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Abstract 32 

Climate change is a major threat to global biodiversity that will produce a range of new 33 

selection pressures. Understanding species responses to climate change requires an 34 

interdisciplinary perspective, combining ecological, molecular and environmental approaches. 35 

We propose an applied integrated framework to identify populations under threat from 36 

climate change based on their extent of exposure, inherent sensitivity due to adaptive and 37 

neutral genetic variation and range shift potential. We consider intraspecific vulnerability and 38 

population-level responses, an important but often neglected conservation research priority. 39 

We demonstrate how this framework can be applied to vertebrates with limited dispersal 40 

abilities using empirical data for the bat Plecotus austriacus. We use ecological niche 41 

modelling and environmental dissimilarity analysis to locate areas at high risk of exposure to 42 

future changes.  Combining outlier tests with genotype-environment association analysis we 43 

identify potential climate-adaptive SNPs in our genomic dataset and differences in the 44 

frequency of adaptive and neutral variation between populations. We assess landscape 45 

connectivity and show that changing environmental suitability may limit the future movement 46 

of individuals, thus affecting both the ability of populations to shift their distribution to 47 

climatically suitable areas and the probability of evolutionary rescue through the spread of 48 

adaptive genetic variation among populations. Therefore a better understanding of movement 49 

ecology and landscape connectivity is needed for predicting population persistence under 50 

climate change. Our study highlights the importance of incorporating genomic data to 51 

determine sensitivity, adaptive potential and range shift potential, instead of relying solely on 52 

exposure to guide species vulnerability assessments and conservation planning.  53 
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Introduction 54 

Climate change is a major threat to global biodiversity (IPCC, 2013). Increased periods of 55 

drought, thermal stress and extreme climatic events are likely to produce a range of new 56 

selection pressures (Hoffmann & Sgrò 2011). The ability of populations to respond to these 57 

changes depends on the rate and magnitude of climate change and individual adaptive 58 

capacity based on physiological sensitivity to change, phenotypic plasticity, genetic diversity 59 

and dispersal ability (Dawson et al. 2011). Many species are already affected by climate 60 

change, and as a result have displayed a variety of responses, including shifting their ranges 61 

and changes to phenotypes, genotypes, growth, phenology and ecological relationships 62 

(Peñuelas et al. 2013). Hence understanding how biodiversity responds to climate change 63 

requires an interdisciplinary perspective, combining ecological, molecular and environmental 64 

approaches, and an integrated assessment of exposure to changing climatic conditions, 65 

adaptive potential and movement ability. Yet while exposure is commonly used to assess 66 

species vulnerability to climate change, the other aspects of vulnerability, sensitivity and 67 

adaptive potential, have been largely neglected, thus precluding accurate estimations of 68 

species-specific vulnerability (Butt et al. 2016). 69 

Ecological niche models (ENMs), also known as species distribution models, offer an 70 

effective tool for forecasting how climate change may alter future species distributions and 71 

patterns of diversity (Elith et al. 2010). ENMs have been used extensively to identify species 72 

vulnerable to future changes (Pacifici et al. 2015) and predict global patterns of extinction 73 

risk (Urban, 2015). Their popularity is attributed to the availability of fine-scale climate 74 

change scenarios, the relative simplicity of the modelling procedures and the lack of detailed 75 

physiological and life history data necessary for parameterising more complex mechanistic or 76 
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demographic models (Guisan & Thuiller 2005; Thuiller et al. 2013). However, predictive 77 

modelling studies have been criticised for being over-simplistic because they rarely address 78 

evolutionary processes (Thuiller et al. 2013) or integrate genetic data to support and validate 79 

predictions (Gotelli & Stanton-Geddes 2015). 80 

The study of local adaptations to current climatic gradients can contribute to understanding 81 

the ability of populations to persist or adapt to rapid environmental change (Fournier-Level et 82 

al. 2011). Intraspecific variation in climatic tolerance will result in different responses to 83 

climate change below the species level, and therefore geographic areas that are most sensitive 84 

can be identified through mapping spatial patterns of local adaptations (Fitzpatrick & Keller 85 

2015). Recent technological advances and theoretical developments enable investigation of 86 

the genetic basis of adaptations and mechanisms of adaptive responses in wild populations 87 

(Orsini et al. 2013; Andrews et al. 2016). Studies researching patterns of genome variation 88 

demonstrated how adaptations to climatic conditions can shape the spatial distribution of 89 

variation in plants (Arabidopsis thaliana, Fournier-Level et al. 2011) and humans (Hancock et 90 

al. 2011). However, most research to date has focused mainly on model organisms and on 91 

genes thought to be involved in adaptations to current environmental conditions, rather than 92 

predicting responses to future conditions (Manel & Holderegger 2013). 93 

While some populations can persist through available genetic variation or their adaptive 94 

capacity, the persistence of many individuals depends on their ability to track suitable 95 

conditions in space through dispersal or by shifting to different habitats (Bellard et al. 2012). 96 

Understanding dispersal is important for predicting species responses to environmental 97 

change because it determines both the rate of distributional shifts and the rate of evolutionary 98 

adaptation to changing conditions through the spread of adaptive alleles among populations 99 
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(Travis et al. 2013). Landscape genetics, the study of the effects of environmental 100 

heterogeneity on the spatial distribution of genetic variation (Manel et al. 2003), can help 101 

identify barriers to dispersal that are likely to limit species ability to respond to climate 102 

change through tracking changes to their environmental niche (Scoble & Lowe 2010). A 103 

further, yet unexplored, application is to infer the effect of landscape connectivity on the 104 

probability of evolutionary adaptation through the spatial spread of adaptive variation 105 

between populations. Despite its potential as a predictive tool, thus far landscape genetics has 106 

been primarily applied in a descriptive manner (Manel & Holderegger 2013).  107 

We propose an applied framework that integrates ecological, molecular and environmental 108 

approaches to identify populations under threat from global climate change. Unlike previous 109 

climate change vulnerability assessments (e.g. Pearson et al. 2014; Pacifici et al. 2015), we 110 

consider the intraspecific level because populations will go extinct long before species, and it 111 

is populations, not species, that are the focus of conservation management. Our framework 112 

aims to address the lack of emphasis on sensitivity and adaptive capacity in vulnerability 113 

assessments used to inform conservation planning under climate change (Butt et al. 2016).  114 

We assess exposure to changing climatic conditions using predictive ENMs and spatial 115 

environmental data, sensitivity to climate change using genomic data to identify climate-116 

driven genetic adaptations, and range shift potential using a predictive landscape genetics 117 

approach (Fig. 1). This framework is aimed at organisms that are unlikely to genetically adapt 118 

fast enough through the spread of novel mutations in the population to keep pace with future 119 

changes due to their relatively long lifespans, long generation times and small population 120 

sizes (i.e. most vertebrates; Hoffmann & Sgrò 2011). Therefore instead of emphasising 121 

general adaptive capacity, like previous conceptual frameworks have done (e.g. Dawson et al. 122 
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2011), we focus on the ability to track future climatic suitability (range shift potential) and 123 

evolutionary adaptation through the spread of adaptive genetic variation among populations. 124 

