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This paper introduces MBSymba, an object-oriented language for the modelling of multi-
body systems and the automatic generation of equations of motion in symbolic form.
MBSymba has built upon the general-purpose computer algebra software Maple and it
is freely available for teaching and research purposes. With MBSymba, objects such as
points, vectors, rigid bodies, forces and torques, and the relationships among them may
be defined and manipulated both at high and low levels. Absolute, relative or mixed
coordinates may be used, as well as combination of infinitesimal and non-infinitesimal
variables. Once the system has been modelled, Lagrange’s and/or Newton’s equations
can be derived in a quasi-automatic way, either in an inertial or non-inertial reference
frame. Equations can be automatically converted into Matlab, C/C++ or Fortan code to
produce stand alone, numerically optimized simulation code. MBSymba is particularly
suited for the modelling of ground, water or air vehicles; therefore, the mathematical
model of a passenger car with trailer is illustrated as a case study. Time domain simu-
lations, steady state analysis and stability results are also presented.
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1. Introduction

Nowadays, the most popular software tools for the modelling of multibody sys-

tems are geared towards product design and offer detailed modelling and simula-

tion of mechanical systems, e.g. ADAMS Li and Kota (2001); MSC (2016), Vir-

tual.Lab Motion Siemens (2016) (formerly released as DADS), SIMPACK Simulia

(2016), and Simwise Wang (2001); DST (2016) (formerly released as VisualNas-

tran/WorkingModel). These are based on a numerical approach and typically use a

large number of variables, much greater than the number of degrees of freedom.

However, for some classes of applications (such as preliminary and conceptual

design Massaro et al. (2011), control design Biral et al. (2010), minimum-time prob-

lems Tavernini et al. (2013); Lot and Bianco (2015), real-time simulation Cossalter

et al. (2011b) and embedded systems), it is still more attractive to develop “essen-

tial” and “smart” mathematical models that capture the most important features
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of the system and that may be inspected and manipulated at symbolic level. In ad-

dition, the symbolic models can be clearly exported towards different environments,

thus portability is another significant advantage related to the symbolic approach.

For this reasons, a number of packages have been introduced along the years to

efficiently generate the equations of motion for multibody systems, either as add-

ons to general-purpose computer algebra software or as stand alone programs, e.g.

MotionGenesis Levinson (1977); Schiehlen (1990); Motion Genesis (2016) (released

as Autolev until 2010), Neweul-M2 (originally released as Neweul) Kreuzer (1979);

Schiehlen (1990); Kurz et al. (2010); Stuttgart University (2016), VehicleSim Lisp

or VS Lisp (previously released as Autosim Sayers (1990, 1991, 1993) and now dis-

tributed in specialised versions such as CarSim, TruckSim and BikeSim Mechanical

Simulation (2016)), SD/FAST Rosenthal (1988); PTC (2016), Robotran Schiehlen

(1990); Samin and Fisette (2003); Docquier et al. (2013), and MapleSim, which

started as DynaFlexPro Shi and McPhee (2002); Maplesoft (2016).

This paper describes MBSymba, an object-oriented language for the modelling of

multibody systems and the automatic symbolic generation of the related equations

of motion, which employs the symbolic mathematics kernel of Maple Maplesoft

(2016). The main feature of the software, when compared with those previously

mentioned, is the flexibility given to the user in the modelling phase. While a basic

version of MBSymba was released a decade ago Lot and Da Lio (2004), the updated

version presented here includes major improvements, such as a moving frame ap-

proach and ”smart” linear modelling features. These are particularly useful when

developing multibody models of ground vehicles, as well as watercraft and aircraft.

The modelling procedure in MBSymba requires the user to form a description of

the multibody system by defining objects such as points and vectors, rigid bodies,

forces and torques and the kinematic relationships among them. At this stage, the

user has total freedom in the choice of generalized coordinates, which is essential for

building small and effective models. It is possible to use either absolute or relative

coordinates, or a combination of both, to give either a dependent or independent

formulation. At this level, vectors and points may be defined and manipulated

according to classical geometric rules, while symbolic expressions for speed and

acceleration are automatically derived and projected onto any desired reference

frame. The definition and manipulation of bodies, forces and torques follow the

rules of classical mechanics. Symmetries and other special properties of the system

especially benefit from the symbolic approach, as any model parameter vanishes

when it is declared zero. Land vehicles, as well as watercraft and aircraft, whose

dynamics are typically not affected by their position and orientation with respect

to a fixed reference frame, can be efficiently modelled using a moving, non-inertial

base reference frame. This option, as well as the automatic management of cyclic

coordinates, is available in MBSymba.

Another important feature is the possibility of easily and properly modelling

partially linear systems, i.e. systems where some coordinates and parameters are
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small, while others are not. For such systems the user has to declare the small

variables and MBSymba will automatically perform the appropriate simplifications

at each modelling step.

Once the system is modelled, the derivation of the equations of motion can be

performed in a quasi-automatic way: the user retains the freedom, as well as the

responsibility, to select a consistent set of equations of motion, but the actual calcu-

lation of the equations of motion is performed by MBSymba and Maple according

to the system description. Both Lagrange’s or Newton’s approach are available.

Lagrange’s approach is very popular since it gives a minimum set of equations

by differentiation of scalar quantities such as kinetic energy, potential energy and

virtual work and can easily deal with constraints. However Newton’s formulation

may be a better choice when modelling linear systems, and sometimes gives more

compact equations (e.g. Euler’s equations for a rotating body).

Additionally, the user can calculate, inspect and manipulate intermediate ob-

jects’ properties, such as potential and kinetic energy, linear and angular momen-

tum for bodies, power and generalized forces for forces and torques, etc. Finally,

model equations as well as intermediate results can be converted into Matlab, C or

Fortran code to produce stand alone, numerically optimized simulation programs.

A version of MBSymba is available on the web www.multibody.net, with a guide

and several examples.

