

1 Article

## 2 Analysis of the Diffusion Process by pH Indicator in 3 Microfluidic Chips for Liposome Production

4 **Elisabetta Bottaro<sup>1,2</sup>, Ali Mosayyebi<sup>1</sup>, Dario Carugo<sup>1</sup>, Claudio Nastruzzi<sup>2</sup>**5 <sup>1</sup> Bioengineering Science group, Faculty of Engineering and the Environment, University of Southampton,  
6 Southampton SO17 1BJ, United Kingdom7 <sup>2</sup> Department of Life Science and Biotechnology, University of Ferrara, Via Fossato di Mortara 17, Ferrara,  
8 Italy

9 Academic Editor: name

10 Received: date; Accepted: date; Published: date

11 **Abstract:** In recent years, the development of nano- and micro-particles has attracted considerable  
12 interest from researchers and enterprises, because of the potential utility of such particles as drug  
13 delivery vehicles. Amongst the different techniques employed for the production of nanoparticles,  
14 microfluidic-based methods have proven to be the most effective for controlling particle size and  
15 dispersity, and for achieving high encapsulation efficiency of bioactive compounds. In this study  
16 we specifically focus on the production of liposomes, spherical vesicles formed by a lipid bilayer  
17 encapsulating an aqueous core. The formation of liposomes in microfluidic devices is often  
18 governed by diffusive mass transfer of chemical species at the liquid interface between a solvent  
19 (i.e., alcohol) and a non-solvent (i.e., water). In this work, we developed a new approach for the  
20 analysis of mixing processes within microfluidic devices. The method relies on the use of a pH  
21 indicator, and we demonstrate its utility by characterising the transfer of ethanol and water within  
22 two different microfluidic architectures. Our approach represents an effective route to  
23 experimentally characterise diffusion and advection processes governing the formation of  
24 vesicular/micellar systems in microfluidics, and can also be employed to validate the results of  
25 numerical modelling.

26 **Keywords:** liposomes; microfluidic; mixing; diffusion; pH indicator; microfluidic hydrodynamic  
27 focusing

28

---

### 29 **1. Introduction**

30 Nanomedicine is an attractive field involving the production and clinical application of size-  
31 controlled nanoparticles, usually employed in therapy as drug delivery systems or in diagnostics as  
32 contrast agents [1]. Amongst the different types of nanoparticles, liposomes have attracted  
33 considerable interest for their application as drug delivery systems. Liposomes are artificial spherical  
34 vesicles generally composed of natural phospholipids, which performance depends on different  
35 physico-chemical variables including chemical composition, size and method of production [2].  
36 Different techniques have been developed for producing size-controlled liposomes with reproducible  
37 physical properties; the preparation methods can be generally divided into two groups: (i) “bulk”  
38 methods, comprising common macroscale or batch techniques, and (ii) microfluidic methods. The  
39 first group includes lipid film hydration, solvent (ethanol or ether) injection, and reverse-phase  
40 evaporation [3], [4].

41 On the other hand, there has been growing interest in microfluidic-based production of liposome  
42 formulations. This approach has proven to be particularly effective, offering several advantages  
43 compared to macroscale techniques; these include small amount of reagents required, potential for

44 *in-situ* analysis at high temporal and spatial resolution, devices' portability and cost effectiveness [5],  
45 [6].

46 In microfluidics, the formation of liposomes is caused by the unfavourable interactions between  
47 lipids and water, causing the self-assembly of lipids (a process often defined as nanoprecipitation) to  
48 form spherical vesicles [7]. In a typical microfluidic method, phospholipids are dissolved in a polar  
49 solvent (e.g., ethanol or isopropanol) and injected in the central channel of a microfluidic  
50 hydrodynamic focusing (MHF) device. The solvent is subsequently focused by water streams coming  
51 from two lateral channels [8], leading to controlled mixing between chemical species.

52 Therefore, the formation of liposomes in microfluidic devices is often governed by diffusive  
53 mass transfer of compounds at the liquid interface between solvent (i.e., alcohol) and non-solvent  
54 (i.e., water). The alcohol, in which the lipids are initially solubilized, diffuses into the water until it  
55 decreases down to a critical concentration [9]. The alcohol diffusion thus governs the formation of  
56 vesicles, by a mechanism described as "self-assembly". Specifically, it is believed that the reduction  
57 of lipids' solubility associated with water and alcohol diffusion across the fluid streams causes the  
58 formation of intermediate structures, in the form of oblate micelles, which finally enclose to form  
59 liposomes.

60 It is well known that microfluidic systems are characterized by steady laminar flow, which  
61 typically occurs when Reynolds number is lower than a critical value of ~2000, due to the stronger  
62 contribution of viscous forces compared to inertial forces at the micrometer scale [10]. The laminar  
63 flow regime has two main implications: (i) the flow in microchannels is characterised by parabolic  
64 fluid velocity profile, and (ii) the transfer of chemical species is dominated by diffusion, due to the  
65 low fluid velocity magnitude (resulting in low Péclet number) [11].

66 The diffusion of chemicals (i.e. solvents, solutes and suspended particles) depends on the contact  
67 area between the fluids flowing in the microchannels. The diffusion coefficient scales approximately  
68 with the inverse of the molecular size (i.e., the hydrodynamic radius) and also depends, to some  
69 extent, on the shape of the molecule [12]. Therefore, smaller molecules have higher diffusion  
70 coefficient and will move a longer average distance per unit time, compared to larger molecules that  
71 have a smaller diffusion coefficient.

72 On one hand the mixing of chemical species in microfluidic channels is therefore highly  
73 controllable (i.e., being governed by diffusion) and reproducible (i.e., due to the laminar flow  
74 conditions), but – on the other hand – it is associated with low throughput and in some cases full  
75 mixing may not be achieved within the limited length typical of microfluidic devices.

76 Different methods for quantifying mixing in microfluidics have been presented; these are  
77 generally based on the acquisition of microscopic images of two or more coloured or fluorescently  
78 labelled liquids, followed by quantification of mixing efficiency using simple mathematical functions.  
79 Examples of dyes employed are food dyes or stains for biological microscopy [13], or fluorescent dyes  
80 such as fluorescein [14, 15].

81 Usually, mixing is quantified by processing a set of microscope images to yield a meaningful  
82 index – frequently defined as 'mixing index' – that is representative of the extent of mixing. Different  
83 fluids are usually distinguished based on differences in the light intensity and spectral properties  
84 received by a charge-coupled device (CCD) camera.

85 A dye is often used to absorb transmitted light, reflect incoming light, or emit light. The mixing  
86 index is computed using intensities of pixels over a cross-section of a grayscale image that delineates  
87 a mixing event or region. The simplest index is calculated by taking the standard deviation of the  
88 pixel intensities. This method however may not be suitable for comparing mixing efficiency across  
89 different studies, from the moment that it is sensitive to different lighting conditions that may be  
90 difficult to standardise [16].

