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Shock wave interaction with solid wedges has been an area of much research in past
decades, but so far, very few results have been obtained for shock wave reflection off
liquid wedges. In this study, numerical simulations are performed using the inviscid
Euler equations and the stiffened gas equation of state to study the transition angles,
reflection patterns, and triple point trajectory angles of shock reflection off solid and
water wedges. Experiments using an inclined shock tube are also performed and schlieren
photography results are compared to simulations. Results show that the transition angles
for the water wedge cases are within 5.3% and 9.2%, for simulations and experiments
respectively, compared to results obtained with the theoretical detachment criterion for
solid surfaces. Triple point trajectory angles are measured and compared with analytic
solutions, agreement within 1.3◦ is shown for the water wedge cases. The transmitted
wave in the water observed in the simulation is quantitatively studied, and two different
scenarios are found. For low incident shock Mach numbers, Ms = 1.2 and 2, no shock
wave is formed in the water but a precursor wave is induced ahead of the incident shock
wave and passes the information from the water back into the air. For high incident
shock Mach numbers, Ms = 3 and 4, precursor waves no longer appear but instead a
shock wave is formed in the water and attached to the Mach stem at every instant. The
temperature field in the water is measured in the simulation. For strong incident shock
waves, e.g., Ms = 4, the temperature increment in the water is up to 7.3K.

1. Introduction

Although the shock wave reflection phenomenon was discovered over a century ago
(Mach 1878), this is still an active research area within the shock wave community.
In general, when a planar shock wave meets a sharp, compressive, and straight solid
corner, the resulting shock reflection configurations can be divided into two categories,
regular reflection and irregular reflection, depending on the incident shock wave Mach
number, Ms, reflection wedge angle, θw, and gas specific heat ratio, γ. Figure 1 shows two
types of reflection patterns, regular and irregular reflections, where two kinds of irregular
reflections, single-Mach reflection and double-Mach reflection, are presented (Ben-Dor &
Takayama 1992; Ben-Dor 2007). In figure 1, w and s denote the horizontal and vertical
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Figure 1. Illustration of two types of shock wave reflection off solid wedges, regular and irregular
reflections, where two kinds of irregular reflections are shown. (a) Regular reflection; (b) Irregular
reflection: single-Mach reflection; (c) Irregular reflection: double-Mach reflection.

displacements of the triple points, χ denotes the first triple point trajectory angle, and
χ′ denotes the second triple point trajectory angle.
Shock reflection patterns can be analyzed in terms of the transition status and the

reflection configuration. The transition status can be quantified using the transition
angle, which determines when the reflection configuration transforms from irregular to
regular. The reflection configuration can be described using the triple point trajectories.
Using numerical methods, a high level of resolution can nowadays be achieved and can
facilitate analysis of transition status and reflection configuration. Further, in shock wave
experiments, the maximally achievable Mach number regimes can be limited due to the
experimental setup, while in simulations, such limitation does not exist. Thus, numerical
simulations provide a practical approach to investigate shock wave reflection phenomena.
Various experimental visualization techniques have been performed in shock tube

setups to determine the transition angle using either high temporal imaging or spatial
imaging (Geva et al. 1990; Kleine et al. 2014; Mouton 2006; Naidoo & Skews 2011; Ram
et al. 2015; Skews & Kleine 2010; Skews & Blitterswijk 2011). Technological advances
of high temporal imaging equipment have made these systems readily available to many
researchers. However, photographs from high-speed cameras often result in relatively
low resolution due to high frame rates. Therefore, high temporal imaging can be used to
understand succinct details of the entire process, but high spatial imaging will ultimately
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be required to provide accurate information (Versluis 2013). Nevertheless, studies to
determine the transition angle using a combination of both high temporal and high
spatial imaging are still lacking. Accordingly, in the current study, schlieren visualization
with both high spatial and high temporal resolution are used to find the transition angles.

1.1. Shock reflection off solid wedge

Though much attention has been given to establishing a transition criterion from
regular to irregular reflections, work is still ongoing because of unsatisfactory comparison
between numerical and experimental findings with theoretical solutions. Theoretical
solutions are based on inviscid Euler analysis, while in experiments researchers must
deal with viscosity and surface roughness of the reflecting surface. One widely used
transition criterion for regular to irregular reflection is the detachment criterion, originally
proposed by von Neumann (1943a,b). The detachment criterion (von Neumann 1943a) is
an analytic solution of the transition angle for shock reflection off solid wedges in inviscid
flow. The detachment criterion predicts that transition from regular to irregular reflection
occurs when the maximum flow deflection angle across the reflected shock is achieved
and the regular reflection is no longer possible. The detachment criterion states that in
steady flow, the flow velocities ahead of the incident shock and behind the reflected shock
remain parallel while the flow deflection by the reflected shock wave is maximal.
In shock wave reflection configurations of pseudo-steady cases, the appearance of Mach

stems and slipstreams can be an important feature to distinguish between regular and
irregular reflection. Usually, at small wedge angles, the reflection configurations remain
irregular, where Mach stems and slipstreams are clearly seen. While approaching the
transition condition by, for example, increasing the inclination angle of the wedge, the
length of the Mach stem decreases as the triple point moves closer to the reflecting
surface. As the inclination angle is increased to a certain angle, the reflection configuration
transitions from irregular to regular reflection. The critical θw at the transition status
between irregular to regular reflection is referred to as the transition angle.
Shock wave reflection over solid wedges has been investigated previously by numerous

research groups (Ben-Dor et al. 1987; Hornung et al. 1979; Hornung & Taylor 1982;
Hornung & Robinson 1982; Mach 1878; von Neumann 1943a,b; Skews 2005; Onodera &
Takayama 1990; Sasoh et al. 1992). Hornung & Taylor (1982) experimentally explored
the influence of viscosity on the transition from regular to Mach reflection of strong shock
waves (Ms = 5.5). Argon was used to avoid real-gas effects, and results showed that in
pseudo-steady flows viscosity plays an important role such that the transition angle was
affected by up to 7◦ compared to the case with no viscosity.
One major difference between a solid and a water wedge is that, compared to solid

wedges, the surface of a water wedge can be treated as perfectly smooth. However,
the surface roughness for a solid wedge may be hard to quantify due to uncertainties
in measurements. To quantify the effect of surface roughness, Ben-Dor et al. (1987)
proposed a boundary-layer displacement-thickness model for predicting regular to Mach
reflection transition. The model is specified for incident shock Mach numbers in the range
of 1 < Ms < 2, and surface roughness heights up to 2 mm. Results showed that the flow
behind the reflection point must be parallel to the average slope of the displaced surface.
Onodera & Takayama (1990) used both numerical and experimental methods to study
the effect of slitted wedges on shock wave transition. Incident Mach numbers ranged from
1.07 to 3.03, and slitted wedges with perforation ratios 0.34 and 0.4 were used. Perforation
ratio is defined as the ratio of the perforated and overall surface area. Results showed that
for stronger shock waves and a perforation ratio of 0.4, the transition angle was decreased
by about 10◦ as compared with the detachment criterion. The numerical results agreed
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well with experimental results. More recently, Skews (2005) experimentally extended this
study to a wider range of plate geometries. It was found that the plate thickness had a
negligible influence on the results for the tested parameter range.
Shock wave reflection off curved surfaces have also been an area of interest. Kleine et al.

