
J
H
E
P
0
2
(
2
0
1
7
)
1
2
8

Published for SISSA by Springer

Received: November 7, 2016

Accepted: February 15, 2017

Published: February 24, 2017

Hairy black holes and the endpoint of AdS4 charged

superradiance
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1 Introduction and summary of main results

One of the most challenging open questions of general relativity concerns finding the time

evolution and endpoint of the superradiant instability in the Kerr-AdS black hole (or in

systems that mimic this system). When a wave with frequency ω and azimuthal angular

momentum mφ scatters a Kerr-AdS black hole with angular velocity ΩH , its amplitude can

grow if ω < mφΩH [1–3] (see [4, 5] for recent reviews on superradiance). This follows from

a linear perturbation analysis [6–8]. In global AdS, the amplified wave reflects at the AdS

boundary and keeps being amplified driving the system unstable. Finding the properties

of the instability evolution and its endpoint requires a non-trivial (3 + 1)-dimensional

numerical simulation not yet available.

However, valuable insights on the possible evolution can be obtained without solving

the actual initial value problem. Indeed, it was found that the zero mode (i.e. onset) of

the instability signals the existence of a new branch of black hole solutions with scalar

hair [9–12] or even gravitational hair [13]. Per se the existence of these hairy black holes is

interesting for two main reasons: 1) they immediately rule out any attempts of proving no-

hair theorems (under non-restrictive assumptions), and 2) they have a single Killing vector

field that is also the horizon generator, thus showing that the assumptions of Hawking’s

rigidity theorem can be evaded [11, 13, 14]. Of relevance for the initial value problem, it

turns out that, given a mass and angular momentum, these hairy black holes always have

higher entropy than the Kerr-AdS black hole. This property and the fact that they are

connected to the onset of superradiance suggest that these black holes could be the endpoint

of rotational superradiance. However, this is not the case because all of those constructed

to date have ΩHL > 1 (where L is the AdS radius) and are thus still superradiantly

unstable [11, 13, 15], this time to superradiant modes with higher mφ. This, together with

other observations that can be found in the original articles, led the authors of [11, 13, 16] to

conjecture that the superradiant instability might evolve into one of two possibilities: 1) the

endpoint of the superradiant instability is a singular solution reached in finite time which

implies cosmic censorship violation, or 2) the time evolution develops higher and higher

mφ structure (with increasing entropy) and the system never settles down. In the latter

case quantum gravity effects would become relevant at some point and cosmic censorship

would also be violated, at least in spirit. In either case, we would have an explicit example

of cosmic censorship violation in four dimensions and in a system that can be formed by

gravitational collapse. This would show that the violation found in [17, 18] can also occur

in a four-dimensional geometry.

To downsize the level of difficulty of the problem while still keeping some essential ingre-

dients and associated questions, we can turn-off the rotation of the black hole and consider

a static, but electrically charged, black hole. Indeed the global AdS Reissner-Nordström

black hole still has a generalized (effective) ergoregion where negative energy states can

be excited [15, 19–22] and the initial value problem is now a simpler (1 + 1)-dimensional

problem. Such a black hole with chemical potential µ can then be unstable to superradi-

ance when a scalar field with frequency ω and charge q scatters it if ω < µq [15, 20–22].

Similar to the rotating geometry case, the onset of charged superradiance is associated to
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novel hairy black holes with a charged scalar field floating above the horizon: electric re-

pulsion balances the scalar condensate against gravitational collapse. In global AdS5, these

charged hairy black holes were constructed perturbatively and then numerically in [23–27].

For a given energy and charge, the hairy solutions of [23–25, 27] have higher entropy

than the AdS5 Reissner-Nordström black hole. Therefore, unless the phase diagram of

the theory contains a (unlikely) solution with even higher entropy, these hairy black holes

should be the endpoint of charged superradiance. Unlike the rotating case, this is a robust

statement since q is fixed once we choose the theory and thus the hairy black holes are

not unstable to superradiance (in the rotating case mφ is a quantized integer that is not

fixed by the theory so hairy black holes associated with a given mφ are always unstable

to higher mφ’s). This is where the charged superradiant system becomes a less interesting

toy-model to discuss the endpoint of rotating superradiance.1

Nevertheless, moving beyond the initial motivation, there are good reasons to investi-

gate the charged system. Firstly, the properties of the evolution of the unstable charged

system should be known. This was addressed by a recent numerical time evolution simu-

lation which confirmed that, in AdS4, an unstable Reissner-Nordström black hole indeed

evolves towards a charged hairy black hole [28].

A second reason is related to the non-linear, weakly turbulent, instability of global

AdS. If we perturb global AdS with a scalar field or with a wave packet of gravitons, the

system evolves towards the formation of a black hole, for arbitrarily small initial data,

as several studies suggest [29–36]. If the spherically symmetric initial data is made of a

neutral scalar field the final black hole is an AdS-Schwarzschild black hole. However, if

the scalar field is charged then the endpoint of the nonlinear instability should be a hairy

black hole since it has higher entropy than the AdS-Reissner-Nordström with same charge

and energy. This was confirmed to be the case by numerical simulations in global AdS4

and AdS5 [31, 37, 38].

Since non-linear simulations are computationally costly, the numerical evolution studies

of [28, 31, 37, 38] were necessarily limited in the range of parameters and initial data. Thus,

it would be desirable to construct the hairy black hole solutions of Einstein-Maxwell theory

in global AdS4 directly as solutions of the elliptic boundary value problem. This would

confirm (or not) that the qualitative features of hairy black holes of AdS5 extend to AdS4.

It would also give quantitative thermodynamic quantities that can be used to compare

with the endpoint of future numerical simulations similar to [28, 31, 37, 38]. This is a main

aim of our manuscript.

