstract—Active sound profiling, or active noise equalization
strategies have been proposed to achieve spectral shaping of a
primary disturbance signal. The control algorithms proposed to
achieve such spectral shaping have either suffered from poor
robustness to plant modelling uncertainties or required high
levels of control effort. To improve the robustness of active
sound profiling to uncertainties in the plant model, whilst
avoiding increased control effort, a modified phase-scheduled-
command filtered-x least-mean-square (FxLMS) algorithm is
proposed in this paper. The new algorithm provides improved
stability, whilst requiring the minimum control effort. This
improvement is achieved by replacing the plant model with
an intelligent adaptive-hysteresis switching mechanism to allow
the necessary estimation of the disturbance signal phase. The
improved performance and robustness of the proposed algorithm
is demonstrated through a series of simulations using measured
acoustic responses.

Index Terms—Active sound profiling, phase-scheduled-
command FxLMS, automatic-phase-command FxLMS, active
noise equalization, hysteresis switch.

I. INTRODUCTION

Active noise control (ANC), which is based on the principle
of destructive interference, has been found to be an effective
candidate for noise mitigation in the low-frequency region
[1]–[6]. In a feed-forward ANC system, a reference sensor
is used to measure the noise to be cancelled, a loudspeaker
is employed to generate the necessary anti-noise, and an error
microphone is used to measure the level of noise cancellation
achieved. The signal driving the loudspeaker can be controlled
using an adaptive finite-impulse-response (FIR) filter. The
weights of the filter are updated using a suitable algorithm,
which aims to minimize the residual noise [7]. One of the most
widely employed algorithms used for ANC is the filtered-x
least-mean-square (FxLMS) algorithm [2].

In some applications, it is desirable to retain a residual
error with a specified spectral shape. For example, it may be
sensible to modify the spectral shape of the disturbance noise
in automobiles [8], [9], aircraft [10], [11], air-conditioning
systems [12], [13], or incubators [14] in order to control
subjective metrics such as loudness, sharpness, or roughness
[15] rather than the sound pressure level. For such applications,
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researchers have modified the active control strategy so that the
central focus is not only on cancellation, but could also be on
either the attenuation or enhancement of a primary disturbance
signal. This process is called active sound profiling [16] or
active noise equalization [17]. A narrowband active noise
equalizer was proposed in [17], in which an FxLMS algorithm
was used to update the weights of the controller to obtain
residual noise shaping. A similar approach using the filtered-
error least-mean-square (FeLMS) algorithm to overcome prob-
lems with enhancements in the passband was reported in
[18]. However, the sound profiling scheme proposed in [17],
[18] has been shown to become unstable in the presence of
errors in the plant model, especially at high enhancement
gains [19]. In order to overcome these limitations, a phase-
scheduled-command FxLMS (PSC-FXLMS) algorithm and an
automatic-phase-command FxLMS (APC-FxLMS) algorithm
were presented in [19].

The above mentioned sound profiling schemes use an addi-
tional internal model of the plant to obtain an estimate of the
disturbance signal, which is used to adapt the sound profiling.
The stability of these sound profiling schemes is, therefore,
dependent on the accuracy of this plant model. The presence
of modelling errors in these algorithms may lead to instability
and are also more sensitive to such modelling errors than
the standard FxLMS algorithm [19]. In [19] it was shown
that PSC-FxLMS becomes unstable due to the presence of
phase errors in the plant model during enhancement and APC-
FxLMS was proposed to overcome this limitation. Although
APC-FxLMS is able to remain stable whilst operating in
enhancement mode in the presence of errors in the plant
model, it requires a larger control effort to achieve the desired
level.

In practical active control systems, the physical plant re-
sponse, characterized by the response from the loudspeaker
input to the error microphone output, is susceptible to varia-
tions over time. These variations might be caused by changes
in the ambient temperature or humidity, fatigue in the control
actuators and error sensors, or practical changes in the acoustic
environment due to, for example, changes in the occupancy of
the acoustic space. Due to the dynamic nature of the physical
plant, as well as truncation error introduced by modelling the
plant response using finite-length digital filters, the fixed plant
model is never a perfect estimate and, therefore, a practical
sound profiling algorithm must be robust to errors in the
modelled plant response.

