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The effects of stimulated Raman scattering on femtosecond pulse generation using a parabolic.

amplifier and a grating pair compressor are presented. We derive an explicit analytical form for the

R

Stokes pulse evolution. We find that the evolution of the Stokes pulse can be divided into four -

regimes; small Gaussian Stokes pulse, small asymmetric Stokes pulse, signal depletion, and
parabolic Raman pulse. In order to achievé efficient pulse compression, the parabolic amplifier
should be operated in the small Stokes pulse regime where the signal pulse is not seriously
distorted. We also derive an analytical expression to obtain a critical fiber length for the small
Stokes pulse regime. The derived theory is applied to a realistic high power femtosecond pulse
generation process through a split-step Fourier numerical simulation. The pulse compression results
confirm that our derived critical fiber length leads to the highest peak power and shortest width of

compressed pulse.
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1. INTRODUCTION

In order to achieve high power femtosecond pulses from fiber sources, several schemes have
been investigated so far. For instance, it was demonstrated that self-frequency shift resulting from
anomalous dispersion combined with amplification generates high power femtosecond Raman
solitons with red-shifted wavelengvth.l’2 On the other hand, a combination of a parabolic amplifier
operating in the normal dispersion and a grating pair pulse compressor can also generate high
power femtosecond pulses.*” However, intrinsic problems associated with the latter method are
that the parabolic amplification process is limited by the Stokqs pulses caused by stimulated
Raman scattering and the amplifier gain bandwidth. At high powers, the parabolic signal pulse
may trigger the amplification of a Stokes pulse which is 132 THz away in frequency. This
-Stokes wave evolves from the noise in the amplifier and seriously distorts the signal pulse,
especially in a high‘pdwer parabolic pulse system. In addition, in a parabolic pulse system, the
spectrum of pulse widens rapidly (e.g., exponentially), and ma}; eventually become larger than
the doped-fiber amplifier gain bandwidth. This excessive pulse frequency bandwidth is most
severe in the high power regime since the spectral width is also proportiohal to the parébolic
pulse energy. Therefore, we provide an in-del;th analysis on these two limiting factors in two
pafts. In part I, an explicit analytical expressions for the evolutions of Stokes and signal pulses
are derived for the first time, which eventually leads to an expression for a critical fiber length
within which signal pulse degradation can be avoided. In part II, an analytical expression for the
signal pulse is derived in the situation of a finite gain bandwidth of the amplifier.
Regarding the Raman Stokes scattering éffect, which is the subject of this part I, it is well

demonstrated that the Raman Stokes pulse degrades the parabolic amplification process by

extracting energy from the main signal pulse.® Unfortunately however, the result presented in



Ref. 8 shows large discrepancy from realistic situations in some cases, due to the approximations
made. In dealing with stimulated Raman scattering, it is important to maintain an exact analysis
with the least number of assumptions. This is because a smail error in the beginning of the
propagation causes unacceptable errors in the end due to the high gain of Raman scattering. On
the otﬁer hand, in order to achieve a short compressed pulse with large peak power, it is critical to
maintain the parabolic signal pulse intac£ since even small distortions of the parabolic pulse
degrade the pulse compression efficiency. Since stimulated Raman scattering builds up along the
fiber, there naturally follows an uppef bound on the fiber length, within which the signal pulse
| may maintain the parabolic shape. Motivated by these ideas we derive an exact analytical
solution for the Stokes pulse as well as the signal pulse. We also present a critical length within
which the signal may maintain a parébolic nature.

This article (i.e., part I) is organized as follows. In section 2, the analytical solution for the
puises is derived based on the full Schrodinger équation. The vexpressi(')n for the critical length' is
gilv'S'O derived and presented in this section. Section 3 compares a numerical simulation based on a
split-step Fourier method and the .analytical solution. Section 4 describes the effect of stirﬁuléted

Raman scattering on the pulse compression. Finally a conclusion follows in section 5.

