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Abstract—We consider the challenging problem of joint angle
estimation and signal reconstruction for coherently distributed
(CD) sources in massive multiple-input multiple-output (MIMO)
systems employing uniform rectangular arrays. A simplified
method inspired by the two-dimensional (2D) unitary estimating
signal parameters via rotational invariance technique (ESPRIT)
is proposed to estimate both the central angle and the angular
spread without the need for a spectrum peak search and
covariance matrix matching process. We first approximate the
2D generalized steering vector expressed as a Schur-Hadamard
product by a pair of one-dimensional generalized steering vectors.
Then, we obtain two approximate rotational invariance relation-
ships with respect to the central angles of the CD sources using
a linear approximation of the individual generalized steering
vectors of the azimuth and elevation subarrays. With the aid of
this approximate decomposition, a new unitary ESPRIT-inspired
algorithm is conceived to automatically pair the 2D central
angle estimations, and a novel method capable of bypassing
the high-complexity search process is proposed for angular
spread estimation. Furthermore, the closed-form approximate
Cramer-Rao lower bounds are derived for the estimators of
both the central angles and the angular spreads. The complexity
of the proposed estimator is also analyzed. Additionally, the
orthogonality of the generalized steering vectors is proved, which
enables us to propose a low-complexity method to reconstruct the
CD signal matrix by replacing the inversion operator with the
conjugate transpose operator. The simulation results demonstrate
the efficiency of our proposed approach.

Index Terms—Massive multiple-input multiple-output, two-
dimensional array, coherently distributed source, direction-of-
arrival, angular spread, signal reconstruction

I. INTRODUCTION

The explosive growth of high-rate multimedia wireless
services driven by smart phones and the mobile Internet has
motivated the investigation of the fifth-generation (5G) cellular
network. The new 5G network will enjoy superior spectral
and energy efficiency compared with the existing 4G systems.
The improvements mainly arise from the adoption of several
new enabling techniques, including millimeter-wave commu-
nications, device-to-device communications, cloud-based radio
access networks and massive multiple-input multiple-output
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(MIMO) solutions [1]–[3]. The massive MIMO techniques,
which rely on a large number of antennas at each base station
(BS), provide a high degree of spatial freedom to substantially
enhance the system’s throughput, energy efficiency and link
reliability [4], [5]. For massive MIMO systems, direction-
of-arrival (DOA) estimation is particularly important, since
it is an essential piece of knowledge for the BS to perform
beamforming in many scenarios, such as in millimeter-wave
bands or for frequency-division duplex (FDD) based systems.

The problem of DOA estimation has been the focus of
research for decades [6], and numerous powerful methods have
been developed, such as maximum-likelihood (ML) spectral
estimation [7], multiple signal classification (MUSIC) [8],
root-MUSIC [9], estimating signal parameters via rotational
invariance technique (ESPRIT) [10] and unitary ESPRIT tech-
niques [11]. More recently, DOA estimation algorithms have
also been conceived for massive MIMO systems [12]–[21].
However, all the contributions in [7]–[18] assumed that the
received signals originate from far-field point sources, which
gives rise to perfectly planar wavefronts impinging on the
array with discrete and fixed DOAs. In practical environments,
such as wireless communications, radar and navigation, the
transmitted signals are often obstructed by buildings, vehi-
cles and trees and/or reflected by rough surfaces. Thus, an
antenna array often receives multi-path signals, which have
passed through a number of scatterers. Therefore, depending
on the nature of reflection and scattering, using a spatially-
distributed-source-based model may be more appropriate [22].
Furthermore, depending on the relationship between the chan-
nel’s coherence time and the observation period, the signal
components arriving from different directions exhibit varying
degrees of correlation, ranging from totally uncorrelated (in-
coherent) to fully correlated (coherent) [23]. If the channel’s
coherence time is much shorter than the observation period, all
the signals arriving from different directions can be assumed
to be uncorrelated, and hence an incoherently distributed (ID)
model becomes relevant. By contrast, in the case of coherently
distributed (CD) sources, the signal components arriving from
different directions can be regarded as some form of replicas
of the same signal [24].

Several methods have been proposed to estimate both ID
and CD sources. Parameter estimators were proposed for one-
dimensional (1D) localization of ID sources in [23], [25]–
[29], where only the azimuth angular parameters need to be
estimated. Most of these estimators can be extended to the
two-dimensional (2D) scenario, where both the azimuth and
elevation angular parameters have to be estimated. Among
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the existing approaches conceived for 2D DOA estimation of
ID sources, the ML estimator of [25] is optimal but imposes
excessive complexity. The approximate ML estimator of [26]
is suboptimal, but it has lower complexity. To further reduce
the complexity, least-squares (LS) estimators using covariance
matrix matching were proposed in [27]–[29]. Moreover, the
DOA estimation of 2D ID sources in the context of uni-
form rectangular array (URA) and uniform cylindrical array
based massive MIMO systems were solved in [19] and [20],
respectively. Note that in most cellular radio systems, the
BS antennas are mounted on a tower, which can be far
from potential multipath generators in the channel. It is quite
common that the scatterers are local to UEs and the BS is
sufficiently far away, and thus the scattered signals arriving
from a given UE will be coherent and confined to a relatively
small angular range [30]. Hence, the study of DOA estimation
for CD sources in massive MIMO systems is necessary. The
work [21] for the DOA estimation of CD sources in massive
MIMO systems only considered 1D localization with the aid of
a uniform linear array (ULA). However, owing to the limited
space at the BS, massive MIMOs are most likely to employ
2D arrays in a plane, such as URA, in order to accommodate
a large number of antenna elements, leading to a 2D DOA
estimation problem. The 2D DOA estimation of each CD
source has four angular parameters: the central azimuth DOA,
central elevation DOA, azimuth angular spread and elevation
angular spread.

In the literature, several DOA estimation techniques [31]–
[35] have been presented for 2D CD sources by considering
L-shaped linear arrays or uniform circular arrays (UCA).
Specifically, for the UCA based system, the search for the
four parameters of each CD source was decomposed into
two search procedures, each responsible for estimating only
two parameters of the given CD source [31], [32]. A similar
transformation of the search procedure was performed for
systems based on the L-shaped linear arrays [33]. These
estimators rely on a spectrum peak search and their associated
computational complexities are very high. Employing two
parallel UCAs and exploiting the relationship between the
signal subspace and the steering vector, a sequential one-
dimensional searching (SOS) algorithm was proposed in [34]
to estimate the central azimuth DOA or the central elevation
DOA of each CD source, which reduces the computational
cost, but it did not consider the estimation of angular spreads.
The authors of [35] studied the estimation of the central
azimuth and elevation DOAs for a system employing three
parallel ULAs, but they also did not consider the estimation
of the angular spreads. The conventional distributed signal
parameter estimator (DSPE) proposed in [22] for a ULA can
be extended to the URA case to estimate both the central
angles and the angular spreads. However, it relies on a high-
complexity spectrum peak search. The ESPRIT-like DOA
estimators, such as [10] and [19], cannot be used directly to
estimate the 2D CD sources of massive MIMO systems. To the
best of our knowledge, there are no studies that can efficiently
estimate the central azimuth and elevation DOAs as well as the
azimuth and elevation angular spreads of CD sources for the
massive MIMO systems employing a URA. Given the superior

capacity of URA compared with UCA [36], [37], this is an
important research topic.

Signal reconstruction for the massive MIMO system asso-
ciated with CD sources is another important and challenging
problem, and yet there is a paucity of research in this area.
Standard LS signal matrix reconstruction requires the Moore-
Penrose pseudo-inverse of the array’s steering matrix, which
is extremely challenging for massive MIMO systems. The
authors of [11] proposed a method of reconstructing the signal
matrix without requiring the inverse of the array steering
matrix. However, the method was proposed to estimate point
sources and its performance is not attractive for estimating CD
sources. To the best of our knowledge, there is no research that
explicitly addresses signal reconstruction for 2D CD sources
in massive MIMO systems employing URA.