(2014) experimentally and numerically investigated the influence of the Reynolds number
on the triple point trajectories where a planar shock wave is reflected by cylindrical
surfaces. Results showed that the delay of RR-MR transition due to viscous effects is
low under high Reynolds numbers. More recently, Soni et al. (2017) performed numerical
simulations to study the wave configurations related to the shock reflection over double-
concave cylindrical surfaces. The study covered different incident shock Mach numbers
as well as geometrical parameters of the reflectors, such as the radii of curvature and the
initial wedge angles. Noticeable differences can be found between the shock patterns over
the two adjacent reflectors of the same shape, where the shock reflection off the second
reflector is strongly dependent on how fast the diffracted shock reaches the incident shock
wave.

1.2. Triple point trajectories

The reflection configurations of single-Mach reflection and double-Mach reflection can
be quantified by tracking the triple point trajectories. For single-Mach reflection, based
on the assumptions that the shock wave configuration is self-similar and the triple
point trajectories are straight lines emanating from the compressive corner, an analytic
formulation (Ben-Dor & Glass 1979, 1980; Ben-Dor 1978; Law 1970) was developed to
describe the motion of the triple point trajectory angle, which is illustrated by χ in
figure 1(b). Assumptions include a straight Mach stem normal to the wedge surface and
uniform inviscid flow behind incident shock wave, reflected shock wave and Mach stem.
The method to solve for the triple point trajectory angle in single-Mach reflection also
applies for the first triple point in the case of a double-Mach reflection, χ in figure 1(c).
For the second triple point trajectory angle, denoted χ′ in figure 1(c), Ben-Dor (1980,

1981) formulated an analytic solution to describe the relative motion of the second
triple point in terms of the first triple point. They also concluded that the triple point
trajectory angle of the second triple point should be always greater than the first one.
Later, Li & Ben-Dor (1995) proposed a new analytic model to predict the second triple
point trajectory of a double-Mach reflection. The new model improved the prediction
tremendously by replacing the Law-Glass assumption by models accounting for the
interaction of the shock wave reflection and the shock induced flow deflection processes.

1.3. Shock interaction with liquid

Both experiments and numerical simulations of a planar shock wave interaction with
a liquid droplet have been performed by Igra & Takayama (2001a,b). They proposed a
numerical scheme to achieve a sharp interface between the gas and liquid phase. The
Tait’s equation of state was employed for water with n = 7.415 and B = 296.3 MPa.
With that scheme, shock wave interaction with a cylindrical water column was modeled
and good agreement was shown compared with experimental interferogram results. More
recently, Meng & Colonius (2015) have numerically modeled the early stage of the
breakup of water cylinders in the flow behind normal shock waves. The simulations
were performed in a two-dimensional domain with symmetric boundary condition, where
the stiffened gas equation of state was used to model both gases and liquids. Numerical
schlieren images were compared with previous experimental findings (Igra & Takayama
2001a), and agreement was shown regarding the breakup process of the cylinders. In
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particular, the water cylinder was first compressed in the streamwise direction and then
extended in its spanwise dimension.
Planar shock wave reflection over water wedges has been experimentally studied by

Takayama & Ben-Dor (1989). In their study, experiments were conducted using an
inclined shock tube that could be tilted from a horizontal to a vertical direction with an
accuracy of 0.1◦. Four different types of reflection configurations were observed: regular
reflection, single-Mach reflection, transitional-Mach reflection, and double-Mach reflec-
tion. Measurements of the transition angles showed good agreement with the detachment
criterion for the incident shock wave Mach number of the range Ms > 1.47, and poor
agreement for Ms < 1.47. The theory of irregular reflection from von Neumann (1943a),
also called three-shock theory, showed good agreement for strong shocks, i.e., Ms > 1.47
(Colella & Henderson 1990), but for weak shocks, the three-shock theory showed that
the Mach reflection is physically impossible for Ms < 1.035. The discrepancy between
the three-shock theory and experimental results was referred to as the von Neumann
paradox (Birkhoff 1950). Colella & Henderson (1990) experimentally and numerically
showed that Mach reflection was still possible for weak shocks. It was later confirmed
later by Marchiano et al. (2007), Baskar et al. (2007), Karzova et al. (2015) and Desjouy
et al. (2016) that irregular reflection and establishment of Mach stem could occur even
for very weak shocks, i.e., 1.0001 < Ms < 1.01. Additionally, one likely reason for the
poor agreement was that the detachment criterion assumed uniform flow states behind
reflected shock wave and Mach stem, while this assumption was incorrect when subsonic
flow regions were involved. However, apart from the study of Takayama & Ben-Dor
(1989), shock reflections over liquid surfaces remain largely unexplored. This may be the
result of challenges associated with performing experiments on liquid boundaries, and
performing numerical simulations featuring multiphase phenomena with a deforming
free surface. To investigate shock wave reflections at an air-water interface, previous
research analytically calculated the energy exchange during shock reflection off an air-
water interface, and results showed that nearly all of the incident energy is reflected
back due to the impedance mismatch between the air and water (Henderson et al. 1990;
Sakurai 1974). Borisov et al. (1965) first proposed the existence of shock wave refraction
when a shock wave is sliding over a water layer, and meanwhile a precursor shock is
formed in the air. Later, the refraction phenomenon was confirmed experimentally by
Teodorczyk & Shepherd (2012). More recently, Rodriguez et al. (2016) experimentally
studied shock waves sliding over an horizontal free water layer. Two incident shock Mach
numbers, Ms = 1.11 and 1.43, were examined, and the incident shock wave was vertical
compared to the water surface. Results show that the transmitted shock wave in the
water is ahead of the shock wave in the air. Further, the observed compression wave in
the water travels at the same speed as the shock wave in the air, which is slower than
the speed of sound in water. Thus, the propagation of the compression wave is driven by
the shock wave in the air.