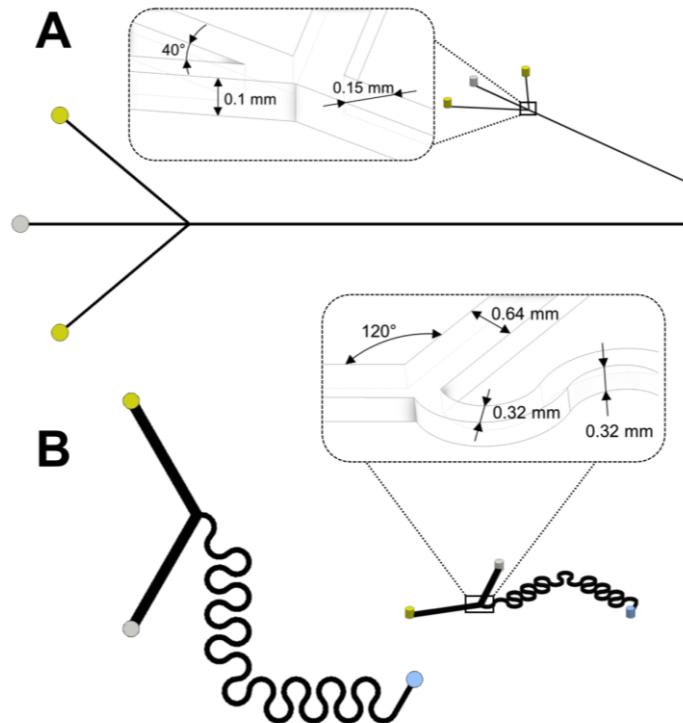
91 An approach to measure the concentration of chemical species in microfluidic mixers is based  
92 on the use of fluorescent probes, where mixing is assessed from changes in the fluorescence intensity  
93 distribution along the device [17]. Three-dimensional characterisation of the mixing performance  
94 could be performed with these methods, by using confocal microscopes. Alternative techniques  
95 based on changes in the fluorescence lifetime of viscosity-sensitive molecular rotors have also been

96 reported [18]. They however require expensive equipment, including sensitive detectors, suitable  
97 microscope optics, and specific software/hardware, which hinders their adoption from the broader  
98 microfluidic and lab-on-a-chip community.

99 However, methods based on the use of a dye or fluorescent probe typically do not provide a  
100 direct quantification of the mixing between a solvent and a non-solvent, but rather a quantification  
101 of the transport of a selected dye or probe molecule. The physical and chemical properties of the  
102 probe may therefore have a significant impact on the measured mixing performance.

103 In this study, we describe and critically analyze a new method for studying mixing processes in  
104 different microfluidic chip architectures for nanoparticle production (i.e., MHF or Y-junction), which  
105 is based on the use of the pH indicator bromoxylenol blue (BB). The method provides a direct  
106 quantification of the exchange between solvent and non-solvent, and it relies on the colour shift of a  
107 pH sensitive molecule, rather than on colour or fluorescence intensity changes.

## 108 2. Experimental and Numerical Methods


### 109 2.1 Chemicals

110 Highly pure phosphatidylcholine (PC) 90% from soybean (Phospholipon 90G) was purchased  
111 from Lipoid GmbH (Germany). Dimethyldioactdecylammoniumbromide (DDAB), bromoxylenol  
112 blue (BB), trichloro(1H,1H,2H,2H)-perfluoroctylsilane, hydrofluoric acid, and ammonium fluoride  
113 were purchased from Sigma-Aldrich Co. Ltd (UK). Polydimethylsiloxane (PDMS) monomer  
114 Sylgard®184 and curing agent were purchased from Dow Corning Corporation (USA), and SU-8  
115 photoresist from Chestech Ltd (UK). All other reagents and solvents were supplied by Sigma-Aldrich  
116 Co. Ltd (UK). The water employed was ultrapure water (Merck Millipore, USA).

### 117 2.2 Microfluidic devices design and fabrication

118 Two different microfluidic architectures were employed in the present study (see Figure 1).  
119 #chip1-MHF is characterized by a cross flow geometry, in which the oblique side channels (length:  
120 9.3 mm) intersect the central channel (length: 30 mm) with an angle of 40°. The channels have a  
121 rectangular cross section with a width of 0.15 mm and a depth of 0.10 mm. They were produced *via*  
122 soft lithography. Briefly, a SU-8 mould with the designed microchannel architecture was fabricated  
123 following a standard procedure [19]. The mould was subsequently covered with a layer of a 10:1  
124 (w/w) PDMS precursor and curing agent liquid mixture, and heated for 1 hour at 80°. The solidified  
125 PDMS sheet, with the microchannel architecture on one surface, was then removed from the mould  
126 and permanently bonded to a glass slide after surface treatment with a plasma ash (PVA TePla AG,  
127 Germany).

128 #chip2-YJ is characterized by a “Y” shape geometry in which the 2 inlets intersect with a 120°  
129 angle; the mixing channel (length: 66 mm) has a serpentine geometry. Channels have a squared cross-  
130 section with width and depth of 0.32 mm. The device is made of cycloolefin copolymer (COC) and  
131 was obtained from Thinxxs Microtechnology (Germany).



|          | Identification Code | Material   | Channel Dimensions (mm) |                     |
|----------|---------------------|------------|-------------------------|---------------------|
|          |                     |            | Width/Depth             | Main Channel Length |
| <b>A</b> | #chip1-MHF          | PDMS/glass | 0.15/0.1                | 30                  |
| <b>B</b> | #chip2-YJ           | COC        | 0.32/0.32               | 66                  |

132

133 **Figure 1.** Schematic showing the geometry of the microfluidic chips employed in the present study.  
 134 (A) #chip1-MHF was characterized by a cross flow geometry, while (B) #chip2-YJ was characterized  
 135 by a "Y" shape geometry. The constitutive materials of the chips and the dimensions of the main  
 136 channel (i.e., located after the junction between the inlet channels) are also reported.

137 **2.3 Liposome preparation and characterisation**

138 Liposomes were prepared using both #chip1-MHF and #chip2-YJ. The lipid mixture (containing  
 139 PC 90G at 90 mM, and DDAB at 10 mM) was dissolved in ethanol and injected into the central inlet  
 140 channel of #chip1-MHF or one inlet of #chip2-YJ; water was instead injected into the two side inlet  
 141 channels of #chip1-MHF or the second inlet of #chip2-YJ. Teflon® tubes with an internal diameter of  
 142 750  $\mu$ m (Sigma Aldrich, UK) were employed to connect the inlets of the devices with syringe pumps  
 143 (Pump Systems Inc., USA) for fluids' delivery.

144 Liposome formation at different flow regimes was investigated by changing the flow rate ratio  
 145 between water and ethanol (FRR) in the range 0.5-40, and the total flow rate (TFR) in the range 18.75-  
 146 75.00  $\mu$ l/min. The liposome samples were collected from the outlet tube (a 30 mm long Teflon® tube  
 147 with an internal diameter of 750  $\mu$ m) in a 1.5 ml microcentrifuge tube. Liposomes were analyzed for  
 148 size and size distribution by DLS Zetasizer Nano-ZS (Malvern Instruments, Worcs., UK) with a  
 149 backscattering detection angle of 173°, a He/Ne laser that emits at 633 nm, and a 4.0 mW power  
 150 source. The data were used to report the intensity mean diameter (Z-average) and the dispersity of  
 151 the liposome formulations. The mean particle size was obtained from the results of three independent  
 152 experiments, carried out at 21°C in water, without sample dilution (sample volume: 1 ml). Cryo-  
 153 Transmission Electron Microscopy (cryo-TEM) images of liposomes were also acquired for  
 154 morphological characterisation. For this purpose, a 3 ml aliquot of a liposome sample was applied on

155 plasma-treated (Gatan Solarus Model 950 Advanced Plasma System, pressure = 70 mTorr, H<sub>2</sub> flow =  
156 6.4 sccm, O<sub>2</sub> flow = 27.5 sccm, forward RF target = 50 W, exposure time = 30 s) carbon copper grids  
157 (Quantifoil R 3.5/1), in the environmental chamber of a fully automated vitrification device for plunge  
158 freezing (FEI Vibrot). The relative air humidity was equal to 100 % and temperature to 22 °C. The  
159 excess solution was removed by blotting with filter paper for 2 s, followed by 1 s draining and  
160 plunging of the samples into a 1:1 mixture of liquid ethane and liquid propane, which was cooled to  
161 170°C. Vitrified samples were cryo-transferred into a Jeol JEM3200FSC cryo-TEM, operating at 194°C.  
162 The temperature of the samples was 187 °C during image acquisition. The microscope was operated  
163 in bright field mode, using a 300 kV acceleration voltage; the in-column energy filter was set to 0–20  
164 eV energy-loss range (zero-loss imaging). Micrographs were recorded with a Gatan Ultrascan 4000  
165 CCD camera.