2. Definition of the Multibody System

To illustrates MBSymba capabilities, a symbolic multibody model of a passenger

car with trailing trailer is developed, cornering performance and stability are also

assessed. Model characteristics and degrees of freedom are sketched in figure 1. It is

assumed that tyres are rigid, therefore wheels and other car unsprung masses may

be modelled as a sole unsprung rigid body which has three degrees of freedom: the

longitudinal and lateral speed u, v and the yaw rate r. The chassis is suspended on

the unsprung mass by a system consisting of four vertical spring-damper elements:

the additional three degrees of freedom are the bounce z, roll φ and pitch µ. There-

fore the car has six degrees of freedom in total. The trailer has no suspensions and

it is modelled as a single rigid body, whose motion is described by means of the

coordinates xt, yt, zt of its gravity centre T, the yaw angle α relative respect to the

car and pitch rotation β. The roll motion is not included since it is impeded by the

tyres, therefore the trailer has four degrees of freedom in total. When the trailer is

connected to the car by the hitch trailer, spherical joint H, it looses three degrees

of freedom and in conclusion the car-trailer system has seven degrees of freedom,

while its kinematics is described with a set of ten dependent coordinates, namely

u, v, r, z, φ, µ, xt, yt, zt, α, β.

In the next sections, the multibody system is built up step by step and at the

same time the principal characteristics of MBSymba are illustrated, including the

definition and manipulations of frames, points and vectors, rigid bodies, forces and
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Fig. 1. Car trailer model.

torques, and constraints. Furthermore, the mix of infinitesimal and non-infinitesimal

variables will be discussed and the advantages of the moving frame highlighted.

2.1. Frames, points and vectors

The fundamental building blocks of MBSymba are cartesian reference frames; other

objects such as points, bodies and forces need be defined with respect to a reference

frame. The only pre-defined object in MBSymba is the inertial frame, which is

called ground. In MBSymba, a reference frame j can be defined by providing the

coordinates of its origin and the direction cosines of its axes with respect to another

reference frame i, and this information can be collected into a square 4× 4 matrix

Tj
i Suh and Radcliffe (1978), where the 3 × 3 upper left block is a rotation sub-

matrix, the 3 × 1 upper right block contains the coordinates of the origin, while

1×1 bottom right is always 1. Such matrix can also be associated to the rigid body

motion which moves the frame i to j. Hence this 4 × 4 matrix formulation makes

it possible to easily concatenate sequences of transformations, i.e. the rigid motion

from the frame i to a frame k can be written as the rigid motion from i to j and
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from j to k as follows:

Tk
i = Tj

i Tk
j (1)

In MBSymba transformation matrices are easily defined by combining translations

and rotations with respect to the coordinate axes. In our model, the car gross motion

may be tracked by defining a reference frame having its origin below the point U

at ground level and whose x axis points forward:

T0 =


cosψ − sinψ 0 x

sinψ cosψ 0 y

0 0 1 0

0 0 0 1

 (2)

where x and y are the (time dependent) translation with respect to the ground

frame and ψ is the (time dependent) yaw rotation.

Points and vectors are created by defining their cartesian components in a certain

reference frame, for instance the centre of mass of the car unsprung masses U may

be defined as follows:

U =


0

0

−hu
1


0

(3)

Where the suffix 0 highlight that point coordinates are expressed in the reference

frame T0. Point coordinates and frame descriptions are embedded into a single

object in order to avoid any possible misinterpretation. Note also that the point

components are stored in a 4 row array, where the first three rows consist of the

x, y and z components with respect to the specified frame, while the fourth row is

always 1 in the case of points and 0 in the case of vectors.

2.2. Inertial and non-inertial bases

For vehicles (and in many other cases) it is convenient to describe the multibody

system with respect to a non-inertial moving reference frame instead of the ground.

Indeed, the dynamics of a vehicle running on a flat road does not depend on its

position nor on its orientation (they are invariant by translation and rotation on

the road plane), hence specifying the transformation matrix (2) would be redun-

dant and inconvenient. To take advantage of such situations, MBSymba allows to

replace the ground frame with a moving, non-inertial reference frame, specified by

the user. This reference frame is defined in terms of the absolute velocity of its

origin V0 = (u, v, w)T and its absolute angular velocity Ω = (Ωx,Ωy,Ωy)T , both

expressed with respect to the moving reference frame itself. For the proposed case

study, it is convenient to derive the model with respect to the moving frame T0

previously defined. When defining a multibody model with respect to a non-inertial

reference frame, it is not strictly necessary to define the position of the moving frame
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with respect to the ground frame. Definition (2) could be omitted, because frame

velocity and acceleration matter, while position and orientation do not. In any case,

it is possible to track the vehicle by specifying the position of the moving frame

(which has velocities V0 and Ω) with respect to the ground. Tracking equations are

automatically generated:

u = ẋ cosψ + ẏ sinψ

v = −ẋ sinψ + ẏ cosψ

r = ψ̇

(4)

and, by using Maple’s capabilities, they may be easily rearranged into a set of

ordinary differential equations (ODE):

ẋ = u cosψ − v sinψ

ẏ = u sinψ + v cosψ

ψ̇ = r

(5)

which give the vehicle trajectory x, y, ψ by integration. Once the moving frame has

been declared, from now on MBSymba uses the following rule to calculate the time

derivative of any vectorial object A:

d

dt
A = Ω×A + Ȧ (6)

or, in matrix form:

VA = WA + Ȧ (7)

where the velocity matrix W is defined as:

W =


0 −Ωz Ωy u

Ωz 0 −Ωx v

−Ωy Ωx 0 w

0 0 0 1

 (8)

As an example, the velocity and acceleration of the unsprung centre of mass U are

calculated as follows:

VU =


u

v

0

0

 , AU =


−vr + u̇

ur + v̇

0

0


It is worth pointing out that equation (7) is valid for any vectorial object (e.g. it

is used to calculate Newton’s equations as time derivative of linear and angular

momentum) and may also be applied recursively. It is also obvious that the moving

frame has to be declared at the beginning of the modelling phase and cannot be

changed afterwards.
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2.3. Smart modelling of linear systems

Even if the equations of motion of multibody systems are in general non-linear,

often systems works on the proximity of a fixed configuration, or at least the varia-

tion of some variables remains small. In those cases, it is convenient to linearize the

equations of motion with respect to such small variables. If a dynamic equilibrium

configuration exists, the equations of motion may be even linearized with respect to

all variables, therefore taking advantage of techniques such as fast computation of

linear response, eigenvalue and frequency analysis, linear control design, and other

tools that are not available for non-linear models. The linearization of the equa-

tions of motion obviously requires the prior knowledge of the non-linear equations.

However, when dealing with complex non-linear expressions that typically arise in

kinematic chains, the symbolic derivation of the non-linear equations of motions

may be quite challenging and sometimes even infeasible.