1.4. Equation of state

To numerically model water, two kinds of equations of state are typically used; (1)
Tait’s equation of state, and (2) stiffened gas equation of state. Tait’s equation of state,
which is designed to describe the compressibility of water, has the form

p+B(s)

p0 +B(s)
=

(

ρ

ρ0

)n

, (1.1)

where subscript 0 refers to ambient conditions, s denotes entropy, p pressure, and ρ
density. Some researchers state that B(s) and n can be treated as constants for pressures
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up to 104 MPa (Kedrinskii 2005). Therefore, B and n are chosen such that density, ρ0,
and speed of sound, a0, are properly estimated through

B = ρ0a0
2/n, a0 =

√

γ(p∞ + p)

ρ
. (1.2)

The following numerical values are most commonly used in the Tait’s equation of state,
B =296.3, 304.7 and 321.4 MPa, and n =7.415, 7.15 and 7 (Igra & Takayama 2001a,b;
Cole 1948; Ridah 1988). A detailed examination of equations and charts for shock waves
in water has been produced by Ridah (1988), who used n = 7 and B = 321.4 MPa
resulting in a0 = 1500 m/s.

The stiffened gas equation of state takes the form

p = (γ − 1)ρe− γp∞, (1.3)

where e is the specific total energy, and γ and p∞ are two empirically determined
constants. When p∞ = 0, the stiffened gas equation of state reverts to the perfect gas
equation of state. Assuming a constant specific heat at constant volume, cv, the internal
energy in the stiffened gas model reads (Fl̊atten et al. 2011)

e = cvT +
p∞
ρ

, (1.4)

which allows expressing Equation (1.3) in terms of the temperature as

p+ p∞ = (γ − 1)ρcvT. (1.5)

The two constants are most often set to p∞ =600 and 300MPa, γ =4.4, 5.5 and 7.0 (Grove
& Menikoff 1990; Saurel & Abqrall 1999; Shyue 1999). Jolgam et al. (2012) used a few test
problems to verify the performance of a proposed Eulerian numerical method simulating
multi-phase flows, air and water, while simultaneously comparing the computational cost
of different equations of state. Both stiffened gas and van der Waals equation of state
were used for air, while stiffened gas and Tait’s equation of state were utilized for water.
Three test problems consisting of a water-air shock tube, a gas-air shock tube, and a
water faucet test, were considered. Results showed that the van der Waals equation of
state needed more time steps and CPU time than the stiffened gas equation of state to
obtain the solution, while stiffened gas (with γ = 4.4 and p∞ = 600 MPa) and Tait’s
equation of state (with n = 7.15 and B = 331 MPa) for water needed roughly the same
number of time steps and the same CPU time. Moreover, in their study, the stiffened
gas equation of state for water was defined using constants γ = 4.4 and p∞ = 600 MPa,
while the Tait’s equation of state was defined with n = 7.15 and B = 331 MPa.

In this study, an inviscid shock-capturing multi-phase solver is used to simulate shock
wave behavior at air-water interfaces in a two-dimensional domain. Six different incident
shock Mach numbers, Ms = 1.2, 1.38, 1.52, 2, 3, and 4, are used in the simulations
and three different shock Mach numbers, Ms = 1.20, 1.38, and 1.52, are investigated in
the experiments. Shock reflection solutions from water wedges are compared with those
from solid wedges. In particular, transition angles from regular to irregular reflection
for both water and solid wedges were obtained for a range of incident shock Mach
numbers. Further, in order to quantify the reflection configuration, the trajectories of
triple points in both single-Mach reflection and double-Mach reflection were measured.
Finally, the results from the numerical simulations were compared to experimental data
using schlieren visualization.
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2. Numerical approach

A two-dimensional flow field was considered, where for both solid and water wedge
cases the wedge surface was impacted by a planar shock wave.

2.1. Governing equations

The set of used governing equations is based on a multi-component model that employs
the phase volume fractions αi with

∑m

i=1
αi = 1. Mixture quantities are given as

ρ =
m
∑

i=1

αiρi , ρu =
m
∑

i=1

αiρiui , ρe =
m
∑

i=1

αiρiei. (2.1)

In this description, multiple fluids are represented as mostly separated phases that can
be described by a single set of two-dimensional inviscid Euler equations

∂tρ+∇ · (ρu) = 0, (2.2)

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0, (2.3)

∂t(ρE) +∇ · ((ρE + p)u) = 0, (2.4)

which represent the conservation of mixture mass, mixture moment and total energy
without any body forces. Here, u is the velocity vector and E = e + 1

2
uTu the specific

total energy. Applying a stiffened gas equation of state

pi =
(

γi − 1
)

ρiei − γipi
∞

=
(

γi − 1
)

ρicivT
i − pi

∞
, (2.5)

the total hydrodynamic pressure p and p∞ of the mixture are given as

p

γ − 1
=

m
∑

i=1

αipi

γi − 1
,

γp∞
γ − 1

=

m
∑

i=1

αiγipi
∞

γi − 1
. (2.6)

Instead of using propagation equations of αi to distinguish the components, the approach
of Shyue (1998) has been adopted to supplement Equations (2.2)–(2.4) with the two
advection equations

∂

∂t

(

1

γ − 1

)

+ u · ∇

(

1

γ − 1

)

= 0 , (2.7)

∂

∂t

(

γp∞
γ − 1

)

+ u · ∇

(

γp∞
γ − 1

)

= 0 . (2.8)

Although this description is applicable only to two-component systems, i.e., m = 2, the
benefit is that the direct utilization of Equations (2.7), (2.8) in the governing equations
and therefore direct discretization together with (2.2)–(2.4) is the simplest remedy (Shyue
2006) to the otherwise intrinsic problem of nonphysical numerical pressure oscillations at
interfaces with vastly different parameters γi and pi

∞
(Abgrall & Karni 2001). Here, the

parameters for water were defined as γW = 7.0 and pW
∞

= 300 MPa (Grove & Menikoff
1990; Shyue 1999), resulting in an ambient speed of sound of a0 = 1452 m/s and γA = 1.4
and pA

∞
= 0 for air.