2. ANALYTICAL SOLUTIONS FOR THE STOKES PULSE

In this section, we derive an analytical solution for the Stokes pulse. For this, we introduce the
nonlinear Schrodinger equation with different amplification for the signal and Stokes pulses. This
is appropriate for doped silica fiber a‘mpliﬁers since, for example, the cente;f wavelength of the
signal pulse of an Yb-doped fiber is usually 1060 nm while that of the Stokes pulse is 1110 nm

(440 cm™ apart), where the doped-fiber does not provide the same gain. If we assume a



" Lorentzian gain profile for the amplifier, peaked at the center wavelength of the signal, the gain

of the signal pulse «, and that of the Stokes pulse ¢ has a relationship of
a =a, /|:1+(Vs —v, ) /AVFWHMZ] . Here Vj.(j =s,r) is the optical center frequency of signal and

Stokes pu.lses and AV, is the amplifier gain frequency bandwidth (FWHM). Therefore, the

nonlinear Schrddinger equation is slightly modified as follows.”!°
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" where y,, w, represent the slowly varying envelopes of the signal and Raman Stokes pulses, ‘
p,; the dispersion (j=s,7), f; ’th'e fractional contribution of the delayed Raman resﬁonse to.the
nonlinear polan'zafion“ (.~ 0 18), ¥, the nonlinear coefficients with the relation'? y, = (4, /4. )y,,
g, the Raman gain coefficient with the feiationu g, =(/ir//1S )g,, d the walk-off parameter
(d= ﬂ;sQ g With Q. =27x13.2THz Y. In equétions (1) and (2), the third-order dispersion term
is neglected for the simplicity of aﬂalysis; In conventional fibers with a significant third-order
dispersion coefﬁcieﬁt, the signal may be distorted once the‘ optical spectrum of the signal covers a
large spectrai region. Therefore, the validity of our aﬁalysis is confined to cases when the third-
order dispersion is negligible. A‘ﬁber with- significant third-order distortion is not suitable for
parabolic pulse amplification, since it leads the resulting amplitude distbrtions preventing

efficient generation of femtosecond pulses. We proceed with two different regimes for small and

large Stokes pulses.



A. Small Stokes Pulse Regime

For the small Stokes pulse case, it is conventional to ignore the cross products terms in

equation (1). Then, we get back to the conventional parabolic amplification equation'and the

differential equations (l.) and (2) approximate into
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Equation (3) has an asymptotic solution given by’

ws=Aoexp(%z) 1—%(22—)epo¢o 2ﬂz(z(v) 2T2.)H’ )

for |T| < T,(z) and, otherwise, 0. Here, 4, = (asU,."/ 7.5 /ZY/3 /2, T,(z)= Bexp(a,z/3) where

B=6(4,/c, ),/}/s B, /2 ,and @, is a constant. The validity of the asymptdtic solution in equation

(5) is in fact limited to the case where the spectral bandwidth of the signal pulse is well within
that of the amplifier gain bandwidth, the details of which will Be described in part II. If we
assume the slowly varying envelope approximation in equation (4), which is conventional,'>"'¢
the second time .derivative term i; ignored and equation (4) can be exactly solved. By

" introduction of a new variable u=2z-T/d, it is straightforward to verify that the following is a

solution for equation (4):



p D=y 07 don Larlrmo-ren].
‘where
#(z,T) = f A2 exp(%z’)f(z,z',T)dz', | | (7)
and

1—(T+zd—z'd)2/sz(z'), |T+zd—z'd|<Tp(z')

0, otherwise

f(Z',Z,T)={ @)

In equation (6), the initial condition y,(0,T) for the Raman Stokes pulse can be fictitiously

chosen'” as . (0,T)=.P, where Fy=hv,B, is the equivalent input power and

1/2 .
B, = [7[/ (410Lqﬁ" gr )] AV 18 the effective bandwidth of the spontaneous Raman scattering

assuming a Lorentzian gain profile. Here, I, is the input signal pulse peak intensity,
Ly, = [exp(a'sL)— 1]/ o, , and AV g is the gain bandwidth of the amplifier.