In this context, MBSymba offers the possibility to completely avoid the neces-

sity of considering non-linear expressions while modelling a linear system. MB-

Symba simply requires the specification of the list of variables that should be con-

sidered small. After that, all the expressions that contain such variables are auto-

matically and consistently linearized, and any unnecessary non-linear expression is

immediately discarded. For example, for both the steady cornering and stability

analysis of the car-trailer system, it is reasonable to assume that the oscillations

z, φ, µ of the car chassis are small The reference frame TC attached to the car

chassis begins:

TC =


1 0 µ 0

0 1 −φ 0

−µ φ 1 z − hc
0 0 0 1

 (9)

where hc is the gravity centre height in static conditions. Since trigonometric expres-

sions have been automatically linearized by MBSymba, the transformation matrix

TC has the same structure of the velocity matrix W in equation (7). With the linear

modelling option, rotations transformation are treated as infinitesimal quantities, in

the sense that they are ”orthogonal transformation of coordinate axes in which the

component of a vector are almost the same in both sets of axes” (Goldstein et al.

(2000), section 4.8) and this concept may be easily extended to small translations

too.

While using the linear modelling option, particular caution must be taken in the

calculation of derivatives, including the calculation of velocities and accelerations.

When either a displacement or rotation variable y depends on another position

variable x, the dependent position, velocity and acceleration may be calculated as
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follows:

y = f(x) (10a)

ẏ = f ′(x)ẋ (10b)

ÿ = f ′(x)ẍ+ f ′′(x)ẋ2 (10c)

Now, by assuming that the position x is small, but its velocity ẋ is not, the former

equations may be linearized as follows:

y ' f(0) + f ′(0)x (11a)

ẏ ' f ′(0)ẋ+ f ′′(0)x ẋ (11b)

ÿ ' f ′(0)ẍ+ f ′′(0)ẋ2 + f ′′(0)x ẍ+ f ′′′(0)x ẋ2 (11c)

MBSymba immediately linearize any position expression in the form (11a). As a

consequence, any additional information about f(x) is lost and in particular the

f ′′(0) and f ′′′(0) terms in equations (11) are lost. However, if ẋ, ẍ are small too, such

additional terms become negligible and the linear modelling technique is correct.

Returning to the car-trailer example, not only variables z, φ, µ may be considered

small, but also their velocity ż, φ̇, µ̇ and accelerations z̈, φ̈, µ̈. The yaw acceleration

ṙ may be also considered small, even if the yaw rate r is not. When tyre forces

are safely below their saturation limit, the lateral speed v and its time derivative v̇

are small too. For the trailer, the relative yaw angle α cannot be considered small,

while the pitch rotation β, as well as velocities α̇, β̇ and accelerations α̈, β̈ are small.

This situation is reflected in MBSymba, where small displacements and rotations

(φ, µ, z, β), small velocities (v, α̇), and small acceleration ṙ are declared separately.

The following list of small variables σ is generated:

σ =
(
β, φ, µ, z, α̇, β̇, φ̇, µ̇, ż, v, v̇, α̈, β̈, φ̈, µ̈, z̈, ṙ

)
(12)

In the next sections the advantages of such approach will be extensively discussed.

There are other situations when the linear modelling approach is not practicable.

For example, in a high frequency vibration, even if the displacement x = a sinωt

is small, the velocity ẋ = (aω) cosωt is not. In this case, as already discussed, the

linear modelling option cannot be used. However, MBSymba can be still used to

derive the non-linear equations of motion and linearize them at the end.

A more important limitation of the linear modelling approach is its incompat-

ibility with the Lagrange’s equations of motion. Indeed, the expressions of poten-

tial and kinetic energy of linear systems are quadratic, but, as already discussed,

quadratic terms may be lost after premature linearization. Quadratic expressions

are also necessary for the correct calculation of generalized forces, that after deriva-

tion with respect to the dependent variables are reduced to first order. In any case,

it is worth pointing out that the compatibility between linear modelling and La-

grange’s approach has to be evaluated variable by variable. In other words, a system

may include both small and non small variables: Lagrange’s equations cannot be
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calculated for small variables, but can be normally derived for the remaining ones.

An example and further comments are given in section 3.2.

2.4. Bodies and forces

A rigid body is defined in MBSymbaby specifying the reference frame to which the

body is attached to, and by indicating its mass and inertia tensor with respect to

the center of mass, which is assumed coincident with the frame origin. For example,

the car chassis is defined as a body attached to the reference frame TC , with mass

mc and the following inertia tensor:

I =

 Ic,xx 0 −Ic,xz
0 Ic,yy 0

−Ic,xz 0 Ic,zz


C

where the body symmetry with respect to the xz plane is exploited at canceling

the terms Iyz = Ixy = 0 at symbolic level. Similarly, the unsprung mass body is

attached to the reference frame TU , has mass mu and the only nonzero element of

the inertia tensor is Iu,zz. Finally, the trailer reference frame TT is defined as:

TT =


cosα − sinα β cosα xt
sinα cosα β sinα yt
−β 0 1 zt
0 0 0 1

 (13)

which is non-linear with respect to the trailer relative yaw α and linear with respect

to the pitch β. The trailer body description is then completed by the mass mt and

the principal moments of inertia It,xx, It,yy, It,zz. The next modelling step is the

definition of active forces. In MBSymba, a force is defined by specifying its cartesian

components with respect to a certain frame, together with the application point

as well as the body to which the force is applied to. For example, to define the

front right tyre force, see figure 1, the contact point need be defined first CR1 =

(a1, b1, 0, 1)
T

where a1 is the front axle distance from the gravity centre C and b1 is

the front half track. Then the tyre force FR1 = (0, YR1,−NR1, 0)
T
δ is defined with

respect to the following steered reference frame:

Tδ =


cos δ − sin δ 0 0

sin δ cos δ 0 0

0 0 1 0

0 0 0 1

 (14)

Similarly, the front left tyre force is defined as a vector FL1 = (0, YL1,−NL1, 0)
T
δ

applied to the point CL1 = (a1,−b1, 0, 1)
T

. Please note that there is no longi-

tudinal tyre force, because the car is assumed rear-wheel-driven and the rolling

resistance is neglected for simplicity. On the rear axle, the right tyre force is a vec-

tor FR2 = (X2/2, YR2,−NR2, 0) applied to CR2 = (−a2, b2, 0, 1)
T

, while the left
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one is a vector FL2 = (X2/2, YL2,−NL2, 0) applied to CL2 = (−a2,−b2, 0, 1)
T

.