A third reason to be interested on the charged AdS system, even in the absence of

rotation, is related to a third instability of AdS known as the near-horizon scalar conden-

sation instability [39]. The superradiant instability is present only in global AdS black

holes and requires (for charged superradiance) that both the scalar field and the geome-

try are charged. On the other hand, the near-horizon scalar condensation instability (and

associated hairy black holes) was first found in planar AdS and, in the AdS/CFT duality

1Note however that the charged hairy black holes can still be unstable to superradiance if we introduce

a new scalar field in the system.
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context, triggered the research field of “holographic superconductors” and AdS/condensed

matter correspondence [39–41]. This instability is present in any AdS geometry that has

an extremal (zero temperature) configuration even if the spacetime and the scalar field

are neutral [41, 42]. It occurs whenever the scalar field satisfies the asymptotic AdSd
Breitenlohner-Freedman (BF) bound [43] of the full theory but violates the AdS2 BF bound

(associated with the near-horizon geometry of the extremal black hole of the theory). In

particular, the near-horizon instability is present in the global AdS-Reissner-Nordström

black hole, where it co-exists with the superradiant instability [25, 42]. These two instabil-

ities are entangled but in certain limits their distinct nature emerges: large (small) global

AdS-Reissner-Nordström black holes, in AdS radius units, only have the near-horizon (su-

perradiant) instability. In section 3, we will discuss the sharp distinction of these two

instabilities in AdS4.

Since the superradiant instability is present in small AdS-Reissner-Nordström black

holes, the associated hairy black holes can be constructed perturbatively around global AdS

as a small expansion in the horizon radius and in the scalar condensate amplitude [23–25].

(On the other hand, large hairy black holes that emerge from the near-horizon instability

do not have such a perturbative expansion). A few observations immediately suggest the

existence of a perturbative expansion in the superradiant case. As mentioned above, a

complex scalar field with frequency ω and charge q scattering a charged black hole with

chemical potential µ is superradiantly amplified when [20, 21]2

Reω < q µ. (1.1)

For definiteness, consider a Reissner-Nordström black hole in global AdS4 (RN-AdS4), with

cosmological radius L, horizon radius r+ and chemical potential µ. Its gauge potential is

thus A = µ (1− r+/r) dt. Alternatively, we can parametrize this solution with r+ and the

temperature T in which case µ =
√

2

√
1 +

3r2+
L2 − 4πr+T . These black holes are regular all

the way to extremality (where their temperature vanishes), and the chemical potential is

µ
∣∣
ext

=
√

2

√
1 +

3r2
+

L2
.
√

2 +O
(
r2

+

)
, (1.2)

where in the last approximation we considered the small horizon radius limit of the con-

dition. Consider now a scalar perturbation in this RN-AdS4 background that we Fourier

decompose as φ(t, r) = e−iωtφ(r). If we impose reflecting asymptotic boundary conditions

that preserve the energy and charge of the system, RN-AdS4 behaves as a confined box

whereby waves can be dissipated only through the horizon. Therefore, only certain fre-

quencies can fit inside the AdS4 box: the frequency spectrum is quantized. The inverse

of the imaginary part of the frequency gives the dissipation timescale (if Im ω < 0) or an

instability growth rate (if Imω > 0). In the limit where r+ → 0, one has Imω → 0 and

2Note that we can make, as we will typically do in this manuscript, the gauge choice A(r+) = 0. In

this case the criterion (1.1) for instability reads instead Re(ω) < 0. For example, in this gauge (1.3) reads

ω ' 3+2p
L
− qµ+O (r+).
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the frequency spectrum reduces to the normal modes of global AdS4,

ω ' 3 + 2p

L
+O (r+) , (1.3)

where p is the radial overtone of the perturbation that gives the number of radial nodes of

the associated wavefunction (in this manuscript we will be interested on the scalar solutions

with lowest energy which correspond to p = 0). Altogether, conditions (1.1)–(1.3) imply

that incident scalar waves on a small near-extremal RN-AdS4 black hole drive it unstable

to superradiance if

3 + 2p

L
+O (r+) . Reω . q

√
2 +O

(
r2

+

)
⇔ e & ec +O (r+) with ec ≡

3 + 2p√
2

,

(1.4)

where we introduced the dimensionless scalar field charge e ≡ qL. Thus, for p = 0 small

near-extremal black holes are unstable for e & 3√
2
. By continuity, they should also be

unstable when we move away from extremality up to a point where the instability switches-

off (this point is the onset of superradiance if we do the reversed path, from large to low

temperatures).

In the absence of a horizon, a normal mode of global AdS4, with frequency ω and am-

plitude ε, solves the Klein-Gordon equation. Going beyond the linear order, this scalar field

sources the Einstein equation at order O
(
ε2
)

and higher and back-reacts in the background

geometry. If we impose reflecting boundary conditions on the boundary of global AdS4, it is

conceivable that the solution can be back-reacted (while being smooth everywhere) to any

order in a perturbative expansion in the scalar amplitude ε. In the back-reaction process

the normal mode frequency should itself receive corrections at each order. This possibility

turns out to be correct and the back-reaction of a normal mode of global AdS is known

as a boson star. Indeed they were explicitly constructed in AdS5 in [23–26] and studied

with much detail in [26]. Similarly, these solutions exist in AdS4 and will be constructed

in section 4. We have the freedom to do a U(1) gauge transformation that eliminates the

phase of the scalar field at the expense of changing the gauge potential. So the ‘boson star’

can be equivalently written as a ‘soliton’, i.e. a time-independent horizonless solution that

is regular everywhere. In most of our manuscript we will adopt this perspective.

When a theory has a solitonic solution and a black hole solution that is unstable, we

should consider, as a rule of thumb, the possibility that there might exist a third solution

that describes a hairy black hole constructed by placing the small black hole at the core of

the soliton.3 This was first observed in the Einstein-Yang-Mills theory: a black hole can

be added to the Bartnik-Mckinnon soliton [48] of the theory leading to a coloured black

3In the literature there were attempts, to find no-hair theorems stating that one cannot add black holes

inside boson stars or solitons [44–46]. However, as pointed out in [11] for asymptotically AdS and in [47]

for asymptotically flat, these results only apply to static black holes with no coupling to the Maxwell field

and follow essentially because the boson star has e−iωt time dependence and t→∞ at the horizon of a BH.

The scalar field thus oscillates infinitely often near the horizon and cannot be smoothly continued inside.