With the above background, in this paper, we consider
the challenging problem of joint angle estimation and signal
reconstruction for 2D CD sources in massive MIMO systems
employing a URA. Our contributions are as follows.

• We transform the 2D generalized steering vector approxi-
mately into the Kronecker product of two 1D generalized
steering vectors and obtain a pair of approximate rota-
tional invariance relationships with respect to the central
DOAs of CD sources by using a linear approximation.
With the aid of this approximate decomposition, the
conventional ESPRIT [10] becomes applicable in both
the azimuth and elevation directions for central angle
estimation, while imposing lower complexity than the
DSPE. However, the conventional ESPRIT requires pair
matching between the azimuth and elevation angle es-
timations, which requires additional computational load,
and it cannot be used for angular spread estimation.

• Based on the above-mentioned approximate decomposi-
tion, a 2D unitary ESPRIT-based algorithm is proposed,
which automatically pairs the 2D central angle estimation
and imposes significantly lower complexity than the con-
ventional ESPRIT at the cost of a modest degradation in
estimation accuracy. Furthermore, a new low-complexity
method is proposed for angular spread estimation without
the need for spectrum peak search, while maintaining
satisfactory performance.

• In addition, the closed-form approximate Cramér-Rao
lower bound (CRLB) is derived for the proposed es-
timator of central angles and angular spreads, and the
complexity of the proposed estimator is compared with
that of the conventional DSPE.

• By proving the orthogonality of the generalized steer-
ing vectors, a low-complexity method is proposed to
reconstruct the CD signal matrix, replacing the high-
complexity inversion operator with the conjugate trans-
pose operator, which has a much lower complexity.

Throughout the paper, lower-case and upper-case boldface
symbols denote vectors and matrices, respectively. IK is the
K×K identity matrix, and 0 is the zero matrix with appropri-
ate dimensions. [·]p,q denotes the (p, q)th entry of a matrix, and
[·]p is the pth element of a vector. The Kronecker product and
Hadamard product operators are given by ⊗ and ⊙, respec-
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Fig. 1: Illustration of a coherently distributed source impinging on
a URA.

tively, while (·)∗, (·)T, (·)H and (·)† stand for the conjugate,
transpose, conjugate transpose and pseudo-inverse operators,
respectively. E denotes the expectation, B(−k) is the result
of removing the kth column of B, and diag{a1, a2, · · · , aM}
is the diagonal matrix with a1, a2, · · · , aM being its diagonal
elements. j =

√
−1 and |x| is the magnitude of x. ⌊·⌋ and

⌈·⌉ denote the integer floor and ceiling operators, respectively,
and vec{X} defines the column stacking operator, which
stacks the columns of X into a vector, while ΠM is the
M × M exchange matrix with ones on its anti-diagonal
elements and zeros elsewhere. Finally, tr(·) denotes the matrix
trace operator.

II. SYSTEM MODEL

We assume that K uncorrelated narrowband and CD source
signals transmitted by the K user terminals impinge on the
URA of the BS. The URA is composed of a grid of M azimuth
antenna elements and N elevation antenna elements with an
element spacing of d. Fig. 1 illustrates the kth CD source that
impinges on the URA, where ϕ̄k and θ̄k are the central azimuth
and elevation DOAs of the kth source, while σϕk

and σθk

are the kth source’s azimuth and elevation angular spreads,
respectively. A distributed source is the superposition of all
contributors, i.e., it consists of many ‘point’ sources distributed
or spread over some angular volume. Hence, the kth CD
source can be modeled by a stochastic process, where the
azimuth and elevation DOAs (ϕk, θk) obey a random angular
distribution with the central DOAs

(
ϕ̄k, θ̄k

)
and the angular

spreads
(
σϕk

, σθk

)
. The parameters of the angular distribution

for the kth source are therefore given by

µk =
[
ϕ̄k θ̄k σϕk

σθk

]T
. (1)

Generally, 0◦ ≤ ϕ̄k ≤ 180◦ and 0◦ ≤ θ̄k ≤ 90◦ [19], while
σθk

and σϕk
are sufficiently small. Employing the center of the

URA as the phase reference, the responses or steering vectors
for the DOAs (ϕk, θk) can be denoted by a(ϕk, θk) ∈ CMN×1,
whose ith element is given by [38][

a(ϕk, θk)
]
i
= ej

((
m−M+1

2

)
uk+
(
n−N+1

2

)
vk

)
,

for i = (m − 1)N + n, 1 ≤ m ≤ M, 1 ≤ n ≤ N, (2)

with

vk =
2πd

λ
sinϕk sin θk, (3)

uk =
2πd

λ
cos ϕk sin θk, (4)

where λ is the carrier’s wavelength. The kth signal received
by the URA can be expressed as [39]

sk(t) =
∫ ∫

a(ϕk, θk)ςk(t, ϕk, θk; µk)dϕkdθk, (5)

where t ∈ {1, 2, · · · , T} with T being the number of temporal
received signal samples, and the integration range spreads
over the angular volume of (ϕk, θk), while the angular signal
intensity ςk(t, ϕk, θk; µk) can be represented by

ςk(t, ϕk, θk; µk) =s̄k(t)ρ(ϕk, θk; µk), (6)

in which s̄k(t) denotes the complex temporal envelope of the
kth source with the transmitted power E{|s̄k(t)|2} = Pk, and
the underlying angular density of the kth user, ρ(ϕk, θk;µk),
follows the Gaussian distribution [21], [34]

ρ(ϕk, θk; µk) =
1

2πσϕk
σθk

e
− 1

2

(
(ϕk−ϕ̄k)2

σ2
ϕk

+
(θk−θ̄k)2

σ2
θk

)
. (7)

The output vector of the URA at temporal sample t, x(t) ∈
CMN×1, is then given by

x(t) =
K∑

k=1

sk(t) + n(t), (8)

where n(t) is the white sensor noise vector with zero mean
and covariance matrix E

{
n(t)nH(t)

}
= σ2

nIMN .
Define the generalized steering vector for user k as

b(µk) =
∫ ∫

a(ϕk, θk)ρ(ϕk, θk;µk)dϕkdθk ∈ CMN×1. (9)

By denoting B =
[
b(µ1) b(µ2) · · ·b(µK)

]
∈ CMN×K and

s̄(t) =
[
s̄1(t) s̄2(t) · · · s̄K(t)

]T ∈ CK×1, we can express (8)
as

x(t) =Bs̄(t) + n(t). (10)

The azimuth and elevation DOAs can be expressed as ϕk =
ϕ̄k + ϕ̃k and θk = θ̄k + θ̃k [19], where ϕ̄k and θ̄k are the
means of ϕk and θk, respectively, while ϕ̃k and θ̃k are the
corresponding random angular deviations with zero mean and
standard deviations σϕk

and σθk
, respectively. Since ϕ̃k and

θ̃k are sufficiently small, we have sin ϕ̃k ≈ ϕ̃k, sin θ̃k ≈ θ̃k,
cos ϕ̃k ≈ 1, cos θ̃k ≈ 1 and θ̃kϕ̃k ≈ 0. Further define

ci
k =
(
m − M + 1

2
)
sin ϕ̄k sin θ̄k, (11)

lik =
(
n − N + 1

2
)
cos ϕ̄k sin θ̄k, (12)

gi
k

=
(
m − M + 1

2
)
cos ϕ̄k cos θ̄k, (13)

oi
k =
(
n − N + 1

2
)
sin ϕ̄k cos θ̄k. (14)
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[b(µk)]i =
∫ ∫