Since the car is fitted with an open differential, the longitudinal driving force X2

is equally split between the two sides. Another external force acting on the chassis

is the aerodynamics drag resistance (−FD, 0, 0, 0), which is applied to the chassis

center C.

On the trailer, the left and rear contact points are respectively CL3 =

(−a3 − r3β,−b3, ht, 1)
T
T and CR3 = (−a3 − r3β, b3, ht, 1)

T
T , where suffix T indicates

that coordinates are given in the frame TT , equation (13). To define tyre forces, it

is convenient to use reference frame which lies below the centre of gravity GT at

road level:

Tα =


cosα − sinα 0 xt
sinα cosα 0 yt

0 0 1 0

0 0 0 1

 (15)

Now, left tyre force is a vector FL3 = (0, YL3,−NL3, 0)
T
α applied to CR3 and right

force is a vector FR3 = (0, YR3,−NR3, 0)
T
α applied to CR3.

Finally, weight must be added to all bodies. For this purpose, it is sufficient to

define the gravity acceleration field by setting the predefined variable gravity:

g =


0

0

g

0

 (16)

2.5. Constraints

The category of kinematic constraints includes a large variety of distinct cases.

Moreover, a specific kinematic constraint may be defined using different yet equiv-

alent sets of equations. These equations are typically non-linear, so the conversion

from one set of constraint equations to an equivalent one may not be straightfor-

ward and sometimes not suitable for automatic manipulation. For such reasons,

MBSymba leaves the user maximum freedom and flexibility to deal with kinematic

constraints, which are simply defined with a list of implicit constraint equations and

a list of generalized forces associated to each constraint equation.

In the current model, the tyre road contact conditions restrain two degrees of

freedom of the trailer, namely the bounce and roll. However, since the roll constraint

has been implicitly included by setting the trailer roll angle to zero, only the bounce

constraint need be considered. The corresponding constraint equation is defined by

setting the distance between the axle center O3 and the road plane to a constant

value equal to the tyre radius, yielding to:

a3β + ht + zt = 0 (17)
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where the generalized force N3 associated to the constraint has the meaning of the

total axle tyre load N3 = NR3 +NL3.

In addition to this general constraint definition just discussed, MBSymba pro-

vides a set of more structured procedures to create the most common constraints

such as spherical, cylindrical, revolute, planar, prismatic and rod joints. For exam-

ple, the hitch trailer that connects the trailer to the car is a spherical joint. To create

this constraint, it is necessary first to create a point HC = (−fx, 0, fz, 1)
T
C attached

to the chassis and a point HT = (jx, 0, jz, 1)
T
T attached to the trailer. At this points,

MBSymba automatically calculates the constraint equations that correspond to the

overlap of HC and HT :

xt + fx + (jzβ + jx) cosα− fzµ = 0

yt + (jzβ + jx) sinα+ fzφ = 0

−(jxβ + fxµ+ z) = 0

(18)

Concurrently, MBSymba creates the constraint force H = (Hx, Hy, Hz, 0)
T

which

acts on the chassis in HC and reacts on the trailer in HT .

3. Equations of motion

Once the system has been described and a set of coordinates has been estab-

lished, there are still many methods for deriving the equations of motion (Suh and

Radcliffe (1978), Meirovitch (1970),Kane and Levinson (1985),Arnold (1989),Haug

(1989),de Jalon and Bayo (1994),Torok (2000)), which range from direct applica-

tion of Newton’s laws to methods of analytical mechanics, like Lagrange’s equations

(which are available in MBSymba) as well as Kane’s or Hamilton’s equations (which

are not available in MBSymba). Potentially, each of the above methods can be cod-

ified in a standard sequence of operations and the equations of motion derived in

a completely automatic way. Different methods will lead to different set of equa-

tions, obviously equivalent to one another. However, the adoption of such algorithms

would deprive the user of any possibility of inspecting and further manipulating the

intermediate result, which may be very useful when developing models at symbolic

level. Therefore MBSymba offers a set of powerful commands to deal with New-

ton’s and Lagrange’s dynamics, but without embedding them in a rigid, predefined

framework. In this manner, the user has the possibility, and the responsibility, to

select step by step the most profitable approach and to inspect and manipulate

intermediate results. The advantages of this approach will be highlighted in the

following sections: the first one illustrates the application of Newton’s method by

deriving the full set of equations of motion of the car-trailer system, while the sec-

ond will discuss Lagrange’s approach even though, as highlighted in section 2.3, it

is not suitable to deal with systems that include infinitesimal variables.
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3.1. Newton’s approach

The equations of motion of a rigid body may be derived by means of the well known

cardinal equations:

d

dt
Q = F (19)

d

dt
KA + VA ×Q = MA (20)

Equation (19) describes the translation motion in terms of the linear momentum Q

and the overall active and constraints forces F acting on the body, while equation

(20) describes the rotation in terms of the angular momentum K and the moment

of forces F with respect to the pole A, which may move with velocity VA. These

equations have been implemented in MBSymba, including the case of a non-inertial

reference base frame, in which case the linear momentum and angular momentum

are derived according to (6).

In a system composed of several bodies, cardinal equations (19, 20) may be writ-

ten for each single body. Therefore, the number of equations depends on the number

of bodies rather than the number of degrees of freedom, as the unknowns will in-

clude constraint forces too. However constraint forces may be partially or completely

eliminated by further manipulating cardinal equations. In MBSymba, this task is

totally left to the user, who has the responsibility of collecting a consistent set of

equations, but also the maximum freedom to persue the most convenient strategy

to do so. MBSymba also gives the possibility of calculating cardinal equations for

a set of two or more bodies, which has the advantage of automatically eliminating

the internal reaction forces.

In this case study, the behaviour of the car-only and the car-trailer system will

be compared, so it is convenient to derive separate equations for the two subsystems.