It is worth noting here that the approximate results in Ref. 8 are based on the assumption
that Tp(z') in the condition |T+zd—z'd| <Tp(z') may be replaced by Tp(z) in equation (8).
However, we have found that this approximation leads to a serious calculation error in some
cases, which will be presented in section 3. The calculation error is due to the exponential nature
of the solution, which means that a small error in the integrand of equation (7) is amplified -

through the exponential integration. Therefore, we derived an exact analytical form of the integral

in equation (7). For readability, we present here only the final results. The details of the



derivation can be found in appendix A. The final solution for the Stokes pulse is given as follows:
- We denote the peak intensity of the Stokes pulse as P”* and the time at which the peak pulse

occurs as 7. In appendix A it is shown that the strong Raman scattering effect occurs only for

z<zg where zg = 3ln(d/2A0 V.5, /2)/0{5 . For the case z >z, the Stokes pulse does not grow

any more since the Stokes pulse have already ‘walked off’ completely from the signal as is
explained in appendix A. In this case, the Stokes pulse experiences normal dispersion with gain
and behaves as a self-similar parabolic pulse. Of course, our primary concern is in the regime

where z <z, in which the Stokes pulse still grows fast. Thén, the analytical solutions in this

regime are

(case]) z< 273 (Gaussian Stokes pulse regime):
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(case II) 22 273 (A\symmetric Stokes pulse regime):
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In equation (10), z, is a function of z,7 and describes the longitudinal position whére the
~ Stokes pulse starts to iriteraét with the signal pulse. On;:e the Stokes pulse enters into the
asymmeﬁic _Stokes pulse regime, z_. becomes positive for some region of time T due to the
effects of the pulse width broadening combined with the walk-off between pulses. Especially, the
temporal positioﬁ for the peak of the Stokes pulse belongs to this region of time. In appendix A,

z . is derived as

mn

ad 3d

z. (z,T)= 3W[‘d {3d(T+zd)H :I(T+zd). '.(11)

In equations (10) and (11), W i;s the well-known Lambert W-function.”® Its definition and
propenies are given in appéndix C.

From equations (9) and (10), we can tell that for the Gaussian Stokes pulse regime
(z<2B/d), the Stokes pulse is a symmetric Gaussian, Whose pulse width gradually reduces as it
propagates. Then, the pulse width reaches its minimum at the point z= 2B/d, and gradually

increases. Thereafter, the pulse shape becomes asymmetric due to the nature of z__ . This



phenomenon is very similar to the case of an anomalous dispersion Raman Stokes pulse as in

Ref. 13-16. On the other hand, _th¢ time 7, at which the peak power occurs moves towards the
negative 7 direction with a constant speed in the Gaussian Stokes pulse regime and the moving
speed gradually reduces once the pulses enter the asymmetricl Stokes pu.lse regime. This is due to
the property of the Lambert W-function as in appehdix C. Regarding thé peak Stokes pulse power

PP in general it increases doubly exponentially with the propagation distance due to the

exponential increase of Tp(z). Please note that the increase rate of Tp(z) is much larger than

T,(z) in equation (10).

B. Large Stokes Pulse Regime )
We now proceed to the large Stokes pulse regime where the Stokes pulse becomes large enough

to deplete the signal pulse. Then, the assumption that the signal is a parabolic pulse is no more

valid.. Furthermore, the small Stokes pulse assumption is no more valid, either. Here, we consider
3 :

’s o, /g, . Once the Raman Stokes pulse grows to this level, the

a Stokes pulse ‘large’ when

v,

signal pulse itself becomes depleted fast due to the doubly exponential growth of the Raman

Stokes pulse. It is reasonable to define the large Stokes pulse regime as z >z, where z, satisfies

PP (z))=2a,/g,. The factor 2 in this definition is intended to represent the idea that a

significant part of the Stokes pulse should exceed ¢, / g, , not just the peak. Furthermore, we call

this z, the ‘critical length’. The value of z;, can be found from equation (10) by numerically

solving

34;
Py exp[a,zo +70g—"{Tp2 (z0)~T5 (2, {1 "%To (2o )J}:| = 2, ) (12)



where T,(z,) is defined in equation (10). Once z;, is found, y, (zo,T ) can be obtained from
equation (5) and ., (zo,T) from equation (10). Then, it follows that equations (9) and (10) are
valid only for z <'zo .