[a(ϕk, θk)]i
2πσϕk

σθk

e
− 1

2

(
(ϕk−ϕ̄k)2

σ2
ϕk

+
(θk−θ̄k)2

σ2
θk

)
dϕkdθk

=
1

2πσϕk
σθk

∫ ∫
e

j 2πd
λ

((
m−M+1

2

)
cos ϕk sin θk+

(
n−N+1

2

)
sin ϕk sin θk

)
e
− 1

2

(
(ϕk−ϕ̄k)2

σ2
ϕk

+
(θk−θ̄k)2

σ2
θk

)
dϕkdθk

≈ 1
2πσϕk

σθk

[a(ϕ̄k, θ̄k)]i
∫

ej 2πd
λ

eϕk

(
−ck+lk

)
e
−

eϕ2
k

2σ2
ϕk dϕ̃k

∫
ej 2πd

λ
eθk

(
g

k
+ok

)
e
−

eθ2
k

2σ2
θk dθ̃k. (15)

Then, the ith element of b(µk) is given in (15) at the top of
this page. With the aid of integral formula [40]∫ ∞

−∞
e−f2x2

ejp(x+α) dx =
√

π

f
e
− p2

4f2 ejpα, (16)

(15) can be expressed as

[b(µk)]i ≈[a(ϕ̄k, θ̄k)]i · [h(µk)]i, (17)

where

[h(µk)]i =e−
2π2d2σ2

ϕk
λ2

(
−ck+lk

)2
e−

2π2d2σ2
θk

λ2

(
g

k
+ok

)2
=e−

2π2d2σ2
ϕk

λ2

(
c2

k+l2k

)
e−

2π2d2σ2
θk

λ2

(
g2

k
+o2

k

)
· e

2π2d2σ2
ϕk

λ2 2cklke−
2π2d2σ2

θk
λ2 2g

k
ok . (18)

Since σ2
θk

and σ2
ϕk

are sufficiently small, all four terms of
[h(µk)]i given in (18) are very close to 1. Using the simple
inequality x2 + y2 > ±2xy, we can infer that the third and
fourth terms are closer to 1 than the first and second terms.
Therefore, we may approximate [h(µk)]i by the first and
second terms, namely,

[h(µk)]i ≈e−
2π2d2σ2

ϕk
λ2

(
c2

k+l2k

)
e−

2π2d2σ2
θk

λ2

(
g2

k
+o2

k

)
. (19)

Similar to the definition of a(ϕk, θk), we define the azimuth
and elevation subarrays’ steering vectors as ax(ϕk, θk)n ∈
CM×1 for 1 ≤ n ≤ N and ay(ϕk, θk)m ∈ CN×1 for 1 ≤
m ≤ M , respectively. The mth element of ax(ϕk, θk)n and
the nth element of ay(ϕk, θk)m are given by[

ax(ϕk, θk)n

]
m

=
[
ay(ϕk, θk)m

]
n

=
[
a(ϕk, θk)

]
i

=e
−j

((
m−M+1

2

)
uk+
(
n−N+1

2

)
vk

)
,

i = (m − 1)N + n, 1 ≤ m ≤ M, 1 ≤ n ≤ N. (20)

Then, the nth and mth generalized steering vectors of the
azimuth and elevation directions can be defined as

bx(µk)n =
∫ ∫

ax(ϕk, θk)nρ(ϕk, θk; µk)dϕkdθk, (21)

by(µk)m =
∫ ∫

ay(ϕk, θk)mρ(ϕk, θk; µk)dϕkdθk. (22)

Following the same procedure for deriving (17) and (19), it
can be shown that the responses of the central subarrays in
the azimuth and elevation directions can be expressed as[
bx(µk)N+1

2

]
m
≈
[
ax(ϕ̄k, θ̄k)N+1

2

]
m
·
[
hx(µk)N+1

2

]
m

, (23)[
by(µk)M+1

2

]
n
≈
[
ay(ϕ̄k, θ̄k)M+1

2

]
n
·
[
hy(µk)M+1

2

]
n
, (24)

with [
hx(µk)N+1

2

]
m

≈e−
2π2d2σ2

ϕk
λ2 c2

ke−
2π2d2σ2

θk
λ2 g2

k , (25)[
hy(µk)M+1

2

]
n
≈e−

2π2d2σ2
ϕk

λ2 l2ke−
2π2d2σ2

θk
λ2 o2

k . (26)

Note that for odd M and N , (23) and (24) represent the
responses of the central azimuth and elevation subarrays. For
even M and N , however, they represent the responses of the
virtual central azimuth and elevation subarrays, since such
central azimuth and elevation subarrays do not physically exist.
Since [a(ϕ̄k, θ̄k)]i =

[
ax(ϕ̄k, θ̄k)N+1

2

]
m

·
[
ay(ϕ̄k, θ̄k)M+1

2

]
n

and [h(µk)]i =
[
hx(µk)N+1

2

]
m
·
[
hy(µk)M+1

2

]
n

, we have

[b(µk)]i ≈
[
bx(µk)N+1

2

]
m
·
[
by(µk)M+1

2

]
n
. (27)

Consequently, the generalized steering vector b(µk) has the
following approximate Kronecker product decomposition

b(µk) ≈bx(µk)N+1
2

⊗ by(µk)M+1
2

. (28)

III. THE 2D UNITARY ESPRIT-BASED ALGORITHM

This section details our proposed joint angle estimation and
signal reconstruction techniques conceived for 2D CD sources
in massive MIMO systems employing URA. We first prove the
approximate rotational invariance property of the subarray’s
response in both the azimuth and elevation directions. By
exploiting this rotational invariance structure, we propose the
2D unitary ESPRIT-based algorithm for estimating the 2D cen-
tral DOAs of CD sources. We further propose a closed-form
estimator for the angular spreads, which completely avoids the
high-complexity spectrum peak searching and paring process.
Finally, signal reconstruction is considered.

A. Approximate rotational invariance

Theorem 1 The subarrays in both the azimuth and eleva-
tion directions are approximately rotationally invariant. More
specifically, the elements of bx(µk)n have the same magnitude∣∣[bx(µk)n

]
p

∣∣ =∣∣[bx(µk)n

]
q

∣∣, (29)

and the elements of by(µk)m have the same magnitude∣∣[by(µk)m

]
p

∣∣ =∣∣[by(µk)m

]
q

∣∣. (30)

Proof: Refer to Fig. 2 and consider
[
bx(µk)n

]
m+1

for
1 ≤ n ≤ N and 1 ≤ m ≤ M − 1. According to the definition
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Fig. 2: Illustration of the azimuth and elevation subarrays of URA.

of the subarray’s generalized steering vector, we have[
bx(µk)n

]
m+1

=
∫∫

[ax(ϕk, θk)n]m+1ρ(ϕk, θk; µk) dϕkdθk

=
∫∫

[ax(ϕk, θk)n]mejukρ(ϕk, θk; µk) dϕkdθk . (31)

Similar to the derivation of (15), we can show that[
bx(µk)n

]
m+1

≈ ejūk

2πσϕk
σθk

[a(ϕ̄k, θ̄k)]i·∫
ej 2πd

λ
eϕk

(
−ck+lk

)
e
−

eϕ2
k

2σ2
ϕk dϕ̃k

∫
ej 2πd

λ
eθk

(
g

k
+ok

)
e
−

eθ2
k

2σ2
θk dθ̃k

≈ ejūk
[
b(µk)

]
i
, (32)

where

ūk =
2πd

λ
cos ϕ̄k sin θ̄k. (33)

Since
[
a(ϕk, θk)

]
i

=
[
ax(ϕk, θk)n

]
m

, from (15), it is clear
that

[
b(µk)

]
i
=
[
bx(µk)n

]
m

. Hence, we arrive at[
bx(µk)n

]
m+1

≈ejūk
[
bx(µk)n

]
m

. (34)

In a similar way, we have[
by(µk)m

]
n+1

≈ejv̄k
[
by(µk)m

]
n
, (35)

where

v̄k =
2πd

λ
sin ϕ̄k sin θ̄k. (36)