We apply our integrated framework to the grey long-eared bat, Plecotus austriacus, a 125 

European bat species with relatively limited dispersal ability that is of conservation concern at 126 

the northern parts of its range (Van der Meij et al. 2015). We selected this species because its 127 

geographic distribution is limited by climate and its current patterns of genetic variation were 128 

shaped by past climatic changes (Razgour et al. 2013). Bats possess a number of traits that 129 

make them vulnerable to climate change, including low reproductive output, ecological 130 

specialisation and high trophic positions (Jones & Rebelo 2013). High surface-to-volume 131 

ratios due to large membranous, non-insulated wings, means that evaporative water loss is 132 

higher in bats than in other small mammals (Webb et al. 1995). As a result bats may require 133 

specific physiological adaptations to cope with increased temperatures and aridity (Muñoz-134 

Garcia et al. 2016). We aim to identify P. austriacus populations vulnerable to future climate 135 

change based on their extent of exposure to changing climatic conditions, sensitivity due to 136 

adaptive and neutral genetic variation and range shift potential. We use this case study to 137 

demonstrate how our integrated framework can inform conservation management under 138 

global environmental change. 139 

Materials and Methods 140 

Sampling design 141 

We collected non-lethal tissue samples (wing biopsies) from Plecotus austriacus bats, 142 

sampled between 2009 and 2013 from across the Iberian Peninsula (Iberia) and the south of 143 

England. These areas represent the species’ southern and northern range limits, as well as the 144 
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centre and margin of the species’ ecological niche, respectively. We included 10 populations 145 

(eight from Iberia, two from England) that had at least eight individuals with sufficiently high 146 

DNA quantity and quality (N=94). These populations represent different geographical areas 147 

and combinations of climatic conditions (Fig. 2; Table 1). All populations were located more 148 

than 90 km apart, exceeding the maximum recorded dispersal distance in this species (62 km; 149 

Riede 2001).  150 

Assessing exposure: environmental changes and ecological niche modelling 151 

ENMs were generated using the maximum entropy modelling approach Maxent v3.3.3 152 

(Phillips et al. 2006) to predict changes to the distribution of suitable conditions for P. 153 

austriacus under future climate change projections. Model extent was set as the whole of 154 

Europe to account for the full range of environmental conditions experienced by the species. 155 

Model resolution was set at ~1km to match the resolution of the climatic data used in the 156 

sensitivity analysis. ENMs were built using 142 genetically confirmed non-clustered location 157 

records (Razgour et al. 2013) and included six climatic variables with future projections for 158 

2070, a static topographic variable, slope, and a land cover variable with no fine-scale future 159 

projections (Table S1). We included land cover because such non-climatic variables can 160 

greatly improve ENM predictive performance, even in the absence of future projections 161 

(Stanton et al. 2012). Future projections were carried out using the HadCM3_ES General 162 

Circulation Model (www.worldclim.org) and the IPCC5 +8.5 W/m2 Representative 163 

Concentration Pathways scenario (IPCC 2013), representing the ‘worst case’ scenario, 164 

whereby human consumption of fossil fuels is expected to remain the same as at present 165 

(Appendix 1 for further details on variable selection and model parameterisation).  166 
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The predictive power of the ENMs was evaluated from ten cross-validations, using the Area 167 

Under the Receiver Operator Curve (AUC) criteria. Climatic suitability was determined based 168 

on predicted relative probability of occurrence and was averaged across the four cells adjacent 169 

to the population location to cover the colony home range (Razgour et al. 2011). To calculate 170 

changes in range suitability within Iberia, continuous occurrence probability model outputs 171 

were reclassified into binary maps using the thresholding method that maximises the sum of 172 

sensitivity and specificity (as recommended by Liu et al. 2013). 173 

Maximum temperatures and summer rainfall (Bio5 and Bio18, downloaded from WorldClim, 174 

www.worldclim.org) were used to test for environmental dissimilarity between current and 175 

future (2070) conditions. These variables represent climatic conditions that are predicted to 176 

change under future projections for Iberia (Diffenbaugh & Field 2013) and are likely to affect 177 

bats. Increased aridity and prolonged droughts around the Mediterranean are predicted to 178 

affect insect prey availability during the summer (Frampton et al. 2000), and thus decrease 179 

reproductive success in bats (Adams 2010; Amorim et al. 2015). In addition, bat survival in 180 

warmer and more arid conditions requires physiological adaptations to reduce evaporative 181 

water loss (Muñoz-Garcia et al., 2016).  182 

Assessing sensitivity: genomic data analysis 183 

We generated a genomic dataset containing thousands of anonymous genetic loci from across 184 

the P. austriacus genome using the reduced-representation genome sequencing method 185 

double digest Restriction-site Associated DNA Sequencing, ddRADseq (Miller et al. 2007; 186 

Peterson et al. 2012; library construction and sequencing protocols outlined in Appendix 1). 187 

Bioinformatics of the high throughput sequencing data was carried out using the STACKS 188 

pipeline (Catchen et al. 2013; details in Appendix 1). To improve robustness of the dataset 189 
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only RAD loci that contained fewer than three SNPs, and were genotyped in at least 70% of 190 

the samples (67 individuals) were considered for analysis. The SNP dataset was processed in 191 

Plink v1.9 (Purcell et al. 2007) to remove individuals that had more than 50% missing data 192 

and loci with more than 30% missing data and minor allele frequencies below 0.03 (alleles 193 

present in less than three individuals). We also removed close relatives (based on identity-by-194 

state distances, PI HAT >0.5) and loci that were out of Hardy-Weinberg equilibrium (P 195 

<0.01) in more than two populations. Population-level analyses were carried out on 196 

populations containing a minimum of seven individuals to ensure an adequate representation 197 

of allele frequencies (Willing et al. 2012). 198 

Genetic population structure was determined using individual-based Bayesian assignment 199 

tests, implemented in the programme STRUCTURE v2.3.4 (Pritchard et al. 2000) (Appendix 200 

1 for STRUCTURE running procedures). The significance of genetic differences between 201 

populations and geographic regions (England versus Iberia) was determined based on a 202 

multilocus Analysis of Molecular Variance (AMOVA) implemented in the R package 203 

GStudio (Dyer 2009).  204 

Identifying a signature of climate-driven adaptations 205 

To identify a signature of climate-driven local adaptations we combined population genomics 206 

and ecological approaches. Outlier tests, as implemented in the programmes Bayescan (Foll & 207 