If the Stokes pulse peak power enters this largé Stokes pulse fegime, the Raman gain term
in equations (1) and (2) becomes larger than that of the amplifier gain. On the other hand, due to
the finite pulse width of the Stokes pulse, there are two time sections of the signal pulse,
distinguished by whether there is a strong Raman gain dué to strong overlap betweep signal and
Stokes pulse. Those = two time sections are approximated as

O, =[-2T,,(2,)+ T)(2,), 2T, (2, )+ T, (z,)]  for the strong overlap section and
0, =[2T,(z, )+ Ty(z,), T,(z,)]. Here, T,(z,) is the pulse width (FWHM) of the Stokes pulse at

z=z, which can be found numerically by equation (12) and To'(zo) is the time when the peak

intensity occurs as described above. Then, for the time band of ©,, the Schrodinger equation can

be approximated by the slowly varying envelope approxirhation as"*!6
v, . ' s
%mnl%2+(2—fk1w,2}//s—g7%2%, (13)
0 0 . ,
%_d—ayg’r—zl}/rﬁWr2+(2_fR1Ws 2}/’r+g7‘//szy/r’ (14)

with the initial condition of ,(z,,T) and v, (z,,T) where T € ©,. On the other hand, for ©, the

Schrodinger equation is reduced to the parabolic differential equation without any Stokes effect:

a.
VA, (15)

o, ., 3y,
TP

= i}’s WS
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Therefore, for Te ©,, v, is obtained as a parabolic pulse accordihg to equation (5).

In fact, the coupled differential equations in'equation (13) aﬁd (14) are well known in -the
literature. We provide here the final alllalytical solutions (for a derivatién, see the appendix B).
ForTe ©,, |
R Vs

. 2 (Z"’TM(Z;(ZE,)%L(T* (2=2,)d)

b

(16)

b

where

(H(z,T)=F(T)+G(T +d(z—z,)),

sr)=epl: [le o ot ot hr)

X 17)
F(r)=g, [ Iv.(z.u) Lu)du -

G(n)=g, [

v, (zou)" Ll ,

Once the ,signai becomes depleted to the point where the Raman gain becomes negligible, the

Stokes pulse follows a differential equation

o, ., W, . . a
L+ L=y +——L,, 18
az lﬂ 2r aTz l}/r Wr y/r 2 Wr ( )

which is again a phrabolic differential equation. Therefore, from the point where the signal pulse
intensity |§1/s|2 becomes less than «, / g,, the Stokes pulse transforms into a parabolic pulse and

propagates according to the parabolic nature. For convenience, we define a length z through

11



v, (2.7, (z, ))|2 =a, /g, where T,(z,) is the time when the Stokes pulse reaches its peak power.
The length z, represents the propagation distance where the depleting Raman gain in equation
(1) exceeds that of the amplifier gain at some time position in signal pulse. The value of found z,
can be solyed numerically using eqﬁations (16)-(17). Then, once the pulse passes z,, the Stokes
pulse itself evolves parabolically. There‘fore, the solution of i/, is obtained fhrough the parabolic
solution in equation (5) with the ‘initial” condition of y/, (z, ,T).

In summary, we divided the evolut@on of the Stokes pulse into four regimes; (1) small
Gaussian Stokes pulse regime (z<2B/d), (2) small asymmetric Stokes pulse regime
(2B/d <z < z,), (3) signal depletion regime (z, < z < z,), and finally (4) parabolic Stokes pulse
regime (z < %l). The lengths ZO.’ZI can be obtained through»the previous analytical solutions. We '

- also derived analytical solutions for the signal pulse in the different regimes.

!

3. NUMERICAL SIMULATIONS

In order to verify the validity of our analytical solutions for the Raman Stokes pulse, we.
simulated the nonlinear Schrodinger equation in equations (1) and (2), using the trapezoidal split-

step Fourier method.® For simulations, we took typical parameters for a 27 um mode-field
diameter Yb-doped silica fiber, i.e., B, =20ps’hkm™, ¥, =027 W 'km™, g, =0.155W 'km™ .
The signal wavelength is 1.06 um . Therefore, the Stokes pulse center wavelength ié 1.11 gm and
the corresponding values of 7, and g, are 0.257 W 'km™ and 0.148 W 'km™, respectivel.y. The

seed signal is assumed to be a 533 fs (FWHM) Gaussian pulse with energy 1 nJ. For the gain

bandwidth of the Yb-doped fiber amplifier, we choose AV, =10 THz. For the fictitious