In addition to robustness against plant modelling errors, it
is also desirable for sound profiling algorithms to achieve the
desired spectrum with the minimum control effort. Minimum
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control effort can only be achieved when both the command
signal and the disturbance signal are in phase [19]. Using a
high level of control effort in order to obtain a target spectrum
will unnecessarily overload the sound generation equipment,
including the amplifiers and control actuators. Although the
APC-FxLMS sound profiling algorithm is robust against plant
errors, this comes at the expense of a potentially large control
effort [19]. Conversely, under ideal operating conditions, the
PSC-FxLMS algorithm uses the minimum control effort, but
is highly sensitive to plant modelling errors. At present,
therefore, there is no algorithm that provides both robustness to
plant modelling errors and minimal control effort requirements
for all sound profiling conditions. Therefore, in this paper, a
modified PSC-FxLMS algorithm is proposed, which is both ro-
bust to plant modelling errors and achieves the target spectrum
with minimum control effort. This improvement is achieved
by removing the requirement of a secondary path model,
and introducing an intelligent adaptive hysteresis switching
scheme, which allows the phase of the disturbance signal to
be estimated directly, even in the presence of variations in the
frequency of the disturbance signal or in the signal-to-noise
ratio (SNR).

The rest of this paper is organized as follows. A brief
introduction to the existing active sound profiling schemes is
presented in Section II and the proposed modified scheme is
introduced in Section III. The effectiveness of the proposed
sound profiling method is tested using simulations in Section
IV, and concluding remarks are provided in Section V.

II. ACTIVE SOUND PROFILING ALGORITHMS

In a standard ANC system, an error microphone is used
to detect the residual noise, and this signal is used to adapt
the weights of the controller using, for example, the FxLMS
algorithm. The error signal can be expressed as [16]

e(n) = d(n) + gTu(n), (1)

where d(n) is the disturbance signal produced by the primary
noise source, g is the impulse response vector between the
control actuator and error sensor, and u(n) is the vector of
current and previous control signal outputs. In the case of
active sound profiling, however, instead of minimizing the
error measured at the error microphone, e(n), the system
minimizes a pseudo-error, e′(n), given by

e′(n) = e(n)− c(n), (2)

where c(n) is the command signal, whose amplitude is spec-
ified as the level desired at the error microphone. The control
filter weights, w(n), in the sound profiling algorithm can then
be updated according to the FxLMS algorithm with the error
signal replaced by the pseudo-error to give

w(n+ 1) = w(n)− µe′(n)r̂(n), (3)

where r̂(n) is the filtered reference signal vector and µ is the
step size. As the control filter weights converge, the pseudo-
error, e′(n), tends towards zero, which, according to (2) means
that the error signal, e(n), converges towards the command
signal, c(n) [19]. Therefore, the key difference between the

various sound profiling systems lies in the definition of the
command signal and, in particular, its phase. A brief review of
two previously proposed sound profiling algorithms, namely,
the PSC-FxLMS algorithm and the APC-FxLMS algorithm,
is provided below before introducing the proposed modified
PSC-FxLMS (MPSC-FxLMS) algorithm.

A. Phase-Scheduled-Command FxLMS (PSC-FxLMS)

In the PSC-FxLMS sound profiling scheme, the phase of
the command signal is defined based on the phase of an
estimate of the disturbance signal d̂(n) [19]. A block diagram
of a sound profiling system implemented using the PSC-
FxLMS algorithm is shown in Fig. 1. The disturbance signal is
estimated using an internal model of the plant response, Ĝ(z),
such that the estimated disturbance signal can be expressed as

d̂(n) = e(n)− ĝTu(n) = d(n) + gTu(n)− ĝTu(n) (4)

where ĝT is the impulse response vector of the internal plant
model Ĝ(z). The estimated disturbance signal at the reference
frequency can also be expressed using complex notation as