The car includes two rigid bodies (chassis and unsprung mass). MBSymba allows us

to calculate the cardinal equations for the whole system without caring about the

internal reaction forces. To define the car subsystem it is sufficient to collect bodies,

active forces (air drag, tyre forces) and reactive forces (hook) into a set and then

MBSymba automatically derive Newton’s equations (19). The result is a vector that

can be projected onto any reference frame, in particular the components along the

moving frame x, y, z axes read:

−(mu +mc)vr = X2 − (YL1 + YR1) sin δ +Hx (21a)

(mu +mc)(ur + v̇) = (YR1 + YL1) cos δ + (YL2 + YR2) +Hy (21b)

mcz̈ = (mu +mc)g − (NL1 +NL2 +NR1 +NR2) +Hz (21c)

By selecting the origin of the moving frame as a pole, Euler’s equations (20) be-



June 20, 2017 13:57 WSPC/INSTRUCTION FILE ˙MBSymba

A symbolic approach to the multi-body modelling of road vehicles 13

comes:

Ixxφ̈− Ic,xz ṙ + (Ic,zz − Ic,yy − Ic,xz)rµ̇+ (Ic,zz − Ic,yy)φr2+

+((hc − z)mc + humu)ur + (hcmc + humu)v̇ = MA,x

(22a)

Ic,yyµ̈+ (Ic,xx + Ic,yy − Ic,zz)rφ̇+ ((−Ic,xx + Ic,zz)µ− Ic,xz)r2+

+(hcmc + humu)vr = MA,y

(22b)

(Ic,zz + Iu,zz)ṙ − Ic,xzφ̈+ 2Ic,xzrµ̇ = MA,z (22c)

where

MA,x = b1(NL1 −NR1) + b2(NL2 −NR2)− (µfx + fz − hc + z)Hy − fzφHz

MA,y = a1(NR1 −NL1) + a2(NR2 −NL2) + (µfx + fz − hc + z)Hx + (fx − fzµ)Hz

MA,z = a1(YL1 + YR1) cos δ − b1(YL1 − YR1) sin δ − a2(YL2 + YR2) + fzφHx + (fzµ− fx)Hy

It is worth emphasising Euler’s equations may be calculated with respect to any pole

chosen by the user. In this specific case the selection of the origin of the moving frame

leads to quite simple expressions for MA,x,MA,y that do not contain any lateral and

longitudinal tyre forces. This is an example of the flexibility of MBSymba, where

the user retains the freedom to select the most convenient equations.

The trailer assembly includes the trailer rigid body, tyre forces and hook reaction

force, the corresponding Newton-Euler’s equations are:

mt

(
ẍt − vr − ṙyt − r2xt − 2rẏt

)
= −(YL3 + YR3) sinα−Hx

mt

(
ÿt + ur + v̇ + ṙxt − r2yt + 2rẋt

)
= (YL3 + YR3) cosα−Hy

mtz̈t = mtg − (NL3 +NR3)−Hz

(23)

(It,zz − It,xx − It,yy)rβ̇ = MT,x (24a)

It,yyβ̈ + (It,zz − It,xx)r2β = MT,y (24b)

It,zz(ṙ + α̈) = MT,z (24c)

where

MT,x = (jxβ − jz)(Hx sinα−Hy cosα)− (ht + a3β)(YL3 + YR3) + b3(NL3 −NR3)

MT,y = (jxβ − jz)(Hx cosα+Hy sinα) + [(ht − r3)β − a3](NL3 +NR3) + (jx + jzβ)Hz

MT,z = (jx + jzβ)(Hx sinα−Hy cosα) + [(ht − r3)β − a3](YL3 + YR3)

At this point, the car and trailer mathematical model consists of 16 equations: twelve

Newton-Euler equations (21-24), eleven of which are second order differential equa-

tions while (21a) is algebraic because the forward speed u is assumed constant, plus

four algebraic constraints (17-18). The list of unknowns includes 20 elements: the

gross motion velocity variables v, r, chassis motion z, φ, µ, the longitudinal tyre force

X2, trailer coordinates xt, yt, zt, α, β, trailer hitch forces Hx, Hy, Hz, and tyre loads

NR1, NL1, NR2, NL2, NR3, NL3. The four remaining equations are those relating the

normal loads of car tyres to the sprung motion, which will be discussed in the tyre

section.
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3.2. Lagrange’s approach

For a multibody system described by means of a set on n dependent variables

q = {q1, q2 . . . qN}T and subject to m < n algebraic constraint equations:

ϕi(q, t) = 0, i = 1, 2 . . .m (25)

Lagrange’s equations of motion are:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qi −

m∑
k=1

λk
∂ϕk
∂qi

, i = 1 . . . n (26)

where L = T − V is the lagrangian, T is the kinetic energy, V is the potential

energy, Qi are generalized forces that may be calculated from the application of

the virtual work principle and λj are Lagrange’s multipliers. Lagrange’s approach

is more popular than Newton’s one mainly because Lagrange’s equations do not

contain reaction forces (leading to a smaller number of equations than Newton’s

approach). As an example, Lagrange’s equation with respect to the trailer relative

yaw, i.e. with respect to the non-inifinitesimal variable α, may be derived as follows:

It,zz(ṙ + α̈) = (jx + jzβ)(Hx sinα−Hy cosα) + [(ht − r3)β − a3](YL3 + YR3)

(27)

It may be observed that equation (27) is identical to (24c) that was derived us-

ing Newton’s approach. However in (27) variables Hx, Hy are actually Lagrange’s

multipliers, while in (24c) they represents the constraint force H. Such formal and

substantial equivalence is obtained because MBSymba uses a proper scaling while

creating constraints such as the spherical joint (18).

The problem with Lagrange’s approach is that it is not compatible with the

linear modelling option offered by MBSymba. Indeed, as anticipated is section 2.3,

in order to preserve all first order infinitesimal terms in the equations of motion,

both kinetic energy and virtual works calculation need be computed by including

also second order terms. Therefore, if one attempts to derive Lagrange’s equation

with respect to the trailer infinitesimal pitch angle would obtain:

It,yyβ̈ − It,xxr2β = jz(Hx cosα+Hy sinα) + jxHz − (a3 + r3β)(NL3 +NR3)

This equation is wrong because it is missing some inertial terms as well as some force

terms, which were preserved in Newton’s equations of motion (24b). If one wants to

use Lagrange’s approach, all non-linear kinematic terms along the whole modelling

process should be retained, the non-linear Lagrange equations derived, and finally

linearized. In most cases this in not convenient as the advantages of dealing with

simpler expressions from the beginning overcomes the burden of having to define

constraint forces.