12



Raman seed calculation, we picked g, = 0.94x10™" m™'W™.® The signal gain is selected as 4
dB/m, which makes the Stokes pulse gain 2.54 dB/m according to the Lorentzian lineshape of

gain profile with bandwidth of Av,,,, =10THz. The fiber length is 8 m. With these

parameters, \;ve calculate the ‘strong Raman interaction length’ z; =3ln(d / 2A0m )/ o, a§
A8.1‘6 m. Therefore, ouf eﬂtirg ﬁber length falls into this strong Raman interaction regime. The
Gaussian Stokes pulse regime is z<2B/d =0.53 m from analysis. The signal depletion stafts
from z,, which is calculated from equation (12) to-7.23 m. Therefore, equation (9) and (10) are
valid only for z<7.23 m and this is the small Stokes pulse regirﬁe. -The i:)ambolic Stokes pulse
distance z, was calculated through numerical analysis to 7.57 m.

Flg 1 shows the’numerical simulationlresults for the propagatidn of the signal and Stokes
pulses.:From the graphs, we can clearly see thrée regirhes, although‘ maybe not fdur; small Sfokes
pulse régime, signal deplc_etiori regime, and finally, parabolic Stokes pulsé regime. W¢ cannot
clearly discriminate between the small Gaussian Stokes pulse regifne and the small asymmetric
Stokes pulse regime. We can see several features in each section. First, in the.. small Stdkes pulse

regime the signal pulse is a typical parabolic pulse while the Stokes pulse grows almost as a
double exponential. Second, when the propagation reaches ~7.2 m, the signal pulse starts being
‘deplet.ed, which coincides with theoretical ‘(;ritical. length’ of z, =7.23 m. Please note that there
are two time sections of the signal pulse, one of which shows signal depletion and the other of
which is not depleted and propaga£es as part of parabolic pulse. This is_due to the 6'verlap
between signal and Stokes pulse as is explained by theory. According to theory, the center of the

signal depletion region should be T =7;,(zo), which is calculated from equation (10) as

—1.94 ps. This value is close to -1.89 ps from the numerical simulation. The signal depletion

13



takes place in a relatively short distance of 0.34'm, which is calculated from equation (16) and the
value of z,. Finally, after 7.57 m of propagation, the Stokes pulse develops parabolically as can
be seen in Fig. 1(b). Please note that the growth of the Stékes parabolic pulse width is very fast
because of the.large ‘initial’ pulse energy of the Stokes pulse (at z=7.57 m) and because the
parabolic pulse width T, is proportional to U}>. |

In Fig. 2, the peak powers of the signal and Stokes pulses are shown. From the ﬁgure., it
is apparent that the aﬁalytical solution for the Stokes pulse (o) mark).is almost indistinguishable

from the numerical solution (solid line). On the other hand, the approximation that T ", (z') is
replaced by T p(z) in equation (8), which is the key approximation in Ref. 8 led to-huge

calculation errors as is shown (dotted line). This follows from that f (z,2',T) can be negative due
to this replacement approximation, which eventually caused a significantly smaller value of ¢,

which again affected y, in an exponential way. For each region, the analytical solution was
calculated from equation (9) (regibn I), equation (10) (region ‘H); equation (16)-(17) (region III),
and finally equation (18) (region IV). The small error in region Il and IV stems from the
approximation in equation (13)-(14), in which zero amplifier gain is assumed. In reality, there
still exists (Yb-induced) amplifier gain, however small it is, which causes the analytical solution
to be slightly smaller than the numerical solution based on the full Schrodinger equation
(equations (1) and (2)). |

| Fig. 3 shows the time position To(z) in equations (9) and (10) where the peak power of
the Sfokés pulse reaches its maximum. The division between region I and 11 is clearly shown in
Fig. 3. In region I (small Gaussian stokes pulse regime), both the numerical solution and

analytical solutions move in the negative T direction with constant speed. Once the pulse enters
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region II (small asymmetric stokes i)ulse regime), it shows a complicated behavior, which is well
described by equétion (10). T};e analytical solution (O mark) slightly differs from the numerical
solution (solid line) especially in the beginning of region 1. This is due to the fact that there exists
a finite propagation length where the Gaussian initial signal pulse traﬁsforms and converges to
the parabolic pulse. Then, the nﬁmericail solution gradually converges to the analytical solution in
region II. In the last part of regibn II, the numeﬁcal solution starts to differ from the analytical
solution due to signal depletion. NcVertheless, the numerical simulation clearly shows two

different regirhes, which is well explained by dividing regions as in equations (9) and (10).