There are however ways to evade this no-go fate [11, 23, 25, 47] if a gauge field or rotation are present in

the system.

– 5 –
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hole with non-abelian Yang-Mills hair [49–51]. This rule of thumb also materializes in

the gravitational Abelian Higgs model (i.e. Einstein-Maxwell theory with a complex scalar

field) that we are considering [23–25]. The theory has a small RN-AdS4 black hole that we

can put on top of the soliton that we construct in section 4.

Quite remarkably, the idea encoded in the above rule of thumb can be realized in a

simple ‘non-interacting thermodynamic model’ that captures the leading order thermody-

namics of the system without solving the equations of motion of the theory.4 The model

simply assumes that at leading order the energy and charge of the hairy black hole is just

the sum of the energies and charges of its RN-AdS4 and solitonic components. The dis-

tribution of charges among the two constituents is determined by the condition that the

entropy must be maximized. This is equivalent to require that the chemical potential of

the RN-AdS4 and solitonic component match, i.e. that the system is in thermodynamic

equilibrium. We apply this model in section 5 and will find that it gets the correct leading

order thermodynamics of the system.

Moving beyond the leading order inspection of the system, the hairy black holes will be

constructed perturbatively in a double expansion in the dimensionless horizon radius r+/L

and scalar condensate amplitude ε in section 6. The equations of motion of the gravitational

Abelian Higgs theory are solved using a standard matching asymptotic expansion procedure

(see e.g. [11, 12, 23–25]) whereby we consider a near region r+
L ≤

r
L � 1 and a far region

r � r+ which overlap in the region r+
L �

r
L � 1 if we consider small black holes, r+

L � 1.

The resulting thermodynamic quantities of the hairy black hole — energy, charge, chemical

potential, temperature, entropy, and the Helmoltz and Gibbs free energies — are then

computed in (6.23) and obey the first law of thermodynamics. Confirming the rationale

beyond their construction, hairy black holes merge with the RN-AdS4 family at the onset of

superradiance and their zero-horizon radius limit is a soliton. The reader not interested on

the construction details can immediately jump to these expressions that describe uniquely

the hairy black holes and to their physical discussion in section 7.

The hairy black holes and solitons of the theory add new competitions in the phase

diagram of thermal phases of the gravitational Abelian Higgs model. The discussion of

these competitions depends on the thermal ensemble — microcanonical, canonical or grand-

canonical — that we consider. It turns out that, as summarized in the phase diagrams of

figure 1, in the microcanonical ensemble hairy black holes are always the dominant thermal

phase. However, large RN-AdS4 are still the preferred thermal phase both in the canonical

ensemble (see phase diagram of figure 3) and grand-canonical ensemble (see phase diagram

of figure 6).

4To our knowledge, the first work that tried to concretize explicitly from first principles (i.e., beyond the

numerical confirmation) the idea that we can place a black hole inside a solitonic solution goes back to [52].

Indeed, in the context of the Einstein-Yang-Mills theory, [52] proposed an ‘interacting thermodynamic

bound state model’ where the energy of the final colored (hairy) black hole is the sum of the energies of the

solitonic background plus the small bare black hole (i.e. the uncolored, hairless, black hole of the theory)

and, in addition, a binding energy contribution that would account for the interactions between the two

previous components of the system. This model was then explored to extract some bounds and monotonic

behaviors of the thermodynamic quantities of colored BHs. The non-interacting model on the other hand,

neglects the interaction or binding energy contribution, and allows to find analytical expressions, not only

bounds, for the thermodynamic quantities.

– 6 –
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A final comment on the near-horizon scalar condensation instability and its associated

hairy black holes is in order. In section 3.2 we will find the conditions under which a scalar

field in an extremal RN-AdS4 is unstable to the near-horizon instability. This happens

when the dimensionless scalar charge e is above the bound (3.15). In the limit where the

dimensionless horizon radius R+ → ∞, we recover the known result for planar RN-AdS4

black holes, e2 ≥ 3
2 +O

(
R−2

+

)
(for a massless field) [39–41]. Global RN-AdS4 black holes

are unstable for larger values of the scalar field charge. However, in the opposite limit,

R+ → 0, we get e2 ≥ 1
8R2

+
+O(1), which indicates that the near-horizon scalar condensation

instability is suppressed for small (global) RN-AdS4 black holes. This is to be contrasted

with the superradiant instability and highlights the different nature of the two instabilities.

In particular, this also means that hairy black holes branching-off from the RN-AdS4 family

do not admit a small perturbative expansion in the dimensionless horizon radius R+ (and

ε). A numerical non-linear construction, that we leave for future work, would be required.

Summarizing our conclusions, the phase diagram of AdS4-Einstein-Maxwell theory

with a complex scalar field depends on the window of the dimensionless scalar field charge

e that we consider. There are three cases:

• e2 < 3
2 : in this case RN-AdS4 is stable both against superradiance and the near-

horizon scalar condensation instability. Thus, there are no hairy black hole solutions.

We do have a 1-parameter soliton family. Based on the AdS5 results of [23–25] and

specially of [26], very likely this soliton has an intermediate Chandrasekhar limit

at a critical charge and mass and then an intricate discontinuous branch structure.

Finding wether this is the case for large charges also in AdS4 requires a numerical

study beyond the perturbative analysis done here.

• 3
2 ≤ e2 ≤ 9

2 : the near horizon instability takes place near extremality for large

RN-AdS4 black holes, i.e. only above a critical mass and charge. Consequently, the

associated large hairy black hole solutions cannot be constructed perturbatively and

would require a full non-linear numerical construction. Since they do not have a per-

turbative construction their zero-horizon radius limit is likely singular and certainly

not the soliton (this is the case in AdS5 [23–25]). The soliton, on the other hand has

similar properties to those of the previous case.

• e2 ≥ 9
2 : small RN-AdS4 black holes are unstable to the superradiant instability and

the associated hairy black holes can be constructed perturbatively for small mass and

charge (see section 6). They are a 2-parameter family of solutions that in a phase

diagram span an area bounded by the onset of superradiance (where they merge

with RN-AdS4) and, at their zero-horizon radius limit, the soliton (see figure 1).