Gaggiotti 2008) and LOSITAN (FDist, Antao et al. 2008) were used to identify SNPs 208 

potentially under directional selection, or linked with genes under selection, based on higher 209 

levels of genetic differentiation among populations relative to expected neutral distributions 210 

(Appendix 1 for test parameters). Allele frequencies of SNPs identified as outliers were 211 
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correlated against environmental variables (maximum temperature and summer rainfall) using 212 

logistic regressions (glm function in R), as described by Schoville et al. (2013). 213 

We carried out a genotype-environment association analysis to test for associations between 214 

allele frequencies and local environmental variables (maximum temperature and summer 215 

rainfall). We used the latent factor mixed model (LFMM) approach, implemented in the R 216 

package LEA (Frichot & François 2015). We corrected for population structure through 217 

including the number of populations (K) identified by STRUCTURE assignment tests as 218 

latent factors in the models. We performed five LFMM repetition runs with 1,000,000 219 

iterations and 500,000 iterations for burn-in. Z-scores of multiple runs were combined using 220 

the median value and p-values were adjusted for expected FDR of 0.05 (following the 221 

procedures in Frichot & François 2015; Appendix 2 for LFMM R script). SNPs that were 222 

found to be both under directional selection based on outlier tests and statistically associated 223 

with climatic variables based on the genotype-environment association analysis were 224 

classified as potentially associated with climate-adaptive genetic variation, i.e. with 225 

adaptations to local climatic conditions. However it is important to note that these SNPs may 226 

represent genomic regions linked to genes under selection rather than specific climate-227 

adaptive genes. 228 

Genotype-environment associations between SNPs and climatic variables were investigated at 229 

two scales, across the whole study area (England and Iberia) and within Iberia, to account for 230 

clines in allele frequencies at neutral loci due to genetic drift and allele surfing during 231 

population expansion (Excoffier & Ray 2008). The Iberian Peninsula acted as the main glacial 232 

refugium for P. austriacus, where a stable population was maintained across glacial cycles 233 

(Razgour et al. 2013). Hence SNPs identified as potentially under selection within this area 234 
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likely reflect true climate-driven adaptations rather than artefacts of neutral processes that 235 

occurred during post-glacial range expansion.  236 

Patterns of neutral genetic variation 237 

Neutral genetic diversity was estimated based on levels of heterozygosity in the population 238 

after excluding SNPs identified as outliers (under selection) by Bayescan. We used the --het 239 

function in Plink to compare observed and expected individual levels of homozygosity. 240 

Heterozygosity was calculated as 1- (mean population F), F being the coefficient estimation 241 

of observed (Obs) versus expected (Exp) homozygosity (Hom):  242 

F = (Obs_Hom – Exp_Hom) / (Total – Exp_Hom). 243 

Assessing range shift potential: landscape genetics analysis  244 

Genetic distances between pairs of populations were estimated separately for the neutral SNP 245 

dataset and for SNPs identified as a potentially under climate-driven selection, using the Fst 246 

measure of genetic differentiation in the R package diveRsity (Keenan et al. 2013). 247 

Geographic (Euclidean) distances between populations were calculated in ArcGIS v10 248 

(ESRI). The analysis included landscape variables and resistance costs that were previously 249 

shown to affect functional connectivity in P. austriacus (Razgour et al. 2014; Razgour 2015): 250 

habitat suitability measured through ENMs, forest cover variables, altitude and slope. We did 251 

not include landscape variables that were highly correlated with other variables or geographic 252 

distance (R2 > 0.70) because they can lead to the identification of spurious inferences 253 

(Cushman et al. 2013).  254 

Landscape variables were converted to resistance cost surfaces in ArcGIS and were assigned 255 

resistance costs ranging from one (no resistance to movement) to 100 (strong barrier to 256 
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movement). The sea was assigned a resistance cost of 200 to reflect the lower likelihood of 257 

bats crossing large expanses of water than land because previous studies have found limited 258 

gene flow across seas in this species (Razgour et al. 2014). We tested the effect of decreasing 259 

the resistance costs of crossing the sea to 120. We tested how changing the resistance costs of 260 

the different landscape variables and converting continuous into categorical variables affected 261 

the strength of the model associations with genetic differentiation (Appendix 1 for generating 262 

resistance cost surfaces).  263 

Circuitscape v4.0.5 (McRae 2006) was used to calculate resistance distance matrices between 264 

populations and estimate potential movement pathways across the landscape based on the 265 

cumulative cost of movement due to landscape resistance. We used the nine populations as 266 

our focal nodes and selected the ‘pairwise’ modelling mode (iterating across all population 267 

pairs in focal node file). Movement pathways (cumulative current maps) were generated 268 

based on present and future (2070) conditions to assess the future movement potential of 269 

individuals and adaptive genetic variation among populations. 270 

We used Multiple Regressions on Distance Matrices (MRDM in the R package ecodist; 271 

Goslee & Urban 2007) with 10,000 permutations to test for the effect of landscape variables 272 

on genetic differentiation (as a surrogate for gene flow and individual movement) between 273 

population pairs. We ran MRDM between Fst and all landscape variables and their different 274 

resistance costs to select the resistance cost combinations that showed the strongest 275 

correlations. Following Dyer et al. (2010), we accounted for the effect of geographic distance 276 

using a stepwise approach. We first ran MRDM between Fst and geographic distance, and 277 

then used the residuals from the regression as the response variable in subsequent MRDM 278 

models to test for associations with landscape variables. The best-fit model was selected 279 
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based on highest R2 values and significant P values for all variables (P<0.05). MRDM was 280 

also used to test whether genetic differentiation (Fst) between populations in climate-adaptive 281 

SNPs was a function of environmental dissimilarity (differences in maximum temperature and 282 

summer rainfall) between locations (isolation by environment). 283 

Identifying level of risk 284 

We developed a quantitative approach to identify the level of risk to populations from future 285 

climate change based on our three framework components, exposure, sensitivity and range 286 

shift potential. Assigned levels of risk aim to guide conservation prioritisation and inform 287 

management decisions through highlighting which aspects should be the focus of 288 

conservation action.  289 

Exposure was ranked from low (1) to high (4) based on changes in climatic suitability as 290 

predicted by the ENMs (reduction in relative probability of occurrence and changes from 291 

suitable to unsuitable conditions) and the extent of environmental dissimilarity between 292 

present and future conditions (Table 2). 293 

Sensitivity was determined based on the frequency of alleles in SNPs identified as potentially 294 

associated with warmer and drier climatic conditions (adaptive sensitivity), as well as overall 295 

levels of neutral genetic diversity (neutral sensitivity). Levels of adaptive sensitivity were 296 

determined based on the frequency of potential climate-adaptive alleles in the population, 297 

looking at both overall mean frequencies across all loci (high [++ or +] <0.50; medium [0] – 298 

low [-] >0.50), and number of adaptive alleles present at particularly low frequencies (<0.25) 299 

in the population (Table 3). Levels of neutral sensitivity were assessed based on the potential 300 

contribution of neutral genetic diversity to future adaptive potential (- low sensitivity due to 301 
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high levels of neutral genetic diversity; 0 medium sensitivity; + high sensitivity due to 302 

relatively low levels of genetic diversity). The two measures were combined together to give 303 

a single measure of overall sensitivity. 304 

Range shift potential was determined according to the degree of connectivity to other 305 

populations under future conditions or to areas predicted to be climatically suitable, as 306 

estimated based on Circuitscape movement density (cumulative current) maps. Populations 307 

were deemed to have low range shift potential if they were predicted to become isolated (low 308 

connectivity) under future conditions, or only connected to adjacent populations and 309 

climatically unsuitable areas.     310 

The three framework components were combined together to determine the level of risk to 311 

