
1

Secure Communications for Dual-Polarized MIMO Systems
Shiqi Gong, Chengwen Xing, Sheng Chen, Fellow, IEEE, and Zesong Fei

Abstract—To enhance secure communications, we deploy the
dual-polarized antenna arrays at communication nodes of the
multi-input multi-output (MIMO) system where the base station
communicates with multiple legitimate users in the presence of
an eavesdropper. We also adopt the dual-structured precoding in
which a preprocessing matrix based on the polarized array spatial
correlation and a linear precoding based on the instantaneous
channel state information (CSI) are concatenated. We design this
dual-structured multi-user linear precoding under three cases.
In the first case, given perfect global CSI, the secrecy rate
optimization problem is formulated and transformed into the
weighted minimum mean square error problem, which can be
effectively solved by the block coordinate decent method. In
the second case where the eavesdropper’s CSI is unavailable,
an artificial noise is generated to confuse the eavesdropper by
minimizing the information transmit power subject to a preset
mean square error (MSE) threshold for the recovered confidential
signals, which can be solved by an efficient iterative algorithm. In
the third case of imperfect global CSI, the robust optimization for
secure communications is performed by minimizing the largest
received MSE among the users subject to the total transmit
power constraint, which can be reformulated into a biconvex
semidefinite programming problem and solved by an efficient
alternating convex optimization. Simulation results are included
to demonstrate the excellent performance of our proposed designs
over the conventional single-polarized array based designs, in
terms of achievable secrecy rate, minimum transmit power and
the MSE of recovered confidential signals.

Index Terms—Physical layer security, dual-polarized MIMO
system, dual-structured multi-user linear precoding

I. INTRODUCTION

Multiple-input multiple-output (MIMO) offers a key tech-
nology to support higher data rate and to improve the en-
ergy and spectral efficiency. In order to attain the available
maximum multiplexing and/or diversity gains in MIMO sys-
tems, the antenna spacing must be at least ten wavelengths
[1]–[3]. Consequently, the deployment of antenna arrays,
particularly large-scale arrays, may be difficult due to the
device space limitation. Even when an antenna array can be
deployed, the unavoidable mutual coupling and high spatial
correlation among antenna elements are not negligible [4].
The multi-polarized antenna array is proposed as an effective
solution, which exploits the polarization difference of the
electromagnetic (EM) waves in wireless channels to reduce
the array spatial correlation and to realize the robust and
compact communication devices [5], [6]. In particular, it was
demonstrated that the dual-polarized antenna elements have
low spatial correlation, compared to the conventional single-
polarized antenna array, owing to the fact that the orthogonally
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polarized EM waves experience independent fading in both
line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios
[7], [8]. Moreover, given the same number of antenna elements
and with the same spacing among co-polarized array elements,
the size of a single-polarized antenna array is twice that of a
dual-polarized antenna array. Hence, in our work, the dual-
polarized array is deployed at each communication node of
the downlink (DL) MIMO system.

When the MIMO system operates in the frequency division
duplexing (FDD) mode, where the uplink and DL channel reci-
procity does not hold, the DL channel acquisition consumes
huge amount of training overhead [9]. For conventional single-
polarized MIMO, to reduce the burden of DL channel acqui-
sition at base station (BS), a dual-structured linear precoding
scheme was proposed, in which a preprocessing operation
based on the spatial covariance matrix and a linear precoding
utilizing the instantaneous channel state information (CSI)
are concatenated [10], [11]. Generally, the spatial correlation
varies slowly, compared to the instantaneous CSI, and thus
it can be obtained accurately with a low feedback cost [11].
Therefore, we also adopts the dual-structured multi-user linear
precoding as an effective means of reducing the channel
feedback overhead for dual-polarized MIMO systems. As a
benefit of the orthogonally polarized channel characteristics,
the spatial covariance matrix of the dual-polarized MIMO
channel is block-diagonal and, consequently, the design of the
dual-structured precoding for the dual-polarized MIMO has a
lower complexity than that for the single-polarized MIMO.

Traditionally, the multi-user linear precoding scheme has
been widely adopted in MIMO systems for effective infor-
mation transmission. For example, in [12] a linear precod-
ing scheme was proposed to improve the multi-user MIMO
system’s error performance by relaxing the signal-to-leakage-
and-noise (SLNR) maximization. The work [13] jointly de-
signed the optimal linear precoder and decoder for MIMO
channels based on a weighted minimum mean square error
(WMMSE) criterion under the transmit power constraint. In
[14], a simple matched-filter precoding was applied to enable
large power efficiency gain for massive MIMO. However, for
multi-polarized antenna based MIMO systems, less attention
has been paid to the multi-user linear precoding design and,
therefore, the prominent advantage of polarized array may
be under-utilized. In [15], a dual-structured linear precoding
combing with the subgrouping method based on polarization
was proposed for the dual-polarized MIMO system to achieve
the maximum system capacity. The work [16] designed an
adaptive channel subspace sampling algorithm to estimate the
millimeter wave beam-alignment vectors for the multi-users
in the dual-polarized MIMO system. Our main objective is
however focusing on physical layer security.

Owing to the openness of wireless links, any receiver
located within the communication range of the transmitter can
receive the transmitted signal naturally. As a result, the security
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issue is a paramount concern in wireless communications [17],
[18]. The physical layer security has emerged recently as an ef-
fective means of avoiding malicious wiretap as far as possible.
The concept of physical layer security was firstly defined by
Shannon [19]. Then Wyner [20] introduced the wiretap chan-
nel model and defined the secrecy capacity at which the infor-
mation transmission is reliable irrespective of the amount of
information leakage to the eavesdropper. Expanding the work
of [20], a Gaussian degraded wiretap channel was investigated
in [21]. Based on these theoretical fundamentals, a large
amount of literature were produced focusing on the physical
layer security of various multiple-antenna systems [22]–[28].
Specifically, a security beamforming strategy was designed for
the multiple-input single-output (MISO) system in [22], [23],
the single-input multiple-output (SIMO) system in [24], and
the MIMO system in [25]–[28]. In particular, to effectively
balance the security performance among different links of an
MIMO network, the work [25] proposed a game theory based
collaborative transmission scheme, while an artificial noise
scheme was proposed in [26] for secure communications of
the two-way relaying MIMO network under a realistic scenario
that the CSI of eavesdropper is unavailable. Further extending
these research, the work [27] jointly designed a matched-filter
data precoding and a null-space or random artificial noise
scheme for secure communications of the multi-cell massive
MIMO system, while in [28], several data precoding schemes
were considered to investigate the achievable ergodic secrecy
capacity region of massive MIMO.

There also exist some literature considering the security
issue in the multi-polarized system [29], [30]. For example,
the work [29] introduced a simple polarization encoding
scheme to ensure that the spatially separated multi-receivers
can operate in parallel secretly. To the best knowledge of the
authors, however, there has been no related work addressing
the physical-layer security of the dual-polarized DL MIMO
system so far. Hence, it is significant and valuable to consider
the dual-structured multi-user linear precoding design for se-
cure communications in the dual-polarized DL MIMO system,
which motivates our current work.

In this paper, we model the dual-polarized DL MIMO, in
which a BS with a dual-polarized antenna array transmits
multiple data streams to multiple mobile users (MUs), each
equipped with a dual-polarized array, at the presence of
an eavesdropper that is also equipped with a dual-polarized
array. We adopt a dual-structured multi-user linear precoding
scheme, which includes the preprocessing based on the spatial
covariance matrix and the subsequent linear precoding based
on the instantaneous CSI, to realize secure communications of
the dual-polarized DL MIMO system. The spatial correlation
based preprocessing matrix is optimized by utilizing the block
diagonalization, while the design of the linear precoding
depends on whether the eavesdropper’s CSI is available, which
is discussed in details in the following three cases.

1) Under the ideal senario that the perfect global-system
CSI is available, the secrecy rate maximization problem is
formulated, which is however nonconvex and difficult to
solve directly. In order to solve this challenging optimization
problem, the WMMSE based equivalent transformation is

conducted and a block coordinate decent (BCD) iterative
algorithm is proposed to achieve the maximum secrecy rate.

2) Under the realist scenario where the CSI of eavesdropper
is unavailable, an artificial noise scheme is applied to interfere
with the eavesdropper for the sake of achieving secure com-
munications. Because the artificial noise is constrained by the
total transmit power, in designing this scheme, we minimize
the information transmit power subject to a preset mean
square error (MSE) threshold for the recovered confidential
signals. An iterative algorithm is proposed to decompose this
optimization problem into a standard quadratically constrained
quadratic programming (QCQP) subproblem and a closed-
form minimum MSE (MMSE) based receiver filter design.