Another issue with Lagrange’s equations arises when the model is developed in

a non-inertial reference frame by using quasi coordinates such as v and r. Since

quasi coordinates describes the gross motion in term of velocity instead of position,
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Lagrange’s equations (26) may not be used in their original form but, as explained

in Meirovitch (1970); Pacejka (2006), should be rearranged as follows:

d

dt

∂T

∂v
+ r

∂T

∂u
= Qv (28a)

d

dt

∂T

∂r
− v ∂T

∂u
+ u

∂T

∂v
= Qr (28b)

Unfortunately, if the lateral velocity coordinate v is replaced, for instance, by the

vehicle sideslip (i.e. the angle between forward and lateral velocity) another for-

mulation has to be used. If a moving frame with spatial motion is used, for ex-

ample to model an aircraft, Lagrange’s equations will be different again and more

complicated. In MBSymba, these issues may be completely avoided by using, again,

Newton’s approach. In particular, if Newton’s equations are calculated for the whole

system, it is not necessary to define constraint forces because they are internal to

the system and will not appear in the resulting equations in any case. For example,

the y component of Newton’s translation equation for the whole system is

(mu +mc +mt) (ur + v̇) +mt

(
ÿt + ṙxt + 2rẋt − r2yt

)
=

= (YR1 + YL1) cos δ + (YL2 + YR2) + (YL3 + YR3) cosα
(29)

and actually corresponds to the Lagrange equation (28a). Since MBSymba offers

the possibility of mixing both Lagrange’s and Newton’s approaches, the presence of

constraint forces may be avoided by using Newton’s equations to deal with quasi-

coordinates and Lagrange’s equations for the other coordinates.

In conclusion, MBSymba offers all the tools necessary to derive the Lagrange

equations of a multibody system defined either in a inertial or non inertial base,

either unconstrained or constrained. However, if some variables have been declared

infinitesimal, Lagrange’s equation with respect to such variables cannot be calcu-

lated properly.

3.3. Tyre and suspension models

The Newton-Euler equations (21)-(24) include tyre vertical, longitudinal and lateral

forces which will now be defined. Tyres are assumed to be rigid, while suspensions

are modelled as linear spring-damper elements that move vertically. Therefore, the

vertical load on each tyre may be calculated as the sum of the wheel weight and

the suspension force as follows:

NR1,L1 =
a2
2w

(mc +mu)g + k1(z − a1µ± b1φ) + c1(ż − a1µ̇± b1φ̇) (30a)

NR2,L2 =
a1
2w

(mc +mu)g + k2(z + a2µ± b2φ) + c1(ż + a2µ̇± b2φ̇) (30b)

where k1, k2 are the front and rear suspension stiffness, c1, c2 are the damping

coefficients, and finally sign + is for the right side and − for the left side. In steady

state conditions, tyre lateral forces mainly depend on the sideslip angle λ, i.e. the

angle between the direction of travel and the equatorial plane of the tyre (as depicted
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in figure 2) and the normal load N . Quite often tyre forces are calculated according

to Pacejka’s magic formula Pacejka (2006), which is exhaustive but quite complex.

For the sake of simplicity the following simplified form, which still preserves the

non-linearity with respect to the sideslip angle λ and normal load N is adopted

herein:

Y0(λ,N) = Dy sin [By arctan(Cyλ)]
[
1 + α

(
1− N

N0

)]
N (31)

As depicted in figure 2, this expression still captures the force non-linear dependency

on the tyre load N as well as the sideslip angle λ. The latter may be calculated as

follows:

λ = − arctan
VC,y
VC,x

(32)

where VC,x and VC,y are the longitudinal and lateral component of the the contact

point velocity respectively, as shown in Figure 2. For the different tyres, one obtains:

VC1,x = (u± b1r) cos δ + (v + a1r) sin δ

VC1,y = −(u± b1r) sin δ + (v + a1r) cos δ
(33a)

VC2,x = u± b2r
VC2,y = v − a2r

(33b)

VC3,x = (v + xtr + ẏt) sinα+ (u+ ẋt − ytr) cosα+ (ht − r3)β̇ ± b3(r + α̇)

VC3,y = (v + xtr + ẏt) cosα− (u+ ẋt − ytr) sinα+ (ht − r3)βr
(33c)

Where sign + applies to the left tyres while sign− applies to the right ones. Equation

(31) is valid in steady state conditions, while transient tyre forces may be more

accurately described by a first order relaxation equation Pacejka (2006) as follows:

σ

VC,x
Ẏ + Y = Y0

(
− arctan

VC,y
VC,x

, N

)
(34)

Fig. 2. Lateral force.
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In order to avoid the numerical singularity at zero speed, the above equations may

be rewritten as:

σẎ = VC,x

[
Y0

(
− arctan

VC,y
VC,x

, N

)
− Y

]
(35)

It is worth pointing out that the calculation of tyre forces just described could be

easily combined into a Maple procedure. In general, the user may create new objects

on the top of MBSymba by specifying rules for type definition and manipulation.

4. State space formulation

The following two sections explain how to collect and convert the equations of mo-

tion into a state space formulation, which is the most suitable for time integration,

stability analysis, and control design. In particular, it is shown how the equations

of motion of the car (without the trailer) may be easily converted into a non-linear

state space formulation ẋc = F(xc,u). However, the car with trailer model includes

some differential-algebraic equations (DAE) and yields to an implicit state space

formulation A(x)ẋ = B(x,u) where A is not invertible.

4.1. Car model

The car model consists of two rigid bodies, unsprung mass and chassis. Since the

forward speed u is constant, the model has five degrees of freedom only: the gross

motion is defined in term of lateral speed v and yaw rate r, while the chassis

motion (due to suspensions) is described in terms of bounce z, roll φ and pitch µ.

There are six Newton-Euler equations (21),(22), but (21a) is algebraic because u is

constant. This equation may be discarded because it is not coupled with the others.

In the remaining equations, the chassis acceleration contains second order terms

z̈, φ̈, µ̈, while the gross motion contains first order terms v̇, ṙ only. For this reason, a

first order state-space formulation is here preferred instead of the more commonly

adopted second order formulation, e.g. de Jalon and Bayo (1994). The reduction of

Newton-Euler equations to the first order is obtained by introducing in (21),(22)

the following velocity variables:

Vz = ż

Ωφ = φ̇

Ωµ = µ̇

(36)

To isolate the car, it is necessary to unlink the trailer by setting Hx = Hy = Hz =

0. It is also necessary to consider tyre force expressions (30)-(33) and to include

four first order tyre relaxation equations (35) (one for each tyre). When collecting

equations one obtains the following non-linear, implicit state space formulation:

Acẋc = B(xc,u) (37)
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where xc is the vector of the twelve independent state variables:

xc = {z, µ, φ, v, r, Vz,Ωµ,Ωφ, YR1, YL1, YR2, YL2}T (38)

and u is the vector of inputs, which in this case consists of the sole steering angle:

u = {δ} (39)

The state space matrix Ac and the vector Bc are not reported here for brevity.