Iberian populations of P. austriacus, ranging from low to high risk. When combining the 312 

three components we placed higher weights on exposure to future changes in climatic 313 

conditions (Table 4).  314 

Results 315 

Exposure to climate change 316 

ENMs had high discrimination and predictive abilities (AUCtrain=0.892, ACUtest=0.821). The 317 

main variables affecting habitat suitability for P. austriacus were winter and summer 318 

temperatures, summer rainfall and land cover (Fig. S1). Future models predicted 66.3% 319 

reduction in the suitable range of P. austriacus within Iberia. Under present conditions, 54.8% 320 

of Iberia was predicted to be climatically suitable, but only 18.5% was predicted to remain 321 

suitable by 2070. All populations were found within climatically suitable areas under present 322 

conditions. Under future conditions, five Iberian populations were predicted to occur either in 323 

Page 14 of 51Molecular Ecology Resources



15 
 

climatically unsuitable areas (Albacete, Valencia and Girona) or in small isolated fragments 324 

of suitable habitats (Granada and Valladolid). Habitat suitability was predicted to increase 325 

slightly in England and around the north Iberian coast (Fig. 3).  326 

Analysis of environmental dissimilarity between current and future conditions predicted that 327 

the central and eastern populations (Valladolid, Albacete and Valencia) will experience the 328 

greatest increase in maximum temperatures (>7˚C) and the greatest proportional reduction in 329 

summer rainfall (48-55%; Table 5). Based on ENM predicted changes in climatic suitability 330 

and the extent of environmental dissimilarity between present and future conditions, two 331 

populations were assigned high exposure values (Albacete and Valencia), two medium-high 332 

(Girona and Valladolid), one medium-low (Granada) and two low (Lisboa and Bizkaia; Table 333 

6). 334 

Assessing sensitivity to climate change 335 

From the high throughput sequencing we identified 39,825,843 de-multiplexed, paired-end 336 

reads, from which Stacks resolved 11,116 RAD tags that were present in at least 70% (n=67) 337 

of all individuals screened and contained a maximum of 3 SNPs (average of 7719±2474 tags 338 

per individual) . After excluding individuals and SNPs with low coverage and removing SNPs 339 

with low minor allele frequencies, the final genotype dataset contained 6067 SNPs scored 340 

from 83 individuals, belonging to 10 populations, with a total genotyping rate of 0.919. All 341 

populations had an average coverage >70% (Table 1). The population with the oldest 342 

samples, Vila Real, only contained three individuals with high enough coverage, and was 343 

therefore removed from population-level analyses, but the three individuals were retained in 344 

individual-level analyses (STRUCTURE and LFMM).  345 
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Adaptive genetic variation 346 

Bayescan identified 24 outlier SNPs potentially under selection. LOSITAN identified 224 347 

SNPs as potentially under directional selection, which included 20 of the outlier SNPs also 348 

identified by Bayescan. Allele frequencies in 13 outlier SNPs were significantly correlated 349 

with either maximum temperatures (11 SNPs) or summer rainfall (10 SNPs). Significant 350 

correlations were also identified within Iberia between five SNPs and maximum temperatures 351 

and seven SNPs and summer rainfall (Table S2).  352 

STRUCTURE assignment tests divided the full dataset into two main genetic clusters, 353 

separating the English and Iberian samples. The Iberian cluster was further divided into two 354 

clusters, separating the two northern populations, Bizkaia and Girona (Fig. S2). Therefore 355 

LFMM was run with three latent factors for the full dataset and two for Iberia. LFMM 356 

detected 93 outlier SNPs associated with maximum temperatures and 129 SNPs with summer 357 

rainfall across the study area. In the Iberia-only dataset, 177 SNPs were associated with 358 

maximum temperatures and 278 with summer rainfall. We identified eight SNPs potentially 359 

associated with climate-adaptive genetic variation that were supported by all methods 360 

(Bayescan, LFMM and logistic regressions; Table S3). The spatial distribution of genetic 361 

variation in SNPs identified as potentially climate-adaptive indicates a lower frequency of 362 

warm and dry adaptive alleles in the north and eastern Iberian populations (Bizkaia, Girona 363 

and Valencia; Fig. S3; Table S4), and therefore these populations were classified as having 364 

high adaptive sensitivity to climate change. 365 

Genetic differentiation in SNPs identified as potentially associated with climate-adaptive 366 

genetic variation was high overall (mean Fst=0.245±0.15), but was substantially lower among 367 

the north and eastern Iberian populations and among the southern and western populations. 368 
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Highest levels of differentiation were found between one English population (Devon) and 369 

most other populations, apart from the north Iberian populations (Table S5). Genetic 370 

differentiation in these climate-adaptive SNPs was related to environmental dissimilarity 371 

between locations. Across the study area, genetic differentiation was correlated with 372 

dissimilarity in both maximum temperatures (MRDM: R2=0.173, F=7.1, P=0.01) and summer 373 

rainfall (R2=0.137, F=5.4, P=0.023), while within Iberia it was correlated with summer 374 

rainfall (R2= 0.228, F=5.6, P=0.028; Fig. S4). 375 

Neutral genetic variation 376 

Genetic differentiation between populations based on the neutral dataset ranged between 377 

0.024 and 0.106 (mean Fst=0.056±0.03), with highest values between the English populations 378 

and all Iberian populations (Table S4). Genetic differences between populations (Multilocus 379 

AMOVA: R2=0.490, P<0.001) and regions (R2=0.245, P<0.001) were highly significant. 380 

Differences between populations remained significant within Iberia (R2=0.279, P<0.001).  381 

Levels of neutral genetic diversity were lowest in the English populations, especially Dorset 382 

(Heterozygosity=0.664). Iberian populations had generally high levels of heterozygosity, with 383 

relatively lower levels in Granada (0.844) and Lisboa (0.885), and highest levels in Valencia, 384 

Bizkaia and Valladolid (all >0.95). Relative neutral genetic diversity was ranked from low 385 