3) Further considering practical situations with imperfect
global system CSI which arise owing to channel estimation
or feedback error, the worst-case optimization is performed to
achieve secure communications, in which the largest received
MSE among the MUs is minimized subject to the total transmit
power constraint. By reformulating this challenging optimiza-
tion problem into a biconvex semidefinite programming (SDP)
problem, an alternating convex optimization (ACO) algorithm
is proposed to perform the SDP optimization separately for
different groups of optimization variables.

Our simulation results show that all the aforementioned
iterative algorithms, corresponding to different availabilities
of CSI, achieve good convergence performance. We also
explicitly compare the achievable security performance of the
proposed dual-structured precoding for dual-polarized MIMO
with those of the dual-structured precoding for conventional
single-polarized MIMO under all the three CSI scenarios. Our
simulation results confirm that the former outperforms the
latter, in terms of the secrecy rate, the minimum transmit
power and the MSE of recovered confidential signals. Thus,
in addition to providing more compact antenna array which
is beneficial for practical implementation as well as impos-
ing lower computational complexity in designing the dual-
structured precoding, the dual-polarized MIMO offers the per-
formance advantage, compared to the single-polarized MIMO.
Additionally, we apply the standard MIMO precoding schemes
[26], [28], [31] to the dual-polarized MIMO system and use
their achievable security performance as the benchmarks for
the three respective CSI scenarios. Although outperforming
the proposed dual-structured precoding scheme, these standard
MIMO designs require the full instantaneous CSI which is
difficult to acquire in practice and they impose huge channel
feedback overhead. Moreover, these standard MIMO precod-
ing schemes impose much higher computational complexity
than the proposed dual-structured precoding design.

The rest of this paper is organized as follows. Section II
introduces the dual-polarized system model and the dual-
structured multi-user linear precoding. In Section III, the dual-
structured multi-user linear precoding designs given the perfect
CSI of all BS-MU links are presented for the ideal scenario
of perfectly available eavesdropper’s CSI and the realistic case
where the eavesdropper’s CSI is unavailable. Section IV details
our proposed robust design for achieving secure communica-
tions under the practical scenario of imperfect global CSI. The
simulation results and our conclusions are given in Sections V
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and VI, respectively.
We adopt the following notation conventions. The normal-

faced lower-case letters denote scalars, while bold-faced lower-
case and upper-case letters denote vectors and matrices, re-
spectively. The imaginary axis is given by j =

√
−1. The

transpose, conjugate transpose, inverse and pseudo-inverse op-
erators are denoted by (·)T, (·)H, (·)−1 and (·)†, respectively,
while | · |, ∥ · ∥ and ∥ · ∥F denote the absolute value, Euclidean
and Frobenius norms, respectively. The operator ⊗ denotes the
Kronecker product and ⊙ denotes the elementwise multiplica-
tion of two matrices, while Tr(·) and det(·) denote the matrix
trace and determinant operators, respectively. IN is the N×N
identity matrix, and 0 is the zero matrix/vector of appropriate
dimension, while 1m×n denotes the m× n matrix with every
element equaling to 1. A ≻ 0 and A ≽ 0 indicate that A is
positive and semipositive definite matrix, respectively, while
A ≽ B means that A−B is semipositive definite. E[·] denotes
the expectation operator. [A]m:n is the sub-matrix containing
all elements from the mth column to the nth column of
A, and diag{a1, · · · , am} is the diagonal matrix with the
diagonal elements a1, · · · , am, while Bdiag{A1, · · · ,Am}
is the block diagonal matrix with A1, · · · ,Am at its block
diagonal positions. The ith-row and jth-column element of A
is given by A|i,j . H⊥ denotes the orthogonal projection matrix
onto the null space of H , and [a]+ = max{a, 0}. Table I lists
the main variables used in this work.

TABLE I
LIST OF MAIN VARIABLES.

Variable Definition
Nt, Nr , Ne Numbers of antennas at BS, MUs, eavesdropper

K Number of MUs
sk Desired data streams for kth MU

Hk , He Channel matrices from BS to kth MU, eavesdropper
Vk Precoding matrix for kth MU
Bk Preprocessing matrix in dual-structured precoding
Pk Linear precoding matrix in dual-structured precoding

H̄kj Virtual channel jth MU → kth MU in perfect CSI
Wk , Nk Auxiliary variables of the BCD method

fHkj Virtual channel jth MU → kth MU in unknown CSI
Mk Receive filter for kth MU

MSEk Covariance matrix corresponding to Mk
cHk , cHe Nominal channels BS → kth MU and eavesdropper
∆

′
k , ∆e

′ Channel uncertainties for kth MU and eavesdropper

II. SYSTEM MODEL AND DUAL-STRUCTURED LINEAR
PRECODING

Without loss of generality, we consider a single-cell DL
system which consists of one BS equipped with Nt polarized
antennas, K legitimate MUs, each having Nr polarized anten-
nas, and one eavesdropper with Ne polarized antennas. Here,
Nt, Nr and Ne are all even numbers. As shown in Fig. 1, the
BS, each MU and eavesdropper are deployed with Nt/2, Nr/2
and Ne/2 pairs of collocated vertically/horizontally polarized
antennas, respectively. Based on this structure, the received
signal vector yk ∈ CNr at the kth MU is expressed as

yk =
[

yv
k

yh
k

]
= HH

k x + nk, (1)

where yv
k ∈ CNr/2 and yh

k ∈ CNr/2 denote the received
signals at the kth MU with the vertical and horizontal polariza-
tions, respectively, nk ∈ CNr represents the channel additive

Fig. 1. The dual-polarized MIMO downlink system.

white Gaussian noise (AWGN) vector with E
[
nknH

k

]
=

σ2
kINr , i.e., nk ∼ CN

(
0, σ2

kINr

)
, and Hk ∈ CNt×Nr denotes

the channel matrix from the BS to the kth MU, while x ∈ CNt

is the linearly precoded transmit signal vector for the K MUs.
Given the data vector sk ∈ Cdk and the precoding matrix
Vk ∈ CNt×dk for the kth MU, where 1 ≤ k ≤ K, x is
generally expressed as

x =
∑K

k=1
Vksk. (2)

For simplicity, we assume d1 = · · · = dK = ds. Furthermore,
the maximum transmit power Pmax is imposed on x as
E
[
∥x∥2

]
=
∑K

k=1 Tr
(
VkV H

k

)
≤ Pmax.

A. Polarized channel modeling
Similar to [32], we assume that the spatial covariance

matrices are the same for the both polarizations.1 For the
kth MU, denote its polarized spatial covariance matrix2 by
Rp

k ∈ C
Nt
2 ×Nt

2 . Further arranging the rk non-zero eigenvalues
of Rp

k in decreasing order of magnitude γ1 ≥ γ2 ≥ · · · ≥ γrk
,

where generally rk < Nt

2 , we have the diagonal matrix
Λk = diag{γ1, · · · , γrk

} and the unitary matrix Uk ∈ C
Nt
2 ×rk

which consists of the corresponding eigenvectors of Rp
k.

According to [6], [15], the dual-polarized DL MIMO chan-
nel matrix Hk can be expressed as

Hk =
([

1 rp
rp 1

]
⊗
(
UkΛ

1
2
k

))(
Gk⊙

(
X⊗1rk×Nr

2

))
, (3)

where rp is the correlation coefficient between the horizontally
and vertically polarized antennas which is generally closed to
zero (rp ≈ 0) according to [6], and Gk, whose elements follow
the circularly symmetric Gaussian distribution with zero mean
and unit power, are defined by

Gk =
[

Gvv
k Ghv

k

Gvh
k Ghh

k

]
, (4)

in which Gmn
k ∈ Crk×Nr

2 for m,n ∈ {h, v}, while the matrix
X is introduced to indicate the power imbalance between both
polarizations and it is expressed as

X =
[

1
√
χ√

χ 1

]
, (5)

1In fact, our design is equally applicable where the spatial covariance
matrices are different in the two polarizations.

2Rp
k includes the effects of both the antenna correlations at the BS side

and at the MU side.