This completes the proof.
According to Theorem 1, we have

ejūk(J1 ⊗ IN )b(µk) =(J2 ⊗ IN )b(µk), (37)

ejv̄k(IM ⊗ J3)b(µk) =(IM ⊗ J4)b(µk), (38)

where J1 and J2 are the (M − 1) × M selection matrices
defined respectively by

J1 =
[
IM−1 0

]
∈ R(M−1)×M , (39)

J2 =
[
0 IM−1

]
∈ R(M−1)×M , (40)

while J3 and J4 are the (N−1)×N selection matrices defined
respectively by

J3 =
[
IN−1 0

]
∈ R(N−1)×N , (41)

J4 =
[
0 IN−1

]
∈ R(N−1)×N . (42)

B. 2D unitary ESPRIT-based DOA estimation

Employing the center of the URA as the phase reference,
the array manifolds of ax(ϕ̄k, θ̄k)N+1

2
and ay(ϕ̄k, θ̄k)M+1

2
are

conjugate centrosymmetric [38]. In fact, from (20), it can
readily be seen that ΠMax(ϕ̄k, θ̄k)N+1

2
= a∗

x(ϕ̄k, θ̄k)N+1
2

and
ΠNay(ϕ̄k, θ̄k)M+1

2
= a∗

y(ϕ̄k, θ̄k)M+1
2

. Similarly, from (25)
and (26) as well as (11) to (14), we can see that the real-valued
hx(µk)N+1

2
and hy(µk)M+1

2
are centrosymmetric. Then, fol-

lowing from (23) and (24), bx(µk)N+1
2

and by(µk)M+1
2

are
approximately conjugate centrosymmetric.

Since the inner product of two conjugate centrosymmetric
vectors is real-valued, any matrix whose rows are conjugate
centrosymmetric can be applied to transform the complex-
valued manifolds bx(µk)N+1

2
and by(µk)M+1

2
into real-

valued manifolds. Taking bx(µk)N+1
2

as an example and
assuming an odd M , the simplest matrix achieving this goal
can be constructed as

QM =
1√
2

 I⌈M−1
2

⌉ 0 j I⌈M−1
2

⌉
0T

√
2 0T

Π⌈M−1
2

⌉ 0 −j Π⌈M−1
2

⌉
 . (43)

By contrast, if M is even, an appropriate unitary matrix is
obtained from (43) by removing its center row and center col-
umn, which is still denoted as QM for notational convenience.
We can see that QM is a sparse unitary matrix that transforms
bx(µk)N+1

2
into an M × 1 real-valued manifold

dx(µk)N+1
2

=QH
Mbx(µk)N+1

2
. (44)

Similarly, we can construct the sparse unitary matrix QN that
transforms by(µk)M+1

2
into a real-valued one

dy(µk)M+1
2

=QH
Nby(µk)M+1

2
. (45)

Pre-multiplying b(µk) by QH
M ⊗ QH

N creates the real-valued
manifold

d(µk) =
(
QH

M ⊗ QH
N

)
b(µk)

≈
(
QH

M ⊗ QH
N

)(
bx(µk)N+1

2
⊗ by(µk)M+1

2

)
=
(
QH

Mbx(µk)N+1
2

)
⊗
(
QH

Nby(µk)M+1
2

)
=dx(µk)N+1

2
⊗ dy(µk)M+1

2
. (46)

Since QM and QN are unitary matrices, (37) can be rewritten
as

ejūk
(
J1 ⊗ IN

)(
QM ⊗ QN

)(
QH

M ⊗ QH
N

)
b(µk) =(

J2 ⊗ IN

)(
QM ⊗ QN

)(
QH

M ⊗ QH
N

)
b(µk). (47)

Pre-multiplying both sides of (47) by QH
M−1⊗QH

N and noting
(46) yields the following invariance relationship

ejūk
(
QH

M−1 ⊗ QH
N

)(
J1 ⊗ IN

)(
QM ⊗ QN

)
d(µk) =(

QH
M−1 ⊗ QH

N

)(
J2 ⊗ IN

)(
QM ⊗ QN

)
d(µk). (48)

That is,

ejūk

((
QH

M−1J1QM

)
⊗ IN

)
d(µk) =((

QH
M−1J2QM

)
⊗ IN

)
d(µk). (49)
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Noting that J1 and J2 satisfy ΠM−1J2ΠM = J1, as well as
ΠMQM = Q∗

M and ΠMΠM = IM , we have

QH
M−1J2QM =QH

M−1ΠM−1ΠM−1J2ΠMΠMQM

=QT
M−1J1Q∗

M =
(
QH

M−1J1QM

)∗
. (50)

Let the real-valued (M − 1)×M matrices K1 and K2 be the
real and imaginary parts of QH

M−1J2QM , respectively, i.e.,

K1 =ℜ
{
QH

M−1J2QM

}
, (51)

K2 =ℑ
{
QH

M−1J2QM

}
. (52)

Further define

Ku1 =K1 ⊗ IN , (53)
Ku2 =K2 ⊗ IN . (54)

Then, the invariance relationship (49) can be rewritten as

ej ūk
2
(
Ku1− jKu2

)
d(µk)=e−j ūk

2
(
Ku1 + jKu2

)
d(µk). (55)

In other words, this invariance relationship only involves real-
valued quantities, and it can be expressed as

tan
( ūk

2

)
Ku1d(µk) =Ku2d(µk). (56)

Similarly, from (38), we have the invariance relationship

ejv̄k

(
IM ⊗

(
QH

N−1J3QN

))
d(µk) =(

IM ⊗
(
QH

N−1J4QN

))
d(µk). (57)

Let K3 and K4 be

K3 =ℜ
{
QH

N−1J4QN

}
, (58)

K4 =ℑ
{
QH

N−1J4QN

}
, (59)

and further define

Kv1 =IM ⊗ K3, (60)
Kv2 =IM ⊗ K4. (61)

Then, the invariance relationship (57) only involves real-valued
quantities, and it can be expressed as

tan
( v̄k

2

)
Kv1d(µk) =Kv2d(µk). (62)

Consider the DOA matrix D =
[
d(µ1) d(µ2) · · ·d(µK)

]
∈ RMN×K . From (56) and (62), D satisfies

Ku1DΩu =Ku2D, (63)
Kv1DΩv =Kv2D, (64)

where

Ωu =diag
{

tan
( ū1

2

)
, tan

( ū2

2

)
, · · · , tan

( ūK

2

)}
, (65)

Ωv =diag
{

tan
( v̄1

2

)
, tan

( v̄2

2

)
, · · · , tan

( v̄K

2

)}
. (66)

It is worth noting again that after the unitary transformation,
all the matrices involved are real-valued, which significantly
reduces the computational complexity.

Let X = [x(1) x(2) · · ·x(T )] ∈ CMN×T be the complex-
valued data matrix containing T snapshots as columns. As
discussed in [38], the approximate signal eigenvectors for the

unitary ESPRIT, collected together as EΛ, are associated with
the K largest singular values of the real-valued matrix Λ =
[ℜ{Y} ℑ{Y}], where Y =

(
QH

M ⊗ QH
N

)
X. In particular, as

the number of snapshots T → ∞, the subspace spanned by
the columns of the MN ×K real-valued matrix EΛ becomes
the same subspace spanned by the columns of the MN × K
real-valued steering matrix D. Therefore, we have EΛ = DT
in which T is an unknown K×K full-rank real-valued matrix.
Substituting D = EΛT−1 into (63) and (64) yields

Ku1EΛΨu =Ku2EΛ with Ψu = T−1ΩuT, (67)

Kv1EΛΨv =Kv2EΛ with Ψv = T−1ΩvT. (68)

Ψu and Ψv in (67) and (68) are solved by the LS or total
LS algorithm. Automatic pairing of the ūk and v̄k spatial
frequency estimates can be used because all of the quantities in
(67) and (68) are real values. Thus, Ψu+jΨv can be spectrally
decomposed as

Ψu + jΨv =T−1
(
Ωu + jΩv

)
T. (69)