D̂ejφd̂ = Eejφe − UejφuĜejφĝ

= Dejφd + UejφuGejφg − UejφuĜejφĝ

= Dejφd + Uejφu

[
Gejφg − Ĝejφĝ

]
(5)

where D and φd are the magnitude and phase of the dis-
turbance signal, U and φu are the magnitude and phase of
the control signal, E and φe are the magnitude and phase
of the error signal, G and φg are the magnitude and phase
of the plant response G(z), and the circumflex indicates an
estimated or modeled value. From (4) and (5) it can be seen
that the disturbance estimate, d̂(n), is dependent on both the
magnitude, Ĝ, and phase, φĝ , of the internal plant model Ĝ(z).
In practice, the algorithm is somewhat sensitive to magnitude
errors, but is particularly sensitive to phase errors in the
internal plant model for high enhancement gains [19].

Fig. 1. Block diagram of the PSC-FxLMS algorithm.

B. Automatic-Phase-Command FxLMS (APC-FxLMS)

In order to improve the robustness of the PSC-FxLMS
algorithm when the sound profiling algorithm is operating
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in high-enhancement mode, the APC-FxLMS algorithm was
also proposed in [19]. The block diagram of the APC-FxLMS
based sound profiling scheme is shown in Fig. 2. In the
APC-FxLMS algorithm, the phase of the command signal is
computed as

φc =

{
φd̂ if C ≤ D̂

2D̂
C+D̂

φd̂ if C > D̂,
(6)

where C is the magnitude of the command signal. Although
the APC-FxLMS algorithm provides improved robustness over
the PSC-FxLMS algorithm, it does so at the expense of
increased control effort due to the command signal phase being
a biased estimate of the disturbance-signal phase φd̂ when
C > D̂, as per (6).

Fig. 2. Block diagram of the APC-FxLMS algorithm.

III. PROPOSED MPSC-FXLMS ALGORITHM

As discussed above, the PSC-FxLMS algorithm is highly
sensitive to phase errors in the plant model and hence is
not robust. Although the APC-FxLMS algorithm has been
shown to improve the robustness, this comes at the expense
of an increase in the required control effort. In practice, this
means that high-power amplifiers and loudspeakers would
be required, which would increase the cost and reduce the
efficiency of the system. To overcome the limitations of the
two algorithms discussed above, a sound profiling algorithm
is proposed that is both robust to plant modelling errors
and requires a minimal level of control effort. The reduced
robustness of the PSC-FxLMS algorithm and the increased
control effort necessary in the APC-FxLMS algorithm can be
attributed to the errors in the estimation of the internal plant

model, which in turn results in errors in estimating the phase
of the disturbance signal [19].

Conceptually, accurate estimation of the phase of the distur-
bance signal could be achieved if the disturbance signal could
be measured. However, this signal is not directly available,
as the error microphone measures a superposition of the
disturbance signal and the sound produced by the control
loudspeaker. One method by which the disturbance signal
could be measured is to switch off the control signal for a very
short time period. During this period, the signal measured by
the error microphone would be dominated by the disturbance
signal, which could be used to estimate the phase of the dis-
turbance signal. This task can be achieved by implementing an
electronic switching scheme, which enables phase estimation
whenever the magnitude of the error signal is more than a
pre-defined command level. However, in a practical scenario,
where the level of background noise may vary over time, this
switching mechanism may lead to frequent switching even in
cases where there is no variation in the disturbance signal and
so this is not a practical approach.

Fig. 3. Hysteresis switching characteristics.

The limitation of the above-mentioned switching scheme
could be overcome by implementing a hysteresis-comparator
switching mechanism. A hysteresis comparator has inputs C,
E, and δ, where C and E are the magnitudes of the command
and error signals, respectively, and 2δ is the hysteresis window
for the error signal [20]. The hysteresis window is computed
as δ = γC where, γ is the tolerance factor and generally
γ ≤ 0.05, which equates to an error of less than or equal
to 5% of the command signal magnitude. The hysteresis
comparator avoids rapid switching in the presence of noise
in the error signal or due to slight variations in the command
or disturbance signals. The characteristics of the hysteresis
switching scheme are shown in Fig. 3, where it can be
observed that when the magnitude of the error signal is within
a prescribed range, i.e., C − δ < E ≤ C + δ, the controller is
enabled and the error signal converges towards the command
signal. However, when there is a variation in the disturbance
signal (which means that E is no longer in the prescribed
range), the comparator output goes to zero, causing the switch
to open. With the switch open, there is no control output and
the control filter weights are held constant. During this period
the disturbance signal phase is estimated directly, without the
need for a plant model.
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Fig. 4. Disturbance activity switch waveform. (a) Disturbance signal for different noise levels 20 dB→ 30 dB→ 40 dB → 20 dB. (b) Normal switching. (c)
Hysteresis switching with constant threshold. (d) Hysteresis switching with dynamic threshold.