4

in which 0 ≤ χ ≤ 1 is the inverse of the cross-polarization
discrimination (XPD) metric representing the channel’s ability
to separate vertical and horizontal polarizations [33]. Thus the
polarized channel modeling (3) can be rewritten as

Hk =
(
I2 ⊗

(
UkΛ

1
2
k

))[ Gvv
k

√
χGhv

k√
χGvh

k Ghh
k

]
=

[
UkΛ

1
2
k Gvv

k

√
χUkΛ

1
2
k Ghv

k√
χUkΛ

1
2
k Gvh

k UkΛ
1
2
k Ghh

k

]
=
[

Hvv
k Hhv

k

Hvh
k Hhh

k

]
,

(6)

and the covariance matrix of Hk is given by

Rk =
[

(1 + χ)Rp
k 0

0 (1 + χ)Rp
k

]
. (7)

Similar to (1), we can formulate the wiretapped signal vector
ye ∈ CNe at the eavesdropper as

ye =HH
e x + ne, (8)

where ne ∼ CN
(
0, σ2

eINe

)
is the AWGN vector at eaves-

dropper and He ∈ CNt×Ne is the channel matrix from the BS
to eavesdropper with the same form as Hk, namely,

He =
(
I2 ⊗

(
UeΛ

1
2
e

))[ Gvv
e

√
χGhv

e√
χGvh

e Ghh
e

]
=

[
UeΛ

1
2
e Gvv

e
√
χUeΛ

1
2
e Ghv

e√
χUeΛ

1
2
e Gvh

e UeΛe
1
2Ghh

e

]
=
[

Hvv
e Hhv

e

Hvh
e Hhh

e

]
,

(9)

in which Λe ∈ Cre×re is the diagonal matrix whose diagonal
elements are the re non-zero eigenvalues of the eavesdropper’s
polarized spatial covariance matrix Rp

e , and the unitary matrix
Ue ∈ C

Nt
2 ×re consists of the corresponding eigenvectors of

Rp
e , while the elements of Gmn

e ∈ Cre×Nr
2 , m,n ∈ {h, v},

follow the circularly symmetric Gaussian distribution with
zero mean and unit power, similar to Gmn

k .

B. Optimal linear precoding

Generally, the metric called achievable secrecy rate [33]
is adopted to measure the security performance of the dual-
polarized DL MIMO system, which is expressed as

Rsec =
[∑K

k=1
Ik(sk, yk)− Ie(s1, · · · , sK , ye)

]+
, (10)

where Ik(sk, yk) and Ie(s1, · · · , sK , ye) denote the mutual
information between the BS and kth MU and between the BS
and eavesdropper, respectively, which can be expressed as

Ik(sk, yk) = log det

INr +
HH

k VkV H
k Hk

σ2
kINr

+
∑
j ̸=k

HH
j VjV H

j Hj

,
(11)

Ie(s1, · · · , sK , ye) = log det

(
INe +

1
σ2

e

K∑
k=1

HH
e VkV H

k He

)
,

(12)

assuming Gaussian channels and stochastic encoders.

The optimal linear precoding design should maximize the
secrecy rate Rsec subject to the system’s power constraint. This
leads to the following secrecy rate maximization problem

max
Vk

log

det

0

@

K
Q

k=1

(
INr +

HH
k VkV H

k Hk

σ2
k

INr
+

P

j ̸=k
HH

j
VjV H

j
Hj

)1

A

det

„

INe+ 1
σ2

e

K
P

k=1
HH

e VkV H
k He

«

,
s.t.

∑K
k=1 Tr

(
VkV H

k

)
≤ Pmax.

(13)

Unfortunately, the objective function in (13) consists of
multiple generalized Rayleigh quotients. Therefore, this op-
timization is nonconvex and it is difficult to solve. Although
numerical methods, such as Newton method, can be utilized to
search for the optimal solutions, the associate computational
complexity is huge and the convergence to an optimum cannot
be guaranteed. In order to reduce the system feedback cost
and the optimization complexity jointly, a specially structured
linear precoding scheme is adopted to exploit different avail-
ability levels of the eavesdropper’s CSI.

C. Dual-structured linear precoding

The dual-structured linear precoding scheme [10] is based
on the spatial covariance matrix, i.e., the long-term CSI, and
the instantaneous CSI jointly. In particular, the precoding
matrix Vk for the kth MU can be formulated as

Vk =BkPk, k = 1, 2, · · · ,K, (14)

where Bk ∈ CNt×L is a long-term CSI based preprocessing
matrix and Pk ∈ CL×ds is the linear precoding matrix based
on the instantaneous CSI HH

k Bk. The design parameter L
determines the transformed channel dimension via the long-
term CSI, and generally L satisfies ds ≤ L ≤ 2rk < Nt.

The preprocessing matrix Bk is optimized by only utilizing
the long-term CSI, which is generally slowly varying and
can be accurately obtained with the low feedback overhead.
Therefore, we can firstly design the long-term CSI based
preprocessing matrix Bk, and then apply it to the following
design of Pk. Note that with the block diagonal structure of
the channel covariance matrix Rk, the block diagonalization
is also applied to the optimization of Bk.

Specifically, in order to avoid both the interference to
other non-intended MUs and the information leakage to the
eavesdropper, the optimal Bk, 1 ≤ k ≤ K, needs to be
designed to meet the following condition

HH
j Bk ≈ 0, ∀j ̸= k, HH

e Bk ≈ 0. (15)

To obtain Bk that satisfies the above condition, we can utilize
the block diagonal structure of Rk in (7). First, for the kth

MU, we define the matrix U−k ∈ C
Nt
2 ×
(

P

j ̸=k

ra
j +re

)
as

U−k =
[
Ũ1 · · · Ũk−1 Ue Ũk+1 · · · ŨK

]
, (16)

where Ũk =
[
Uk

]
1:ra

k

, ra
k ≤ rk, and ra

k is a design parameter
determining the number of dominant eigenvalues of Rp

k, while
the entire Ue is used in U−k. By deriving the orthogonal space
of U−k, the complete information leakage from the kth MU
to the eavesdropper and the partial interference from the kth



5

MU to other non-intended MUs can both be suppressed. Thus,
the singular value decomposition (SVD) of U−k is firstly
performed to find the orthogonal space of U−k, that is,

U−k =
[
Q0

−k Q1
−k

] [ Λ0
−k

Λ1
−k

]
V H
−k (17)

where the diagonal matrices Λ0
−k and Λ1

−k contain the∑
j ̸=k r

a
j + re dominant singular values (SVs) and the Nt

2 −
(
∑

j ̸=k r
a
j +re) non-dominant SVs of U−k, respectively, Q0

−k

and Q1
−k compose of the left singular vectors correspond-

ing to the SVs contained in Λ0
−k and Λ1

−k, respectively,
while V−k consists of the right singular vectors of U−k.
Naturally, we can obtain the orthogonal space of U−k as

Q1
−k ∈ C

Nt
2 ×
(

Nt
2 −
(

P

j ̸=k ra
j +re

))
, i.e.,

(
Q1

−k

)H
U−k = 0.

Based on this, the optimal structure of Bk utilizing the block
diagonalization is determined as

Bk =I2 ⊗Bs
k, Bs

k = Q1
−kF̃k, (18)

where F̃k ∈ C

(
Nt
2 −
(

P

j ̸=k ra
j +re

))
×L

2 can be derived from
the effective channel

H̃k =
(
I2 ⊗Q1

−k

)H
Hk (19)

of the kth MU. More specifically, the covariance matrix of
H̃k is given by

R̃k =
(
I2 ⊗Q1

−k

)H
Rk

(
I2 ⊗Q1

−k

)
=

[
(1 + χ)R̃p

k 0
0 (1 + χ)R̃p

k

]
, (20)

where R̃p
k =

(
Q1

−k

)H
Rp

kQ1
−k. Then F̃k is determined by the

dominant eigenspace of R̃p
k. To be specific, the eigenvalue

decomposition (EVD) of R̃p
k is given by

R̃p
k =FkΛ̃kF H

k , (21)

where Fk consists of the min
{

Nt

2 −
(∑

j ̸=k r
a
j + re

)
, rk

}
dominant eigenvectors associated with R̃p

k. As a result, F̃k =[
Fk

]
1: L

2
is obtained which is then substituted into (18) to

obtain the optimal preprocessing matrix Bk, denoted as B⋆
k .

It is clear that through this preprocessing, we can project
the transmit signal for the kth MU onto the L-dimensional
dominant eigenspace, which is orthogonal to the partial chan-
nel eigenspaces of other non-intended MUs and the entire
channel eigenspace of the eavesdropper, that is, HH

k B⋆
j ≈ 0

when ra
k is approximately equal to rk and HH

e B⋆
k = 0,

∀j, k = 1, · · · ,K and j ̸= k. As the rank of R̃p
k is

rank
(
R̃p

k

)
= min

{
Nt

2 −
(∑

j ̸=k r
a
j + re

)
, rk

}
, the values of

ra
k and L should be chosen to satisfy the constraint

ds ≤ L ≤ min
{
Nt − 2

(∑
j ̸=k

ra
j + re

)
, 2rk

}
, ∀k. (22)

For brevity, we assume ra
1 = · · · = ra

K = r. The choice of
r determines the trade-off between the dimension of the or-
thogonal space Q1

−k and the design freedom of the precoding
matrix Pk ∈ CL×ds . To be specific, if we choose r close to
rk, ∀k, the more perfect orthogonal space for the kth MU can

be found, which means that more interference to other non-
intended MUs can be suppressed. However, it is clear from
(22) that with the increase of r, the range for L decreases. As a
result, the design freedom of Pk is reduced significantly, which
may degrade the system performance. Thus, the value of r has
important influence on the performance of the dual-polarized
DL MIMO system, specifically, the achievable secrecy rate
and MSE. In addition, it can be seen that the design of Pk for
1 ≤ k ≤ K mainly depends on the instantaneous CSIs of the
kth MU and the eavesdropper.