However, in this case the matrix Ac is constant because it depends only on vehicle

inertia and tyre relaxation, and moreover it is invertible because of the independent

coordinate formulations. By symbolically calculating A−1c , equation (37) may be

rewritten in the following explicit, non-linear, state space formulation:

ẋc = A−1c B(xc,u) = F(xc,u) (40)

which is the most suitable for time integration, stability analysis, and control design.

4.2. Car and trailer model

The state space equations of the full model can be assembled in a fashion similar to

what was done with the sole car. The first step is the reduction to the first order of

the Newton-Euler equations (23),(24) by the introduction of the following velocity

variables:

Vxt = ẋt

Vyt = ẏt

Vzt = żt

Ωα = α̇

Ωβ = β̇

(41)

Again, it is necessary to consider tyre force expressions as in section 3.3 and to

include two first order tyre relaxation equations (34) for the trailer wheels. In con-

clusion, the full set of implicit state space equations (42) includes five car dynamics

equations (21b),(21c),(22), six trailer dynamics equations (23),(24), eight velocity

equations (36)-(41), six tyre relaxation equations (34) and four constraints equations

(17),(18), for a total of n = 29 equations and as much state variables as follows:

A(x)ẋ = B(x,u) (42)

where x = xc ∪ xt, with xc from (38) and xt the additional trailer state variables:

xt = {xt, yt, zt, α, β, Vxt, Vyt, Vzt,Ωα,Ωβ , NR3, NL3, YR3, YL3, Hx, Hy, Hz}T (43)

Because of the algebraic constraints, the matrix A(x) is singular and cannot be

inverted. More precisely, (42) is a set of differential-algebraic equations (DAE) of

order three, that can be integrated by using a solver like DASSL, MEBDFI or PSIDE

(Test set for IVP solvers, Kunkel and Mehrmann (2006)). However, it is worth

pointing out that the equations of motion may be further manipulated and converted
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into a different formulation. Among many possibilities, it is possible for example

to reduce the DAE index of equations (42) by stabilising constraints equations

(17),(18) as described in Baumgarte (1972); de Jalon and Bayo (1994). In particular,

the algebraic constraint (17) may be easily converted into a differential one and

stabilised as follows:(
a3β̈ + z̈t

)
+ 2ζω

(
a3β̇ + żt

)
+ ω2 (a3β + zt + ht) (44)

and the same method may be used for equation (18) too.

5. Simulations

Some numerical results are now given to demonstrate the effectiveness of the pro-

posed approach, which conveniently mixes infinitesimal and non-infinitesimal vari-

ables.

5.1. Open loop simulations in time domain

State space equations (37) and (42) can be conveniently converted to Matlab, For-

tran or C code using the built-in Maple export command and then embedded into

a simulation program. However, since the problem size is relatively small, in this

case simulations may be carried out in Maple. Indeed, the car equations (40) are

formulated in ODE form and may be integrated in Maple without further manipu-

lation. As an example, figure 3 shows the vehicle response to a steering angle linear

ramp which (saturated at 0.1 rad after 5 s) in terms of the yaw rate r and lateral

speed v. The figure on the left has been obtained at a speed of 10 m/s: the response

trend basically corresponds to a sequence of steady state conditions, where the lat-

eral acceleration varies from 0 to approximately 3 m/s2. Positive v means that the

car is travelling ’nose-out’. The figure on the right has been obtained at a speed of

20 m/s and is dramatically different. Indeed a factor of two increase in the speed

would result in a factor four increase of the lateral acceleration, which far exceeds

tyre adherence limits. For such reasons the yaw rate amplitude remains small while

large oscillations are evident both on the yaw rate and on the lateral speed v (which

is now negative, indicating that the car is travelling ’nose-in’). Tyre lateral forces

are shown in figure 4: at a low speed, their regular, practically monotone, variation

with time makes it possible to appreciate that tyre forces are greater on the outer

side (i.e. the left one), as it is obviously expected for a car travelling on a clock-

wise turn. At high speed, it is clearly visible that tyre forces oscillations are out of

phase between the front and rear axle, and therefore are responsible for the yaw

rate oscillations in figure 3. In addition, tyres reach their adherence limits in the

time interval 3 < t < 4, which corresponds to the beginning of the yaw and lat-

eral oscillations, which are only slightly damped as they are still present after more

than 10 s. During these oscillations, the chassis motion remains compatible with

the assumption of infinitesimal motion. This example illustrates the convenience of
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Fig. 3. Yaw rate r and lateral speed v response to a steering angle ramp input at different speeds.

Fig. 4. Tyre lateral force response to a steering angle ramp input at different speeds.

modelling system non-linearities only when they are significant, e.g. on tyre force

calculation.

5.2. Steady cornering

The stationary manoeuver at constant speed and constant yaw rate is widely used

to assess basic cornering performance of ground vehicles Pacejka (2006). From a

mathematical point of view, stationary equations of motion are obtained from the

full equations (42) by setting both the state variables and the inputs to a constant

value, i.e. x(t) = x0 and δ(t) = δ0, yielding to the following set of non-linear

algebraic equations:

B(x0, δ0) = 0 (45)

where the stationary state variables x0 may be calculated for each given value of

the steering angle δ0. It is worth pointing out that stationary conditions x0 exist

only because a proper set of state variables that includes moving frame velocities

u, v and exclude any fixed frame coordinate (such as vehicle trajectory x, y) have

been explicitly selected during the modelling phase, thanks to the flexibility offered

by MBSymba in the choice of coordinates. Simulation results that compare the

behaviour of the car with and without the trailer are shown in Figures 5 and 6.

In more detail, Figure 5a shows tyre vertical load for all car corners varying as a
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Fig. 5. Tyre vertical loads as a function of the lateral acceleration, cornering radius R=100m.

Fig. 6. Steering ratio as a function of the lateral acceleration, different cornering radii.

function of the lateral acceleration, on a constant radius trajectory of R = 100 m.

