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ABSTRACT 
 
The inversion of compressional wave properties is presently emerging as a technique for 
determining the geotechnical properties of marine sediments. However, the relationships required 
to perform such an inversion are still under debate, with further research required to resolve the 
dependence of compressional wave properties on both frequency and geotechnical properties. 
Though the use of in situ probes provides the most promising manner of examining these 
relationships, previous work in this field has encountered a number of experimental difficulties.  
  This work presents a series of well-constrained in situ transmission experiments. These were 
undertaken on inter-tidal sediments using a purpose built in situ device, the Sediment Probing 
Acoustic Detection Equipment (SPADE). Compressional wave properties were measured from 16 
to 100 kHz in a range of sediment types (medium to fine sands and medium to fine silts), with 
several closely spaced locations examined at each general site to assess the local variability in 
compressional wave properties. Spreading losses, which were adjusted for sediment type, were 
incorporated into the data processing. Also included were a thorough error analysis and an 
examination of the repeatability of both the acoustic wave emitted by the source and the coupling 
between the probes and the sediment.  
  The results indicate that sands possess greater group velocities, greater effective attenuation 
coefficients and lower quality factors than silts, while the low velocities measured in silts imply 
that the bulk moduli of the silt sites examined are lower than expected owing to a considerable 
fraction of organic matter. Significant variations were observed in compressional wave 
properties, which were more reliably related to variations in geotechnical properties in sands than 
in silts. Group velocities were observed to be independent of frequency in sands within 95 % 
confidence limits, with no reliable frequency-dependence being determined in silts owing to 
variability in the measured values. Effective attenuation coefficients were proportional to 
frequency within 95 % confidence limits for the majority of the sand and silt locations examined. 
Results indicate that compressional wave properties can be used to determine porosity, bulk 
density and sand fraction, while the reliable determination of mean grain diameter from 
compressional wave properties in inhibited by the scatter in the data.          
  The results from this study were also used to assess the effectiveness of Biot Theory to predict 
the compressional wave properties of these sediment types. In sands, the Biot phase velocities 
agreed with measured group velocities, while Biot absorption coefficients were less than 
measured effective attenuation coefficients, owing to scattering or squirt flow not accounted for 
in the Biot Theory. In silts, Biot phase velocities are greater than measured group velocities, 
while Biot absorption coefficients generally agree with or are greater than measured effective 
attenuation coefficients. In silts, predicted velocities are greater than those measured, while 
absorption coefficients generally agree with or are greater than measured attenuation coefficients. 
The discrepancy between the measured attenuation coefficients and predicted absorption 
coefficients can be explained through the over-estimation of in situ porosities by the geotechnical 
measurement techniques adopted. 
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