In scenarios where there is a variation in the SNR, the
above-mentioned hysteresis switching mechanism may fail,
i.e., when the switch is designed for a particular fixed level of
SNR, γ, frequent switching will occur for lower SNR values.
This issue can be observed in Fig. 4, where Fig. 4(a) shows the
disturbance signal with different levels of SNR over different
time intervals and Fig. 4(b) shows the switching pattern for
a regular comparator. From this figure it can be seen that
frequent switching occurs even in cases when there is no
change in the SNR. The switching pattern for a hysteresis
comparator designed for an SNR of 40 dB appears in Fig. 4(c),
showing that in this case unwanted switching occurs when the
SNR is lower than that for which the switch was designed.

In order to overcome this problem, an adaptive-hysteresis
switching mechanism has been designed in which the thresh-
old parameter, γ, is made a function of the estimated back-
ground noise level. The background noise η(n) is estimated
by computing the maximum magnitude of the residual error
signal in a given window of N samples, which is obtained
as the difference between the error signal and the command
signal. The threshold parameter is computed as γ(n) = αη(n),
where 0 < α < 0.5 is a constant. Fig. 4(d) shows the switching
pattern for the proposed adaptive-hysteresis switching scheme.
The frequent switching issue of the conventional hysteresis
switching scheme has been overcome, and the system can
detect phase changes effectively.

In cases where the frequency of the disturbance signal
changes, the adaptive hysteresis switching scheme will detect
this variation through the difference between the magnitudes of
the error and command signals. The switch will then turn OFF,
and prevent the system from adapting the control signal to the
new frequency. This is a limitation of the hysteresis-switching-
based sound profiling algorithm. In order to overcome this
limitation, an attempt is made below to develop an intelligent
adaptive hysteresis (IAH) switching scheme, which avoids
turning the switch OFF when there is a difference between
the frequencies of the command and error signals.

As discussed above, the controller must remain active even
when there are changes in the frequency. As the signals
considered in this work are of a single frequency, the switching
scheme tracks the frequencies of interest for both the error
and command signals. When the difference between those fre-
quencies is greater than a small threshold (γf ), the controller
must be kept active to allow the control signal to adapt to the
new frequency; this can be achieved by keeping the switch
ON. In this work, this requirement is implemented by using
the frequency deviation measure between the command and
error signal to enable or disable the adaptive-hysteresis switch.
The sound profiling mechanism, which uses the proposed
IAH switching scheme is updated using the MPSC-FxLMS
algorithm. A block diagram of the proposed MPSC-FxLMS
sound profiling method is shown in Fig. 5. In this approach, the
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Fig. 5. Block diagram of the proposed MPSC-FxLMS algorithm.

internal plant model, Ĝ(z), used in APC-FxLMS based sound
profiling has been removed and replaced with the proposed
IAH switch. The switch turns the controller OFF, whenever
a change in phase is detected and allows the phase of the
disturbance signal to be measured directly.

Fig. 6. Switching action of the proposed MPSC-FXLMS algorithm.