In most practical communication scenarios, the eavesdrop-
per is generally hidden from the BS, and its CSI is unavailable.
When Ue is unavailable, we cannot design the precoding
matrix Bk according to the above analysis. Instead, we can
only design the precoding matrix, denoted as B̃k, based on

Ũ−k =
[
Ũ1 · · · Ũk−1 Ũk+1 · · · ŨK

]
∈ C

Nt
2 ×

P

j ̸=k ra
j , (23)

in a similar way. Clearly, such a design can only achieve
HH

j B̃k ≈ 0, ∀j ̸= k, and it cannot suppress the information
leakage to the eavesdropper.

III. DUAL-STRUCTURED SECURE LINEAR PRECODING
DESIGN BASED ON PREFECT CSI

We assume that the perfect CSIs between the BS and all
legitimate MUs are available. As for the eavesdropper’s CSI,
the two cases are discussed. In the first case, the eavesdropper
is a legitimate and active but non-intended receiver. In this
case, the eavesdropper’s CSI can be obtained via a standard
training-based channel estimation technique. The precoding
matrices B⋆

k , ∀k, designed in Section II-C, are capable of
suppressing the information leakage to the eavesdropper. In the
second case, the eavesdropper’s CSI is unavailable to the BS.
In this case, the precoding matrices B̃k, ∀k, cannot block the
the information leakage to the eavesdropper, and an artificial
noise scheme is applied to resolve the problem. We now detail
the linear precoding designs for the both cases.

A. Perfect Hk and He

Since He is known, the optimal preprocessing matrix B⋆
k

can be applied to completely cancel the information leakage
to the eavesdropper. Consequently, the received signal (1) at
the kth MU can be rewritten as

yk =H̄H
kkPksk +

∑
j ̸=k

H̄H
kjPjsj + nk, (24)

where H̄kj =
(
B⋆

j

)H
Hk, 1 ≤ k, j ≤ K, while the wiretapped

signal of (8) becomes

ye =ne. (25)

Therefore, by defining B̄k =
(
B⋆

k

)H
B⋆

k ∈ CL×L, the secrecy
rate maximization problem (13) is transformed into

max
Pk

∑K
k=1 log det

(
INr + H̄H

kkPkP H
k H̄kk

σ2
kINr+

P

j ̸=k H̄H
kjPjP H

j H̄kj

)
,

s.t.
∑K

k=1 Tr
(
P H

k B̄kPk

)
≤ Pmax.

(26)

To tackle the above nonconvex problem, a WMMSE transfor-
mation based BCD algorithm is proposed. More specifically,
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through the WMMSE transformation, the problem (26) can be
transformed into an equivalent problem by introducing other
variables. First, we have the following lemma.

Lemma 1. Define a matrix function E(N ,P ) ∈ Cds×ds for
any given H ∈ CL×Nr , D ∈ CNr×Nr and D ≻ 0 as

E(N ,P ) =
(
Ids −NHHHP

)(
Ids −NHHHP

)H
+ NHDN , (27)

where N ∈ CNr×ds and P ∈ CL×ds . Then the following
equality holds

log det(INr + HHPP HHD−1)
= max

W ≻0,N
log det(W )−Tr(WE(N ,P ))+ds, (28)

where W ∈ Cds×ds .

Proof: See Appendix A.
Applying Lemma 1 with

H =H̄kk, (29)

D =σ2
kINr +

∑
j ̸=k

H̄H
kjPjP

H
j H̄kj , (30)

we derive the equivalent optimization problem of (26) as

max
Nk,Wk≻0,Pk

K∑
k=1

log det(Wk)−Tr(WkE(Nk,Pk))

+ds,

s.t.
∑K

k=1 Tr
(
P H

k B̄kPk

)
≤ Pmax,

(31)

where

E(Nk,Pk) = (Ids −NH
k H̄H

kkPk)(Ids −NH
k H̄H

kkPk)H

+ NH
k

(
σ2

kINr +
∑

j ̸=k
H̄H

kjPjP
H
j H̄kj

)
Nk. (32)

The BCD method can be utilized to iteratively solve the
problem (31) by optimizing the objective function of (31) over
one set of variables while keeping others invariant at each
iteration. Specifically, with the BCD method, the problem (31)
can be decomposed into the following three subproblems.

1) Wk related subproblem: Given the fixed Nk and Pk,
the optimization problem (31) can be re-expressed as

max
Wk≻0

K∑
k=1

log det(Wk)− Tr(WkE(Nk,Pk)) + ds. (33)

From the Karush-Kuhn-Tucker (KKT) condition, the optimal
Wk for given Nk and Pk is obtained as

W ⋆
k =

(
E(Nk,Pk)

)−1
,∀k. (34)

2) Nk related subproblem: Similarly, the optimal Nk given
Pk (and Wk) is obtained by solving the following problem

min
Nk

∑K

k=1
Tr(WkE(Nk,Pk)). (35)

By substituting E(Nk,Pk) of (32) into the above problem
and setting the gradient of the objective function with respect
to Nk to 0, we have the optimal Nk

N⋆
k =

(
σ2

kINr +
∑K

j=1
H̄H

kjPjP
H
j H̄kj

)−1

H̄H
kkPk, (36)

which turns out to only depend on Pk.

3) Pk related subproblem: The Pk related optimization
problem given Nk and Wk is formulated by substituting
E(Nk,Pk) of (32) into (31), which is

min
Pk,∀k

K∑
k=1

Tr
(
P H

j

K∑
j=1

(
H̄kjNkWkNH

k H̄H
kj

)
Pj

)
−Tr

(
WkNH

k H̄H
kkPk

)
−Tr

(
WkP H

k H̄kkNk

)
,

s.t.
∑K

k=1 Tr
(
P H

k B̄kPk

)
≤ Pmax.

(37)

After some manipulations, the objective function of the prob-
lem (37) is transformed into a sum of the K Pk-related
functions and the problem (37) can be rewritten as

min
Pk,∀k

K∑
k=1

Tr
(
P H

k

( K∑
j=1

H̄jkNjWjN
H
j H̄H

jk

)
Pk

)
−Tr

(
WkNH

k H̄H
kkPk)−Tr

(
WkP H

k H̄kkNk

)
,

s.t.
∑K

k=1 Tr
(
P H

k B̄kPk

)
≤ Pmax.

(38)

The above problem is a standard convex problem, whose
Lagrangian is given by

L(Pk,∀k;λ) =
K∑

k=1

Tr
(
P H

k

( K∑
j=1

H̄jkNjWjN
H
j H̄H

jk

)
Pk

)
− Tr

(
WkNH

k H̄H
kkPk

)
− Tr

(
WkP H

k H̄kkNk

)
+ λ

(∑K

k=1
Tr
(
P H

k B̄kPk

)
− Pmax

)
, (39)

where λ ≥ 0 is the Lagrange multiplier. Then the optimal P ⋆
k

is readily derived as follows

P ⋆
k =
( K∑

j=1

H̄kjNjWjN
H
j H̄H

kj +λ⋆B̄k

)−1

H̄kkNkWk, (40)

Furthermore, the optimal λ⋆ satisfies the following comple-
mentary slackness condition

λ⋆

(∑K

k=1
Tr
((

P ⋆
k

)H
B̄kP ⋆

k

)
− Pmax

)
= 0. (41)

Based on (40) and (41), λ⋆ is calculated in Proposition 1.