Eventually, for larger values of the charges (that are not captured by our perturbative

analysis) the zero-horizon radius limit of the hairy black hole might no longer be the

soliton (this is the case in AdS5 [25]) but answering this requires a numerical analysis.

These hairy black holes always have higher entropy than the RN-AdS4 black hole in

the window of energy and charge where the two phases co-exist. Interestingly, in the

phase diagram of solutions of the theory, the hairy black holes connect the onset of

– 7 –
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the (linear) superradiant instability with the key player — the soliton — of the non-

linear weakly turbulent instability of AdS4. Indeed, at the simplest but fundamental

level, this non-linear instability follows from the appearance of irremovable secular

resonances when two or more solitons are taken as initial data and collide [29, 30, 53].

A perturbative construction of the hairy solutions for the gravitational Abelian Higgs

model in AdS5 was done in [23–25] and agree extremely well (for small charges) with the

full nonlinear solutions constructed in [25, 26]. Our perturbative construction finds hairy

solutions for the AdS4 theory. Qualitatively, we do not find differences between the AdS5

and AdS4 phase diagrams. Therefore, [25, 26] and our results suggest that (at least for

small black holes) the qualitative phase diagram of gravitational Abelian Higgs theory is

independent of the dimension. In addition, our quantitative results can be used to compare

against and testify the hairy solutions that are the endpoint of initial value simulations like

the ones reported in [28, 31, 37, 38]. Hairy black hole solutions of gravitational Abelian

Higgs model in AdS4 for a scalar field mass of m2 = −4/L2 were recently constructed

numerically in [54] and discussed in the grand-canonical ensemble. Their qualitative results

agree with our conclusions for the grand-canonical ensemble (namely, hairy black holes are

always subdominant with respect to RN-AdS4) indicating that the qualitative conclusions,

at least in the grand-canonical ensemble, might be similar for different scalar masses. The

reader interested on superradiance and asymptotically AdS5×S5 hairy black holes that are

solutions of supergravity can find an exhaustive discussion in [24, 27].

The plan of the manuscript is as follows. In section 2 we introduce the theory, its

equations of motion and the boundary conditions for the elliptic problem, and describe

how the thermodynamic quantities can be computed. Section 3 briefly reviews the RN-

AdS4 solution and discusses in detail the conditions where they are unstable to near-

horizon scalar condensation and/or superradiant instabilities. The soliton (boson star) of

the theory is constructed perturbatively in section 4. The leading order thermodynamics of

hairy black holes is discussed in section 5 using the non-interacting thermodynamic model.

In section 6, hairy black hole solutions are constructed perturbatively using a matched

asymptotic expansion analysis. The thermodynamical and physical properties of the hairy

solutions are analysed in detail in the three thermal ensembles in section 7. For the benefit

of a reader who wants to reproduce our results, the technical appendices A, B, and C give

the expressions for the field coefficients that appear in the perturbative expansions of the

superradiant instability of section 3.4, of the soliton construction of section 4 and of the

hairy black hole of section 6.

2 Model

2.1 Field ansatz, equations of motion and boundary conditions

We consider 4-dimensional Einstein-Maxwell gravity with negative cosmological constant

Λ = − 3
L2 , minimally coupled to a charged complex scalar field φ with charge q. The

associated action is

S =
1

16πG4

∫
d4x
√
−g
[
R− 2Λ− 1

2
FµνF

µν − 2Dµφ(Dµφ)† + 2V (|φ|)
]
, (2.1)

– 8 –
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where R is the Ricci scalar, F = dA with A being a gauge potential and Dµφ = ∇µφ−iqAµφ
is the associated gauge covariant derivative. We consider a potential V (|φ|) = m2φφ∗, with

m being the mass of the scalar field. For definiteness, onwards we set m = 0 but our

nonlinear construction can be extended to a massive scalar field or to a more generic

potential. We fix Newton’s constant as G4 = 1.

We are interested on solitonic and black hole solutions of (2.1) that are static, spheri-

cally symmetric and asymptotically global AdS4. We can use reparametrization of the time

t and radial coordinates r, r → r̃(r) and t→ t̃ = t+H(t, r) to fix the gauge to be such that

the radius of a round S2 is r and there is no cross term dtdr (this is often called the radial

or Schwarzschild gauge).5 A field ansatz that accommodates the desired symmetries is

ds2 = −f(r)dt2 + g(r)dr2 + r2dΩ2
(2), Aµdxµ = A(r)dt, φ = φ† = φ(r). (2.2)

where dΩ2
(2) describes the line element of a unit radius S2 (parametrized by {θ, ψ}, say).

Once a static solution is found we can always use a U(1) gauge transformation, ϕ →
ϕ + q χ ,At → At + ∇tχ to rewrite a scalar field φ = |φ|eiϕ in a gauge where the scalar

field oscillates with a frequency ω, φ = |φ|e−iωt. However, since the energy-momentum

tensor of the scalar field only depends on φφ† and ∂φ(∂φ)†, the gravitational and Maxwell

fields are always invariant under the action of the Killing vector field ∂t. In this gauge, the

equations of motion require that A
∣∣
r+

= ω/q, if the solution has a horizon at r = r+. In

particular, we shall adopt this gauge in sections 3.2 and 3.3.

At this point we have fixed all the diffeomorphic and U(1) gauge freedom to simplify

our field ansatz. However, our system still has two scaling symmetries that we can use for

further simplifications.6 The first scaling symmetry is

{t, r, θ, ψ} → {λ1t, λ1r, θ, ψ}, {f, g, A, φ} → {f, g, A, φ}, {q, L, r+} →
{
q

λ1
, λ1L, λr+

}
,

(2.3)

which leaves the equations of motion invariant and rescales the line element and the gauge

field 1-form as ds2 → λ2
1ds2 and Adt → λ1Adt. We use this scaling symmetry to work

with dimensionless coordinates and measure our thermodynamic quantities in units of L,

the natural scale of AdS (this amounts to set L ≡ 1),

T =
t

L
, R =

r

L
; e = qL. (2.4)

The second scaling symmetry is

{t, r, θ, ψ} → {λ2t, r, θ, ψ}, {f, g, A, φ} → {λ−2
2 f, g, λ−1

2 A, φ}, {q, L, r+} → {q, L, r+}.
(2.5)

5In this gauge, the horizon radius r+, if present, is also a gauge invariant quantity since it is proportional

to the entropy r+ =
√
S/4π.