Accordingly, ūk and v̄k for 1 ≤ k ≤ K can be estimated based
on the eigenvalues of (69), denoted by ϖk for 1 ≤ k ≤ K, as

̂̄uk =2 tan−1
(
ℜ
{
ϖk

})
, (70)

̂̄vk =2 tan−1
(
ℑ
{
ϖk

})
. (71)

From the definition of spatial frequency, we obtain the final
estimates of the central DOAs aŝ̄ϕk = tan−1

(̂̄vk

/̂̄uk

)
, (72)

̂̄θk = sin−1

√(̂̄ukλ

2πd

)2

+
(̂̄vkλ

2πd

)2

. (73)

C. Estimation of angular spreads

After the DOA estimation, the search procedure is re-
duced to one that searches for the two angular spreads of
each CD source, namely, the last two parameters in µk =[̂̄ϕk

̂̄θk σϕk
σθk

]T. The correlation matrix of the array’s signal
vector x(t) of (10) is given by

Rx =E
{
x(t)xH(t)

}
≈ EsΣsEH

s + σ2
nEnEH

n , (74)

where Σs ∈ CK×K is the diagonal matrix whose diagonal ele-
ments are the K largest eigenvalues of Rx, and Es ∈ CMN×K

whose columns are the eigenvectors associated with Σs, i.e.,
Es spans the signal subspace, while En ∈ CMN×(MN−K)

contains (MN − K) eigenvectors associated with the noise
subspace. Using the DSPE algorithm given in [22], the esti-
mation of the angular spreads can be obtained as{

σ̂ϕk
, σ̂θk

}
= arg max

σϕk
,σθk

1
∥bH(µk)En∥2

. (75)

But this process requires spectrum peak searching. To the best
of our knowledge, almost all the research on the estimation of
angular spreads involves spectrum peak searching [25], [26],
which imposes excessive computational complexity.

We now discuss how to estimate angular spreads without
high-complexity spectrum peak searching. As the transmitted
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signal and the noise are uncorrelated, the covariance matrix of
x(t) can be expressed as

Rx =E
{
x(t)xH(t)

}
=

K∑
k=1

Pkb(µk)bH(µk) + σ2
nIMN

=
K∑

k=1

PkΞk + σ2
nIMN , (76)

where

Ξk = b(µk)bH(µk)

≈
(
a(ϕ̄k, θ̄k)aH(ϕ̄k, θ̄k)

)
⊙ Ek = DkEkDH

k , (77)

with the diagonal matrix Dk ∈ CMN×MN whose diagonal
elements are the elements of a(ϕ̄k, θ̄k), and Ek ∈ RMN×MN

whose (p, q)th entry is given by [Ek]p,q = [h(µk)]p[h(µk)]q.
From (11) to (14), we have cp

k, lpk, gp
k
, op

k, where p = (mp −
1)N + np with mp = 1, 2, · · · ,M and np = 1, 2, · · · , N .
Similarly, we have cq

k, lqk, gq
k

and oq
k, where q = (mq −1)N +

nq with mq = 1, 2, · · · ,M and nq = 1, 2, · · · , N . Noting the
approximate relationship (19), we have

[Ek]p,q =eγσ2
ϕk

[
(cp

k)2+(lpk)2+(cq
k)2+(lqk)2

]
× eγσ2

θk

[
(gp

k
)2+(op

k)2+(gq

k
)2+(oq

k)2
]
, (78)

where p, q = 1, 2, · · · ,MN , and γ = −2π2
(

d
λ

)2. By defining
P =

[
P1IMN P2IMN · · ·PKIMN

]
∈ RMN×KMN and Ξ =[

ΞT
1 ΞT

2 · · ·ΞT
K

]T ∈ CKMN×MN , we can rewrite (76) as

Rx = PΞ + σ2
nIMN . (79)

Then, we can obtain

Ξ̂ =P†(Rx − σ̂2
nIMN

)
, (80)

where σ̂2
n is the noise variance estimate, which is the average

of the MN − K smallest eigenvalues of Rx. In practice, the
covariance matrix Rx is estimated as

R̂x =
1
T

T∑
t=1

x(t)xH(t). (81)

The extraction of the block Ξ̂k from Ξ̂ is described by

Ξ̂T
k =Ξ̂

T(
ϵk ⊗ IMN

)
, (82)

where the K × 1 column vector ϵk is given by: for 1 ≤ i ≤
K, [ϵk]i = 1 if i = k; otherwise, [ϵk]i = 0. Based on the
estimated ̂̄ϕk and ̂̄θk, we obtain D̂k and then the estimate

Êk =
(
D̂k

)−1
Ξ̂k

(
D̂H

k

)−1
. (83)

With ̂̄ϕk and ̂̄θk, we also obtain the following coefficients[
rσϕ

(̂̄ϕk, ̂̄θk

)]
p,q

=
(
ĉp
k

)2 +
(̂
l
p

k

)2 +
(
ĉq
k

)2 +
(̂
l
q

k

)2
, (84)[

rσθ

(̂̄ϕk, ̂̄θk

)]
p,q

=
(
ĝp

k

)2 +
(
ôp

k

)2 +
(
ĝq

k

)2 +
(
ôq

k

)2
. (85)

Then, we rearrange (78) as

ln
([

Êk

]
p,q

)
/γ =σ2

ϕk

[
rσϕ

(̂̄ϕk, ̂̄θk

)]
p,q

+σ2
θk

[
rσθ

(̂̄ϕk, ̂̄θk

)]
p,q

,

(86)

and map the MN×MN matrix ln
(
Êk

)
/γ onto an (MN)2×1

vector as

ĝk =vec
{

ln
(
Êk

)
/γ
}

=σ2
ϕk

vec
{
rσϕ

(̂̄ϕk, ̂̄θk

)}
+ σ2

θk
vec

{
rσθ

(̂̄ϕk, ̂̄θk

)}
, (87)

where the function operator ln( ) operates on Êk elementwise.
By defining

σk =
[
σ2

ϕk
σ2

θk

]T
, (88)

Ŵk =
[
vec
{
rσϕ

(̂̄ϕk, ̂̄θk

)}
vec

{
rσθ

(̂̄ϕk, ̂̄θk

)}]
. (89)

we readily obtain the estimate of the two angular spreads as

σ̂k =Ŵ†
kĝk. (90)

The complete proposed algorithm for estimating the central
DOAs and angular spreads is summarized in Algorithm 1.

Algorithm 1 Estimation of the central DOAs and angular
spreads.

1: Calculate the received signal Y =
(
QH

M ⊗ QH
N

)
X;

2: Compute EΛ as the K largest left singular vectors of
[ℜ{Y} ℑ{Y];

3: Compute Ψu and Ψv according to (67) and (68);
4: Compute the eigenvalues ϖk for 1 ≤ k ≤ K of Ψu+jΨv;
5: Compute the spatial frequency estimates ̂̄uk and ̂̄vk for

1 ≤ k ≤ K according to (70) and (71);
6: Estimate the central DOAs ̂̄ϕk and ̂̄θk for 1 ≤ k ≤ K

according to (72) and (73);
7: Compute the covariance matrix R̂x of the received signal

using (81);
8: Based on ̂̄ϕk and ̂̄θk for 1 ≤ k ≤ K obtained in step 6,

estimate Êk according to (83), and calculate rσϕ

(̂̄ϕk, ̂̄θk

)
and rσθ

(̂̄ϕk, ̂̄θk

)
using (84) and (85);

9: Estimate the angular spreads σ̂2
ϕk

and σ̂2
θk

for 1 ≤ k ≤ K
according to (90).

D. Signal reconstruction

Having obtained the estimates of the central DOAs and
angular spreads, we can calculate the generalized steering
matrix B. Then, according to (10), we may obtain the signal
reconstruction using, for example, the LS estimate of̂̄s(t) =

(
BHB

)−1
BHx(t). (91)

However, the inverse operation is challenging in the massive
MIMO system since the complexity of computing

(
BHB

)−1

is excessive. Hence, alternative low-complexity signal recon-
struction techniques are desired. First, we give the following
theorem.