166 *2.4 Analysis of mixing in microfluidic chips*

167 The effect of FRR and TFR on the mixing of solvents and solutes in microfluidic channels were  
168 studied using the pH indicator BB and NaOH, which were added to the lipid solution and water  
169 respectively. BB was added to the ethanol lipid solution until saturation, after adjusting the pH by  
170 0.1 M acetic acid; the concentration of NaOH in water was 0.1 N.

171 BB is a weak acid, and appears in yellow (below pH 6) or light blue (above pH 7.6) color when  
172 it is in the protonated or deprotonated state, respectively. It has a green color in the interval of pH  
173 comprised between 6 and 7.6, as an intermediate of the deprotonating mechanism in neutral solution.  
174 Therefore, the mixing between ethanol containing BB and water containing NaOH within the  
175 microfluidic devices, causes an increase in pH resulting in a change in BB color.

176 Different regions of the main channel within the two chips were imaged by an optical  
177 microscope (Hund® Wilovert 30) equipped with a CCD camera (GXCAM-HICHROMESII, GT-  
178 Vision®, UK), at 4x magnification.

179 Images were taken nearby the junction between inlet channels, and at a more distal location  
180 along the main channel (in close proximity to the device outlet). The latter position was selected in  
181 order to provide a quantification of the overall mixing performance of the devices, at fixed flow  
182 dynamic boundary conditions.

183 Images were processed using ImageJ (NIH, USA), to measure the width of the regions in which  
184 BB is either yellow, blue or green.

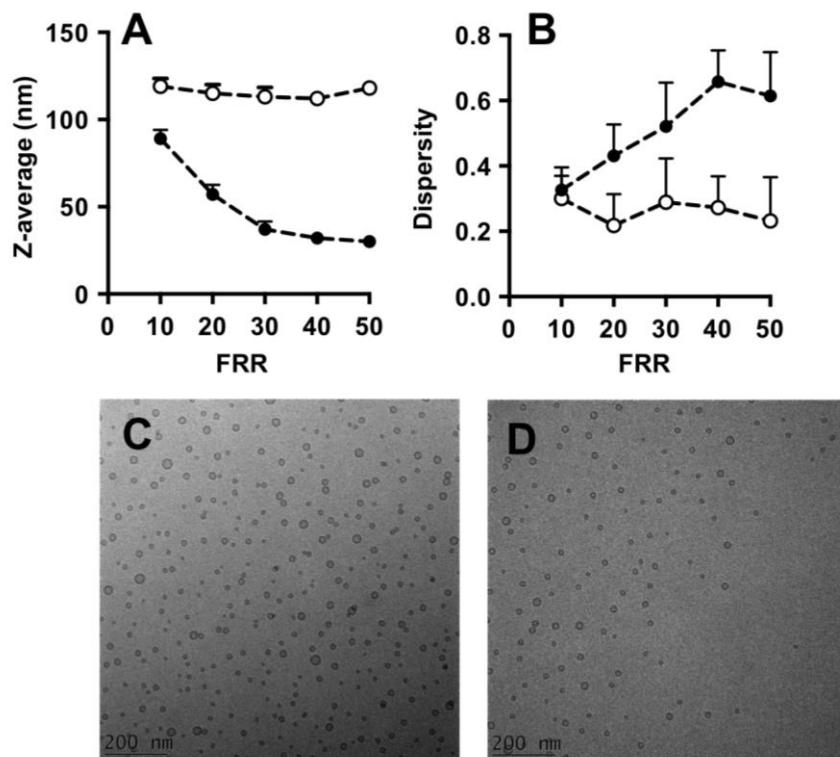
185 *2.5 Numerical simulation of fluid and species transport*

186 The transport of fluids and chemical species within both microfluidic devices was characterised  
187 numerically, using computational fluid dynamic (CFD) simulations. Firstly, the geometry of the  
188 microfluidic channels was designed using Inventor Pro 2016 (Autodesk Inc., USA), and then  
189 transferred to ICEM CFD 17.0 (Ansys Inc., USA) for meshing. The fluidic domain was discretized  
190 into finite volumes of tetrahedral shape. A mesh dependence study was performed to identify a  
191 compromise between solution accuracy and computational cost, leading to an optimal number of  
192 mesh volumes of 7'474'063 (#chip1-MHF) and 4'762'651 (#chip2-YJ). These corresponded to a mesh  
193 volume edge size of 0.012 mm (#chip1-MHF) and 0.03 mm (#chip2-YJ). Ansys® Fluent 17.0 (Ansys  
194 Inc., USA) was employed to solve for mass and momentum conservation equations (i.e., Navier-  
195 Stokes equations at laminar flow regime), and species transfer (i.e., advection-diffusion equations).  
196 Boundary conditions were defined so as to replicate the experimental ones; a mass flow boundary  
197 condition was imposed at the device inlets, atmospheric pressure was imposed at the outlets, and a  
198 no-slip boundary condition was imposed at the channel walls. The experimental values of TFR and  
199 FRR were simulated numerically.

200 Fluids were assumed incompressible and Newtonian, and the ethanol-water diffusion  
201 coefficient was set to  $1 \times 10^{-9} \text{ m}^2/\text{s}$  [20]. The effect of solvents' mixing on fluid density and viscosity was  
202 taken into consideration in the simulations. In order to compare the results of numerical simulations  
203 with the experimental images, the numerical contours of ethanol mass fraction were transferred to  
204 ImageJ for analysis. Stacks of RGB contour images at selected regions of interest (ROI) within the

205 microfluidic devices were converted to 8-bit format, and subsequently thresholded to obtain a binary  
 206 image. Reference lines were defined in agreement with the experimental image processing protocol,  
 207 in order to obtain the width of fluid layers of specific relevance for characterising the mixing process.  
 208 The physical width of these layers was determined upon appropriate dimensional calibration of the  
 209 images.

210 **3. Results and Discussion**


211 *3.1 Liposome preparation*

212 In this study, two different microfluidic chips characterised by different constitutive materials  
 213 (i.e., PDMS and cycloolefin) and channel architecture were considered (see Figure 1). Notably, one  
 214 chip was custom built using a design previously developed in our group (#chip1-MHF), while the  
 215 other was commercially available (#chip2-YJ). They were selected as two relevant model devices  
 216 employed for the production of nanoparticles and vesicular systems by solvent exchange mechanism  
 217 [21, 22]. Devices' constitutive materials were compatible with solvents employed in the present study,  
 218 and the microfluidic channels did not undergo any detectable deformation at the flow rates  
 219 investigated. Therefore, the mixing performance in these chips can be considered independent from  
 220 the material properties.