Proposition 1. By decomposing the positive definite matrix
B̄k into B̄k = B̄

1
2
k

(
B̄

1
2
k

)H
, where B̄

1
2
k ∈ CL×L is full-

rank, as well as defining Ck =
∑K

j=1 H̄jkNjWjN
H
j H̄H

jk

and Tk = H̄kkNkWk, we have the eigen-decomposition
B̄

− 1
2

k Ck

(
B̄

− 1
2

k

)H = LkΞkLH
k , in which Ξk ∈ CL×L is

the diagonal matrix whose elements are the eigenvalues of
B̄

− 1
2

k Ck

(
B̄

− 1
2

k

)H
and Lk ∈ CL×L consists of the corre-

sponding orthogonal eigenvectors. Further defining the ma-
trix T̃k = LH

k B̄
− 1

2
k TkT H

k

(
B̄

− 1
2

k

)H
Lk, then the optimal La-

grangian multiplier λ⋆ satisfying (41) is given by{
λ⋆ = 0, if Tr

(
P̃ ⋆

k B̄k

(
P̃ ⋆

k

)H) ≤ Pmax,
λ⋆ > 0, otherwise,

(42)

in which P̃ ⋆
k =

(∑K
j=1 H̄kjNjWjN

H
j H̄H

kj

)†
H̄kkNkWk,

and the specific value of λ⋆ > 0 is obtained by solving

K∑
k=1

L∑
m=1

T̃k

∣∣
m,m(

Ξk

∣∣
m,m

+ λ⋆
)2 = Pmax. (43)

Proof: See Appendix B.
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Note that T̃k

∣∣
m,m

/(
Ξk

∣∣
m,m

+ λ
)2 is monotonically de-

creasing for the nonnegative λ. Therefore, a one-dimensional
search, e.g., the bisection method, can be applied to solve
(43) effectively. Once the optimal λ⋆ is determined, we can
substitute it into (40) to get the optimal P ⋆

k for 1 ≤ k ≤ K.
The proposed BCD algorithm for solving the secrecy rate

maximization problem (26) is summarized in Algorithm 1,
where steps 3-5 correspond to the three optimization subprob-
lems, respectively, and the function

R(Pk | k = 1, · · · ,K)

=
K∑

k=1

log det

INr +
H̄H

kkPkP H
k H̄kk

σ2
kINr+

∑
j ̸=k

H̄H
kjPjP H

j H̄kj

, (44)

is the secrecy rate. It has been demonstrated in [34] that Pk

obtained by this BCD algorithm is actually a KKT point of
the secrecy rate maximization problem (26).

Algorithm 1 The proposed BCD algorithm

Initialize: Give Pk ∀k that satisfy
K∑

k=1

Tr
(
P H

k B̄kPk

)
= Pmax,

specify the termination threshold ϵ, and set iteration index
t = 0

1: repeat
2: t = t+ 1, P t

k ← Pk

3: N t
k ←

(
σ2

kINr +
K∑

j=1

H̄H
kjP

t
j

(
P t

j

)H
H̄kj

)−1

H̄H
kkP t

k

4: W t
k ←

(
E(N t

k,P
t
k)
)−1

5: With N t
k and W t

k , find λ⋆ by solving (43) using
Algorithm 2, and update Pk using (40)

6: until∣∣R(P t
k |k = 1, · · · ,K)−R(Pk |k = 1, · · · ,K)

∣∣ ≤ ϵ
Algorithm 2 The bisection method for finding optimal λ⋆

Initialize: Give λlw < λup, and specify the stopping thresh-
old ε

1: repeat
2: λ = λlw+λup

2

3: Calculate
K∑

k=1

L∑
m=1

eTk

∣∣
m,m(

Ξk

∣∣
m,m

+λ
)2

4: if

(
K∑

k=1

L∑
m=1

eTk

∣∣
m,m(

Ξk

∣∣
mm

+λ
)2 − Pmax

)
≥ 0 then

5: λlw = λ
6: else
7: λup = λ
8: end if
9: until |λup − λlw| ≤ ε

B. Perfect Hk and unknown He

Since He is unavailable, we can only design the precoding
matrices B̃k ∀k based on (23), which cannot block the
information leakage to eavesdropper. In order to make the
wiretapped information by eavesdropper as little as possible,

an artificial noise scheme is applied, in which the signal
transmitted by the BS is given by

x =
∑K

k=1
B̃kPksk + na. (45)

The artificial noise na is given in the form of

na =H⊥z, (46)

where z ∈ CNt−KNr obeys CN
(
0, σ2

zINt−KNr

)
, and the ma-

trix H⊥ ∈ CNt×(Nt−KNr) denotes the orthogonal projection
matrix onto the null-space of H =

[
H1 H2 · · ·HK

]H
. This

design ensures that the additional interference to each MU
caused by na can be cancelled completely.

The total transmit power is divided into Pmax = PIN +
PAN , where PIN = Tr

(
P H

k B̃H
k B̃kPk) is the allocated power

for information transmission and PAN = σ2
z

(
Nt − KNr

)
is

the allocated power for artificial noise transmission. Due to the
unknown eavesdropper’s CSI, the power optimization between
PIN and PAN to maximize the secrecy rate is impossible.
Therefore, we choose the MSE of each MU’s received sig-
nal as the system quality of service (QoS) metric to allow
us to minimize the information transmit power PIN , while
simultaneously generating more artificial noise to confuse
eavesdropper. Specifically, the received signal of the kth MU
under the existence of artificial noise is given by

yk =
∑K

j=1
HH

k B̃jPjsj + ñk, (47)

where ñk = HH
k na + nk = nk ∼ CN

(
0, σ2

kINr

)
, since

HH
k H⊥ = 0. Let Mk ∈ CNr×ds be the receive filter matrix

of the kth MU. Then the recovered signal of the kth MU,
ŝk = MH

k yk, satisfies

MSEk = E
[(

ŝk − sk

)(
ŝk − sk

)H]
=
(
MH

k H̃H
kkPk − Ids

)(
MH

k H̃H
kkPk − Ids

)H
+
∑K

j=1,j ̸=k
MH

k H̃H
kjPjP

H
j H̃kjMk + σ2

kMH
k Mk

= MH
k

(∑K

j=1
H̃H

kjPjP
H
j H̃kj + σ2

kINr

)
Mk

−MH
k H̃H

kkPk − P H
k H̃kkMk + Ids

, (48)

where H̃kj =
(
B̃j

)H
Hk ∈ CL×Nr , 1 ≤ k, j ≤ K. Clearly,

Tr
(
MSEk

)
is the MSE of the estimator ŝk.

Based on (48), the security related optimization problem
under the unknown eavesdropper’s CSI is formulated as

min
Pk,Mk

∑K
k=1 Tr

(
P H

k B̂kPk

)
,

s.t. Tr
(
MSEk

)
≤ τk, for k = 1, 2, · · · ,K,

(49)

where B̂k = B̃H
k B̃k, and τk is the required MSE threshold

for the kth MU. The above problem is nonconvex due to the
coupled optimization variables Mk and Pk. Hence, we pro-
pose an iterative algorithm to optimize Mk and Pk separately
in each iteration, while keeping the other variable fixed.

1) Optimizing Mk: From (49), it can be seen that only the
constraint contains Mk. Therefore, given Pk, we take the first
derivative of Tr(MSEk) to obtain the optimal M⋆

k

M⋆
k =

(
σ2

kINr +
∑K

j=1
H̃H

kjPjP
H
j H̃kj

)−1

H̃H
kkPk. (50)
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2) Optimizing Pk: Given Mk, we first define the following
auxiliary variables for the optimization of Pk

P =
[
P H

1 P H
2 · · ·P H

K

]
∈ Cds×KL, (51)

Ĩ =
[
Ids

0ds×Kds

]
∈ Rds×(1+K)ds , (52)

M̃k =

 0(k−1)L×ds

H̃kkMk

0(K−k)L×ds

 ∈ CKL×ds , (53)

M̂k =Bdiag
{
H̃k1Mk, · · · , H̃kk−1Mk,0L×ds ,

H̃kk+1Mk, · · · , H̃kKMk

}
∈ CKL×Kds , (54)

Mk =
[
M̃k M̂k

]
∈ CKL×(K+1)ds , (55)

B̃ =Bdiag
{
B̃H

1 , B̃
H
2 , · · · , B̃H

K

}
∈ CKL×KNt . (56)

After some manipulations, the problem (49) for optimizing Pk

can be equivalently transformed into

min
Pk

∥PB̃∥F ,

s.t. ∥PMk−Ĩ∥F ≤
√
τk−σ2

kTr
(
MkMH

k

)
,

for k = 1, · · · ,K.

(57)

The convex problem (57) can be efficiently solved using an
interior point method to obtain the optimal Pk for given Mk.