Fig. 6 summarizes the switching action and the disturbance
signal phase estimation for the proposed algorithm. When the
controller is OFF, the algorithm begins to calculate the phase
of the error signal. The controller is switched OFF for TOFF
samples, the length of which will affect the behaviour of the
controller and should be kept to a minimum in order to limit
the period for which control is disabled. After this period, the
controller is automatically switched ON, and the command
signal phase is set to the newly calculated value. A preliminary
set of simulations determined that a switch off-time of TOFF=
TL + 3T0 samples is sufficient to estimate the disturbance
signal phase, where TL is the number of samples in the plant
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Fig. 7. Convergence characteristics of the disturbance signal phase estimate.
(a) φd = 0◦. (b) φd = 45◦. (c) φd = 135◦.

impulse response, ĝ, so that after TL samples the error signal
becomes equal to the disturbance signal d(n), and T0 is the
number of samples in one period of the reference signal. The
controller is switched ON automatically after TOFF samples,
and the command signal phase is set to the newly calculated
value. Fig. 7 shows the results of a series of simulations to
determine the necessary switch off-time, TOFF. Each sub-plot
shows the convergence of the estimated phase, φd̂, normalised
to the actual disturbance phase, φd, such that a normalised
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TABLE I
SUMMARY OF THE PROPOSED MPSC-FXLMS ALGORITHM FOR ACTIVE SOUND PROFILING.

Step 1. Initialize the weights, w(n), of the adaptive controller with zeros.
Step 2. Assign appropriate initial values for the number of samples N for estimating the background noise η(n), the step size µ, frequency threshold

parameter γf , the threshold parameter constant α and the command level C.
Step 3. Switch OFF (if the switch is in the ON state) the controller for TOFF = TL + 3T0 samples, estimate the phase of the disturbance signal, φd̂, by

computing the FFT of the error signal, e(n), and embed the estimated disturbance signal phase in the command signal, i.e. c(n) = Ccos(ωrTn+φd̂),
where ωr is the reference angular frequency and T is the sampling period.

Step 4. Switch ON (if the switch is in the OFF state) the controller and update the weights of the adaptive filter using w(n+ 1) = w(n)− µe′(n)r̂(n),
where e′(n) = e(n)− c(n) and r̂(n) is the filtered reference signal vector.

Step 5. Estimate the background noise η(n) for a given window of N samples and then compute the threshold parameter as γ(n) = αη(n).
Step 6. Estimate the magnitude E of the error signal and compute δ(n) = γ(n)C.
Step 7. If C − δ(n) < E < C + δ(n), the controller is kept ON and returns to Step 4.
Step 8. If E is not in the range stated above and the estimate of the frequency deviation is less than the threshold, |fc − fe| ≤ γf , then the controller is

turned OFF and returned to Step 3.
Step 9. If E is not in the range stated in Step 7 and |fc − fe| > γf , then the controller is kept ON and returns to Step 4.
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Fig. 8. Switch off-time, TOFF, as a function of reference signal frequency
F0.

phase of one indicates perfect estimation. The number of
samples has also been normalised to TOFF= TL +3T0 and the
results are shown for three different control frequencies. Each
sub-plot in Fig. 7 shows the result of a different disturbance
phase (φd = 0◦, φd = 45◦, and φd = 135◦). From these
results, it can be seen that the estimated phase converges to the
disturbance phase within TOFF= TL+3T0 samples, irrespective
of the actual disturbance phase or frequency. It should be
highlighted, however, that TOFF is a function of the reference
signal frequency. Fig. 8 shows TOFF for different reference
signal frequencies, and from this plot, it can be seen that the
switch off-time time reduces with increasing frequency, since
T0 is inversely proportional to the reference signal frequency.
The switch off-time must be kept to a minimum in order to
minimise the duration over which control is disabled. The
steps followed in the proposed MPSC-FxLMS algorithm are
summarised in Table I.

IV. SIMULATION STUDY

The robustness and efficiency of the proposed sound profil-
ing algorithm have been tested through a series of simulations.

Since the previously proposed sound profiling algorithms are
particularly susceptible to plant errors when the enhancement
gain is high [19], the following simulations initially com-
pare the sound profiling algorithms operating in enhancement
mode. The plant response used in the simulations was mea-
sured between a loudspeaker and a microphone, and both
the impulse and frequency responses are shown in Fig. 9.
To demonstrate the worst-case scenario, the command and
disturbance signals have been set to be out of phase at the
start of the simulation. The disturbance signal is a pure tone of
88.88 Hz with an SNR of 40 dB, and the sampling frequency
is 4 kHz. Other parameter values used in the simulations are:
D = 0.2, C = 1, N = 3T0, γf = 10, α = 0.2 , and µ = 0.05.
The step size, µ, has been chosen to maximize the convergence
of each sound profiling algorithm.
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Fig. 9. Plant response used in simulation. (a) Impulse response G(z). (b)
Magnitude frequency response G(z). (c) Phase frequency response G(z).