2.2. Numerical method

A time-explicit finite volume approach is used to discretize the governing equations
with the second-order accurate Wave Propagation Method (LeVeque 2002). This method
is designed for schemes in flux-difference splitting form and can handle the conservative
equations (2.2)–(2.4) with an approximate Riemann solver as well as the non-conservative
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advection equations (2.7) and (2.8). In order to cope with realistic density differences
across the air-water interface, the HLLC scheme by Toro et al. (1994) is used as
approximate Riemann solver. An extended version of the HLLC scheme, tailored for
the above set of governing equations for two-phase flow and smoothly incorporated into
the Wave Propagation approach had been specially derived (Deiterding et al. 2009).
Thanks to the robustness of the HLLC approach, the subsequent computations could
use the accurate densities ρW = 997 kg/m3 and ρA = 1.18 kg/m3.
In order to enable technically relevant computations, the sketched finite volume method

has been incorporated into the Cartesian adaptive mesh refinement solver system AM-
ROC V2.0 (Deiterding 2011) within the freely available fluid-structure coupling software
Virtual Test Facility (Deiterding et al. 2006). The consideration of geometrically complex
boundaries in AMROC is achieved by a generic and discretization-independent level
set technique. Based on signed distance information stored in the level set function,
reflective wall boundary conditions are constructed by inter- and extrapolation operations
in cells adjacent to the boundary, but deemed outside of the fluid domain, before
the Cartesian discretization is employed to compute the next time step (Deiterding
2009). Block-based mesh refinement is applied and regenerated consecutively at run-
time to mitigate inaccuracies from the boundary approximation as well as to capture
essential flow features, like shock waves and material interfaces with increased resolution
(Deiterding 2011). Time step refinement by the same factor as the spatial refinement
ensures that the stability condition of the explicit finite volume scheme is in principle
satisfied on all refinement levels.
Validation simulations for the sketched dynamically adaptive two-phase HLLC method

are provided by Perotti et al. (2013), where elastic deformations of tubes from shock waves
in water have been analyzed meticulously. Further verification and validation simulations
for water-hammer and underwater explosion driven plastic deformation and rupture of
metallic plates with two-phase flow and empirical cavitation modeling are given by Cirak
et al. (2007) and Deiterding et al. (2009).

2.3. Simulation setup

The simulation time for each case is chosen such that the incident shock wave has
enough time to impact the air-water interface and reach the corner formed by the wedge
and the outer solid boundary and reflect back. During this time period, the displacement
of fluid particles due to gravity is negligible. The geometrical setup for the water and
solid wedge cases is shown in figures 2(a) and (b), respectively. The rectangular outer
frames represent the boundaries of the computational domains, while the oblique thick
lines denote the boundary of the test section. In figure 2(a), the shape of the geometrical
setup is chosen to match an experimental setup to enable comparison of experimental
and numerical results. Results from shock reflection off a liquid wedge were compared to
those off a solid wedge. The inclination angle of the wedge is denoted θw, see figures 2(a)
and (b). The boundary condition of the upper left corner of the computational domain
was setup as constant inlet flow, while the rest of the boundaries were modeled as rigid
walls.
Cartesian grids were applied to the whole computational domain. For all the simula-

tions, adaptive mesh refinement (AMR) was applied during the simulation. The dynamic
mesh refinement was based on the scaled gradients of pressure, density and volume
fraction αi as well as of the level set representing the rigid boundaries. Three AMR
levels were chosen and a refinement factor of 2 was used. A coarse background grid of
cell size 100×100 µm2 was created so after mesh refinement, the smallest effective cell
size was 25×25 µm2.
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Figure 2. Setup for numerical simulations of shock wave reflection off a (a) water wedge, and (b)
solid wedge. Region 1 and 2 and are filled with air while region 3 is filled with water. Dimensions
in mm, not to scale.

Initial conditions ahead of the incident shock wave, denoted region 1 in both figures 2(a)
and (b), were set up with standard atmospheric conditions: p1 = 1.013× 105 Pa, ρ1 =
1.18 kg/m3 and T1 = 25◦C. The conditions behind the incident shock wave, region 2 in
figure 2, were determined using normal shock relations. Region 3 shown in figure 2(a)
was filled with water at atmospheric pressure and room temperature, same as region 1.
The resulting density of water is ρ3 = 997 kg/m3. All the simulations assumed inviscid
flow and the solid wedge surface to be rigid and smooth.
Each simulation of a shock reflecting off water wedge took approximately 25 CPU

hours using a single core of 3.20 GHz Intel(R) Core(TM) i7-3930K CPU, but only 11
CPU hours for shock reflection off solid wedge.
The transition angle measured through the simulations fell into a range with uncer-

tainty of 1◦ because the inclination wedge angle was increased by increments of 1◦ after
each run.

2.4. Constraints of the numerical simulation

Without the presence of viscosity, the shock reflection patterns are affected in two
ways: (1) For irregular shock reflection, viscosity delays the establishment of the Mach
stem. Kleine et al. (2014) confirmed that the Reynolds number mainly affects the initial
establishment of the Mach stem and only to a lesser degree its subsequent growth. Thus,
in terms of shock patterns, the Mach stem is established earlier without viscosity, but the
triple point trajectory angle is not much affected; (2) Viscosity decreases the transition
angle, and therefore simulation results in this study are compared with experiments,
shock reflection over the solid wedge cases and the analytical solution under the same
inviscid assumption.
The entire computational domain was meshed using Cartesian grid. Because of the

nature of the Cartesian grid, when a shock wave, air-water interface or physical boundary
is not aligned with the grid, assignment of the initial conditions to the corresponding cells
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Figure 3. Mach stem heights s versus displacement in horizontal direction w for the (a) first
triple point and (b) second triple point at Ms = 3 and θw = 45◦ solid wedge. Results obtained
with different grid sizes.

results in a saw-tooth-shaped discontinuity or boundary, which leads to an addition of
artificial roughness. Though the artificial roughness can be reduced by refining the grid
size, it is never eliminated as long as the Cartesian mesh is used. The same grid effect
can be found in the work of e.e. Soni et al. (2017). The artificial roughness may delay the
establishment of Mach stem and therefore affect transition angles. Thus, a convergence
test using six different mesh sizes, i.e., 200 µm, 100 µm, 50 µm, 30 µm, 25 µm, and
15 µm, with regard to the triple point trajectories is conducted for the solid wedge case
with Ms = 3 and θw = 45◦, as shown in figure 3. The convergence study is used to prove
that results of triple point trajectories are independent from grid size and the mesh is
refined enough. In the convergence study, the angle formed between the wedge surface
and the Cartesian grid is 45◦. Results obtained from grid sizes 25 µm and 15 µm show
negligible difference. Therefore, the grid size, 25 µm, is determined to be refined enough
to capture the initiation of the Mach stem and this grid size is used in all the other shock
wave reflection simulations.

The liquid surface tension is not considered in the simulations. However, the lack of
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surface tension does not affect the shock reflection patterns and corresponding results,
since the deformation of the interface is negligible during the simulated time.

Due to the nature of the shock capturing scheme, shock waves and interfaces are
diffusive and spread over several grid cells. Therefore, the mixture regions near the air-
water interface do not indicate the molecular mixing of the two-phase flow, but are
because of the non-physical numerical diffusion.