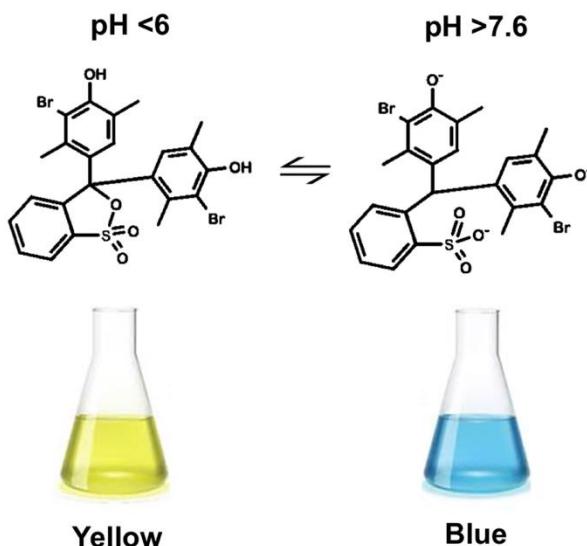
221 Particularly, #chip1-MHF is characterized by a cross flow geometry, in which the oblique side  
 222 channels intersect the central channel at an angle of 40°. #chip2-YJ is instead characterized by a "Y"  
 223 shape geometry in which the two inlets join with a 120° angle; and the main channel has a 66 mm  
 224 long serpentine geometry.

225 Both devices were employed for the production of liposomes, composed of PC/DDAB (at a  
 226 concentration of 9 mM and 1 mM, respectively). Different liposome samples were produced by  
 227 varying the FRR (from 10 to 50) and maintaining the TFR fixed at 37.5  $\mu$ l/min. Liposomes were  
 228 characterized for their size and dispersity by DLS.

229 Data reported in Figure 2 indicate that liposomes produced with #chip1-MHF were generally  
 230 smaller (ranging between 40 and 110 nm in diameter) than those produced by #chip2-YJ (90-120 nm  
 231 in diameter).



**Figure 2.** Dimensional characteristics of liposomes produced by microfluidics: Z-average (A) and dispersity (B). Liposomes were prepared by #chip1-MHF (filled circles) or #chip2-YJ (open circles). Experimental conditions and lipid composition are described in the methods section. Data represent the average of 3 batches, measured in triplicate  $\pm$  SD. Cryo-TEM images of liposomes produced using #chip1-MHF (C) and #chip2-YJ (D) are reported, for a FRR of 10 and TFR of 37.5  $\mu$ l/min.


In addition, an inverse correlation between liposome size and FRR in the microfluidic hydrodynamic focusing device can be appreciated, with an increase in FRR resulting in a decrease in liposome diameter. This is in agreement with previous studies reporting production of liposomes using similar microfluidic architectures [8]. Conversely, the size of liposomes produced with #chip2-YJ did not change significantly with varying the FRR. Previous studies using serpentine shaped microfluidic devices, in which mixing is dominated by advection, have shown that liposome size changed only marginally with increasing FRR [23, 24], at values of FRR > 1.

245 Moreover, increasing the FRR resulted in increased liposome size dispersity for #chip1-MHF,  
 246 whilst size dispersity was almost independent on FRR for liposomes produced using #chip2-YJ.

247 3.2 Analysis of mixing in microfluidic chips by pH indicator

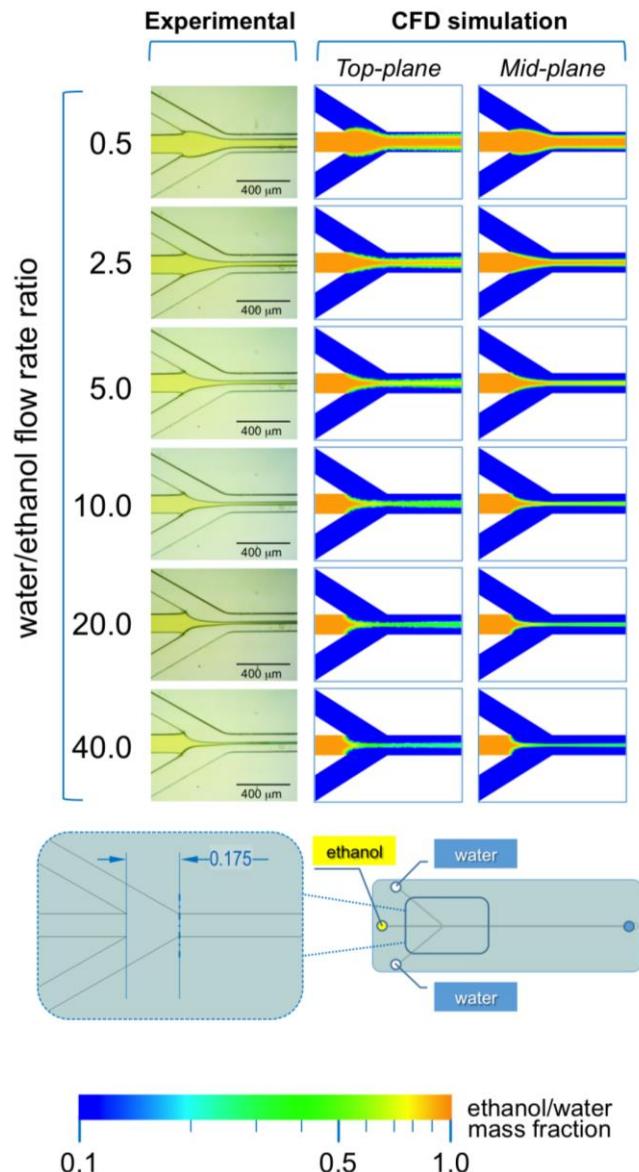
To characterize the mixing between ethanol and water and its effect on liposome characteristics, a protocol based on the pH indicator bromoxylene blue was established. BB was selected since it presents a marked, pH-dependent chromatic change that is easily detectable by optical microscopy. At pH<6 (i.e., the lipid solution in ethanol adjusted with acetic acid) it appears yellow, while at pH >7.6 (i.e., the NaOH 0.1 N solution in water) it appears blue (Figure 3). For pH values comprised between 6 and 7.6 it has a green color.

Therefore, using BB, the process of mixing in microfluidic devices was analyzed at different flow conditions (i.e., by varying both FRR and TFR). Specifically, FRR was set to 0.5, 2.5, 5.0, 10.0, 20.0 and 40.0, whereas TFR was set to 18.75, 37.50 and 75.00  $\mu\text{l}/\text{min}$ .



257

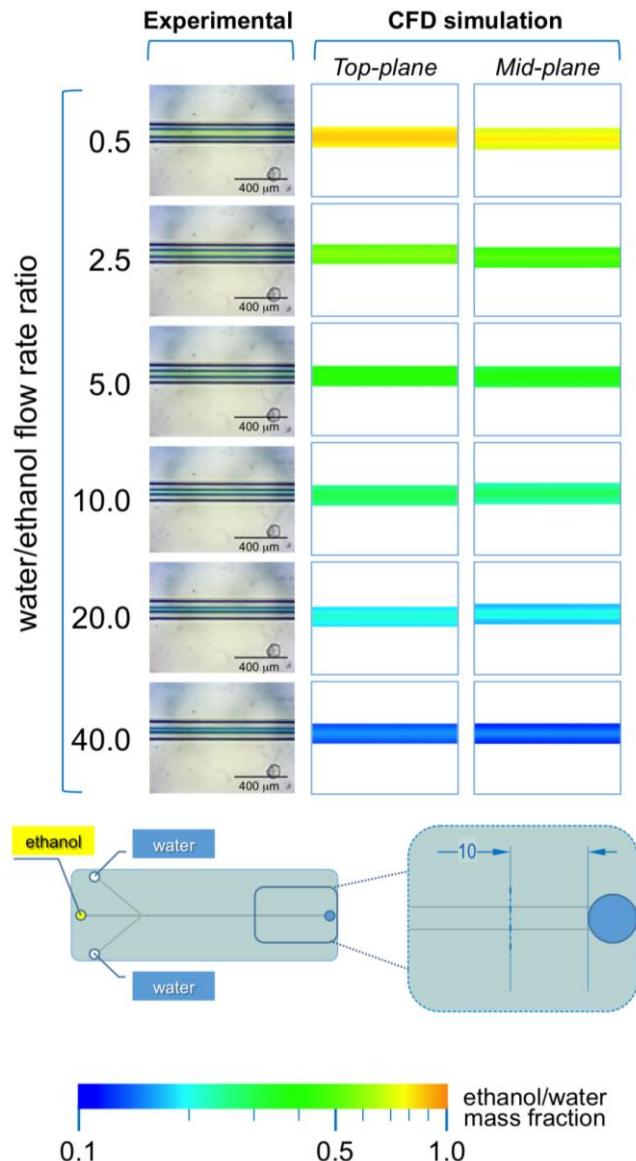
**Figure 3.** Change in chemical structure and colour of bromoxylenol blue (BB) as a function of pH. The color shifts from yellow (at pH <6) to blue (at pH >7.6).