4. THE EFFECT OF RAMAN SCATTERING ON PULSE COMPRESSION

There are a number of methods to compress a parabolic signal pulse. For instance, fiber gratings

can compress the pulse'’ and a single-mode fiber itself canvcompress the pulse, too'®. A simple

6,19-21

bulk gmting pair can also compress the pulse quite efficiently , and is especially convenient

for simulation purposes. For this, we introduce a phase compensation term in a grating pair’>™'

¢c<w>=—ac<w—wo)2{1—ﬂc “"“’°}, )

where a, = b & /(4rc’d? cos’ '), b, the distance between two gratings, Ay the cc?htral
wévelength, d, the spacing between grating grooves, and )' the angle between the normal and
diffracted bgam at 4. p. is the third order dispersion coefficient given by -
B. =(1-sinysiny')/cos® ', where ¥ is the angle between the incident beam and the grating

normal. The angle »' is calculated with the grating equation y'=sin™'(siny—4,/d)."" For

15



simulation purposes, we took as an example a grating from Optometrics with 600 grv/mm blazed
at 1 um. The incident angle is assumed to be 17°. For each case of pulse compression, we. use the
optimized grating distance which prévides- the maximum peak power in the compresséd pulse.
For instance, Fig. 4 shows the compression results from the signal pulse output at zr= 5 m. In this
case, the peak power of the compressed pulse is 1.12 MW and the pulse width is 88 fs with an
optimum grating distance of 6.57 cm. Due to the third order dispersion of the compressor, the
compressed pulse has tails.

Fig. § shoWs the optimum compression results for the signal pulse vs. propagation

distance. The graph cleérly shows that the compressed signal pulse reaches its highest peak

power of 8.38 MW as well as its minimum duration of 64 fs for z =7.2 m(=z,). As is apparent

from Fig. 1, the signal pulse experiences strong depletion beyond z=7.2 m, which again

degrades‘ the pulse compression. While the spectral width of a parabolic pulse increases
exponentially, and the pulse‘there‘fore compresses to shorter durations with somewhat longer
propagation _distance, the fraction of the energy in the compressed pulse Becomes ’smaller as the
pulse distorts.

Thus, for efficient pulse compression, the signal puls¢ must not be distorted by the Raman

Stokes pulse. The critical length z, (in our case 7.2 m) characterizes the maximum amplifier

length that allows efficient pulse compression.

5. CONCLUSIONS

We have derived an analytical solution for the Raman-scattered Stokes pulse associated with
parabolic amplification. It is shown that there are fouf regimes; (1) small Gaussian Stokes pulse

regime, (2) small asymmetric Stokes pulse regime, (3) signal depletion regime, and (4) parabolic

16



Stokes pulse regime. We have demonstrated the validity of our analytical so_lﬁtion By comparing
ittoa num;rical simulation based on a trapezoidal split-step Fourier transform. The comparison
showsw that our analytical solution is accurate. We also investigated .the effect of Raman scattering
| on pulsé compression. The resulfsvclearly show that the parabolic amplifier should be operated in

the small Stokes pulse regime where the signal pulse remains intact. Once the pulse propagates
further than the critical length z,, which is a solution of equation (12), stimulated Raman

scattering begins to deplete and distort the signal pulse, resulting in degraded pulse compression. |
Therefore, in order to achieve the shortest pulse with the largest peak power, one should limit the

fiber length below the critical léngth zZ,.

.APPENDIX A: DERIVATION OF ANALYTICAL SOLUTIONS FOR
SMALL STOKES PULSE REGIME
We start with equations (3) and (4). The boundary condition in equation (8) implies that equation

(7) is integrated iﬁ the range of z'e [max{0, z. Lmin{z,z_ J] where z__,z_ satisfy

min ? “ max

' = (A1)

z . d- Tp(zmax )=T+zd,
Zond + T, (zmin ) =T +zd.