3. Experimental approach

Experiments are performed using an adjustable, inclined shock tube and schlieren
visualization with either high spatial or high temporal resolution.

3.1. Details of the shock tube

The experimental setup uses an inclined shock tube of which the inclination angle
can be adjusted, as shown in figure 4. The shock tube was designed to study shock wave
reflection off solid and liquid wedges, and as of such the inclination angle of the shock tube
can be adjusted in the range 0◦ < θw < 90◦. The angle of the shock tube is controlled by
moving a support arm along an Acme threaded rod, which travels 6.4 mm per rotation
and the angle is measured by an inclinometer (Wixey WR365, ± 0.1◦ accuracy). The
shock tube consists of a driver section, a driven section with square interior sides, and
a test section. The driver section of the inclined shock tube is 300 mm long and has
a 73 mm-diameter circular cross-section. The driven section and the test section both
have square 38.1 mm inner sides. The length of the driven section is about 17 times
longer than the side of the test section to ensure that the shock is planar upon arriving
in the test section (Bleakney et al. 1949). A diaphragm is located between the driver
and driven sections, and a shock wave can be generated after the diaphragm rupture by
needle mechanism in the driver section (Jeon et al. 2015). Three different thicknesses of
moisture-resistant Polyester film (12.7, 25.4, and 50.8 µm thickness, ± 10 % tolerance)
were used as diaphragm materials to perform experiments featuring driver pressures of
138, 310, and 586 kPa (20, 45, and 85 psi), respectively. The test section was designed
as a “T” shape to minimize the meniscus between the water surface and the solid wall of
the test section. The windows of the test section were made of 12.7 mm thick plexiglass.
In the test section, two different types of reflecting surfaces are considered: water and
solid wedges. Tap water is used at room temperature (300 K). The solid wedges are made
of polycarbonate (Makrolon® GP sheet) with 10 different angles (from 40◦ to 50◦) and
care is taken to ensure that the reflecting surface of the polycarbonate sheet has a surface
roughness similar to glass.

All experiments were conducted with air as test gas at atmospheric pressure (101
kPa) and room temperature (300 K). The shock Mach number was measured using three
pressure transducers (S1 and S3: PCB 113B21, S2: PCB 113B31) placed in the driven
section ahead of the test section, as shown in figure 4(b). The incident shock Mach number
was determined using the elapsed time between the shock passing the three pressure
transducers. The shock Mach numbers were measured with a standard deviation within
± 0.70% and a measurement uncertainty less than ±0.80% in each experiment. After the
pressure signals were recorded by the oscilloscope, a low pass Fourier filter was used to
remove all frequencies above 100 kHz for data recorded by S1 and S3, and 80 kHz for
data recorded by S2. The cutoff frequency was chosen such that it is below the natural
frequency of the pressure transducer, which is 500 kHz for S1 and S3, or 400 kHz for S2.



12 Q. Wan et al

3
8
.1

64.6

1
0

12.7 45.5

Threaded rod

Driver section

300

Driven section Test section

650 82.6

73

Mechanical arm

S1 S2 S3

110 55

Visible area

(a)

Driver section

Driven section

Test section

Pressure transducers

Needle mechanism

Diaphragm

Angle inclinometer

Windows

S1

S2

S3

(b)

Figure 4. Schematic description of inclined shock tube: (a) side and cross view of the inclined
shock tube. Dimensions in mm; (b) detailed cut-view of the inclined shock tube.

3.2. Visualization setup

For this study, schlieren visualization with both high spatial and high temporal
resolution are used to compensate the respective drawbacks of the two techniques. Both
methods are set up to avoid motion blur (Versluis 2013), which can be expressed as

v ×∆t 6
P

Mim

, (3.1)

when v is an object’s speed, ∆t is the exposure time of the camera or the light source, P
is the size of one pixel, and Mim is the image magnification factor. These two methods are
summarized in Table 1 and explained in detail in the following two subsections. To obtain
quantitative data from the images, optical distortions resulting from the visualization
system are corrected using the control point tool box in MATLAB (Delpino Gonzales &
Eliasson 2015).
Typically, the thickness of the shock wave is on the order of the mean free path of the

gas, which at standard atmospheric conditions results in 200 nm shock thickness (Fox et

al. 1985). In practice, the thickness of the dark band representing the shock wave that
is obtained by using schlieren photography can be affected by several factors such as the
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Table 1. Summary of camera settings.

Camera Focal Resolution Scale Exposure Frame Interframe
length factor time rate time
[mm] [pix] [µm/pix] [ns] [fps] [µs]

Phantom V711 50 176 × 96 450 294 200,000 5
Nikon D90 200 4288 × 2848 27 18 1 N/A

strength of the shock wave, a non-parallel incident light angle, and shadowgraph effects.
In this experiment, when using the Phantom V711 camera, the thickness of the dark
band was roughly equal to one pixel (450 µm). However, when using the Nikon D90, it
was about 10 pixels (270 µm), similar to previous results (Ram et al. 2015).

3.2.1. Schlieren visualization with high temporal resolution

High temporal resolution was obtained using a z-folded schlieren setup (Wang &
Eliasson 2012) with a high-speed camera (Phantom V711) and a high-power light-
emitting diode (Cree XLamp, XP-G2 LEDs, Cool white). Schlieren visualization was used
instead of shadowgraph to avoid any inherent ambiguity from the shadow images. The
knife-edge was placed vertically such that the schlieren images, which usually had a 50 %
cutoff, satisfied both resolution and sensitivity (Settles 2012). The high-speed camera
was equipped with a 50 mm focal length lens (Nikkor 50 mm f/1.4 lens) to increase
the frame rate since higher frame rates can be achieved by reducing the resolution.
For this study, 176 × 96 pixels and 200,000 frames per second (fps) with a minimum
exposure time of 294 ns were used. Precise triggering, with ±20 ns timing accuracy of
the high-speed camera, was achieved by an output trigger signal sent from the pressure
transducer, S1, to the high-speed camera. The signals from the pressure transducers were
collected by a signal conditioner (PCB Piezotronics 482C), and recorded by a digital
oscilloscope (LeCroy, Wave Surfer 24Xs-A). Figures 5 illustrates schlieren visualization
with high temporal resolution, showing RR reflecting off the water with Ms = 1.52 and
47◦ deflection angle.