### 260 3.2.1 Microfluidic hydrodynamic focusing device

261 The microphotographs taken during the experiments performed with #chip1-MHF at the  
 262 intermediate TFR value ( $37.5 \mu\text{l/min}$ ) are reported in Figure 4 and 5, respectively showing the  
 263 focusing region (i.e., at the inlet channels' intersection; Figure 4) and the region towards the end of  
 264 the main channel (i.e., 10 mm from the outlet; Figure 5).

265 As illustrated in Figure 4, in #chip1-MHF the acidic BB ethanolic solution is hydrodynamically  
266 focused by the aqueous NaOH solution into a narrow stream, which width depends on the FRR.  
267 Notably, the width of focused stream is inversely correlated to the FRR at all TFRs tested; for instance,  
268 at TFR equal to 37.5  $\mu$ l/min the width progressively decreased from 173  $\mu$ m (at FRR = 0.5) to 33  $\mu$ m  
269 (at FRR = 40). The numerical simulations are in agreement with the experimental data, with the width  
270 of the focused stream decreasing from 143  $\mu$ m (at FRR = 0.5) to 17  $\mu$ m (at FRR = 40). These results  
271 suggest that the pH indicator approach employed in this study is suitable for characterizing the shape  
272 of the focused stream, at the intersection between solvent and non-solvent streams within MHF  
273 architectures. Moreover, data suggest that at lower FRRs the larger width of the focused stream may  
274 result in higher diffusion length, which is reflected in liposomes having a higher diameter (see Figure  
275 2). Slower mixing however generated dimensionally more uniform liposomes, which is reflected in  
276 the lower size dispersity at the lower FRRs (Figure 2). Changes in the local concentration of lipids  
277 may have also affected liposome size and size dispersity.

278 Inversely, higher FRRs produced a narrower focusing of the lipidic ethanolic solution, resulting  
279 in a lower diffusion length and therefore faster mixing. Liposomes obtained at these conditions were  
280 smaller in diameter, but presented a higher size dispersity (Figure 2). As mentioned earlier,  
281 differences in lipid concentration (i.e., due to differences in the ethanol/water ratio) may have also  
282 influenced the final liposome size. A compromise between FRR and the concentration/dispersity of  
283 liposomes in the end-product should thus be considered when defining the operating conditions of  
284 MHF devices.


285 Cryo-TEM images of liposomes produced with the MHF chip at FRR of 10 and TFR of 37.5  $\mu$ l/min  
286 are reported in Figure 2C.



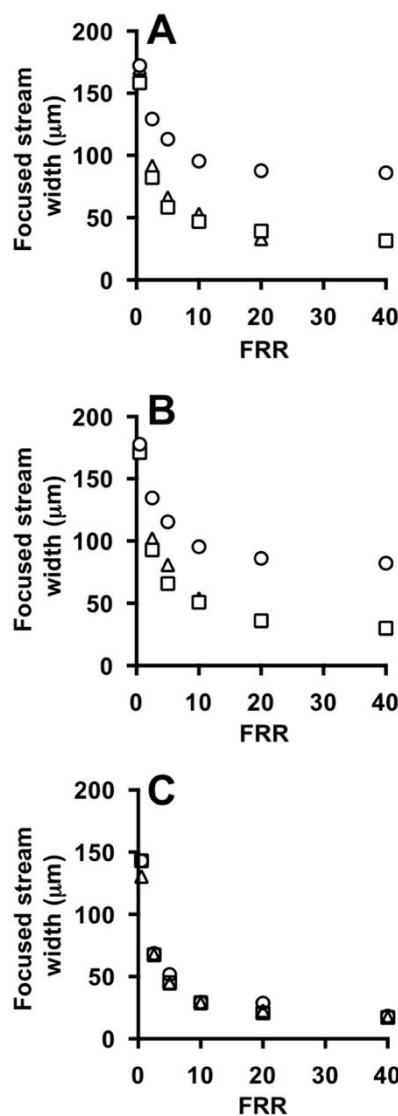
287

288 **Figure 4.** Experimental and computational fluid dynamic (CFD) analysis of the effect of FRR on the  
 289 shape of the focused stream, in #chip1-MHF. The images illustrate the experimental microscopic  
 290 observations (left column) and the CFD simulations (mid and right columns) of the focusing region,  
 291 at the channels' intersection. The images were employed to determine the focused stream width at  
 292 0.175 mm from the inlet channel, as indicated in the schematic at the bottom. The numerical contours  
 293 of ethanol mass fraction are reported at both the mid-plane (mid column) and top-plane (right  
 294 column) of the device. Experiments and simulations were conducted at TFR of 37.50  $\mu$ l/min, and at  
 295 varying FRRs.

296 Notably, the analysis of the mixing in the main channel at 10 mm from the outlet (see Figure 5),  
 297 suggests that the mixing between the ethanolic solution and water is not complete at all FRRs  
 298 investigated. This is evident from both experiments and numerical simulations, where excess ethanol  
 299 in the central stream can be appreciated. This finding suggests that the production of supramolecular  
 300 assemblies (i.e., liposomes or micelles) by MHF chips with limited channel dimensions, particularly  
 301 in terms of total length of the main channel, may not be desirable.



302


303 **Figure 5.** Experimental and computational fluid dynamic (CFD) analysis of the effect of FRR on  
 304 diffusion and focused stream width, in #chip1-MHF. The images illustrate the experimental  
 305 microscopic observations (left column) and the CFD simulations (mid and right columns) of the  
 306 focusing region, at the channels' intersection. The images were employed to determine the focused  
 307 stream width at 10 mm from the outlet, as indicated in the schematic at the bottom. The numerical  
 308 contours of ethanol mass fraction are reported at both the mid-plane (mid column) and top-plane  
 309 (right column) of the device. Experiments and simulations were conducted at TFR of 37.50  $\mu$ l/min,  
 310 and at varying FRRs.