Theorem 2 For a URA with azimuth and elevation DOAs
drawn independently from a continuous distribution, the array
response vectors are orthogonal when the number of antenna
elements, MN , tends to infinity; that is,

lim
MN→∞

1
MN

BHB = IK . (92)
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Proof: See Appendix A.
Since in a massive MIMO, MN is sufficiently large, we

have 1
MN BHB ≈ IK according to Theorem 2. Therefore, we

have the following low-complexity signal reconstruction

̂̄s(t) ≈ 1
MN

BHx(t), (93)

which does not involve matrix inversion.

IV. ANALYSIS OF THE PROPOSED ESTIMATOR

A. Approximate CRLB of the proposed estimator

First, we collect all the parameters to be estimated in the
following parameter vector

ω =
[
ωT

ϕ̄ ωT
θ̄ ωT

σϕ
ωT

σθ

]T
∈ R4K×1, (94)

where 
ωϕ̄ =

[
ϕ̄1 ϕ̄2 · · · ϕ̄K

]T
,

ωθ̄ =
[
θ̄1 θ̄2 · · · θ̄K

]T
,

ωσϕ
=
[
σϕ1 σϕ2 · · ·σϕK

]T
,

ωσθ
=
[
σθ1 σθ2 · · ·σθK

]T
.

(95)

Further, define the expanded parameter vector

ω =
[
ωT σ2

n

]T
∈ R(4K+1)×1. (96)

Given the Fisher information matrix

Jω,ω =
[

Jω,ω Jω,σn

JT
ω,σn

Jσn,σn

]
, (97)

where Jω,ω ∈ R4K×4K , Jω,σn ∈ R4K×1 and Jσn,σn ∈ R,
the CRLB C ∈ R4K×4K is expressed as [41]

C =
(
Jω,ω − Jω,σnJ−1

σn,σn
JT

ω,σn

)−1
. (98)

The derivation of the approximate FIM for (97) is presented
in Appendix B. Substituting this approximate FIM into (98)
leads to the approximate CRLB for the estimator of ω.

B. Complexity analysis of the proposed estimator

1) Complexity of estimating central DOAs: Step 1 to Step
6 in Algorithm 1 estimate the central DOAs.

Since QM and QN are unitary matrices, computing QH
M ⊗

QH
N only requires 2N real multiplications. The number of real

multiplications required to obtain Y = QH
M ⊗QH

N is given by
1
2T (MN)2. Therefore, the complexity of Step 1 is

C1 ≈1
2
T (MN)2. (99)

TABLE I: Complexity required in computing Ψu and Ψv

Operations Real multiplications
K1, K2 2

`

(M − 1)2M + M2(M − 1)
´

Ku1 , Ku2 2MN(M − 1)
Ku1EΛ, Ku2EΛ 2MN2(M − 1)T

(Ku1EΛ)† 4
3
K3 + K2(M − 1)N

Ψu K2(M − 1)N
K3, K4 2

`

(N − 1)2N + N2(N − 1)
´

Kv1 , Kv2 2MN(N − 1)
Kv1EΛ, Kv2EΛ 2M2N(N − 1)T

(Kv1EΛ)† 4
3
K3 + K2M(N − 1)

Ψv K2M(N − 1)

Step 2 involves the singular value decomposition of the real
matrix Λ, and the number of multiplications required is [42]

C2 =
17
3

(MN)3 + 2T (MN)2. (100)

The computational requirements of Step 3 are detailed in Ta-
ble I, where the complexity of the pseudo-inverse is from [43].
The number of real multiplications required in Step 3 C3 is the
sum of all the numbers in the righthand column of Table I. As
MN is very large, the complexity of Step 3 is approximately

C3 ≈4T (MN)2. (101)

Step 4 involves the EVD of the K×K matrix Ψu+jΨv . With
the QR algorithm, 20K3 real multiplications are required [42]
and, therefore, the complexity of Step 4 is

C4 =20K3. (102)

The computational requirements of Step 5 and Step 6 are much
smaller and can be ignored.

Thus, the complexity of our proposed estimator for the
central DOAs, in terms of real multiplications, is CDOA

Pro =
C1 +C2 +C3 +C4. Since MN is very large, CDOA

Pro is on the
order of 17

3 (MN)3 + 13T
2 (MN)2, that is,

CDOA
Pro =O

(
17
3

(MN)3 +
13T

2
(MN)2

)
. (103)

2) Complexity of estimating angular spreads: Step 7 to
Step 9 in Algorithm 1 estimate the angular spreads.

In Step 7, the covariance R̂x is calculated, and the number
of real multiplications required is given by

C7 =2T (MN)2. (104)

In Step 8, inverting the MN ×MN real diagonal matrix D̂k

requires MN real multiplications. Since P is a real sparse
and row-full-rank matrix, P† =

((
PPH

)−1
P
)H, and the

complexity of calculating P† is K(MN)2 + (K + 1)MN .
Calculating Êk via (83) requires 8(MN)2 real multiplications.
Therefore, the complexity of Step 8 can be expressed as

C8 ≈(K + 8)(MN)2. (105)

The complexity of Step 9 is given by

C9 ≈6(MN)2. (106)

Consequently, after estimating the central DOAs, the com-
plexity of our angular spreads estimator, expressed in terms
of the number of real multiplications, is given by

CAS
Pro =C7 + C8 + C9 = O

(
(2T + K + 14)(MN)2

)
, (107)

which is much smaller than CDOA
Pro .

3) Total complexity of the proposed estimator: It is then
obvious that in terms of the number of real multiplications
required, the total computational complexity of the proposed
estimator is given by

CPro = CDOA
Pro + CAS

Pro

= O

(
17
3

(MN)3 +
(17T

2
+ K + 14

)
(MN)2

)
. (108)

It can readily be seen that the computational complexity of
the proposed estimator is dominated by the requirements of
estimating the central DOAs.
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C. Computational complexity of other estimators

1) LS-ESPRIT: The classic LS-ESPRIT algorithm [10],
[44] can only estimate the central DOAs, and the complexity
of LS-ESPRIT quantified in terms of the number of real-valued
multiplications, can be expressed as

CDOA
LS−EPSIRT =O

(
20(MN)3 + 10T (MN)2

)
, (109)

which is considerably higher than CDOA
Pro .

2) DSPE: The DSPE algorithm [22] estimates both the
central DOAs and the angular spreads. In terms of real
multiplications, the total computational complexity required by
the DSPE algorithm to estimate the central DOAs and angular
spreads can be expressed by

CDSPE =O
(
20(MN)3 + (D1 + 2T )(MN)2

)
, (110)

where D1 = Dϕ̄Dθ̄Dσϕ
Dσθ

, and Dϕ̄, Dθ̄, Dσϕ
and Dσθ

de-
note the search times required to estimate the central azimuth
and elevation DOAs and the azimuth and elevation angular
spreads, respectively. The search dimension D1 is usually
very large. For example, the DSPE-like algorithm of [19] has
D1 = O

(
104
)
, while the DSPE-like algorithm of [45] has

D1 = O
(
106
)
. It can be seen that CDSPE is significantly

higher than CPro.

V. SIMULATION RESULTS

The performance of our proposed estimator for central
DOAs estimation is compared to those of the LS-ESPRIT
method [10], [44] and the DSPE method [19], [22], [45], while
the performance of our proposed estimator for angular spreads
estimation is compared to that of the DSPE approach.

A. Simulation setup

Simulations are conducted with a URA having M = N
and d = λ/2. Two equi-powered, uncorrelated CD sources
are located at the central angles

(
ϕ̄1 = 30◦, θ̄1 = 15◦

)
and(

ϕ̄2 = 75◦, θ̄2 = 60◦), and thus K = 2. The azimuth and
the elevation angular spreads of the two sources are σϕk

=
σθk

= σ = 1◦, k = 1, 2, and the noise variance is σ2
n = 1.