Now, we confine the time 7 of concern as T >-T, (z) since the signal and Stokes pulse interact

only in this region. Then, we have

Zoax @ =T, (20 ) > 2d =T, (2). ' (A2)
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Please note that the function hv(z) =zd-T, (z) is monotonically increasing if and only if
| z2<3In(3d/e,B)/ a,. In this case, inequality in (A2) implies Zoax > Z 80O that the integration in ‘
equation (7) tefmihates at z . Otherwise, for some point in the range of interest 7 > -T, (z), the
integral terminatibn becomes z,, which is smaller than .z, which in turn has less inte.gral weight
exp(asz'/ 3) implying weaker interaction between signal and Stokes’ pulse. Once, the pulse
passes the point z ='3ln(3d/asB)/ o,, it is expected that the Raman interaction gradually wears
out so that the Slto_kes pulse growth rate reduces and eventually stops. Therefore,
zg =3In(3d /e, B)/ . is the critical point for strong Raman scaftering and we call this point a

~ ‘strong Raman interaction characteristic length’. Our primary concem in this paper lies in the
regime where the signal and Stokes pulse interact strongly and therefore, we derive all the
following equations in the regime within the Raman interaction characteristic length. Then, the

equation (7) can be evaluated as follows:

¢<z,r>=A:[2; {p(za)p(m)} L -reG-aarll, @

3 3 3dB*

where a=max{0,z__}. Our objectives in this analytical derivation are, first, to find the peak
Stokes pulse intensity and, second, the time 7, at which this peak occurs. Hence, we find 7,
where 0y, (z,T,)/dT =0 which is a sufficient and necessary condiﬁon for 9¢(z,T,)/9T =0. In
case of z . <O, the time derivative of equation (A3) easily gives T, =—zd/2 and the peak

power as in equation (9). Please note that by equation (Ai),

lZmin (Z,T) — Z+Z_aiW|:asB exp[as (T+Zd)):| , ' (A4)



Then, z_, (z,T,) is given by

Z i (z,TO)zi—aiW(a"‘Bexp(aszn. (AS)

which is negative if and only if z<2B/d. Therefore, equation (9) is valid for z<2B/d.

Consequently, in this case, we have

2 3 2 s ( 1 3 3
#(z,T)= 42 [g{exp( iz)-1}+3d32 {r* - (1 + zd) }} (A6)

5

which yields equation (9).

If z; is positive, equation (A3) yields

o) 2 )T g T ] (a)

By differentiating equation (A7) with respect to T and using
9T, (2,4, )/ 0T = (e, /3Y0z,, /OT)T, " (2.a ) and the time derivative dz,;, /0T from equation (A1)

yields
1
T, =—Tp(zmin (Z’To))z_a'd{z"zmin (z.7,)}- ' (A8)

By noting that z__(z,T) is given from equation (A4), it is straightforward to confirm that the

following expression for T, solves equation (A8):

. 3d (2
T, =——W T . : A9
T G0 W

19



‘This solution makes z_,_ (z,T,) positive. Now, with the help of equation (A8), equation (A7)

yields

o(zT,) = {T;(z)—T:(z)(l—““s To(z))}. (A10)

 2a,B’ 9d

On the other hand, y, (z,T) is obtained by putting equation (A7) into equation (6). In summary,

equation (9) and equatioh (10) are derived.

APPENDIX B: DERIVATION OF ANALYTICAL SOLUTIONS IN THE

SIGNAL DEPLETION REGIME

¢

We follow a procedure to that in Ref. 16. We introduce new variables x=T, y =T +dz. Then,

equation (13) and (14) transform into

oy, .y 2 2 g 2 V
TS gt 2__ _ 655
ay ld ﬁy/: +( fR]‘//r LVS 2d l//rl y/s’ (Bl)
al//, __.7, 2 _ 2 _gr 2
ax ==l d nl//r +(2 fR lyls .}‘Ir 2d y/s l/,r' (B2)

Letting

v, (x,y)=1"*(x,y)explig, (x, )}
‘ {V/, (x,)=1"(x,)expli6, (x, )] ®3)

where 7, and 6,_ , are real variables, gives four differential equations:

=s,r
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(%+g‘113—0,

dy d ’

G 75

«gg d , (B4)
- 75 [Is+(2—fR)Ir]>

dy

06

La"z%;“[lr-'-(z fR)Is]’