6For planar solutions, i.e. solutions that asymptote to local AdS there is a third scaling symmetry that

allows to set the Poincarè horizon at r = r+ ≡ 1 (see e.g. [41]). This is the reason why we can have small

and large black holes in global AdS but not in planar AdS. Actually, in planar AdS a black hole is always

‘large’ in the sense that it does not have the superradiant instability (see further discussions of section 3).
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A Taylor expansion of the equations of motion at the asymptotic boundary yields f '
c0(R2 + 1) + · · · and g−1 ' R2 + 1 + · · · . We use the scaling symmetry (2.5) to require

that g approaches 1/f as r → ∞, i.e. to fix c0 ≡ 1. This choice can also be motivated by

the following observation (see e.g. [41]). In the context of the AdS4/CFT3 duality, AdS4

black holes are dual to thermal states on the boundary CFT. The choice g = 1
f as r →∞

fixes the normalization of the time coordinate with respect to the gravitational redshift

normalization of the radial coordinate to be such that the Hawking temperature of the

black hole in the bulk matches the temperature of the dual CFT on the boundary.

Variation of (2.1) yields the equations of motion for the fields f, g, A and φ:

φ′′(R) +
φ′(R)

R

(
1− R2A′(R)2

2f(R)
+ g(R)(3R2 + 1)

)
+
e2A(R)2g(R)φ(R)

f(R)
= 0,

(2.6a)

A′′(R) +
A′(R)

R

(
2− e2R2A(R)2φ(R)2g(R)

f(R)
−R2φ′(R)2

)
− 2e2φ(R)2g(R)A(R) = 0,

(2.6b)

f ′(R) +
f(R)

R

(
1− g(R)

(
1 + 3R2

)
−R2φ′(R)2

)
+
R

2

(
A′(R)2 − 2e2A(R)2φ(R)2g(R)

)
= 0,

(2.6c)

g′(R)− g(R)

R

(
1 +

R2A′(R)2

2f(R)
+R2φ′(R)2

)
+
g(R)2

R

(
1 + 3R2 − e2R2A(R)2φ(R)2

f(R)

)
= 0.

(2.6d)

We can use (2.6c) to get an algebraic relation for g in terms of the other fields and

their first order derivatives:

g(R) = −
2f(R)

(
R2φ′(R)2 − 1

)
−R

(
RA′(R)2 + 2f ′(R)

)
2 (e2R2A(R)2φ(R)2 + f(R) (1 + 3R2))

. (2.7)

We insert this algebraic relation into (2.6a), (2.6b) and (2.6d) to obtain a coupled system

of three second order ODE’s. Onwards, these are the three equations of motion that we

will solve to find the three fields {f,A, φ} (and thus also g).

The most notable solution of (2.1) is global AdS4 spacetime: f(R) = g−1(R) = 1 +R2

A(R) = φ(R) = 0. We are interested in solutions that asymptote to this background.

We can rewrite our ansatz and equations of motion in Fefferman-Graham coordinates

(defined such that gzz = 1/z2 and gzb = 0, where z is the radial distance with boundary

at z = 0, and xb = {t, θ, ψ} are the boundary coordinates) [55–57]. Any asymptotically

AdS4 spacetime has the following Taylor expansion of the metric around the holographic

boundary z = 0 [58, 59]:

ds2 =
1

z2

[
dz2 + gab(z, x)dxadxb

]
,

gab
∣∣
z→0

= g
(0)
ab (x) + · · ·+ z3g

(3)
ab (x) + · · · , with 〈Tab(x)〉 ≡ 3

16πG4
g

(3)
ab (x) (2.8)
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and where g(0)(x) and g(3)(x) are the two integration “constants” of the expansion;7 the

first dots include only even powers of z (smaller than 3) and depend only on g(0) (thus being

the same for any solution that asymptotes to global AdS4) while the second dots depend

on the two independent terms g(0), g(3). Within the AdS/CFT duality we are (typically)

interested in Dirichlet boundary conditions (BCs) that do not deform the conformal metric

g(0): the dual holographic CFT is formulated on this fixed background. This is the static

Einstein Universe Rt×S2, ds2
∂ = −dT 2 +dΩ2

(2). Given this Dirichlet BC our task is then to

solve the equations of motion in the bulk, subject to regular BCs at the horizon or radial

origin, to read g(3). Using the holographic renormalization formalism, this gives us the

expectation value of the holographic stress tensor 〈Tab(x)〉 which specifies and describes

the boundary CFT [58–60]. This Dirichlet BC also ensures that there is no dissipation of

energy at the asymptotic boundary (see appendix A of [8]). For this reason these Dirichlet

BCs can be denoted as ‘reflecting boundary conditions’.8

We still need to discuss the asymptotic BCs for the Maxwell and massless scalar fields.

A Taylor expansion of the equations of motion at the conformal boundary yields,

At(R) ' µ+
ρ

R
+ · · ·

φ(R) ' σ

R∆−
+ · · ·+ ε

R∆+
+ · · · , with ∆± =

3

2
± 3

2
, (2.9)

where µ and ρ are the chemical potential and charge density, respectively, and ε and σ are

the two arbitrary integration constants describing the decay of the massless scalar field. In

d = 4 the unitarity bound for the scalar field mass is m2
unitL

2 = −5/4. We have chosen to

work with a massless scalar field. Hence it is above the unitarity bound. It follows that

only the mode ε/r∆+ with faster fall-off is normalisable (since it has finite canonical energy)

and σ/r∆− is a non-normalisable mode [43, 61]. We thus choose the BC σ = 0. According

to the AdS/CFT dictionary, the boundary CFT is then not sourced and the scalar field

amplitude ε is proportional to the expectation value 〈O〉 of the boundary operator O that

has dimension ∆+ = 3 [62].