Algorithm 3 The proposed iterative algorithm for solving (49)

Initialize: Given Pk ∀k that satisfy
K∑

k=1

Tr(P H
k B̂kPk) =

Pmax, specify the termination threshold ϵ, and set iteration
index t = 0

1: repeat
2: t = t+ 1, P t

k ← Pk

3: M t
k ←

(
σ2

kINr +
K∑

j=1

H̃H
kjP

t
j

(
P t

j

)H
H̃kj

)−1

H̃H
kkP t

k

4: Update Pk by solving the problem (57) using a convex
optimization technique

5: until∣∣∣∣∣
K∑

k=1

Tr
((

P t
k

)H
B̂kP t

k

)
−

K∑
k=1

Tr
(
P H

k B̂kPk

)∣∣∣∣∣ ≤ ϵ
The proposed iterative algorithm for solving the optimiza-

tion (49) is summarized in Algorithm 3. At the tth iteration,
M t

k is updated using (50) with the given P t−1
k derived from

the previous iteration, and then P t
k is optimized by solving

(57) with the obtained M t
k. Hence, P t

k is always feasible
to the optimization problem (57) at each iteration, which
indicates that with the increasing number of iterations, the
information transmit power PIN is monotonically decreasing
and converges to the minimum value due to the compactness
and continuity of the problem (57).

IV. DUAL-STRUCTURED SECURE LINEAR PRECODING
DESIGN BASED ON IMPERFECT GLOBAL CSI

The CSI Hk is specified by the random channel matrix Gk

and the spatial covariance matrix Rp
k. Generally, Rp

k changes
much more slowly compared to Gk. Therefore, it is reasonable

to assume that an accurate estimate of Rp
k can be obtained

through a low feedback overhead, and we can focus on the
imperfect Gk, which is expressed mathematically as

Gk ∈ Gk =
{
Ĝk + ∆k : ∥∆k∥F ≤ σhk

}
, (58)

where Ĝk is the nominal channel and ∆k is the norm-bounded
channel uncertainty [31], [35]. By substituting (58) into the
model (3), we further obtain the uncertainty model of Hk as

Hk ∈ Hk =
{
Ĥk + ∆

′

k : ∥∆
′

k∥F ≤ σ
′

hk

}
, (59)

where σ
′

hk
=
√

(1+χ)Tr(Rp
k)

2rk
σhk

for 1 ≤ k ≤ K. Similarly, for
the eavesdropper’s CSI He, we have the uncertainty model

Ge ∈ Ge =
{
Ĝe + ∆e : ∥∆e∥F ≤ σhe

}
, (60)

or

He ∈ He =
{
Ĥe + ∆

′

e : ∥∆
′

e∥F ≤ σ
′

he

}
, (61)

where σ
′

he
=
√

(1+χ)Tr(Rp
e)

2re
σhe , while Ĝe is the eavesdrop-

per’s nominal channel and ∆e is its channel uncertainty.
The preprocessing matrix Bk of the dual-structured pre-

coding scheme is based on the long-term CSIs, Rp
k and Rp

e .
Therefore, given the accurate estimates of Rp

k and Rp
e , the

optimal B⋆
k obtained in Section II can be utilized, which

completely cancels the information leakage to eavesdropper,
even if the instantaneous CSI of eavesdropper is inexact. We
further consider the joint optimization of the linear precoding
Pk and the receive filter Mk to recover the confidential signals
effectively, so as to realize more reliable communications.
However, owing to the existence of the short-term CSI esti-
mation errors, the worst-case optimization must be considered,
where the MSE of each MU received signal and the transmit
power at the BS both play important role. It is worth noting
that the most unfavourable channel estimation always results
in the largest MSE or transmit power. Therefore, the worst-
case optimization can be regarded to be the most robust.

More specifically, we aim to minimize the maximum MSE
among all the MUs under the case of imperfect instantaneous
CSI information to guarantee the secure communications for
the weakest link. Mathematically, this is expressed as

min
Pk,Mk

max
Hk∈Hk,∀k

Tr
(
MSEk

)
,

s.t.
∑K

k=1 Tr
(
P H

k B̄kPk

)
≤ Pmax,

(62)

with B̄k =
(
B⋆

k

)H
B⋆

k . The problem (62) can be rewritten as

min
Pk,Mk,Hk∈Hk,∀k

τ,

s.t.
∑K

k=1 Tr
(
P H

k B̄kPk

)
≤ Pmax,

Tr
(
MSEk

)
≤ τ, 1 ≤ k ≤ K.

(63)

Further express the two constraint functions of (63) as∑K

k=1
Tr
(
P H

k B̄kPk

)
=
∑K

k=1
∥B⋆

kPk∥2F , (64)

Tr
(
MSEk

)
= ∥MH

k HH
k B⋆

kPk − Ids∥2F

+
K∑

j=1,j ̸=k

∥MH
k HH

k B⋆
j Pj∥2F +σ2

k∥MH
k ∥2F , 1 ≤ k ≤ K. (65)
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Clearly Tr(MSEk) is biconvex in Pk and Mk, but it is semi-
infinite due to the channel uncertainty ∆

′

k. We reformulate
each MSE term into the form that is affine in ∆

′

k. With the
aid of linear matrix inequality (LMI) and the sign-definiteness
lemma [31], an equivalent SDP transformation to the problem
(63) is conducted. This transformed problem is still biconvex
in Pk and Mk, and we use an iterative algorithm to alternately
perform the convex search for Pk and Mk, respectively.

Firstly, based on the identity ∥A∥F = ∥vec(A)∥, where
vec(•) is the column stacking operator, Tr(MSEk) can be
rewritten as Tr(MSEk) = ∥mk∥2 by defining

mk =


vec
(
MH

k HH
k B⋆

1P1

)
...

vec
(
MH

k HH
k B⋆

KPK

)
σkvec

(
MH

k

)
− ik ∈ C(Kds+Nr)ds, (66)

ik =

 0(k−1)d2
s

vec
(
Ids

)
0((K−k)ds+Nr)ds

 . (67)

Combining the channel uncertainty model (59) with the iden-
tity vec(ABC) =

(
CT⊗A

)
vec(B), where A, B and C have

appropriate dimensions, the channel uncertainty term ∆
′

k can
be separated out from mk. Thus mk can be rewritten as

mk =m̃k +
∑K

j=1
Mkjvec

(
∆

′

k

)
, (68)

where

m̃k =


vec
(
MH

k ĤH
k B⋆

1P1

)
...

vec
(
MH

k ĤH
k B⋆

KPK

)
σkvec

(
MH

k

)
− ik, (69)

Mkj =

 0(j−1)d2
s×NrNt((

B⋆
j Pj

)T ⊗MH
k

)
0ds((K−j)ds+Nr)×NrNt

∈ C(Kds+Nr)ds×NrNt. (70)

Owing to the fact that ∥mk∥2 ≤ τ is constrained in the
optimization problem (63), Schur complementary lemma [36]
can be applied to form the equivalent LMI, which is[

τ mH
k

mk InLMI

]
≽ 0, (71)

with nLMI = (Kds +Nr)ds. Substituting (68) into (71) yields[
τ m̃H

k

m̃k InLMI

]
≽

K∑
j=1

[
0 −

(
vec
(
∆

′

k

))H
MH

kj

−Mkjvec
(
∆

′

k

)
0

]
.

(72)

Although (72) is semi-infinite due to the channel uncertainty
term ∆

′

k, the sign-definiteness lemma [31], which is intro-
duced in the following lemma, can be applied to transform it
into a finite biconvex form.

Lemma 2. Given the Hermitian matrix Z and the matrix set
{Pj ,Qj}Kj=1, the semi-infinite LMI with the following form

Z ≽
K∑

j=1

(
P H

j XjQj + QH
j XH

j Pj

)
, ∥Xj∥ ≤ ψj , ∀j (73)

holds if and only if there exist the nonnegative real numbers
ξ1, · · · , ξK , such that

Z−
N∑

i=1

ξjQ
H
j Qj −ψ1P

H
1 · · · −ψKP H

K

−ψ1P1 ξ1I · · · 0
...

...
. . .

...
−ψKPK 0 · · · ξKI

≽0, (74)

where all the matrices involved have appropriate dimensions,
and the matrix norm ∥Xj∥ in (73) is the spectral norm which
becomes the Euclidean norm if Xj is a vector.

In order to apply Lemma 2 to (72), we introduce

Zk =
[

τ m̃H
k

m̃k InLMI

]
∈ C(1+nLMI)×(1+nLMI), (75)

Pkj =
[
0NrNt MH

kj

]
∈ CNtNr×(1+nLMI), (76)

Qkj =
[
− 1 0T

nLMI

]
, (77)

Xj =vec
(
∆

′

j

)
∈ CNtNr . (78)

Then (72) can be re-casted as
Zk−

K∑
j=1

ξjQ
H
kjQkj −σ′

h1
P H

k1 · · · −σ′

hK
P H

kK

−σ′

h1
Pk1 ξ1INtNr · · · 0

...
...

. . .
...