(Heterozygosity<0.75) to medium (0.75-0.9) and high (>0.9) (Table S6). 386 

Determining range shift potential 387 

Genetic differentiation in neutral markers across the study area was positively related to 388 

geographic distance (MRDM: R2=0.649, F=63.1, P=0.0001) and to landscape resistance due 389 

to decreasing habitat suitability, as measured by the ENM (R2=0.842, F=180.7, P=0.0001), 390 
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decreasing forest cover (R2=0.588, F=48.6, P=0.0001), increasing altitude (R2=0.299, F=14.5, 391 

P=0.0004) and increasing slope (R2=0.667, F=68.2, P=0.0001). The ENM showed the 392 

strongest correlations with genetic differentiation and was the only landscape variable that 393 

remained significant after accounting for geographic distance (R2=0.197, F=8.3, P=0.005; 394 

Table S7). We obtained identical results when decreasing the resistance costs of dispersal 395 

over sea to 120 (Table S8). 396 

Under present conditions, all Iberian populations showed high levels of landscape 397 

connectivity. Particularly high density of movement was predicted along the east coast of 398 

Iberia, connecting the southern and north-eastern populations, and across the east-to-west 399 

central axis of the peninsula. Overall density of movement was predicted to decrease under 400 

future conditions, resulting in reduced connectivity between most populations and 401 

geographical areas. In particular, eastern (Valencia), central (Albacete and Valladolid) and 402 

southern (Granada) populations were predicted to become isolated, and were therefore 403 

assigned low range shift potential. However landscape connectivity was predicted to increase 404 

across the Pyrenees between the two northern populations and along the north Atlantic coast. 405 

Movement out of Iberia appears to be limited both under present and future conditions, but 406 

Iberia is predicted to become isolated under future conditions due to decreased habitat 407 

suitability in southern France (Fig. 3). 408 

Identifying populations under threat 409 

When combining the effect of the three framework components we identified one Iberian 410 

population (Valencia, east coast) at high risk due to high changes in climatic suitability (from 411 

suitable to unsuitable and high increases in maximum temperatures and reductions in summer 412 

rainfall), low frequency of SNPs identified as associated with climate-adaptive genetic 413 
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variation and limited future landscape connectivity. We identified two additional populations 414 

in the central regions (Albacete and Valladolid) that are of medium-high risk because despite 415 

high exposure to future changes and limited future connectivity, they have a relatively high 416 

frequency of adaptive genetic variation and high levels of neutral genetic diversity. In 417 

contrast, populations along the Atlantic coast (north and north-west of the peninsula) are 418 

likely to be of lower risk due to more limited changes in climatic suitability and either high 419 

future landscape connectivity or lower sensitivity (Table 6).  420 

Discussion 421 

We propose an applied integrated framework to identify wildlife populations under threat 422 

from future climate change based on their extent of exposure to changing climatic conditions, 423 

inherent sensitivity due to identified signatures of adaptive and neutral genetic variation and 424 

range shift potential (Fig. 1). Our framework aims to address an important challenge 425 

hampering conservation planning for species under climate change, the lack of inclusion of 426 

measures of sensitivity and adaptive capacity in assessments of vulnerability, which currently 427 

mainly focus on climate exposure (Butt et al. 2016).  While previous studies discussed the 428 

importance of including sensitivity and adaptive capacity when assessing climate change 429 

vulnerability (e.g. Williams et al. 2008; Dawson et al. 2011; Pearson et al. 2014), this is the 430 

first study to directly incorporate empirical genomic data to quantify sensitivity and assess 431 

adaptive potential through the spread of adaptive genetic variation among populations. 432 

Moreover, unlike previous studies, we consider intraspecific vulnerability and population-433 

level responses to global climate change, an important but often neglected research priority in 434 

conservation biology. 435 
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Exposure to changing climatic conditions 436 

To assess exposure to future climate change we combined ENMs with a comparison of 437 

environmental dissimilarity between current and future conditions in key climatic variables 438 

that are likely to affect bat survival and reproductive success. This helped identify priority 439 

areas that are predicted to experience the greatest magnitude of change, the central regions 440 

and the Mediterranean coast. However, it is important to note that apart from north and 441 

northwest Atlantic coast areas, all Iberian populations are projected to experience maximum 442 

temperatures outside the current thermal range of the species. Indeed, the entire Iberian 443 

Peninsula is recognised as being under high threat from the effects of future climate change, 444 

and Mediterranean ecosystems are predicted to experience the greatest biodiversity changes in 445 

Europe due to the combined effect of climate and land use changes (Sala et al. 2000). In line 446 

with previous studies (Razgour et al. 2013), the ENM analysis predicts range contractions for 447 

P. austriacus across the southern part of its range, accompanied by expansion into more 448 

northern latitudes. The inclusion of land cover variables and finer-scale resolution in the 449 

ENMs resulted in less severe projections of future range losses in Iberia, but greater projected 450 

losses in France, which will isolate the Iberian Peninsula.  451 

Our assessment of exposure disregards the role of phenotypic plasticity or genetic adaptations 452 

in enabling populations to persist in areas predicted to experience climatic conditions outside 453 

the species’ current environmental niche (Hoffmann & Sgrò 2011). However, evidence of 454 

niche conservatism in climatic tolerance suggests that this species may be unable to survive in 455 

climatically unsuitable areas in the future (Razgour et al. 2013). 456 
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Sensitivity due to adaptive and neutral genetic variation 457 

Understanding adaptive genetic responses to environmental change in wild populations is 458 

essential for biodiversity conservation under global change. Monitoring adaptive responses 459 

can help identify populations and species that are not able to evolve fast enough to persist in 460 

rapidly changing environments, and suitable donor populations that can help increase adaptive 461 

potential through evolutionary rescue (Hansen et al. 2012). Yet even though it is recognised 462 

that genetic variability is essential for the ability of species to adapt to environmental changes, 463 

genetic components are often neglected in future climate change studies (Pauls et al. 2013) 464 

and the genetic basis of evolutionary responses to climate change is still poorly understood 465 

(Franks & Hoffmann 2012). 466 

Advances in sequencing technologies have enabled genomic research on non-model 467 

organisms and wild populations, and opened the door to identifying genetic features 468 

underlying local adaptations, thus advancing our understanding of natural selection and 469 

evolution (Hoban et al. 2016). However sequencing costs are still prohibitively expensive 470 

when sampling a large number of individuals, particularly when a reference genome is not 471 

available (Narum et al. 2013). Alternative approaches, such as ddRADseq, offer an affordable 472 

way of obtaining a genome-wide perspective by targeting only a fraction of the genome, 473 

rendering them particularly suitable for answering ecological and conservation questions 474 

(Andrews et al. 2016). Such reduced representation techniques only sequence a small fraction 475 

of the genome, and therefore only offer an indication of available adaptive genetic variation 476 