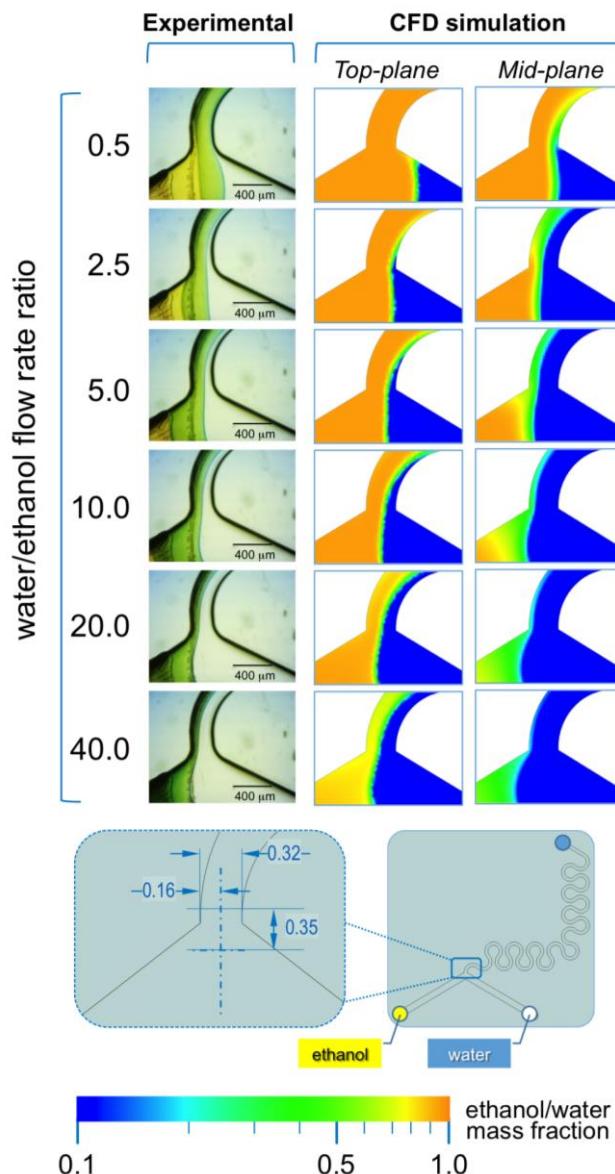
311 Data reported in Figure 5 also indicate that complete mixing of ethanol and water would occur  
 312 only in the glassware used to collect the samples, therefore diminishing the value of utilizing a highly  
 313 controlled microfluidic environment. As a matter of fact, the size dispersity of liposomes produced  
 314 with #chip1-MHF at the conditions reported in the present study was higher when compared with  
 315 liposomes produced using #chip2-YJ, likely due to inefficient mixing within the microfluidic device.  
 316 Notably, while the formation of liposomes by solvent exchange is a dynamic process, which kinetics  
 317 is complex to model or experimentally capture, we can assume that this process reaches an  
 318 equilibrium once the mixing between solvent and non-solvent is complete. Thus, for the production  
 319 of liposomes at high throughput, it would be advisable to employ microfluidic chips containing static  
 320 mixing elements to improve the mixing efficiency between solvent and non-solvent.

321 Values of the width of the focused stream are reported in Figure 6A and 6B, which comprise  
 322 experiments carried out in the absence and in the presence of phospholipids in the acidic ethanolic  
 323 solution, respectively. There is no notable effect of having lipids in the ethanolic stream, on the shape  
 324 and size of the focused stream (see Figures 6A and 6B). It should be noted that the initial total lipid  
 325 concentration in this study was equal to 100 mM, leading to a final concentration in the range 2 - 10  
 326 mM (depending on the FRR). These values are lower than typical concentrations of commercial  
 327 formulations, which usually range between 5 mM and 25 mM. This limitation of microfluidic based  
 328 production methods has been discussed elsewhere more comprehensively [25]. It is envisaged that -  
 329 at these higher lipid concentrations - the physical and interfacial properties of fluids may be affected,  
 330 thus impacting on the size and shape of the focused stream.

331 Panel C instead compares experimental and numerical data, showing good agreement between  
 332 the two characterization methods.

333




334

335 **Figure 6.** Effect of FRR on the focused stream width at different TFRs, measured from experiments  
 336 (A-B) and simulations (C) using #chip1-MHF. TFR was set to 18.75 (circles), 37.50 (squares) and 75.00  
 337 (triangles)  $\mu\text{l}/\text{min}$ . Experiments were carried out in the absence (A) or in the presence of liposome  
 338 forming lipids (B). Data represent the average of 3 measurements  $\pm$  SD (the maximum standard  
 339 deviation is equal to 0.9).

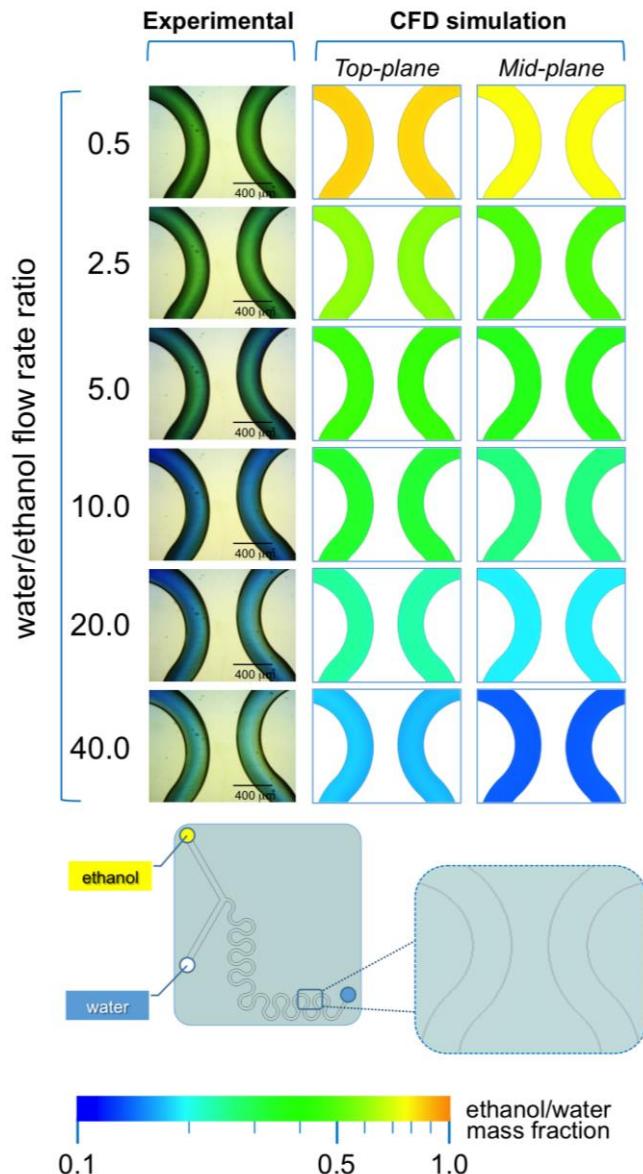
340

## 341 3.2.2 Microfluidic 'Y'-shape device

342 In #chip2-YJ the acidic ethanolic solution of the indicator and the aqueous NaOH solution are  
 343 pumped into the chip from the left and right inlets, respectively (see Figure 7).



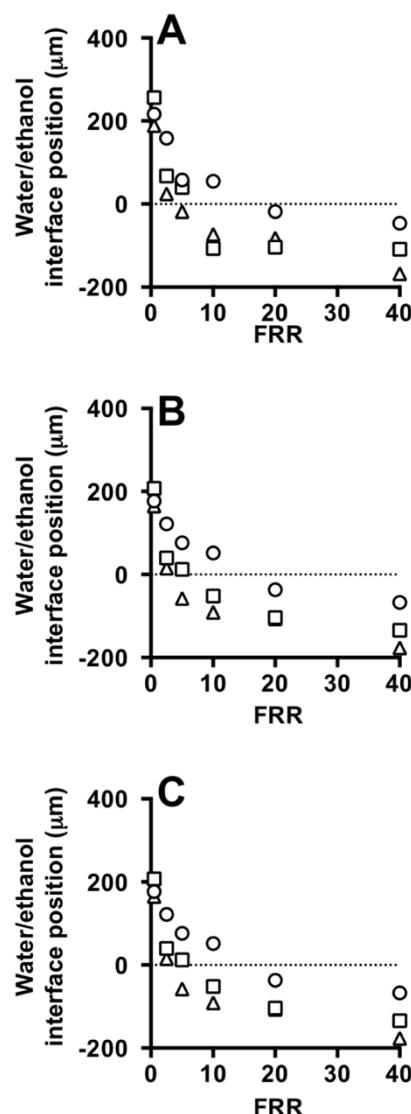
344


345 **Figure 7.** Experimental and computational fluid dynamic (CFD) analysis of the effect of microfluidic  
 346 parameters on diffusion, diffusion layer width and water/ethanol interface position, in #chip2-YJ. The  
 347 images illustrate the experimental microscopic observations (left column) and the CFD simulations  
 348 (mid and right columns) of the "Y" junction region, at the channels' intersection. The images were  
 349 employed to determine the width of the diffusion layer (i.e. the green region) and the water/ethanol  
 350 interface position, as indicated in the schematic at the bottom. The numerical contours of ethanol mass  
 351 fraction are reported at both the mid-plane (mid column) and top-plane (right column) of the device.  
 352 Experiments and simulations were conducted at TFR of 37.50  $\mu$ l/min, and at varying FRRs.