−σ′

hK
PkK 0 · · · ξKINtNr

≽0,

(79)

where ξj > 0 for 1 ≤ j ≤ K can always be found according
to Lemma 2 such that the LMI (79) holds for any 1 ≤ k ≤ K.
Thus the equivalent SDP transformation to the problem (63)
is obtained as

min
Pk,Mk

τ,

s.t.
∑K

k=1 Tr
(
P H

k B̄kPk

)
≤ Pmax,

LMIs (79) hold for 1 ≤ k ≤ K.
(80)

To circumvent the nonconvexity of (80), we resort to an
iterative ACO algorithm. Specifically, Mk is first fixed such
that the problem (80) becomes a SDP problem in Pk, which
can be efficiently solved. Then the same optimization is
performed on Mk for the obtained Pk. The iterative procedure
is terminated when a desired accuracy is reached. This ACO
algorithm is presented in Algorithm 4. Similar to Algorithm 3,

Algorithm 4 The proposed ACO algorithm for solving (63)
Initialize: Give initial τ > 0 and the initial receive filters Mk

for 1 ≤ k ≤ K, specify the stopping threshold ϵ, and set
the iteration index t = 0

1: repeat
2: t = t+ 1, τ t ← τ , M t

k ←Mk

3: Solve the problem (80) to obtain the optimal P t
k for

given M t
k and τ t

4: Solve the problem (80) to obtain the optimal τ and Mk

for the P t
k derived from the previous step.

5: until τ t − τ ≤ ϵ
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this ACO algorithm also converges with a decreasing and
bounded objective function in the iterative process.

V. SIMULATION RESULTS

Numerical simulations are conducted to evaluate the pro-
posed dual-structured linear precoding scheme for dual-
polarized MIMO. The one-ring model is adopted to model the
spatial covariance matrix for each MU, where the mth-row
and nth-column element of Rp

k is given by

Rp
k

∣∣
m,n

=
1

2∆a
k

∫ ∆a
k

−∆a
k

e−jπλ−1
0 ΩT(α+θk)(rm−rn)dα, (81)

in which λ0 is the transmit signal wavelength, and ∆a
k ≈

tan−1
(
pk/qk

)
denotes the angular spread of the departure

radio frequency (RF) signal to the kth MU with pk and qk
indicating the radius of the scattering ring and the distance
between the BS and the kth MU, respectively. While Ω(α) =
[cos(α) sin(α)]T is the directional vector of the RF signal
with the angle of departure α, θk is the azimuth direction of
the kth MU, and rm =

[
xm ym

]T
is the location vector of

the m-th antenna of the dual-polarized array.
In the simulated dual-polarized MIMO DL, the BS is

equipped with Nt = 100 dual-polarized antennas (50 pairs
of horizontally and vertically polarized antennas) to serve
the K = 6 MUs, each having Nr = 4 dual-polarized
antennas (2 pairs of horizontally and vertically polarized
antennas). The system is wiretapped by an eavesdropper
equipped with Ne = 4 dual-polarized antennas (2 pairs of
horizontally and vertically polarized antennas). The antenna
spacing of the dual-polarized array is half of λ0 and the XPD
parameter is defined as χ = 0.1. The angular spreads are
∆a

1 = · · · = ∆a
K = 4π

180 , and the azimuth angle of the
kth MU is θk = −π

6 + π
3 (k − 1) for 1 ≤ k ≤ K. For

the preprocessing matrix Bk ∈ CNt×L, the value of L is
determined according to L = min

{
Nt−2((K−1)r+re), 2rk

}
for 1 ≤ k ≤ K, which depends on the chosen value of r.
The elements of the instantaneous channels are assumed to
follow the distribution CN (0, 1), and the power of all channel
AWGNs is σ2

k = σ2
e = σ2 = 1. The toolbox CVX [36] is

utilized to solve the standard convex optimization problems,
e.g., the QCQP of (57) and the SDP of (80).

We also apply the dual-structured linear precoding to the
single-polarized MIMO system, i.e., the conventional corre-
lated MIMO. For the sake of fairness, we consider the same
numbers of antenna elements in the single-polarized arrays
for the BS, MUs and eavesdropper, as in the case of dual-
polarized MIMO. The antenna spacing of a single-polarized
array is also half of the signal wavelength. Since the size
of a single-polarized array is twice of the dual-polarized
array with the same number of antenna elements, a single-
polarized antenna array may have implementation difficulty,
particularly, for a large-scale array. Moreover, the design
of the dual-structured linear precoding for single-polarized
MIMO imposes much higher complexity than that of the dual-
structured linear precoding for dual-polarized MIMO.

As pointed out previously, the existing linear precoding
algorithms originally designed for correlated MIMO can also

be applied to dual-polarized MIMO. In the simulation study,
we also apply these standard algorithms, specifically, the
algorithms of [26], [28], [31], to the dual-polarized MIMO
system and use their achievable security performance as the
benchmarks. These standard designs are based on the full
instantaneous CSI and, therefore, they outperform the dual-
structured precoding. However, the full instantaneous CSI is
difficult to acquire in practice, and these existing scheme
impose huge channel feedback overhead. Moreover, they also
impose huge computational burden in designing precoding.

Numerical experiments are performed for the cases of
perfect global CSI, completely unknown eavesdropper’s CSI
and imperfect global CSI, respectively. All the results are
averaged over 500 Monte Carlo simulations.

A. The perfect global CSI

In this case, the secrecy rate can be maximized using
the proposed BCD algorithm. Given ds = 2 and with
Pmax = 16 dB, Fig. 2 depicts the convergence performance
of the BCD algorithm for different initializations and values
of L. From Fig. 2, it can be seen that the proposed BCD
algorithm guarantees to converge to the optimal secrecy rate.
As expected, with the increase of L, the achievable secrecy
rate also increases, due to the fact that the expansion of the
dominant eigenspace of the effective channel H̃k offers more
design freedom for the linear precoding Pk.
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Fig. 2. Convergence performance of the BCD algorithm for different
initializations and different values of L, given ds = 2 and Pmax = 16 dB.

Next, we investigate the influence of the maximum transmit
power Pmax to the achievable secrecy rates of the three
schemes, namely, the dual-structured linear precoding for
dual-polarized MIMO, the dual-structured linear precoding
for single-polarized MIMO and the null-space design of [26]
applied to dual-polarized MIMO. The results of Fig. 3 are for
the senario of L = 4 and ds = 4, while Fig. 4 depicts the
results for the senario of L = 6 and ds = 4. As expected, the
null-space design [26] outperforms the dual-structured linear
precoding design when both applied to the dual-polarized
array based MIMO system, while the dual-structured linear
precoding for the dual-polarized MIMO DL attains a higher
secrecy rate than the dual-structured linear precoding for the
single-polarized MIMO DL. Not surprisingly, Figs. 3 and 4
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Fig. 3. The achievable secrecy rates as the functions of total transmit power
Pmax for three different designs, given L = 4 and ds = 4.
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also indicate that the achievable secrecy sum rates increase
with the total transmit power Pmax for all the three systems.

The influence of the eavesdropper’s wiretap channel He on
the secrecy rate performance of both the dual-structured linear
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Fig. 5. The achievable secrecy rates as the functions of total transmit power
Pmax for two different designs under different eavesdropper’s channel spatial
correlations re, given L = 6 and ds = 2.

precoding designs for the dual-polarized and single-polarized
MIMO DL systems is next investigated. Specifically, in Fig. 5,
the achievable secrecy rates are shown as the functions of the
total transmit power Pmax for the both systems under three
different values of re. It can be observed from Fig. 5 that
for the both designs, the achievable secrecy rates decrease
with the increase of re. This is because increasing re expands
the dominant eigenspace of the wiretap channel He, which
means that more information leakage to eavesdropper occurs.
In addition, the dual-polarized MIMO design always attains a
high secrecy rate than the single-polarized MIMO design, as
can be evidently seen from Fig. 5.
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Fig. 6. Convergence performance of Algorithm 3 for different initializations
and different values of L, given ds = 2, Pmax = 16 dB and τth = 0.1.

B. The completely unavailable eavesdropper’s CSI

In this case, an artificial noise scheme is applied to im-
prove the system security performance, and the resulting
optimization aims to minimize the information transmit power
subject to the prescribed MSE for the recovered confidential
signals, which is solved using the iterative algorithm given in
Algorithm 3. Given the MSE thresholds τ1 = · · · = τK =
τth = 0.1, Pmax = 16 dB and ds = 2, the convergence
performance of this iterative algorithm is depicted in Fig. 6,
under different initializations and values of L. It is clear that
the proposed algorithm guarantees to converge to the minimum
transmit power solution. Moreover, for a given MSE threshold
τth, the minimum total power Pmin is reduced with the increase
of L owing to the improvement of design freedom for Pk.