The transmitted signals sk(t), k = 1, 2, are quadrature phase-
shift keying modulated. The number of snapshots is T = 500.
All the results are averaged over 1000 Monte-Carlo simulation
experiments. We define the root mean square error (RMSE)
of the estimator for ϖ ∈ CK×1, where ϖ represents ωϕ̄, ωθ̄,
ωσϕ

or ωσθ
, by the following sample average

RMSEϖ =

√√√√ 1
1000

1000∑
c=1

∥∥ϖ̂(c) − ϖ
∥∥2

, (111)

where ϖ̂(c) denotes the estimate of ϖ obtained in the cth
Monte-Carlo trial.

For the DSPE approach, the search range of the central
azimuth DOAs is set to

[
ϕ̄k − 2◦, ϕ̄k + 2◦

]
, k = 1, 2, and

the search range of the central elevation DOAs is set to
[
θ̄k −

1◦, θ̄k + 1◦
]
, k = 1, 2, while the search range of the angular

spreads is set to
[
σ − 0.2◦, σ + 0.2◦

]
. Moreover, the search

step sizes of the DSPE used for the central DOAs and the
angular spreads are 0.1◦ and 0.05◦, respectively.

B. Complexity comparison

Given the simulation parameters of Section V-A, the search
dimension of the DSPE is D1 = (41× 9)2, with Dϕ̄ = Dθ̄ =
(2◦ − (−2◦))/0.1◦ + 1 = 41 and Dσϕ

= Dσθ
= (1.2◦ −

0.8◦)/0.05◦ + 1 = 9. Fig. 3 (a) depicts the computational
complexities as the functions of the number of BS antennas
required to estimate the central DOAs by the LS-ESPRIT and
the proposed estimator, where the complexity is plotted in the
base-10 logarithm. It can be seen that the LS-ESPRIT requires
substantially higher complexity to estimate the central DOAs
than the proposed estimator. Similarly, Fig. 3 (b) compares the
computational complexities required by the DSPE and the pro-
posed estimator for estimating the central DOAs and angular
spreads. Clearly, our proposed estimator imposes dramatically
lower complexity than the DSPE.
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Fig. 3: Comparison of complexity: (a) for estimating the central
DOAs by the LS-ESPRIT and the proposed estimator, and (b) for
estimating the central DOAs and angular spreads by the DSPE and
the proposed estimator.

C. Estimation accuracy comparison

With the received signal-to-noise ratio (SNR) of each source
set to 10 dB, Fig. 4 plots the four RMSEs, RMSEωϕ̄

and
RMSEωθ̄

as well as RMSEωσϕ
and RMSEωσθ

, as the func-
tions of the number of BS antennas, obtained by different
estimators, where the CRLBs are also provided as benchmarks.
In terms of the central azimuth and elevation angles, the
LS-ESPRIT estimator has better estimation accuracy than
our estimator, but the former imposes considerably higher
complexity in estimating the central DOAs, while the DSPE
estimator achieves the best estimation accuracy. For the az-
imuth and elevation angular spreads, our proposed estimator
achieves better estimation accuracy than the DSPE estimator,
except when the number of BS antennas is smaller than
M × N = 9 × 9 = 81. This is remarkable, considering
that our estimator imposes significantly lower complexity than
the DSPE. The estimation accuracy of our proposed estimator
improves significantly as the number of BS antennas increases.
Therefore, our 2D unitary ESPRIT-based algorithm can better
exploit the benefits of massive MIMO.

The reason why our proposed estimator outperforms the
DSPE in estimating angular spread can be explained as
follows. The high-complexity DSPE involves a discretized
search, and the accuracy of its solution is fundamentally
limited by the search step size in quantization. Furthermore,
the search step size cannot be set to be too small, as this will
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Fig. 4: Comparison of the RMSEs as the functions of the number
of BS antennas, given the SNR of 10 dB. The top two plots are the
RMSEs of the three estimators for the central azimuth and elevation
DOAs, and the bottom two plots are the RMSEs of the two estimators
for the azimuth and elevation angular spreads.

lead to an unaffordable computational complexity. By contrast,
our proposed estimator provides a closed-form solution to
the angular spread estimation, which does not impose any
quantization error. This closed-form angular spread estimate
is calculated given the central DOA estimate. Observe from
the top two plots of Fig. 4, the accuracy of the central DOA
estimate by our estimator improves significantly as the number
of BS antennas increases to over M × N = 81. This also
explains why the accuracy of our angular spread estimate is
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Fig. 5: Comparison of the RMSEs as the functions of the SNR, given
the number of BS antennas M × N = 15 × 15. The top two plots
are the RMSEs of the three estimators for the central azimuth and
elevation DOAs, while the bottom two plots are the RMSEs of the
two estimators for the azimuth and elevation angular spreads.

significantly better than that of the DSPE when the number of
BS antennas is sufficiently large, as shown in the bottom two
plots of Fig. 4.

In the second experiment, we set the number of BS antennas
to M × N = 15 × 15 and vary the SNR. Fig. 5 depicts the
corresponding four RMSEs obtained by different estimators.
For the central elevation angle estimation, the accuracy of our
proposed estimator is worse than those of the LS-ESPRIT
and DSPE. However, for the azimuth and elevation angular
spreads, our proposed estimator achieves significantly better
estimation accuracy than the DSPE estimator when the re-
ceived SNR is not less than 4 dB.

In the third experiment, we set the number of BS antennas
to M ×N = 15×15 and the SNR to 10 dB while varying the
angular spread σϕk

= σθk
= σ from 1◦ to 10◦. As shown in

Fig. 6, in terms of the central azimuth and elevation angles,
the estimation accuracy of our low-complexity estimator is
worse than those of the LS-ESPRIT and DSPE estimators,
but in terms of the estimation accuracy for the azimuth and
elevation angular spreads, our proposed estimator outperforms
the high-complexity DSPE estimator.

2 4 6 8 10
10

−2

10
−1

10
0

10
1

Angular spread (degrees)

R
M

S
E

 o
f φ

 e
st

im
at

e 
(d

eg
re

es
)

 

 
Proposed
LS ESPRIT
DSPE
CRB

2 4 6 8 10
10

−4

10
−2

10
0

10
2

Angular spread (degrees)

R
M

S
E

 o
f θ

 e
st

im
at

e 
(d

eg
re

es
)

 

 

Proposed
LS−ESPRIT
DSPE
CRB

2 4 6 8 10
10

−2

10
−1

10
0

10
1

10
2

Angular spread (degrees)

R
M

S
E

 o
f σ

φ e
st

im
at

e 
(d

eg
re

es
)

 

 
Proposed
DSPE
CRB

2 4 6 8 10
10

−2

10
−1

10
0

10
1

10
2

Angular spread (degrees)

R
M

S
E

 o
f σ

θ e
st

im
at

e 
(d

eg
re

es
)

 

 
Proposed
DSPE
CRB

Fig. 6: Comparison of the RMSEs as the functions of the angular
spread σ, given a number of BS antennas M × N = 15 × 15
and SNR = 10 dB. The top two plots are the RMSEs of the three
estimators for the central azimuth and elevation DOAs, while the
bottom two plots are the RMSEs of the two estimators for the azimuth
and elevation angular spreads.