To summarize, at the asymptotic boundary (R → ∞) we will impose Dirichlet BCs

such that our solutions at large R behave as

f(R) = 1 +R2 +
m0

R
+O(1/R2),

A(R) = µ+
ρ

R
+O(1/R),

φ(R) =
ε

R3
+O(1/R5) (2.10)

with the dots representing terms that are a function of m0, µ, ρ, ε.

Consider now the inner boundary of our solution. This is a fictitious boundary since it

is a coordinate singularity at the edge of our integration domain, but is at a finite proper

distance from other points [14]. In the present study, this can be the origin of the radial

7Our solutions are static and spherically symmetric so there is no x dependence.
8We can however have other reflecting BCs that preserve the charges but not the static Einstein Universe

conformal boundary.
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coordinate, R = 0, if we look into a soliton (boson star). Or, it can be a horizon at R = R+

if the solution is a black hole, a condition that is imposed by demanding that f(R+) = 0.

In both cases to find the physical BCs we can Euclideanise the metric with a Wick rotation

and require regularity of the metric and matter fields in Cartesian coordinates, as explained

in detail in the review [14].9

For a soliton, a Taylor expansion of the equations of motion at the origin yields,

f(R) = f0 +O
(
R2
)
,

A(R) = a0 +O
(
R2
)
,

φ(R) = φ0 +O
(
R2
)
, (2.11)

where {f0, a0, φ0} are arbitrary integration constants and all higher order terms in (2.11)

are even powers of R with coefficients fixed in terms of {f0, a0, φ0}. Here we have already

imposed smoothness of the fields at the origin by imposing a defining BC (in the nomen-

clature of [14]). Namely, we set to zero three integration constants (one for each field f , g,

and φ) which are associated to terms that diverge as R → 0. Following the nomenclature

of [14], if we wish, we can now use this defining BC together with the equations of motion

to impose a derived BC to find the soliton. For example, it follows from (2.11) that a good

derived BC is a Neumann BC for the three fields at R = 0 since the derivative of all of

them vanishes.

On the other hand, if the solution is a black hole a Taylor expansion around its horizon

— defined as the locus f(R+) = 0 — yields

f(R) = f0(R−R+) +O
(
(R−R+)2

)
,

A(R) = a0(R−R+) +O
(
(R−R+)2

)
,

φ(R) = φ0 +O
(
(R−R+)2

)
, (2.12)

after imposing defining BCs that set three integration constants to zero (one for each

function) to have smoothness as R → R+. We are left with the remaining three arbitrary

integration constants {f0, a0, φ0}, and all higher order terms in (2.12) are fixed as a function

of {f0, a0, φ0}.
At this stage we can ask how many parameters we need to describe the soliton and

hairy black hole that we want to construct. The theory (2.1) is fixed once we choose the

mass and charge of the scalar field. At the UV asymptotic boundary we have a total

of five free parameters {c0,m0, µ, ρ, ε} to which we need to add the cosmological radius

L and the horizon radius R+ (if present). As explained previously, we can use the two

scaling symmetries (2.3) and (2.5) to fix L and c0. We are therefore left with four UV

free parameters {m0, µ, ρ, ε} and the horizon radius R+. On the other hand, in the IR we

have a total of three free parameters {f0, a0, φ0} (both in the soliton and black hole case).

Therefore, any black hole of the theory is described by 4UV +1H−3IR = 2 parameters. The

AdS4-Reissner-Nördstrom black hole is indeed a 2-parameter family of black holes. More

9For the gauge field, this refers to the gauge invariant field strength tensor F = dA, rather than the

gauge potential A.
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importantly, we also find that the hairy black holes we want to construct are described by

two parameters. These are the mass and the electric charge of the black hole. Alternatively

(but equivalently) we can take these to be the horizon radius R+ and the amplitude of

the scalar condensate ε. On the other hand, any soliton of the theory is described by

4UV − 3IR = 1 parameter. This can be the mass of the soliton (which fixes its charge) or,

alternatively, the amplitude of the scalar condensate ε.

2.2 Conserved and thermodynamic quantities

Once we have found our fields {f, g, A, φ} we can read the gauge invariant thermodynamic

quantities that describe hairy black holes or solitons.

To find the energy we can use either holographic renormalization [58–60] or the

Ashtekar-Das formalism [63, 64]. We describe briefly the latter formalism. Energy is a

conserved asymptotic quantity associated to the Killing vector field ξa∂a = ∂t. Consider a

conformal transformation of the metric (2.2) defined as: ĝab = Ωgab. The appropriate con-

formal factor to use here is Ω = 1
R . Then consider the Weyl tensor of the conformal metric:

Ĉabcd. Consider also the conformal hypersurface defined by Σ|Ω=0 and the normal vector

to it: na = ∂aΩ. We define the tensors K̂abcd = Ω3−dĈabcd|Ω=0 and ε̂ac = K̂abcdn
bnd. Con-

sider, on the conformal hypersurface Σ|Ω=0, the timelike surfaces of constant t, Σ̃|Ω=0,t=const

with normal vector ta = ∂at. This surface has dimension 2 and induced metric hab. Then

the conserved energy is defined as:

M = − 1

8π

∫
Σ̃
ε̂ac ξ

atbdΣ̃ (2.13)

which, in terms of the expansion parameters defined in (2.10) yields,

M

L
= −m0

2
. (2.14)

To define the conserved electric charge, we use Gauss’ law. Consider a 2-sphere S2 at

constant time t and R in the limit R→∞. The electrical charge is

Q = lim
R→∞

1

16π

∫
S2

?F, (2.15)

where ?F is the Hodge dual of the field strength. As a function of the asymptotic expansion

parameters defined in (2.10) this gives,

Q

L
= −ρ

2
. (2.16)

The value of the temperature for a soliton is undefined, and its entropy is zero as it

does not have a horizon. Our black holes have a Killing horizon at R = R+ generated by

the Killing vector field K = ∂t. Their temperature is thus given by its surface gravity over

2π which yields,

THL =
1

4π

f ′(R)√
f(R)g(R)

∣∣∣
R+

. (2.17)
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The entropy of the black hole is a quarter of horizon area. In terms of the expansion

parameters introduced in (2.12), the temperature and entropy are then

TH L =
f0

(
3R2

+ + 1
)

2
√

2π
√
R+

(
3R2

+ + 1
) (
a2

0R+ + 2f0

) ,
S

L2
= πR2

+. (2.18)

The chemical potential µ is defined in (2.10). It is the difference between the value of the

electromagnetic field at infinity and at the horizon.10

To discuss the competition between thermal phases in the canonical and in the grand-

canonical ensembles we have to compute the associated thermodynamic potentials, namely

the Helmholtz free energy F = E − TS and the Gibbs free energy, G = M − TS − µQ,

respectively.