Then, following a similar method as in Ref. 16, it is ’straightforward' to verify that the following is

a solution of the first two equations in (B4):

Is(x,y)=%, (B5a)
1,(x,'y)=]L£Iy(le(7y))i, (B5b)

where

(H( ¥)=F(x)+Gly)

L= expl Jle o) el
« - (B6)
F()=g, [ Lokt |

G(v)=g, [ 1,0()L(u)du

Here, I.,(T)=|w,(z,,T 12 and I,,(T)= l//,(zo,T}2 are the initial conditions. It remains to

determine z, for those initial conditions. We started from the assumption that once

peak 2

v,

>2a/g, holds, equations (1) and (2) reduce to equations (B1) and (B2). Once z, is

obtained through equation (12), one uises equations (9) and (10) in order to obtain 7, and 7,,. On
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the other hand, the phase terms are given by equation (A2) and (A4) and can be easily integrated.
The final solutions for those phases can be found in Ref. 16, and are not presented here for

compactness.

APPENDIX C: LAMBERT W-FUNCTION

The Lambert W-function is extensively used in modem engineering and scientific problems,

mostly by fractal researchers. The definition of Lambert W-function is the inverse function of
SW)=W exp(). | €
Therefore, it directly has the property of
W(x)exp[W(x)] =x. : ' (C2)

One useful theorem is that the solution of (a+bx)exp(cx)=d is directly given by

x=W|(cd/ b)explac/b))/c—alb. The Lambert W-function W(x) has a real value for x>—¢".

Furthermore, for small value (x < e™), it has a Taylor series expansion of

W(x)= i Cn)” x". . (C3)

n=1 n!

For convenience, we introduce the graph of Lambert W-function in Fig. 6.
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List of figure captions

Fig. 1. Numerical simulation of signal and Stokes pulse propagation in 8 m fiber. (a) Signal

pulse, (b) Stokes pulse.

Fig. 2. The peak ﬁower of signal pulse (dashed line), numerical simulation of Stokes pulse (solid
line), analytical solution (O mark), and thé approximatioﬁ of Ref. 8. The region numbers indicate
I: small Gaussian Stokes pulse regime, II: small asymmetric Stokes pulse regime, I: signal

depletion regime, and IV: parabolic Stokes pulse regime.

1

Fig. 3. The time position in relative time coordinate, where the peak power of the Stokes pulse

occurs. Numerical solution: solid line. Analytical solution: O mark. The dashed lines represent

the signal pulse width T, (z). The regibn numbers indicate I: small Gaussian Stokes pulse regime

and II: small asymmetric Stokes pulse regime.

Fig. 4. The compressed pulse from the parabolic signal pulse at z=5 m. (a) The compressed

pulse output. (b) The ‘peak power of compressed pulses vs. grating distance.

Fig. 5. Pulse compressor simulation results for the signal pulse'vs. propagation distance. The
peak powers of the compressed pulses are plotted (dotted line) with the corresponding pulse

width (O mark).

Fig. 6. Lambert W-function.
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Figure 1. Numerical simulation of signal and Stokes pulse propagation in

8 m fiber. (a) Signal pulse, (b) Stokes pulse.
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Fig. 2. The peak power of signal pulse (dashed line), numerical simulation of
Stokes pulse (solid line), analytical solution (O mark), and the approximation
of Ref. 8. The region numbers indicate I: small Gaussian Stokes pulse regime,

II: small asymmetric Stokes pulse regime, I1I: signal depletion regime, and IV:

parabolic Stokes pulse regime.
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Fig. 3. The time position in relative time coordinate, where the peak power of

the Stokes pulse occurs. Numerical solution: solid line. Analytical solution: O

mark. The dashed lines represent the signal pulse width T, (z). The region

numbers indicate I: small Gaussian Stokes pulse regime and II: small

. asymmetric Stokes pulse regime. ¢
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Fig. 4. The compressed pulse from the parabolic signal pulse at z=5 m. (a) The

compressed pulse output. (b) The peak power of compréssed pulses vs. grating distance.
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Fig. 5. Pulse compressor simulation results for the signa1 pulse vs. propagation
distance. The peak powers of thé compressed pulses are plotted (dotted line)

with the corresponding pulse width (O mark).
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Fig. 6. Lambert W-function.
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