(Lowry et al. 2017). Nevertheless, because RADseq provides a random sample of the genome 477 

it is a powerful and efficient approach to study selection in natural populations and test for 478 

evidence of adaptive differentiation and its geographical distribution (Catchen et al. 2017).  479 
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Bats have been the subjects of several recent genomic studies, shedding light on the evolution 480 

of flight (Zhang et al. 2013) and echolocation (Parker et al. 2013). However this is the first 481 

study to identify a signature of climate-driven selection in bats. By combining population 482 

genomics and ecological approaches we identified eight SNPs representing genomic regions 483 

that are potentially associated with climate-adaptive genetic variation. While genetic 484 

differentiation in neutral SNPs was related to the effect of the landscape matrix on movement 485 

between populations, differentiation in climate-adaptive SNPs was correlated with 486 

environmental dissimilarity between locations, indicating a pattern of isolation by 487 

environment as a result of local adaptations (Wang & Bradburd 2014).  488 

Adaptation to local environmental conditions is thought to involve subtle changes in allele 489 

frequencies because gene flow between populations can counteract local adaptations and the 490 

fixation of adaptive alleles (Rellstab et al. 2015). These subtle changes, i.e. soft selective 491 

sweeps, are harder to detect by genome scans for outlier loci, especially when selection has 492 

not had sufficient time to substantially shift allele frequencies (Stapley et al. 2010). 493 

Approaches that are driven by ecological hypotheses (genotype-environment association 494 

analysis) are better able to detect ecologically relevant loci with small effects involved in 495 

local environmental adaptations (Joost et al. 2013). Because only population genomic 496 

approaches can detect complete selective sweeps, while ecological approaches are better 497 

suited for detecting subtle changes, combining both approaches is essential for obtaining a 498 

complete perspective on climate-driven genetic adaptations. Ideally, where possible, these 499 

approaches should be combined with experimental testing and functional validation of fitness 500 

or a trait in the absence of the putative adaptive alleles, though such validation is still 501 

impossible for most experimental systems (Hoban et al. 2016). 502 
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Our framework focuses on an assessment of sensitivity to changes in climate based on 503 

genomic data. Sensitivity can also be assessed using experimental evolutionary approaches. 504 

Experimental studies measuring heritability of climate-related traits in various plant species 505 

and Drosophila exposed to simulated climatic changes found that rates of evolution may be 506 

too slow to match predicted rates of future climate change (reviewed in Jump & Peñuelas 507 

2005). More recently, studies, primarily of plants, have combined genomic and experimental 508 

approaches to identify local adaptations and genes under climate-driven selection based on 509 

differential fitness of geographically diverse ecotypes raised under common garden 510 

experiments (e.g. Fournier-Level et al. 2011; Savolainen et al. 2013). However, such 511 

experimental approaches are not feasible for long-lived organisms with long generation time 512 

and for many species of conservation concern, and results from such experiments may not 513 

always be relevant for natural populations (Bailey & Bataillon 2015). Even in cases where an 514 

experimental approach was applied to animals, field common garden studies have largely 515 

failed to successfully incorporate fitness and genomic data (Savolainen et al. 2013). 516 

Therefore, in our framework we focus on the genomic approach, but acknowledge that 517 

sensitivity to climate change can be assessed using other approaches. 518 

Landscape connectivity and range shift potential 519 

Our framework applies primarily to relatively long-lived vertebrates with long generation 520 

times and small population sizes, in which the rate of emergence and spread of novel adaptive 521 

alleles in populations through de-novo mutations is likely to be too slow to respond to rapid 522 

future climate changes (Hoffman & Sgrò 2011). Therefore, we emphasise the role of 523 

landscape connectivity as an important component influencing the ability of populations to 524 

respond to future changes through the spread of adaptive alleles between populations.   525 
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Through combining landscape genetics with ENMs we determined the effect of landscape 526 

connectivity on movement patterns and the ability of P. austriacus to respond to climate 527 

change by tracking changes to its environmental niche. We found that habitat suitability is the 528 

main barrier to movement across the western part of this species’ range. Using a predictive 529 

landscape genetics approach, we showed how changing niche suitability is likely to limit the 530 

future movement of individuals both within and out of Iberia. Species movement patterns are 531 

not only a function of external factors like landscape connectivity, but also of internal factors, 532 

like species’ movement capacity (Nathan et al. 2008). The maximum recorded dispersal 533 

distance in P. austriacus, 62 km (Riede 2001), is insufficient for individuals from most 534 

Iberian populations to reach climatically suitable areas. Therefore range shifts are more likely 535 

to be a gradual stepping stone process, involving the establishment of populations followed by 536 

further dispersal events. This highlights the importance of the availability of suitable habitats 537 

for range shifts in limited dispersal species.  538 

Restricted future landscape connectivity will limit the movement of individuals between 539 

populations and consequently reduce the rate of evolutionary adaptation to changing 540 

conditions through reducing the spread of adaptive alleles among populations. Therefore 541 

evolutionary rescue is unlikely without assisted translocation of individuals into populations 542 

with a low frequency of alleles associated with warm and dry conditions. However even 543 

under high dispersal or translocation scenarios, evolutionary rescue in spatially structured 544 

populations may be impeded by local adaptations to heterogeneous environments that reduce 545 

the fitness of migrants carrying climate-adaptive alleles (Schiffers et al. 2013). This further 546 

strengthens the urgent need for an integrated framework to identify populations at high risk 547 

and suitable donor populations based on patterns of adaptation to local environmental 548 

conditions. 549 
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Conclusions 550 

We developed an integrated framework to assess vulnerability to future climate change. We 551 

demonstrate how our framework can be applied to vertebrates with relatively limited dispersal 552 

abilities through combining genomic data with ENMs, spatial analysis and a predictive 553 

landscape genetics approach under a risk assessment framework. Our study highlights the 554 

importance of incorporating ecological and genomic data to predict both the sensitivity of 555 

populations to future changes and their ability to shift their distribution to track changes in 556 

environmental suitability.  As evolutionary rescue in most vertebrates and species of 557 

conservation concern is more likely to occur through the movement of individuals with 558 

adaptive alleles between populations (Vander Wal et al. 2013), understanding movement 559 

ecology and limits to future landscape connectivity is essential for predicting the ability of 560 

populations to persist under climate change.  561 

Assigned levels of threat can help prioritise and inform conservation action under climate 562 

change. Conservation management can focus on either rescuing high risk populations 563 

