SUPPLEMENTARY MATERIALS

Manuscript title: Quantitative modelling of hip fracture trends in 14 European countries: testing variations of a shared reversal over time

Authors: Raquel Lucas1,2, PhD; Ana Martins1,2, MSc; Milton Severo1,2, PhD; Poliana Silva1, MSc; Teresa Monjardino1,2, MSc, Ana Rita Gaio3, PhD, Cyrus Cooper4,5, PhD, FMedSci; Henrique Barros1,2, MD PhD

Affiliations:

1. EPIUnit – Institute of Public Health, University of Porto, Porto, Portugal
2. Department of Clinical Epidemiology, Predictive Medicine and Public Health, University of Porto Medical School, Porto, Portugal
3. Department of Mathematics, Faculty of Sciences, University of Porto, Porto, Portugal
4. MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
5. Southampton General Hospital, Southampton, UK

Corresponding author:

Raquel Lucas
Institute of Public Health, University of Porto
Rua das Taipas, 135
4050 600 Porto, Portugal
Email: rlucas@med.up.pt
Office phone: +351222061820; Mobile: +351962860846
Supplementary figures 1 to 28: Observed and predicted hip fracture incidence rates by age group, sex and country.

Supplementary figures 29 and 30: Bayesian information criteria for different cluster solutions in women and men.

Supplementary figure 1. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Austria - women
Supplementary figure 2. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Austria – men.
Supplementary figure 3. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Denmark – women
Supplementary figure 4. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Denmark – men.
Supplementary figure 5. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Estonia – women
Supplementary figure 6. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Estonia – men
Supplementary figure 7. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Finland – women
Supplementary figure 8. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Finland – men
Supplementary figure 9. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), France – women
Supplementary figure 10. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), France – men
Supplementary figure 11. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Germany – women
Supplementary figure 12. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Germany – men.
Supplementary figure 13. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Italy – women
Supplementary figure 14. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Italy – men
Supplementary figure 15. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Netherlands – women.
Supplementary figure 16. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Netherlands – men
Supplementary figure 17. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Norway – women.
Supplementary figure 18. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Norway – men.
Supplementary figure 19. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Portugal – women.
Supplementary figure 20. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Portugal – men
Supplementary figure 21. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Spain – women
Supplementary figure 22. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Spain – men.
Supplementary figure 23. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Sweden – women
Supplementary figure 24. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Sweden – men
Supplementary figure 25. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Switzerland – women
Supplementary figure 26. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), Switzerland – men
Supplementary figure 27. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), UK (England) – women
Supplementary figure 28. Observed (red) and predicted (blue) hip fracture incidence rates by age group (from bottom left to top right), UK (England) – men
Supplementary figure 29. Bayesian Information Criteria for different cluster solutions (women)

Supplementary figure 30. Bayesian Information Criteria for different cluster solutions (men)