D. Data reconstruction comparison

After estimating the central DOAs and angular spreads using
our proposed estimator, the generalized steering matrix B can
be calculated for signal reconstruction. We set the angular
spread σϕk

= σθk
= σ to 1◦. In Fig. 7 (a), we compare the bit

error rate (BER) performance achieved by the high-complexity
LS estimation (91) with the BER performance attained by
our proposed low-complexity estimation (93), for various
SNR values, where the number of BS antennas is fixed to
M×N = 15×15. It can be observed that the BER of our low-
complexity signal reconstruction method (93) is indistinguish-
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Fig. 7: Comparison of the data detection performance of the two
estimation methods: (a) varying the received SNR with the number
of BS antennas fixed to M × N = 15 × 15, and (b) varying the
number of BS antennas with the received SNR fixed to 10 dB.

able from the BER of the LS signal reconstruction method
(91), which imposes much higher computational complexity
than our proposed estimation method. By fixing the SNR to
10 dB and varying the number of BS antennas, Fig. 7 (b)
depicts the BERs attained by the two signal reconstruction
methods. It can be seen that when the number of BS antennas
is greater than M × N = 10 × 10, the BERs of the two
algorithms are indistinguishable. The results of Fig. 7 therefore
also confirm Theorem 2, namely, given a sufficiently large
number of BS antennas, MN , 1

MN BHB = IK holds.

VI. CONCLUSIONS

A novel 2D unitary ESPRIT-based approach has been pro-
posed for estimating the central DOAs and angular spreads
of coherently distributed sources in massive MIMO systems,
where the BS employs a large-scale URA. In contrast to

the estimators available in the existing literature, such as
the DSPE, our proposed estimator does not require complex
search and matching processes and, consequently, it imposes
dramatically lower computational complexity than the DSPE.
Our simulation results have demonstrated that when estimat-
ing the central DOAs, the accuracy of our low-complexity
estimator is worse than that of the high-complexity DSPE,
but when estimating the angular spreads, our low-complexity
estimator outperforms the high-complexity DSPE. We have
also proposed a low-complexity signal reconstruction method,
which has the same level of BER performance as the high-
complexity LS estimation method for massive MIMO systems
associated with a sufficiently large number of BS antennas.

APPENDIX

A. Proof of Theorem 2

Proof: Consider the kth and k′th column vectors of B,
b(µk) and b(µk′), where k ̸= k′. Noting the approximate
Kronecker product decomposition of the URA array response
given in (28), we can express

∣∣bH(µk)b(µk′)
∣∣ approximately

as given in (112), where the second approximate equality is
the result of applying (23) to (26) as well as (20). By denoting

x1 =e
− 2π2d2

λ2

(
σ2

ϕk
c2

k+σ2
ϕ

k′ c2
k′

)
,

x2 =e
− 2π2d2

λ2

(
σ2

θk
g2

k
+σ2

θ
k′ g2

k′

)
,

y1 =e
− 2π2d2

λ2

(
σ2

ϕk
l2k+σ2

ϕ
k′ l2

k′

)
,

y2 =e
− 2π2d2

λ2

(
σ2

θk
o2

k+σ2
θ

k′ o2
k′

)
,

we can rewrite (112) as (113). The third equality holds in
(113) because ϕ̄k′ and ϕ̄k as well as θ̄k′ and θ̄k are chosen
independently from a continuous distribution. Consequently,
ūk′ − ūk ̸= 0 as well as v̄k′ − v̄k ̸= 0 with probability equal to

∣∣bH(µk)b(µk′)
∣∣ ≈∣∣∣∣(bx(µk)N+1

2
⊗ by(µk)M+1

2

)H(
bx(µk′)N+1

2
⊗ by(µk′)M+1

2

)∣∣∣∣
=
∣∣∣∣(bH

x (µk)N+1
2

bx(µk′)N+1
2

)
⊗
(
bH

y (µk)M+1
2

by(µk′)M+1
2

)∣∣∣∣
≈
∣∣∣∣( M∑

m=1

ej
(
m−M+1

2

)
(ūk′−ūk)e

− 2π2d2

λ2

(
σ2

ϕk
c2

k+σ2
ϕ

k′ c2
k′

)
e
− 2π2d2

λ2

(
σ2

θk
g2

k
+σ2

θ
k′ g2

k′

))

×
( N∑

n=1

ej
(
n−N+1

2

)
(v̄k′−v̄k)e

− 2π2d2

λ2

(
σ2

ϕk
l2k+σ2

ϕ
k′ l2

k′

)
e
− 2π2d2

λ2

(
σ2

θk
o2

k+σ2
θ

k′ o2
k′

))∣∣∣∣. (112)

∣∣bH(µk)b(µk′)
∣∣ ≈∣∣∣∣( M∑

m=1

x1x2e
j
(
m−M+1

2

)
(ūk′−ūk)

)( N∑
n=1

y1y2e
j
(
n−N+1

2

)
(v̄k′−v̄k)

)∣∣∣∣
≤
∣∣∣∣( M∑

m=1

ej
(
m−M+1

2

)
(ūk′−ūk)

)( N∑
n=1

ej
(
n−N+1

2

)
(v̄k′−v̄k)

)∣∣∣∣
=

∣∣∣ej
(
−M+1

2

)
(ūk′−ūk)

(
1 − ej(ūk′−ūk)M

)∣∣∣
|1 − ej(ūk′−ūk)|

∣∣∣ej
(
−N+1

2

)
(v̄k′−v̄k)

(
1 − ej(v̄k′−v̄k)N

)∣∣∣
|1 − ej(v̄k′−v̄k)|

≤ 4
|1 − ej(ūk′−ūk)| |1 − ej(v̄k′−v̄k)|

. (113)
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one. Therefore, the two geometric series in (113) have ratios
ej(ūk′−ūk) ̸= 1 and ej(v̄k′−v̄k) ̸= 1. From (113), we have

lim
MN→∞

1
MN

∣∣bH(µk)b(µk′)
∣∣ = 0. (114)

On the other hand, it is straightforward to see that

1
MN

∣∣bH(µk)b(µk)
∣∣ = 1. (115)

This proves (92).

B. Derivation of Approximate FIM

Recalling the correction matrix Rx of the array signal vector
x(t), the (i, i′)th element of the FIM Jω,ω is defined as [41]

[
Jω,ω

]
i,i′

=T tr

(
R−1

x

∂Rx

∂
[
ω
]
i

R−1
x

∂Rx

∂
[
ω
]
i′

)
, (116)

where i, i′ = 1, 2, · · · , 4K + 1. To explicitly calculate
∂Rx/∂

[
ω
]
i

for 1 ≤ i ≤ 4K, we define the transformation
k = 1 + ⌊(i − 1)/4⌋. Based on (76) and (77), we obtain all
the partial derivatives, which are

∂Rx

∂ϕ̄k
≈Pk

(
Dϕ̄k

DkEkDH
k − DkEkDH

k Dϕ̄k
,

+ Dk

(
Ek ⊙ Eϕ̄k

)
DH

k

)
, (117)

∂Rx

∂θ̄k
≈Pk

(
Dθ̄k

DkEkDH
k − DkEkDH

k Dθ̄k

+ Dk

(
Ek ⊙ Eθ̄k

)
DH

k

)
, (118)

∂Rx

∂σϕk

≈Pk

(
Dk

(
Ek ⊙ Eσϕk

)
DH

k

)
, (119)

∂Rx

∂σθk

≈Pk

(
Dk

(
Ek ⊙ Eσθk

)
DH

k

)
, (120)

for 1 ≤ k ≤ K, and for i = 4K + 1
∂Rx

∂σ2
n

≈IMN , (121)

where the diagonal matrices Dϕ̄k
and Dθ̄k

are specified by[
Dϕ̄k

]
p,p

=j2π
d

λ
sin θ̄k

(
−
(
mp − M + 1

2

)
sin ϕ̄k

+
(
np − N + 1

2

)
cos ϕ̄k

)
, (122)

[
Dθ̄k

]
p,p

=j2π
d

λ
cos θ̄k

((
mp − M + 1

2

)
cos ϕ̄k

+
(
np − N + 1

2

)
sin ϕ̄k

)
, (123)

while the matrices Eϕ̄k
, Eθ̄k

, Eσϕk
and Eσθk

are specified
in (124) to (127), respectively. In (122) to (127), we have
p, q = 1, 2, · · · ,MN , while mp and np denote the numbers
of azimuth antenna elements and elevation antenna elements,
respectively, when the total number of antenna elements is p.
The symbols np and nq have the similar definitions.
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