Before comparing the performance of the proposed algo-
rithm with other sound profiling algorithms, the effectiveness
of the proposed method in the presence of changes in phase,
frequency, and SNR is tested here. The tonal disturbance signal
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pattern for E-switch. (f) Switching pattern for F-switch. (g) Switching pattern for IAH-switch.

considered in this case is at 88.88 Hz between 0 and 31
seconds and at 200 Hz for the rest of the simulation. The
phase of the disturbance signal varies from π to π/4 after
11 s and then remains constant until the end of the test. The
SNR is kept as 30 dB until 21 s and is then changed to 40 dB.
The accuracy of the proposed switching method is compared
in Fig. 10 to that of a switch that only detects changes in
the magnitude of the error signal (E-switch) and a switch
that can detect changes in frequency (F-switch). It can be
observed from these results that the proposed IAH-switch is
able to detect changes in the phase of the disturbance signal
without introducing unnecessary switching due to changes in
the frequency or SNR. It can also be observed that the control
effort is relatively consistent for a disturbance signal of a
particular frequency even when there are changes in the phase
or SNR.

In order to compare the performance of proposed algo-
rithm to the previous sound profiling strategies, the perfor-
mance is first shown in Fig. 11 for the PSC-FxLMS, APC-
FxLMS, and MPSC-FxLMS algorithms with no plant error,
i.e., Ĝ(z) = G(z). In Fig. 11(a), it can be seen that, in this
case, convergence of the PSC-FxLMS algorithm is faster than
for the other sound profiling algorithms, although all three
algorithms do achieve the desired error signal level of 1. Fig.
11(b) shows that, for a perfect model, the PSC-FxLMS and

MPSC-FxLMS algorithms require a lower control effort than
the APC-FxLMS algorithm, which is because the latter uses a
command signal phase that is modified according to (6); the
resulting phase difference can be seen in Fig. 11(c).

As previously discussed, the physical plant in the sound
profiling system is likely to change over time and the al-
gorithms must therefore remain stable in the presence of
modelling errors. Fig. 12 compares the performance of the
PSC-FxLMS, APC-FxLMS, and MPSC-FxLMS algorithms
for the same conditions and parameter settings as above, but
with a phase error of 8◦, i.e. , Ĝ(z) = z−2G(z). From Fig.
12(a), it can be seen that, due to this error in the plant model
phase, the PSC-FxLMS algorithm starts to oscillate and never
converges to the desired error signal level, whereas the other
two algorithms do converge to 1. Fig. 12(b) shows the control
effort required by the three sound profiling algorithms and it
can be seen that the APC-FxLMS algorithm is able to achieve
the desired level, but this comes at the expense of a higher
control effort than the MPSC-FxLMS algorithm. The increase
in control effort required by the APC-FxLMS algorithm and
the oscillatory behaviour of the PSC-FxLMS algorithm are
both due to a difference between the command signal phase
and the disturbance signal phase, as shown in Fig. 12(c). From
these results, it is evident that the proposed MPSC-FxLMS
algorithm is robust to plant modelling errors and, only requires
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minimal control effort.
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Fig. 11. Performance of the algorithms with no plant error Ĝ(z) = G(z).
(a) Error signal amplitude. (b) Control effort. (c) Command signal phase.
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Fig. 12. Performance of the algorithms with phase error of 2 samples ≈
8◦, Ĝ(z) = z−2G(z). (a) Error signal amplitude. (b) Control effort. (c)
Command signal phase.