(through translocation of the entire population or of individuals with relevant adaptive 564 

variation into the population) or increasing landscape connectivity to facilitate range shifts 565 

and the spread of adaptive genetic variation to reduce threats to medium and medium-high 566 

risk populations. As such our framework can contribute to transforming conservation 567 

management under climate change from a crisis-driven response to more anticipatory and 568 

predictive measures (Gillson et al. 2013). 569 
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Table 1 – Plecotus austriacus populations included in the final genomic dataset with location, 791 

region, geographical area within the region, GPS coordinates (WGS1984), number of 792 

individuals and average population SNP dataset coverage. 793 

Population Year Region Area Latitude Longitude Number of 
individuals 

Average 
coverage 

Lisboa 2013 Iberia West 38.764 -9.250 10 91.2% 

Bizkaia 2013 Iberia North 43.331 -2.782 10 99.0% 

Girona 2013 Iberia North-
East 

42.323 3.166 9 95.0% 

Granada 2013 Iberia South 37.109 -4.170 8 85.0% 

Albacete 2013 Iberia Centre-
East 

39.296 -2.069 9 97.2% 

Valladolid 2013 Iberia Centre-
North 

41.581 -4.586 10 98.3% 

Valencia 2013 Iberia East 
coast 

39.409 -0.960 9 98.6% 

Vila Real 2009 Iberia North-
West 

41.300 -7.800 3 73.4% 

Devon 2011- 
2013 

England South-
West 

50.552 -3.550 8 90.3% 

Dorset 2011 England South-
Centre 

50.645 -2.315 7 71.7% 

 794 

  795 
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Table 2 – Variables and categories used to assess level of exposure to future changing 796 

climatic conditions. Formula indicates whether all variables were combined together or only 797 

one or two needed to be true. ENM refers to the outputs of the ecological niche model – 798 

continuous output for changes in relative occurrence probability, or binary output for changes 799 

in climatic suitability. Temperature and rainfall dissimilarity refer to differences between 800 

present and future (2070) conditions. 801 

Level of 
Exposure Formula ENM 

Temperature 
dissimilarity 

Rainfall 
dissimilarity 

1 (low) 
ENM + Temp 
+ Rain 

- Change in relative occurrence 
probability <25% 

low: <6°C 
increase 

low: <25% 
decrease 

- Area remains climatically 
suitable 

2 (medium-
low) 

ENM + (Temp 
OR Rain) 

- Change in relative occurrence 
probability >25% 

medium: 6-8°C 
increase 

medium: 25-
50% 
decrease 

- Area remains climatically 
suitable 

3 (medium-
high) 

ENM OR 
Temp OR 
Rain 

Area changed from climatically 
suitable to unsuitable 

high: >8°C 
increase 

high: >50% 
decrease 

4 (high) 
ENM + (Temp 
OR Rain) 

Area changed from climatically 
suitable to unsuitable 

high: >8°C 
increase 

high: >50% 
decrease 

 802 

  803 
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Table 3 – Assessment of sensitivity based on the frequency of alleles identified as potentially 804 

associated with climate-adaptive genetic variation in the population.  805 

Level of Sensitivity 
Mean frequency across all 
adaptive loci 

No. adaptive alleles at 
frequency <0.25 

Very high (++) < 0.5 more than a third 

High (+) < 0.5 less than a third 

Medium (0) ≥ 0.5 at least one 

Low (-) > 0.5 none 

 806 

  807 
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Table 4 – Integrating measures of exposure (Table 2), sensitivity (Table 3) and range shift 808 

potential to assess overall level of risk. Formula indicates whether all measures were 809 

combined together or only two needed to be true (Exp-Exposure, Sen-Sensitivity, Range-810 

Range shift potential). 811 

Risk Level Formula Exposure Sensitivity Range shift 

Low Exp + (Sen OR Range) 1 low (-) high (+) 

Low Exp + Sen + Range 2 low (-) high (+) 

Medium Exp + (Sen OR Range) 2 mid (0) - high (+) low (-) 

Medium Exp + Sen + Range 3 low (-) - mid (0) high (+) 

Medium-High Exp + (Sen OR Range) 3-4 high (+ / ++) low (-) 

High Exp + Sen + Range 3-4 high (+ / ++) low (-) 

 812 

 813 
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Table 5 – Changes in climatic conditions (Tmax=maximum temperatures, Rain=summer rainfall) and climatic suitability (based on the 814 

ecological niche model (ENM) predicted occurrence probability) for Plecotus austriacus populations in Iberia and England. Locations where the 815 

greatest changes are predicted to occur (>8˚C increase in maximum temperatures, >50% decrease in summer rainfall and change from suitable to 816 

unsuitable areas) are highlighted in grey. 817 

Population Tmax (˚C) 

Rain 

(mm) 

ENM 

(climatic 

suitability) 

2070 

Tmax (˚C) 

2070 Rain 

(mm) 

2070  

ENM 

Change 

Tmax (˚C) 

Change 

Rain 

(mm) 

% Change 

Rain 

% Change 

ENM 

Lisboa 25.3 36 100 28.6 28 80 +3.3 -8 -22.2 -20.0 

Bizkaia 23.6 225 38 29.9 120 40 +6.3 -105 -46.7 +5.3 

Girona 25.6 159 76 32.1 90 7 +6.5 -69 -43.4 -90.8 

Granada 30.0 45 80 36.9 39 37 +6.9 -6 -13.3 -52.5 

Albacete 31.6 61 34 40.4 27 17 +8.8 -34 -55.7 -50.0 

Valladolid 29.3 65 56 38.4 34 41 +9.1 -31 -47.7 -26.8 

Valencia 28.5 87 44 35.6 42 5 +7.1 -45 -51.7 -88.6 

Devon 19.8 171 90 25.5 107 95 +5.7 -64 -37.4 +5.6 

Dorset 20.8 164 60 27.4 98 63 +6.6 -66 -40.2 +5.0 

 818 

  819 
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Table 6 – Identified level of risk to Iberian populations of Plecotus austriacus based on their 820 

extent of exposure to climate change (1=low; 2=medium; 3=medium-high; 4=high), overall 821 

sensitivity (+ high; 0 medium; - low), with sensitivity based on climatic adaptations and 822 

neutral genetic diversity in brackets, and range shift potential (+ high future connectivity; - 823 

low connectivity).  824 

Population Exposure 

Sensitivity 

(adaptive; neutral) Range Shift Risk level 

Lisboa 1 -   (- ; 0) + low 

Bizkaia 1 + (++ ; -) + low 

Granada 2 -   (- ; 0) - medium 

Girona 3 0  (+ ; -) + medium 

Valladolid 3 -   (- ; -) - medium-high 

Albacete 4 -   (- ; -) - medium-high 

Valencia 4 + (++ ; -) - high 

 825 

  826 
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Figure captions 827 

Figure 1 – The integrated framework to identify populations under threat from future climate 828 

change, including the approaches and methods used to assess the different framework 829 

components. 830 

Figure 2 – Plecotus austriacus populations included in the study presented over maps of 831 

maximum temperatures and summer rainfall (www.worldclim.org). 832 

Figure 3 – Predicted distribution of suitable conditions for Plecotus austriacus based on 833 

environmental niche models for present (A) and future (2070, B) conditions, and predicted 834 

movement density maps between populations based on landscape resistance due to present 835 

(C) and future (D) habitat suitability. 836 
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The integrated framework to identify populations under threat from future climate change, including the 
approaches and methods used to assess the different framework components.  
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Plecotus austriacus populations included in the study presented over maps of maximum temperatures and 
summer rainfall (www.worldclim.org).  
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Predicted distribution of suitable conditions for Plecotus austriacus based on environmental niche models for 

present (A) and future (2070, B) conditions, and predicted movement density maps between populations 

based on landscape resistance due to present (C) and future (D) habitat suitability.  
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Table 1 – Plecotus austriacus populations included in the final genomic dataset with 

location, region, geographical area within the region, GPS coordinates (WGS1984), number 

of individuals and average population SNP dataset coverage. 