The influence of the MSE threshold τth on the achiev-
able minimum transmit power Pmin for the three schemes,
namely, the dual-structured linear precoding for dual-polarized
MIMO, the dual-structured linear precoding for single-
polarized MIMO and the artificial noise scheme of [28] applied
to dual-polarized MIMO, are portrayed in Fig. 7 and Fig. 8,
respectively, under two sets of L and ds values. Clearly, for
all the three schemes, the required transmit power Pmin is
reduced when the MSE requirement is relaxed, i.e., when τth
is increased. The results of Figs. 7 and 8 show that the artificial
noise scheme [28] outperforms the dual-structured linear pre-
coding scheme when both are applied to the dual-polarized
MIMO, while the dual-structured linear precoding for the
dual-polarized MIMO DL achieves a better performance than
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Fig. 8. The achievable minimum transmit powers as the functions of the
MSE threshold for three different designs, given ds = 4 and L = 6.

the dual-structured linear precoding for the single-polarized
MIMO DL, in terms of minimum transmit power. Compared
Fig. 8 to Fig. 7, it can be seen that increasing L improves the
performance for all the three systems. In particular, we observe
that when L is increased from 4 to 6, the minimum transmit
power gap between the dual-structured linear precoding and
the artificial noise scheme is narrowed significantly.

C. The imperfect global CSI

In this case, we change the number of antennas at the BS
to Nt = 50. The robust precoding optimization is formulated
for achieving secure communications, which is solved using
the iterative ACO algorithm presented in Algorithm 4. In the
simulation, the channel uncertainty is defined by σ

′

h1
= · · · =

σ
′

hK
= σh. Fig. 9 depicts the convergence performance of

the ACO algorithm for different initializations and values of
L, given ds = 2, Pmax = 16 dB and σh = 0.05. Similar to
Algorithms 1 and 3, the convergence of the iterative ACO
algorithm is evident in Fig. 9. Furthermore, the system-wide
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Fig. 9. The convergence performance of Algorithm 4 for different initializa-
tions and different values of L, given ds = 2, Pmax = 16 dB and σh = 0.05.

minimum MSE τ decreases with the increase of L.
Fig. 10 shows the achievable system-wide minimum MSEs

as the functions of the total transmit power Pmax for the
three schemes, namely, the dual-structured linear precoding for
dual-polarized MIMO, the dual-structured linear precoding for
single-polarized MIMO and the robust optimization algorithm
of [31] applied to dual-polarized MIMO, under the condition
of L = 4, ds = 4 and σh = 0.1. As expected, the achievable
system-wide minimum MSE decreases with the increase of the
total transmit power in all the three schemes. Not surprisingly,
the robust optimization algorithm [31] based on the full
instantaneous CSI achieves a lower system-wide minimum
MSE than the dual-structured linear precoding, when both are
applied to the dual-polarized MIMO DL. It is also clear from
Fig. 10 that the dual-polarized MIMO design outperforms the
single-polarized MIMO design considerably.
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Fig. 10. The system-wide minimum MSEs as the functions of total transmit
power for three different designs, given L = 4, ds = 4 and σh = 0.1.

Fig. 11 investigates the influence of the channel error σh

on the achievable system-wide minimum MSE of the dual-
structured linear precoding scheme for dual-polarized MIMO
DL. It can be observed from Fig. 11 that increasing the
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Fig. 11. The system-wide minimum MSE as the function of total transmit
power achieved by the dual-structured linear precoding scheme for dual-
polarized MIMO under different channel errors σh, given L = 6 and ds = 2.

channel uncertainty σh leads to the increase in the achievable
system-wide minimum MSE, simply because the worse CSI
information is used in the security performance optimization
of the dual-polarized MIMO system.

VI. CONCLUSIONS

We have developed a dual-structured multi-user linear pre-
coding scheme to achieve secure communications for the dual-
polarized MIMO system, in which the preprocessing is per-
formed based on the long-term CSI, while the linear precoding
is designed based on the instantaneous CSI and the availability
of eavesdropper’s CSI. Under the ideal scenario of perfect
global CSI, the maximum secrecy rate has been attained using
the proposed BCD algorithm. For the case of completely
unknown eavesdropper’s CSI, an artificial noise scheme has
been applied to reduce the information leakage to eavesdropper
as much as possible, while maintaining the prescribed MSE
threshold for the recovered confidential signals. This leads to
a security optimization problem that can be efficiently solved
by the proposed iterative algorithm. Moreover, considering
the practical case of imperfect global CSI, the robust worst-
case optimization for achieving secure communications has
been formulated, which can be solved using the proposed
iterative ACO algorithm. Numerical experiments have been
conducted to demonstrate the superior performance of our
proposed dual-structured linear precoding designs for dual-
polarized MIMO over the dual-structured linear precoding
designs for conventional single-polarized MIMO, in terms of
the achievable secrecy rate, the minimum transmit power and
the MSE performance of recovered confidential signals.

APPENDIX

A. Proof of Lemma 1

Proof: Clearly, the matrix function E(N ,P ) ∈ Cds×ds

defined in (27) is positive definite, i.e., E(N ,P ) ≻ 0. For
any W ∈ Cds×ds and W ≻ 0, let us formulate the following
joint convex optimization problem in terms of W and N as

max
W ,N

log det(W )− Tr(WE(N ,P )) + ds,

s.t. W ≻ 0.
(82)

Applying the KKT condition to the above optimization prob-
lem, we have

(
W ⋆

)−1 −E(N⋆,P )− Y ⋆ = 0, (83)
Y ⋆W ⋆ = 0, (84)

HHPP HHN⋆ + DN⋆ = HHP , (85)

where W ⋆ and N⋆ are the optimal primal variables, while
Y ⋆ ≽ 0 is the optimal Lagrangian dual variable corresponding
to the constraint of the optimization problem (82). Further-
more, (83) and (85) are the first-order derivatives of the
objective function with respect to W and N , respectively,
while (84) denotes the complementary slackness condition for
any positive definite matrix W ≻ 0. Considering that W ≻ 0
is required, we have the optimal Y ⋆ = 0 and

W ⋆ =
(
E(N⋆,P )

)−1

=
(
E((HHPP HH + D)−1HHP ,P )

)−1

=
(
Ids − P HH(HHPP HH + D)−1HHP

)−1
. (86)

Substituting (86) into the problem (82), we obtain the
optimal objective function value as

max
W ≻0,N

log det(W )− Tr(WE(N ,P )) + ds

= log det
((

E(N⋆,P )
)−1)

= log det
(
Ids−P HH(HHPP HH+D)−1HHP

)−1

= log det
(
Ids + P HHD−1HHP

)
, (87)

where the last equality holds due to the identity
(
A +

CBCH
)−1 = A−1−A−1C

(
B−1 + CHA−1C)−1CHA−1,

with A, B and C having appropriate dimensions. From (87),
we arrive at

log det
(
INr + HHPP HHD−1

)
= log det

(
Ids + P HHD−1HHP

)
= max

W ≻0,N
log det(W )− Tr(WE(N ,P )) + ds, (88)

where the first equality holds based on the identity det(I +
AB) = det(I + BA).

B. Proof of Proposition 1

Proof: Obviously, when the power constraint is inactive,
i.e., if Tr

(
P̃ ⋆

k B̄k

(
P̃ ⋆

k

)H) ≤ Pmax, we have λ⋆ = 0. Otherwise,
we have λ⋆ > 0. By the definitions of Ck and Tk, the optimal
power allocation (40) can be expressed as

P ⋆
k =

(
Ck + λ⋆B̄k

)−1
Tk. (89)
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Substituting (89) into (41), we have

Tr
(
T H

k

(
Ck + λ⋆B̄k

)−1
B̄k

(
Ck + λ⋆B̄k

)−1
Tk

)
= Tr

(
T H

k

(
B̄

− 1
2

k Ck+λ⋆
(
B̄

1
2
k

)H)−1

×
(
Ck

(
B̄

− 1
2

k

)H+λ⋆B̄
1
2
k

)−1
Tk

)
= Tr

(
T H

k

(
B̄

− 1
2

k

)H(
B̄

− 1
2

k Ck

(
B̄

− 1
2

k

)H + λ⋆IL

)−2
B̄

− 1
2

k Tk

)
= Tr

((
LkΞkLH

k + λ⋆IL

)−2
B̄

− 1
2

k TkT H
k

(
B̄

− 1
2

k

)H)
= Tr

((
Ξk + λ⋆IL

)−2
T̃k

)
= Pmax. (90)

With some mathematical simplifications, we can readily derive
(43) from (90). This completes the proof.
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