TABLE II
DIFFERENT MODES OF ACTIVE SOUND PROFILING

Mode Command level
Cancellation C = 0
Attenuation 0 < C < D

Neutralization C = D
Enhancement C > D

As shown in (5), that estimation of the disturbance signal
phase is dependent on both the magnitude and phase of the
plant estimate, Ĝ(z). Therefore, in order to also demonstrate
the robustness and stability of the proposed algorithm to
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Fig. 13. Performance of the algorithms with magnitude error Ĝ(z) =
1.3G(z). (a) Error signal amplitude. (b) Control effort. (c) Command signal
phase.
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                        π/2                                   π/4                                          π                                               0

Fig. 14. Performance of the algorithms when tracking disturbance phase
changes with no plant error Ĝ(z) = G(z). (a) Error signal amplitude. (b)
Control effort. (c) Command signal phase.

magnitude errors in the plant model, an experiment was
conducted with a magnitude error of Ĝ(z) = 1.3G(z). Fig.
13(a) shows that in the presence of magnitude errors in
the plant estimate, the PSC-FxLMS algorithm never achieves
the desired enhancement, whilst the APC-FxLMS algorithm
reaches the desired level, but with a much larger control
effort compared to the MPSC-FxLMS algorithm, as shown
in Fig. 13(b). The reason for this increase in the control effort
required by the APC-FxLMS algorithm is again due to the
command signal phase calculation, and the difference between
the command signal phase for the three algorithms can be seen
in Fig. 13(c).

In order to demonstrate the tracking capability of the
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Fig. 15. Performance of the algorithms in different operating modes (Table.II)
with no plant error Ĝ(z) = G(z) : (1) cancellation mode (C = 0),
(2) attenuation mode (C = 0.1), (3) neutral mode (C = 0.2), and (4)
enhancement mode (C = 1) . (a) Error signal amplitude. (b) Control effort.
(c) Command signal.

proposed algorithm, an experiment was conducted in which
the phase of the disturbance signal changes from π/2 →
π/4 → π → 0 after 10-s intervals. Fig. 14(a) shows the
tracking capability of the proposed scheme along with that of
the PSC-FxLMS and APC-FxLMS algorithms. It can be seen
from Fig. 14(a) that the error signal in the proposed algorithm
tends towards the disturbance level whenever there is a change
in the phase of disturbance signal, i.e., when the controller is
switched off. However, it should also be noted that the PSC-
FxLMS and APC-FxLMS algorithms also introduce transients
in the error signal amplitude when there is a change in the
phase. From Fig. 14(b), it may be noted that the proposed
scheme and the PSC-FxLMS algorithm require a lower control
effort compared to the APC-FxLMS algorithm. It can also be
observed from Figs.14(b) and 14(c) that if the command and
disturbance signals are not in phase, then a larger control effort
is required to achieve the desired enhancement.

To demonstrate the performance of the proposed sound
profiling scheme in all four control modes shown in Table.II
[19], a simulation was conducted in which the amplitude of
the command signal is changed after 10-s intervals to cycle
through the control modes. It can be seen from Fig. 15(a) that
for the proposed algorithm, the output error signal level goes
to the disturbance level whenever the controller is switched
off, as previously observed. From Figs .15(b) and 15(c) it
can be seen that in the enhancement mode, the APC-FxLMS
algorithm requires a larger control effort to achieve the desired
level due to the phase adjustment governed by (6), whilst the
PSC-FxLMS and proposed algorithms achieve the required
performance with lower control effort. It should be noted that
unlike in ANC algorithms, which attempt to drive the error
signal to zero, in active sound profiling algorithms the error
signal converges to the desired command level, as demon-

strated in the presented results. The proposed MPSC-FxLMS
algorithm has been shown to reach the desired command level
with a minimal level of control effort.

V. CONCLUSIONS

A modified phase-scheduled-command FxLMS (MPSC-
FxLMS) algorithm has been proposed in this paper for active
sound profiling. The proposed scheme has been shown to be
robust against errors in both the magnitude and phase of the
plant model, whilst using a minimal level of control effort.
The proposed algorithm therefore improves the robustness
compared to the previously proposed PSC-FxLMS algorithm,
whilst avoiding high levels of control effort associated with the
APC-FxLMS algorithm in the enhancement mode. These im-
provements in performance have been achieved by developing
an intelligent adaptive hysteresis (IAH) switching scheme that
allows the phase of the disturbance signal to be detected di-
rectly without the need for an additional internal plant model.
The proposed algorithm, therefore, offers practical advantages
over the previously proposed sound profiling strategies.
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