353 In this microfluidic architecture, a single interface is formed between ethanol and water, which  
 354 position depends on the FRR. As evident from Figure 7, at lower FRRs (in the range 0.5 to 5.0) the  
 355 interface is shifted towards the right inlet channel, whereas at higher FRRs (>5.0) the interface  
 356 progressively shifts towards the left inlet channel. This trend is evident in both experimental and  
 357 simulated conditions, suggesting that simulations are able to capture the interfacial interaction  
 358 between solvent and non-solvent.

359 A remarkable difference between #chip1-MHF and #chip2-YJ resides in the dimension of the  
360 diffusion layer formed between ethanol and water. In #chip1-MHF, the boundary between solvent  
361 and non-solvent appears rather sharp, while in #chip2-YJ a green colored region between ethanol and  
362 water is detectable, corresponding to a pH value comprised between 6 and 7.6 (Figure 7). This is  
363 reflected in the numerical results, suggesting that mixing between ethanol and water has partially  
364 occurred already at the junction between inlets. The width of such diffusion layer appears to be  
365 directly related to TFR and inversely related to FRR. Notably, the higher residence time and slower  
366 mixing in this specific device resulted in liposomes with larger diameter compared to those obtained  
367 with the MHF device, as illustrated in Figure 2.

368 Furthermore, the numerical results show a significant difference in the solvent concentration  
369 between the top and mid planes, likely due to the ethanol moving upwards because of its lower  
370 density compared to water. This effect is more evident in #chip2-YJ compared to #chip1-MHF, due to  
371 the larger cross-sectional area and therefore the lower mean fluid velocity. However, stratification of  
372 fluids due to differences in density did not appear to impact on the mixing efficiency in this specific  
373 device. This effect has not been previously investigated in depth, and will form the basis of future  
374 studies.


375 As illustrated in Figure 8, the presence of serpentine mixing elements in #chip2-YJ is sufficient  
376 to achieve efficient mixing between ethanol and water at all FRRs investigated, without any evident  
377 interfacial layer near the outlet of the device (Figure 8). As a result, liposome size dispersity was  
378 nearly invariant at the different FRRs. The proportion of ethanol and pH are clearly related to FRR;  
379 i.e., at the lower FRRs (0.5 and 2.0) the pH is between 6 and 7.6 as reflected in the green color, and at  
380 FRR >10 the pH shifts towards basic values (blue colors). Notably, microfluidic architectures such as  
381 #chip2-YJ may provide the benefit of efficient mixing and lower size dispersity at the experimental  
382 conditions investigated in the present study.



383

384 **Figure 8.** Experimental and computational fluid dynamic (CFD) analysis of the effect of microfluidic  
 385 parameters on diffusion, diffusion layer width and water/ethanol interface position, in #chip2-YJ. The  
 386 images illustrate the experimental microscopic observations (left column) and the CFD simulations  
 387 (mid and right columns) in a region located at the end of the serpentine geometry. The images were  
 388 employed to determine the width of the diffusion layer (i.e. the green region) and the water/ethanol  
 389 interface position, as indicated in the schematic at the bottom. The numerical contours of ethanol mass  
 390 fraction are reported at both the mid-plane (mid column) and top-plane (right column) of the device.  
 391 Experiments and simulations were conducted at TFR of 37.50  $\mu$ l/min, and at varying FRRs.

392 Quantitative results are provided in Figure 9, showing the influence of FRR on the water/ethanol  
 393 interface position and diffusion layer width, respectively. In both simulations and experiments, the  
 394 water/ethanol interface position reduced with increasing FRR. Good agreement between the  
 395 experimental (Figure 9A) and the computational (Figure 9B) measurements can also be appreciated.  
 396 Moreover, the presence of lipids in the ethanolic stream does not have a significant effect on the shape  
 397 and size of this interface (see Figures 9A and 9B). Cryo-TEM images of liposomes produced with the  
 398 Y-junction chip at FRR of 10 and TFR of 37.5  $\mu$ l/min are reported in Figure 2D.



399

400 **Figure 9.** Effect of FFR on the water/ethanol interface position at different TFRs, measured from  
 401 experiments (A-B) and simulations (C) using #chip2-YJ. TFR was set to 18.75 (circles), 37.50 (squares)  
 402 and 75.00 (triangles)  $\mu\text{l}/\text{min}$ . Experiments were carried out in the absence (A) and in the presence of  
 403 liposome forming lipids (B). Data represent the average of 3 measurements  $\pm$  SD (the maximum  
 404 standard deviation is equal to 0.5).

405 In conclusion, the experimental approach based on the pH indicator BB proved to be effective  
 406 for studying the influence of FRR and TFR on the mixing performance of microfluidic devices.  
 407 Notably, the method was validated using numerical simulations, demonstrating its ability to provide  
 408 a qualitative and quantitative characterization of the mixing between a solvent (ethanol) and a non-  
 409 solvent (water). The proposed method may provide a useful tool to design and validate appropriate  
 410 experimental conditions for the use of microfluidic devices in the preparation of supramolecular  
 411 assemblies, such as liposomes.

#### 412 4. Conclusions

413 Microfluidic-based production of vesicular systems has proven to be an effective technique,  
 414 offering several advantages compared to macroscale methods, particularly in terms of control over  
 415 the physical properties of the end-product. These properties are usually highly dependent on the  
 416 mixing between a solvent (i.e., ethanol) and a non-solvent (i.e., water). Thus, the design of a  
 417 microfluidic architecture for vesicular systems' production requires an in-depth characterisation of  
 418 the mixing within the microfluidic environment. In this study, we report on the development of a

419 novel method based on the use of a pH indicator, and we demonstrated its utility by characterizing the  
420 transport of solvent and non-solvent within two different microfluidic mixers typically used for the  
421 production of vesicular or micellar systems. Numerical simulations were performed to validate the  
422 experimental findings. With these methods, we evaluated the effect of the hydrodynamic boundary  
423 conditions (specifically the ratio between inlet flow rates, FRR) on the mixing performance of the  
424 selected microfluidic architectures, which had distinct geometrical and fluid dynamic characteristics.  
425 Our findings suggest that, in MHF devices, particular attention must be paid to the length of the main  
426 channel in order to achieve efficient mixing within the microfluidic device. The presence of a  
427 serpentine in the main channel was observed to significantly improve the mixing performance, and  
428 complete mixing was achieved for the large majority of FRRs and TFRs investigated. The latter device  
429 architecture may provide the benefit of efficient mixing at a larger spectrum of FRRs.