Solutions of (2.6) must satisfy the first law of thermodynamics:

dM = THdS + µdQ, for black holes, (2.19)

dM = µdQ, for solitons. (2.20)

3 AdS4-Reissner-Nördstrom black hole and its instabilities

3.1 AdS4-Reissner-Nördstrom black holes

When the scalar field vanishes, global AdS4-Reissner-Nördstrom (RN-AdS4) black hole is

a known solution of (2.6). This is a 2-parameter family of solutions, that we can take to be

the horizon radius R+ and the chemical potential µ. It is described by ansatz (2.2) with

f(R) =
1

g(R)
= 1 +R2 − R+

R

[
1 +R2

+ +
µ2

2

(
1− R+

R

)]
,

A(R) = µ

[
1− R+

R

]
,

φ(R) = 0. (3.1)

Alternatively, we can parametrize RN-AdS4 with R+ and the temperature T in which case

the chemical potential is given by

µ =
√

2
√

1 + 3R2
+ − 4πR+T . (3.2)

It follows that regular RN-AdS4 black holes exist if their chemical potential satisfies

µ ≤
√

2
√

1 + 3R2
+. (3.3)

When µ = 0 one recovers the AdS4-Schwarzschild solution while the upper bound of (3.3)

occurs for the extremal configuration (T = 0) where the entropy is finite but the tempera-

ture vanishes.
10Recall that we work in the gauge where A

∣∣
r+

= 0. With a gauge transformation, we can instead work

in the gauge A
∣∣
∞ = 0 and the scalar field acquires a harmonic time dependence.
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The mass, charge, entropy and temperature expressed as a function of R+ and µ are

MRN/L =
R+

2

(
1 +

µ2

2
+R2

+

)
, QRN/L =

1

2
µR+ ,

SRN/L
2 = πR2

+, TRNL =
1

8πR+

(
2− µ2 + 6R2

+

)
. (3.4)

In section 5, we will find the leading order thermodynamics of hairy black holes as-

suming that they can be described as a non-interacting mixture of a soliton and a small

RN-AdS4 black hole. To complete that analysis, we will only consider the leading order

(in the R+ expansion) thermodynamics of the RN-AdS4 black hole. For future reference

this is:

MRN/L '
R+

2

(
1 +

µ2

2

)
+O(R3

+), QRN/L =
1

2
µR+ ,

SRN/L
2 = πR2

+, TRNL '
1

8πR+

(
2− µ2

)
+O(R+). (3.5)

When perturbed by an infinitesimal scalar field perturbation, global AdS4-RN black

holes can develop two types of linear instabilities that have different physical nature. One

is the near-horizon scalar condensation instability and the other is the superradiant insta-

bility. The former is already present in planar RN-AdS4 black holes (where it was first

found) while the later is only present in global AdS RN black holes. The zero mode of these

instabilities is closely connected to the existence of hairy black hole solutions. Therefore,

in the next two subsections we discuss the main properties of these two instabilities with

some detail.

3.2 Near horizon scalar condensation instability of large black holes

Consider a scalar field with mass m and charge q in an asymptotically AdS4 background. A

Taylor expansion around the asymptotic boundary yields the two independent solutions11

φ(R) ' σ

R∆−
+ · · ·+ ε

R∆+
+ · · · , with ∆± =

3

2
±
√

9

4
+m2L2 , (3.6)

which reduces to (2.9) when m = 0. Breitenlöhner and Freedman (BF) found that a scalar

field in AdS4 is normalizable, i.e. it has finite energy, as long has its mass obeys the AdS4

BF bound,

m2 ≥ m2
BF ≡ −

9

4

1

L2
. (3.7)

When this is the case we can have asymptotically AdS4 solutions that are stable in the UV

region.

But this analysis is blind to the behaviour of the scalar field in the interior of the

spacetime. In particular, the properties of the scalar field in the IR region of a particular

spacetime might drive the system unstable. This is indeed the case: as first found in the

11In this subsection it is illuminating to restore the factors of L and coordinates {t, r}— see (2.4) — and

consider a massive scalar filed.
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context of holographic superconductors [39–41], planar AdS black holes can be unstable

to a near horizon scalar condensation mechanism [39]. The zero mode of this instability

then signals a second order phase transition to planar hairy black holes that are dual

to holographic superconductors [40, 41]. It was later understood that the near horizon

scalar condensation instability is quite universal and present for any asymptotically AdS

background that has a black hole with an extremal (zero temperature) configuration [41, 42]

(this includes even some systems with neutral black holes and uncharged scalar fields). The

criterion for this instability is the following. Start with a scalar field whose mass obeys the

UV BF bound (3.7). When it violates the AdS2 BF bound,

m2 ≥ m2
AdS2 BF ≡ −

1

4

1

L2
AdS2

, (3.8)

the system, although asymptotically stable, is unstable in its near-horizon region. We might

then expect the system to evolve into a hairy black hole with the same UV asymptotics

but different IR behaviour.