There, centrifugal force obviously creates a lateral load transfer from the inner

(right) side tyres to the outer (left) side. It is also evident that, in straight running

(zero lateral acceleration) the load on the rear axle is smaller than the load on the

front, as expected because the center of gravity is closer to the front axle. However,

as the lateral acceleration increases, the inner/outer load transfer on the rear axle

is greater than that of the front axle because the rear suspension is stiffer than the

front suspension. Figure 5a shows that when the trailer is attached to the car two

main differences appear. The load on the rear axle significantly increases, because

it supports a portion of the trailer weight, and the trailer inner tyre load decreases

very quickly because of an unfavourable height to width ratio h/b which makes the

trailer at risk of rollover at high lateral accelerations. Lateral load transfer has also

a significant influence on steering performance, which may be assessed by analysing

the ratio between the actual cornering radius R and Ackermann’s radius Ra
a

σ =
R

Ra
=
R tan δ

a1 + a2
(46)

as depicted in figure 6.

aRa is the cornering radius calculated by neglecting tyre sideslips.
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Table 1. Model parameters.

parameter value description

g 9.806 m/s2 gravity acceleration
mu 300 kg car unsprung mass
hu 0.35 m car unsprung mass height
mc 2400 kg car chassis mass (sprung)
hc 0.75 m car chassis centre of mass height
a1 1.40 m distance between the front axle and the vehicle centre of mass
a2 1.50 m distance from the rear axle and the vehicle centre of mass

a1 + a2 2.67 m wheelbase
Iu,zz 560 kg m2 unsprung mass, yaw moment of inertia
Ic,xx 2000 kg m2 chassis, roll moment of inertia
Ic,yy 2800 kg m2 chassis, pitch moment of inertia
Ic,zz 3800 kg m2 chassis, yaw moment of inertia
Ic,xz 0 kg m2 chassis, cross moment of inertia
b1 0.78 m front axle half track
b2 0.78 m rear axle half track
k1 60 kN/m front suspension vertical stiffness
c1 4 kNs/m front suspension vertical damping
k2 65 kN/m rear suspension vertical stiffness
c2 5 kNs/m rear suspension vertical damping

mt 800 kg trailer mass (unsprung)
a3 0.30 m distance between the wheels axle and trailer centre of mass trailer
ht 0.65 m chassis centre of mass height
It,xx 200 kg m2 trailer, roll moment of inertia
It,yy 250 kg m2 trailer, pitch moment of inertia
It,zz 300 kg m2 trailer, yaw moment of inertia
It,xz kg m2 trailer, cross moment of inertia
r3 0.30 m trailer wheels rolling radius
b3 0.65 m trailer half track
hh 0.4 m trailer hitch height
fx 2.10 m distance between the trailer hitch and the vehicle centre of mass
jx 0.80 m distance between the trailer hitch and the trailer centre of mass

σ1 0.2 m front tyre relaxation length
By1 12 front tyre stiffness factor
Cy1 1.6 front tyre shape factor
Dy1 0.95 front tyre peak factor
α1 0.25 front tyre load dependency factor
σ2 0.2 m rear tyre relaxation length
By2 12 rear tyre stiffness factor
Cy2 1.6 rear tyre shape factor
Dy2 0.90 rear tyre peak factor
α2 0.25 rear tyre load dependency factor
σ3 0.2 m trailer tyre relaxation length
By3 12 trailer tyre stiffness factor
Cy3 1.6 trailer tyre shape factor
Dy3 0.95 trailer tyre peak factor
α3 0.25 trailer tyre load dependency factor

When the lateral acceleration is small, the steering angle may be calculated

according to kinematic considerations only, and the steering ratio factor is σ =

1, as confirmed in the figure. As the lateral acceleration increases, the steering
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ratio decreases and, for each constant cornering radius, the steering angle decreases

as is typical of oversteering vehicles. Figure 6 highlights that, due to tyre non-

linear behaviour, oversteering depends on cornering radius too; moreover the trailer

dramatically increases the oversteering tendency.

5.3. Stability

In order to analyse stability in straight running and while cornering, model equations

(42) are linearized as follows:

A(x0)ẋ =
∂B

∂x
(x− x0) +

∂B

∂u
(u− u0) (47)

or, in a more compact form:

A0ẋ = Bx0(x− x0) + Bu0(u− u0) (48)

where x0,u0 is a solution of steady state equations (45). In multibody software, lin-

earisation is usually carried by numerical differentiation, but this operation is char-

acterised by the well known cancellation/truncation dilemma. To avoid this poten-

tial pitfall, MBSymba exploits Maple capabilities to linearize the equations of motion

symbolically, therefore without introducing any numerical cancellation/truncation.

Finally, vehicle stability may be assessed by converting equation (48) into the fol-

lowing generalized eigenvalue problem:

A0λX = Bx0X (49)

For the car alone, the matrix Ac has full rank hence the solution of problem (49)

does not present difficulties. On the contrary, the car-trailer equations of motion (42)

are differential-algebraic and therefore matrix A0 is singular. To avoid the presence

of infinite eigenvalues that could irremediably hinder the accuracy of other eigen-

values, it is convenient eliminate algebraic equations before eigenvalues calculation.

Reduction of the linear DAE equations (48) to an ODE system is much simpler

than reducing non-linear DAE equations. For instance, a suitable algorithm based

on matrix triangularization is described in Cossalter et al. (2011a).

6. Conclusions

The package MBSymba for the symbolic modelling of multibody systems has been

described and, as an application example, a model of a car with an attached trailer

has been presented. MBSymba includes a set of commands to conveniently define

and manipulate multibody objects such as points, vectors, bodies, forces, torques

and constraints. Other special objects, e.g. customized tyre models, may be addi-

tionally defined by the user.

The first advantage of MBSymba is the possibility of choosing the most suitable

set of modelling variables, which in this case allowed for the utilization of quasi-

coordinates in a moving frame approach, which is very appealing for the modelling
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Fig. 7. Eigenvalues in the speed range from 5 to 50 m/s.

of ground, water or air vehicles. Another advantage of MBSymba is the capability

of modelling systems by using a desired mix of infinitesimal and non-infinitesimal

variables, with MBSymba automatically linearizing all relevant expressions as they

arise, in a smart and optimized way. MBSymba also includes a set of procedures for

the (quasi) automatic derivation of the equations of motion, including both New-

ton’s cardinal equations and Lagrange’s equations. Differences between the two ap-

proaches have been discussed with a focus on the presence of infinitesimal variables,

highlighting that the step-by-step linearisation modelling technique is compatible

with Newton’s approach only.

Finally, examples of open loop time simulations, steady state and stability anal-

ysis have been included. These simulations may be performed either by exploiting

Maple’s capabilities, or by exporting the equations of motion to Matlab, Fortran,

C/C++ or other coding languages to compile high performance simulation pro-

grams. MBSymba is freely available for education and research purposes at the

www.multibody.net/mbsymba/ website, which also includes tutorials and exam-

ples.
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