3.2.2. Schlieren visualization with high spatial resolution

Schlieren visualization with high spatial single-frame photographs were obtained using
a Digital-Single Lens Reflex (DSLR) camera, a flash lamp (Nanolite KL-L Blitzlampe,
High-speed Photo-system, ±10 ns timing accuracy) with an 18 ns duration, and a flash
lamp driver (High-speed Photo-system). A Nikon D90 SLR camera was equipped with a
200 mm lens (AF Micro-Nikkor 200 mm f/4 D IF-ED) to produce high spatial resolution
images of 4288 × 2838 pixels. The exposure time of the camera was set to 2.5 seconds,
manually, in a dark-room setting. The timing of the flash lamp was controlled by a delay
generator (BNC Model 575, ±0.8 ns trigger accuracy) operated in single pulse shot mode
with different delay times. The trigger signal was sent from pressure transducer S1 and
collected by the signal conditioner. Figure 6 represents schlieren visualization with high
spatial resolution. Figure 6(a) and (b) show a regular reflection configuration over water.
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Figure 5. A series of schlieren photographs using a Phantom V711 camera showing shock
reflection off a water surface at Ms = 1.52 and θw = 47◦ resulting in regular reflection.

(a)

1 mm

(b)

Figure 6. Schlieren photographs using a Nikon D90 camera showing (a) regular reflection off
a water surface for Ms = 1.38 and θw = 45◦ and (b) a magnified image of the reflecting surface
highlighted by the dashed rectangle in (a).

3.3. Experimental procedure

The water in the test section was changed every time in between experiments. A
hydrophobic coating (Rain-X, SOPUS Products) was used on the windows of the test
section to minimize the wetting condition and to clean the windows. There exists a small
angle between the solid and the tangent line to the liquid surface, a contact angle, in the
test section due to the liquid surface tension, as shown in Fig. 7(a). Since the purpose
of this study was to find transition angles, it was necessary to observe whether a Mach
stem is present above the liquid surface. If a concave meniscus occurs, the free surface
cannot be visualized. As such, the curvature of the liquid was maintained to be slightly
convex by filling the test section with liquid from the bottom (Takayama & Ben-Dor
1989). Figure 7(b) shows the side-view of the test section with a solid wedge inserted.

4. Results and analysis

The first set of simulations for each Mach number was initialized such that the reflection
configuration was irregular. Therefore, a wedge angle of 25◦ was chosen for the initial
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Figure 7. Side-view of the test section showing a schematic description: (a) a water; (b) a
solid wedge.
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Figure 8. (Color online) The transition angle measured by experimental method versus the
incident shock Mach number compared to the previous results (Ben-Dor et al. 1987). The size
of the marker size represents the uncertainty of the previous study.

configuration. Then, the inclination angle was increased by steps of 1◦ to determine at
which angle the Mach stem and slip stream disappear and regular reflection occurs.

4.1. Validation of the experimental methodology

The experimental results obtained using the experimental method from the solid
surface are validated against the previous experimental data. Figure 8 shows a comparison
of the current experimental study and the previous experimental results (Ben-Dor et al.
1987). A comparison to the previous data was made in terms of the transition angle for
hydraulically smooth surface case. As it can be seen, a good agreement has been found
for the transition angles. Therefore, based on the comparison between the previous and
current results, the methodology in this study is able to ensure confidence in the accuracy
for finding transition angles.

4.2. Comparison with experimental results

A direct comparison between schlieren visualizations obtained in the simulation and
experiment with Ms= 1.38 and θw= 43◦ is shown in figure 9. Single-Mach reflection with
a short Mach stem was observed in the simulation, while regular reflection was observed
in the experiment. In the experiment, the thickness of the dark band representing the
shock wave and the air-water interface that are obtained by using schlieren photography



16 Q. Wan et al

10 mm

(a) Simulation

10 mm

(b) Experiment

Figure 9. Comparison of schlieren visualizations for Ms = 1.38 and θw = 43◦ for (a)
simulation, and (b) experiment.

can be affected by several factors such as the strength of the shock wave, a non-parallel
incident light angle, and shadowgraph effects. Therefore, the dark band, especially, the
air-water interface, looked thicker in the experiment than the simulation. If a Mach stem
existed in these experiments, it could be covered by the air-water interface. However,
the schlieren visualization for the simulation agrees well with regard to the incident and
reflected shock wave locations of that for the experiment.

4.3. RR ↔ IR transition angles

Schlieren images from simulations of different shock reflection configurations at differ-
ent incident Mach numbers are shown in figure 10. Figure 10(a) shows the single-Mach
reflection formed under Mach number Ms = 1.52 and inclination wedge angle θw = 25◦.
Figure 10(b) shows the regular reflection formed using Mach number Ms = 1.52 and
wedge angle θw = 50◦. Figure 10(c) shows the regular reflection formed under Mach
number Ms = 4.0, and wedge angle θw = 50◦. The Mach number is much stronger
than that used in figure 10(a) and (b). When the shock wave in air with Mach number
Ms = 3 or 4 impacts onto the water surface, the impact velocity is on the order of the
speed of sound in water, and therefore a shock wave forms in the water and continues
to propagate downstream, which is visualized in figures 10(c) and (d). Distortion of the
water surface can be observed for strong incident shock cases (Ms = 3 and 4). As shown
in figures 10(c) and (d), the water surface near the wedge corner just started to deform,
but the deformation is slow compared to the motion of shock wave. When the shock
wave in air is weaker, the impact velocity is lower than the speed of sound in water,
and thus no shock penetrates into the water region in the cases of figures 10(a) and (b).
In previous experiments with shock wave reflection off water wedges done by Takayama
& Ben-Dor (1989), spherical shock waves that transmitted into a water medium were
indeed observed for incident shock Mach numbers 2.33 and 2.30. For lower shock Mach
numbers, Ms = 1.52, no spherical shock was observed. Figure 10(d) shows the more
complex double-Mach reflection, with an incident Mach number Ms = 4.0 and wedge
angle θw = 45◦.
Single-Mach reflection was observed for lower Mach numbers, Ms = 1.20, 1.38, 1.52

and 2, while double-Mach reflection was observed for higher Mach numbers, Ms = 3 and
4. In cases of single-Mach reflection, a Mach stem was generated right after the incident
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Figure 10. Schlieren visualization showing types of different shock wave reflection configurations
off a water wedge. (a) Single-Mach reflection for Ms = 1.52, and θw = 25◦. (b) Regular reflection
for Ms = 1.52, and θw = 50◦. (c) Regular reflection for Ms = 4.0, and θw = 50◦. (d) Double-Mach
reflection for Ms = 4.0, and θw = 45◦.

shock reached the water wedge, and the length of the Mach stem kept growing as the
incident shock wave travelled further downstream. Simultaneously, a slipstream formed
behind the Mach stem.

Figure 11 shows a comparison of the detachment criterion and transition angles for
the water and solid wedge cases obtained from the simulations and the experiments. The
difference between transition angles obtained from the simulations and those predicted
by the detachment criterion is less than 5.3 %.