430 Compared to other mixing characterisation methods based on changes in colour or fluorescence  
431 intensity of a dye or probe, our proposed technique relies on the colour-shift of a pH sensitive  
432 molecule, and may therefore be less sensitive to the lighting conditions employed in the experiment.  
433 Furthermore, it provides a route for qualifying and quantifying the solvent exchange process which  
434 is postulated to govern the formation of vesicular systems in microfluidic devices.

435 The proposed mixing characterisation method also presents advantages of cost-effectiveness  
436 and easiness of implementation in non-specialised laboratory settings, including those lacking of  
437 adequate computational facilities or expertise for performing numerical studies.

438 **Author Contributions:** The concept and idea were developed by Claudio Nastruzzi. The processing of the  
439 samples was performed by Elisabetta Bottaro, Ali Mosayyebi, and Dario Carugo. Experiments, simulations  
440 and data analysis were performed by Elisabetta Bottaro, Ali Mosayyebi, and Dario Carugo. Elisabetta Bottaro,  
441 Ali Mosayyebi, Dario Carugo and Claudio Nastruzzi wrote the paper.

442 **Conflicts of Interest:** The authors declare no conflict of interest.

#### 443 **References**

- 444 1. P. M. Valencia, O. C. Farokhzad, R. Karnik, and R. Langer, “Microfluidic technologies  
445 for accelerating the clinical translation of nanoparticles,” *Nat. Nanotechnol.*, vol. 7, no. 10,  
446 pp. 623–629, 2012.
- 447 2. P. C. Soema, G. Willems, W. Jiskoot, J. Amorij, and G. F. Kersten, “European Journal  
448 of Pharmaceutics and Biopharmaceutics Predicting the influence of liposomal lipid  
449 composition on liposome size, zeta potential and liposome-induced dendritic cell maturation  
450 using a design of experiments approach,” *Eur. J. Pharm. Biopharm.*, vol. 94, pp. 427–435,  
451 2015.
- 452 3. A. Akbarzadeh *et al.*, “Liposome: classification, preparation, and applications,”  
453 *Nanoscale Res. Lett.*, vol. 8, no. 1, p. 102, 2013.
- 454 4. P. Walde, *Preparation of vesicles (liposomes)*, vol. 9. 2004.
- 455 5. E. K. Sackmann, A. L. Fulton, and D. J. Beebe, “The present and future role of  
456 microfluidics in biomedical research,” *Nature*, vol. 507, no. 7491, pp. 181–9, 2014.
- 457 6. C. Y. Lee, C. L. Chang, Y. N. Wang, and L. M. Fu, “Microfluidic mixing: A review,”  
458 *Int. J. Mol. Sci.*, vol. 12, no. 5, pp. 3263–3287, 2011.
- 459 7. U. Bilati, E. Allémann, and E. Doelker, “Development of a nanoprecipitation method  
460 intended for the entrapment of hydrophilic drugs into nanoparticles,” *Eur. J. Pharm. Sci.*,  
461 vol. 24, no. 1, pp. 67–75, 2005.

462 8. D. Carugo, E. Bottaro, J. Owen, E. Stride, and C. Nastruzzi, “Liposome production by  
463 microfluidics: potential and limiting factors.,” *Sci. Rep.*, vol. 6, p. 25876, Jan. 2016.

464 9. J. M. Zook and W. N. Vreeland, “Effects of temperature , acyl chain length , and flow-  
465 rate ratio on liposome formation and size in a microfluidic hydrodynamic focusing device,”  
466 pp. 1352–1360, 2010.

467 10. J. P. Brody, P. Yager, R. E. Goldstein, and R. H. Austin, “Biotechnology at low Reynolds  
468 numbers.,” *Biophys J*, vol. 71, no. 6, pp. 3430–3441, 1996.

469 11. K. V. Sharp, R. J. Adrian, J. G. Santiago, and J. I. Molho, “Liquid Flows in  
470 Microchannels,” *MEMS Handb.*, p. 6.1-6.38, 2002.

471 12. J. G. K. L. Baldwin, P. J. Dunlop, L. J. Gosting, and G. Kegeles, “Flow Equations and  
472 Frames of Reference for Isothermal Diffusion in Liquids,” vol. 1505, 1960.

473 13. M. H. V. Werts *et al.*, “Quantitative full-colour transmitted light microscopy and dyes  
474 for concentration mapping and measurement of diffusion coefficients in microfluidic  
475 architectures,” *Lab. Chip*, vol. 12, no. 4, p. 808, 2012.

476 14. T. Robinson *et al.*, “Three-dimensional molecular mapping in a microfluidic mixing  
477 device using fluorescence lifetime imaging,” *Opt.Lett.*, vol. 33, no. 0146–9592 (Print), pp.  
478 1887–1889, 2008.

479 15. W. F. Fang, M. H. Hsu, Y. T. Chen, and J. T. Yang, “Characterization of microfluidic  
480 mixing and reaction in microchannels via analysis of cross-sectional patterns,”  
481 *Biomicrofluidics*, vol. 5, no. 1, pp. 1–12, 2011.

482 16. D. Verstraeten and B. Schrauwen, “on the Quantification of the,” no. 2004, pp. 1–9,  
483 2008.

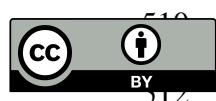
484 17. A. Jahn, W. N. Vreeland, M. Gaitan, and L. E. Locascio, “Controlled Vesicle Self-  
485 Assembly in Microfluidic Channels with Hydrodynamic Focusing,” *J. Am. Chem. Soc.*, vol.  
486 126, no. 9, pp. 2674–2675, Mar. 2004.

487 18. X. Casadevall, M. Srisa-art, J. Andrew, and J. B. Edel, “Mapping of Fluidic Mixing in  
488 Microdroplets with 1  $\mu$  s Time Resolution Using Fluorescence Lifetime Imaging,” vol. 82,  
489 no. 9, pp. 3950–3956, 2010.

490 19. D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale  
491 patterning,” *Nat. Protoc.*, vol. 5, no. 3, pp. 491–502, 2010.

492 20. E. E. Hills, M. H. Abraham, A. Hersey, and C. D. Bevan, “Diffusion coefficients in  
493 ethanol and in water at 298K: Linear free energy relationships,” *Fluid Phase Equilibria*, vol.  
494 303, no. 1, pp. 45–55, Apr. 2011.

495 21. Y.-C. Ahn, W. Jung, and Z. Chen, “Optical sectioning for microfluidics: secondary flow  
496 and mixing in a meandering microchannel,” *Lab Chip*, vol. 8, no. 1, pp. 125–133, 2008.


497 22. M. Carboni, L. Capretto, D. Carugo, E. Stulz, and X. Zhang, “Microfluidics-based  
498 continuous flow formation of triangular silver nanoprism with tuneable surface plasmon  
499 resonance,” *J. Mater. Chem. C*, vol. 1, no. 45, p. 7540, 2013.

500 23. E. Kastner, R. Kaur, D. Lowry, B. Moghaddam, A. Wilkinson, and Y. Perrie, “High-  
501 throughput manufacturing of size-tuned liposomes by a new microfluidics method using  
502 enhanced statistical tools for characterization,” *Int. J. Pharm.*, vol. 477, no. 1–2, pp. 361–  
503 368, Dec. 2014.

504 24. E. Kastner, V. Verma, D. Lowry, and Y. Perrie, “Microfluidic-controlled manufacture  
505 of liposomes for the solubilisation of a poorly water soluble drug,” *Int. J. Pharm.*, vol. 485,  
506 no. 1–2, pp. 122–130, May 2015.

507 25. D. Carugo, E. Bottaro, J. Owen, E. Stride, and C. Nastruzzi, “Liposome production by  
508 microfluidics: potential and limiting factors,” *Sci. Rep.*, vol. 6, no. 1, Sep. 2016.

509



© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).