Population Year Region Area Latitude Longitude Number of 
individuals 

Average 
coverage 

Lisboa 2013 Iberia West 38.764 -9.250 10 91.2% 

Bizkaia 2013 Iberia North 43.331 -2.782 10 99.0% 

Girona 2013 Iberia North-
East 

42.323 3.166 9 95.0% 

Granada 2013 Iberia South 37.109 -4.170 8 85.0% 

Albacete 2013 Iberia Centre-
East 

39.296 -2.069 9 97.2% 

Valladolid 2013 Iberia Centre-
North 

41.581 -4.586 10 98.3% 

Valencia 2013 Iberia East 
coast 

39.409 -0.960 9 98.6% 

Vila Real 2009 Iberia North-
West 

41.300 -7.800 3 73.4% 

Devon 2011- 
2013 

England South-
West 

50.552 -3.550 8 90.3% 

Dorset 2011 England South-
Centre 

50.645 -2.315 7 71.7% 
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Table 2 – Variables and categories used to assess level of exposure to future changing 

climatic conditions. Formula indicates whether all variables were combined together or only 

one or two needed to be true. ENM refers to the outputs of the ecological niche model – 

continuous output for changes in relative occurrence probability, or binary output for changes 

in climatic suitability. Temperature and rainfall dissimilarity refer to differences between 

present and future (2070) conditions. 

Level of 
Exposure Formula ENM 

Temperature 
dissimilarity 

Rainfall 
dissimilarity 

1 (low) 
ENM + Temp 
+ Rain 

- Change in relative occurrence 
probability <25% 

low: <6°C 
increase 

low: <25% 
decrease 

- Area remains climatically 
suitable 

2 (medium-
low) 

ENM + (Temp 
OR Rain) 

- Change in relative occurrence 
probability >25% 

medium: 6-8°C 
increase 

medium: 25-
50% 
decrease 

- Area remains climatically 
suitable 

3 (medium-
high) 

ENM OR 
Temp OR 
Rain 

Area changed from climatically 
suitable to unsuitable 

high: >8°C 
increase 

high: >50% 
decrease 

4 (high) 
ENM + (Temp 
OR Rain) 

Area changed from climatically 
suitable to unsuitable 

high: >8°C 
increase 

high: >50% 
decrease 
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Table 3 – Assessment of sensitivity based on the frequency of alleles identified as potentially 

associated with climate-adaptive genetic variation in the population.  

Level of Sensitivity 
Mean frequency across all 
adaptive loci 

No. adaptive alleles at 
frequency <0.25 

Very high (++) < 0.5 more than a third 

High (+) < 0.5 less than a third 

Medium (0) ≥ 0.5 at least one 

Low (-) > 0.5 none 
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Table 4 – Integrating measures of exposure (Table 2), sensitivity (Table 3) and range shift 

potential to assess overall level of risk. Formula indicates whether all measures were 

combined together or only two needed to be true (Exp-Exposure, Sen-Sensitivity, Range-

Range shift potential). 

Risk Level Formula Exposure Sensitivity Range shift 

Low Exp + (Sen OR Range) 1 low (-) high (+) 

Low Exp + Sen + Range 2 low (-) high (+) 

Medium Exp + (Sen OR Range) 2 mid (0) - high (+) low (-) 

Medium Exp + Sen + Range 3 low (-) - mid (0) high (+) 

Medium-High Exp + (Sen OR Range) 3-4 high (+ / ++) low (-) 

High Exp + Sen + Range 3-4 high (+ / ++) low (-) 
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Table 5 – Changes in climatic conditions (Tmax=maximum temperatures, Rain=summer rainfall) and climatic suitability (based on the 

ecological niche model (ENM) predicted occurrence probability) for Plecotus austriacus populations in Iberia and England. Locations where the 

greatest changes are predicted to occur (>8˚C increase in maximum temperatures, >50% decrease in summer rainfall and change from suitable to 

unsuitable areas) are highlighted in grey. 

Population Tmax (˚C) 

Rain 

(mm) 

ENM 

(climatic 

suitability) 

2070 

Tmax (˚C) 

2070 Rain 

(mm) 

2070  

ENM 

Change 

Tmax (˚C) 

Change 

Rain 

(mm) 

% Change 

Rain 

% Change 

ENM 

Lisboa 25.3 36 100 28.6 28 80 +3.3 -8 -22.2 -20.0 

Bizkaia 23.6 225 38 29.9 120 40 +6.3 -105 -46.7 +5.3 

Girona 25.6 159 76 32.1 90 7 +6.5 -69 -43.4 -90.8 

Granada 30.0 45 80 36.9 39 37 +6.9 -6 -13.3 -52.5 

Albacete 31.6 61 34 40.4 27 17 +8.8 -34 -55.7 -50.0 

Valladolid 29.3 65 56 38.4 34 41 +9.1 -31 -47.7 -26.8 

Valencia 28.5 87 44 35.6 42 5 +7.1 -45 -51.7 -88.6 

Devon 19.8 171 90 25.5 107 95 +5.7 -64 -37.4 +5.6 

Dorset 20.8 164 60 27.4 98 63 +6.6 -66 -40.2 +5.0 
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Table 6 – Identified level of risk to Iberian populations of Plecotus austriacus based on their 

extent of exposure to climate change (1=low; 2=medium; 3=medium-high; 4=high), overall 

sensitivity (+ high; 0 medium; - low), with sensitivity based on climatic adaptations and 

neutral genetic diversity in brackets, and range shift potential (+ high future connectivity; - 

low connectivity).  

Population Exposure 

Sensitivity 

(adaptive; neutral) Range Shift Risk level 

Lisboa 1 -   (- ; 0) + low 

Bizkaia 1 + (++ ; -) + low 

Granada 2 -   (- ; 0) - medium 

Girona 3 0  (+ ; -) + medium 

Valladolid 3 -   (- ; -) - medium-high 

Albacete 4 -   (- ; -) - medium-high 

Valencia 4 + (++ ; -) - high 
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