In the simulation, the transition angles for solid wedge cases agreed with the detach-
ment criterion. However, in the experiment, the transition angles for solid wedge were
measured 1.5◦ lower than the detachment criterion. This is not surprising, since both the
simulations of solid wedge cases and the detachment criterion assume inviscid flow and
rigid smooth wedge surface and the viscous effects delay the transition from the regular
reflection to the Mach reflection (Kleine et al. 2014). The difference between the results
of the water wedge cases and the detachment criterion is within 2.7◦ in the simulation
and 4.5◦ in the experiment, which may result from the fact that part of the shock energy
was absorbed by water during the reflection. The difference between the simulation and
the experiments was mainly caused by the deficiency of viscous effect in the simulation
and the thicker air-water interface in the experiment. Another error source for the water
wedge cases comes from the use of a multi-component treatment of the volume fractions
in the governing equations, see section 2. In addition, some artificial mixing of air and
water will invariably occur in cells crossed by the two-fluid interface. While the influence
of this effect on the overall solution is mitigated by our use of local mesh refinement,
an ad-hoc treatment of the boundary between the two immiscible fluids is unavoidable.
Also note that water surface tension is currently not considered in the simulations.
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Figure 11. (Color online) Transition angles for water and solid wedge cases observed from
simulations and experiments for different incident shock Mach numbers. Detachment criterion
(Mouton 2006) plotted for comparison. In the simulation, the transition angles for water wedge
cases are measured for six different shock Mach numbers Ms = 1.20, 1.38, 1.52, 2, 3 and 4, while
it is measured only for three Mach numbers Ms = 1.20, 2 and 4 for the case of a solid wedge. In
the experiment, three different shock Mach numbers, Ms = 1.20, 1.38, and 1.52, are measured.

4.4. Comparison between water and solid wedge cases

A direct comparison of transition angles for the water and solid wedge cases for Mach
numbers Ms = 1.20, 2 and 4 is shown in figure 11. For Mach number Ms = 1.20, the
transition angles of water and solid wedge cases are in the same range 43◦ < θw < 44◦.
For Mach numbers Ms = 2 and 4, the transition angles are in the range 50◦ < θw < 51◦

for solid wedge cases, which fit well for the theoretical solution; while the transition angles
are in the range 49◦ < θw < 50◦ and 48◦ < θw < 49◦ respectively for water wedge cases,
which are 0.5◦ − 1.6◦ lower than the theoretical solution.
Schlieren images for the water and solid wedge cases under the same conditions,Ms = 3

and θw = 45◦, are shown in figure 12, where (a) shows the reflection off the water wedge
at time instant t = 31.5 µs, and (b) shows the reflection off the solid wedge at time instant
t = 23.5 µs. Specifically, the Mach stems of the above two cases are of the same length.
Comparing figures 12(a) with (b) it is clear that under this condition the reflection is
double-Mach type for both cases. The first and second triple points were denoted as TPw1

and TPw2 in the water wedge cases, and TPs1 and TPs2 in the solid wedge cases. The two
reflection configurations above the reflecting surface have similar shape, but the distance
between the two triple points are longer in the solid wedge case. The quantification of
the reflection structure can be realized by measurement of the triple point trajectories,
and corresponding analysis will be further discussed in Section 4.5.

4.5. Triple point trajectory

Setting the compressive corner as the origin, the displacement of the first and second
triple points in the horizontal (w) and the vertical (s) directions with incident shock
Mach number Ms = 4 is plotted in figure 13. Two different inclination angles (θw = 40◦,
and 45◦) were considered for both solid and water wedge cases. As shown in figure 13,
the triple point trajectories are straight lines, which corresponds to a linear growth of
the Mach stem, as previously reported by Hornung & Robinson (1982). Figure 13 also
shows that s grows faster for lower inclination angles.
Figure 14 shows both the first and second triple point trajectories for shock reflection
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Figure 12. Schlieren visualization of shock wave reflection off (a) a water wedge at time instant
t = 31.5 µs, and (b) a solid wedge at time instant t = 23.5 µs, with Ms = 3 and θw = 45◦. The
Mach stems in (a) and (b) are of the same length.
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Figure 13. (Color online) The (a) first and (b) second triple point trajectories with Mach
number Ms = 4 and two different inclination angles for solid and water wedge cases.

off water wedge with Ms = 4 and θw = 40◦. At each time instant, the height of the
second triple point was always larger than the first triple point.
In the case of double-Mach reflection over the water wedge, both the first and second

triple points appeared and started to rise off the surface later than in the cases of the solid
wedge with the same Ms and θw. This delay increased for higher values of θw. One likely
reason is that, in the solid wedge cases, no deformation of the surface occurred, where all
the energy was reflected at the solid surface during the impact and sustained the growth
of the reflection above the solid surface. However, in the water wedge cases, although
the air-water interface did not have time to deform in the simulation, part of the energy
was absorbed by water during the impact, which reduced the energy reflected from the
air-water interface, leading to a reduction of the available energy used to support the
growth of Mach stem. Also, vortices were observed near the water surface behind the
Mach stem, shown in figure 12(a), which also consumed some of the energy. The vortices
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Figure 14. (Color online) The first and second triple point trajectories for shock wave
reflection off water wedge with Mach number Ms = 4 and inclination angle θw = 40◦.

are not artifacts, but are due to the rotational flow. In figure 12, the flow behind the
Mach stems are subsonic, and cannot cross the slipstream. In the reference frame of the
first triple point, the velocity of the flow near the slipstream is parallel to the slipstream.
When the flow reaches the water surface or the solid wedge surface, the flow velocity is
forced to be altered to the direction that is parallel to the wedge surface, so rotational flow
forms at the foot of the slipstream. As θw was increased while keeping Ms as constant,
the vertical component of the incident shock Mach number increased, which resulted in
an increase in the energy transmitted into the water region. Due to the decrease of energy
for supporting Mach stem growth, this delay increased as θw was increased. Though the
establishment of the Mach stem is delayed for the water wedge cases, the growth of the
reflection configuration is linear, which can be seen in figures 13 and 14, and therefore
the shock reflection process can be described as self-similar.
The triple point trajectory angle was calculated based on linear curve fitting of the

trajectory. Figure 15 shows the measurement of the first triple point trajectory angle,
χ, from the simulations. The analytic solution from Ben-Dor (1978) was plotted for
comparison. For the solid wedge cases, the difference between the measurement and
analytic solution is within 1.1◦. For the water wedge cases, the difference is less than
0.6◦. One likely reason for the difference between solid and water wedge cases is that
energy is transmitted into the liquid but not to the solid.
Figure 16 shows the measurement of the second triple point trajectory angle, χ′,

compared with the analytic solution from Ben-Dor (1980). For the solid wedge cases,
the agreement is within 1.3◦. For the water wedge cases, the difference is less than 0.9◦.
One possible reason for the deviation is that the analytic solution assumed uniform flow
behind reflected shock wave and Mach stems, while this assumption is not true in the
simulated cases.

4.6. Transmitted waves in water

Figure 17 shows the velocity profile of the transmitted waves in the water under
four different incident shock Mach numbers from the simulation. The threshold of the
visualized velocity is chosen so that more details of the flow features inside water can
be captured, while the flow behind the incident shock wave and Mach stem in the air
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Figure 15. (Color online) The first triple point trajectory angle, χ, for water and solid wedge
cases obtained from simulations with different Ms and θw. Analytic solutions from Ben-Dor
(1978) are plotted for comparison.
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Figure 16. (Color online) The second triple point trajectory angle, χ′, for water and solid wedge
cases obtained from simulations with different Ms and θw. Analytic solutions from Ben-Dor
(1980) are plotted for comparison.

is not visualized. As shown in figures 17(a) and (b), the velocity change across the
compression wave is smooth, thus the transmitted waves in the water are not shock
waves. In particular, in the case of figure 17(a), which shows a regular reflection, the
incident shock wave is striking the water surface at an angle of 45◦. The foot of the
incident shock wave is sliding over the water surface with a uniform speed vi = 587 m/s.
Through calculation, the speed of the compression wave in the water is approximately
vt ≈ 1122 m/s, which is lower than the speed of sound in water (1452 m/s). In the case of
figure 17(b), illustrsting a single-Mach reflection, the foot of the Mach stem is traversing
at the speed vi = 1023 m/s, while the speed of the compression wave in the water is
vt ≈ 1249 m/s. In the above two cases, the transmitted waves in the water are weak,
thus no shock wave is formed in the water. Also, the foot of the incident shock wave or
Mach stem cannot catch up with the corner-generated signal traveling in the water, so a
precursor wave is induced ahead of the Mach stem that passes the information from water
back into the air, as previously reported by Rodriguez et al. (2016). In figures 17(c) and
(d), different from (a) and (b), the precursor wave no longer appears. The Mach stems
in (c) and (d) are moving with uniform speeds vi = 1575 m/s and 2109 m/s respectively,
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Figure 17. (Color online) Velocity profile inside water under the incident shock Mach
numbers (a) Ms = 1.2, (b) Ms = 2, (c) Ms = 3 and (d) Ms = 4, and wedge angle θw = 45◦.

which are larger than the speed of sound in water. Thus, a shock wave is formed in the
water due to the superposition of the compression waves, and the shock is attached to
the Mach stem at every instant.

4.7. Temperature change in water

Figure 18 shows the temperature increments in the water for four different incident
shock Mach numbers from the simulation. The temperature increment is chosen to be
plotted in a certain range so that the changes in the water is clearly visualized, while
the temperature field behind the incident shock wave and Mach stem above the air-
water interface is not visualized. As shown in figures 18(a) and (b), though the corner-
generated signal propagates fast inside the water, the temperature increment in the
water is less than 1K. In particular, the temperature change for the Ms = 1.2 case
is less than 0.1K. However, in the cases of figures 18(c) and (d), a shock wave forms
in the water, and a temperature discontinuity is observed across the shock wave. The
temperature increment across the shock front in the water is approximately 3.0K and
7.3K respectively in figures 18(c) and (d).
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Figure 18. (Color online) Temperature increment in the water for incident shock Mach
numbers (a) Ms = 1.2, (b) Ms = 2, (c) Ms = 3 and (d) Ms = 4, and wedge angle θw = 45◦.

5. Conclusions

In this work, a comprehensive numerical study of shock wave reflection off water wedge
was done, supported by experimental results. Different shock wave reflection patterns,
transition angles and triple point trajectory angles were studied and compared with
reflection off solid wedges.

The major contributions can be summarized as follows. First, high resolution numerical
simulations and experiments are performed to study shock wave reflections off water
surface. The wave patterns are comprehensively investigated in terms of transition angles
and triple point trajectories. Also, simulations are compared against both experimental
results and theoretical solutions for the solid wedge cases. The difference between the solid
and water wedge cases is analyzed and physically explained. Furthermore, the transmitted
waves inside the water are quantitatively studied with regard to the velocity profile and
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the temperature field. Results from the low and high incident shock Mach numbers are
compared and two different scenarios are found.
In particular, planar shock wave reflections over water and solid wedges were numeri-

cally explored using six different shock Mach numbers, Ms =1.2, 1.38, 1.52, 2, 3, and 4,
and experimentally investigated using three different shock Mach numbers, Ms = 1.20,
1.38, and 1.52. For both solid and water wedge cases, transition angles show agreement
within 5.3 % measured from simulations and 9.2 % measured from experiments comparing
with the theoretical detachment criterion for a solid surface.
Moreover, comparing results of the water with solid wedge cases, the transition angle

is the same for shock Mach number Ms = 1.20, while the difference gets larger as Mach
number increases. Though the establishment of the Mach stem is earlier, the reflection
configuration of the solid wedge case has a similar shape as the water wedge case. The
difference in wave pattern is primarily due to the energy transmission into the water
wedge, which does not exist in the solid wedge case.
The triple point locations for both water and solid wedge cases were traced in the

simulation. Results showed that the triple point trajectories are linear. The first and
second triple point trajectory angles, χ and χ′, were measured and compared with the
analytic solution. Close agreement, within 1.3◦ and 0.9◦ respectively, was found for the
solid and water wedge cases.
The transmitted waves inside the water under four different Mach numbers from the

simulations were visualized. Results showed that under relatively low incident shock
Mach numbers, Ms = 1.2 and 2, a precursor wave is induced that passes information
from water back into the air. At relatively high Mach numbers, Ms = 3 and 4, there is
no precursor wave, but a shock wave is formed inside the water and it is attached to the
Mach stem at every instant.
The temperature field in the water is visualized. For low incident shock Mach numbers,

Ms = 1.2 and 2, the temperature increment in the water is less than 1K. For the two
higher incident shock Mach numbers, Ms = 3 and 4, the temperature difference across
the shock wave in the water is approximately 3.0K and 7.3K, respectively.
The numerical result for the case of incident shock Mach number Ms = 1.20 and incli-

nation wedge angle θw = 40◦ was compared with the experimental data using schlieren
visualization. Results showed good agreement in terms of shock wave configuration.
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