We can work out in more detail the consequences of this instability for our current

system, following the original analysis in [42] and [25]. Global AdS4-RN black holes de-

scribed by (2.2) and (3.1) have an extremal configuration when the bound (3.3) is saturated,

µ =
√

2

√
1 + 3

R2
+

L2 . Take the near-horizon limit of this extremal RN-AdS4 black hole, i.e.

introduce the new coordinates {τ, ρ̃},

t = L2
AdS2

τ

λ
, r = r+ + λρ̃, (3.9)

and let λ→ 0. Setting,

LAdS2 ≡
Lr+√
L2 + 6r2

+

(3.10)

this procedure yields the solution of (2.6),

ds2 = L2
AdS2

(
−ρ̃2dτ2 +

dρ̃2

ρ̃2

)
+ r2

+dΩ2
(2),

Aµdxµ = α ρ̃ dt with α ≡ LAdS2

r+

√
r2

+ + L2
AdS2

. (3.11)

So, the near-horizon limit of extremal RN-AdS4 is the direct product of AdS2 with a

sphere S2. Applying this near-horizon limit to the Klein-Gordon equation that describes

a perturbation δφ(t, r) = e−iωtR(r) of a scalar field (with mass m and charge q) about the

extremal RN-AdS4 black hole yields

∂ρ̃
(
ρ̃2∂ρ̃R

)
+

(
(ω + q α ρ̃)2

ρ̃2
−m2L2

AdS2

)
R = 0, (3.12)

which, not surprisingly, is the Klein-Gordon equation for a scalar field around AdS2 with

an electromagnetic potential Aτ = α ρ̃. A Taylor expansion of (3.12) yields

R
∣∣
ρ̃→∞ ' a ρ̃

−∆̃− + · · ·+ +b ρ̃−∆̃+ + · · · , with ∆̃± =
1

2
± 1

2

√
1 +m2

effL
2
AdS2

, (3.13)
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which dictates the effective mass of the scalar field from the perspective of a near-horizon

observer,

m2
effL

2
AdS2

≡ m2L2
AdS2

− q2 α2

= m2L2
AdS2

− 2e2R2
+

1 + 3R2
+(

1 + 6R2
+

)2 , (3.14)

where in the second line we re-introduced the dimensionless quantities R+ = r+/L and

e = qL.

A scalar field with mass (3.14) in AdS2 is unstable if it violates the AdS2 BF

bound (3.8). It follows that extremal RN-AdS4 black holes are unstable whenever the

charge of the scalar field obeys

e2 ≥
(

1 + 4m2L2 R2
+

1 + 6R2
+

) (
1 + 6R2

+

)2
8R2

+

(
1 + 3R2

+

) . (3.15)

Taking the large R+ expansion, this yields

e2 ≥
(

3

2
+m2L2

)
− m2L2

6

1

R2
+

+

(
1 +

4

3
m2L2

)
1

24R4
+

+O(1/R6
+). (3.16)

In the strict limit R+ →∞, we recover the known result for planar RN-AdS4 black holes,

e2 ≥
(

3
2 +m2L2

)
[39–41]. Global RN-AdS4 black holes are unstable for larger values of

the scalar field charge.

In the opposite R+ → 0 limit, an expansion of (3.15) yields

e2 ≥ 1

8R2
+

+O(1), (3.17)

which indicates that the near-horizon scalar condensation instability is suppressed for small

(global) RN-AdS4 black holes. This is to be contrasted with the superradiant instability

(discussed in the next subsection) which is present for small black holes but not large black

holes. This property highlights the different nature of the two instabilities.

The near-horizon instability criterion that we have been discussing applies strictly to

extremal black holes. Continuity indicates that this instability should extend to near-

extremal black holes. Thus large, near extremal RN-AdS4 black holes are unstable to

condensation of the scalar field when condition (3.15) is satisfied.

We have chosen to work with a massless (m = 0) scalar field, so the near horizon

instability is present in our system for large black holes with e >
√

3
2 .

3.3 Normal modes of AdS4

Consider a massive charged scalar field perturbation φ(t, r) in global AdS4 with a constant

gauge field A = µdt, which is governed by the Klein-Gordon equation. The background

is time independent so we can do a Fourier decomposition of the perturbation in time

such that a particular mode is described by φ(T,R) = e−iωTψ(R) (ω is the frequency of
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the mode). If the scalar field mass m is above the BF bound (3.7), we can impose the

boundary condition σ = 0 in (3.6) and this yields the normalizable solution

ψn(R) =
ε

(R2 + 1)
1
2

∆+
2F1

[
1

2
(∆+ − eµ− ωn) ,

1

2
(∆+ + eµ+ ωn) ,∆+ −

1

2
;

1

1 +R2

]
,

(3.18)

where ∆+ is defined in (3.6), ε is an arbitrary amplitude and 2F1 is the hypergeometric

function. To have a regular solution at the origin, the frequency spectrum must then be

quantized as12

ωn = ∆+ + 2n− eµ, (3.19)

where the non-negative integer n is the radial overtone that gives the number of radial zeros

of ψ(R). Equations (3.18) and (3.19) give, respectively, the eigenvectors and eigenvalues

of the normal modes of a scalar field. Note however that we can use the U(1) gauge

transformation of the system to choose the gauge potential to be such that, e.g. µ =

(∆+ + 2n) /e and the normal mode frequency (i.e. for a given n) vanishes, ωn = 0.

In our current study, we are interested in the case m = 0, which implies that ∆+ = 3,

and onwards we choose to work with the solution that has the lowest frequency (and thus

energy), namely we set n = 0. Then, (3.19) reads

ω0 = 3− eµ . (3.20)

3.4 Superradiant instability of small black holes

In subsection 3.2 we have seen that large RN-AdS4 black holes are unstable to the near-

horizon scalar condensation instability. In the present subsection we show that, in the

opposite limit, small RN-AdS4 black holes are unstable to the superradiant instability.

For that we solve the Klein-Gordon equation for a massless scalar field perturbation with

charge e ≥ 3√
2

(see discussion associated with (1.4)),

φ(T,R) = e−iωTφ(R) (3.21)

around the RN-AdS4 in a perturbative expansion in the horizon radius R+. We will find

that the imaginary part of the perturbation frequency ω is positive, and thus the system

is unstable, when µ ≥ 3
e .

To impose smoothness of the perturbations at the horizon boundary it is convenient

to work in ingoing Eddington-Finkelstein coordinate

v = T +

∫
1

f(R)
dR. (3.22)

The Klein-Gordon equation cannot be solved analytically at each order. To circumvent

this limitation, we consider small black holes, R+ � 1, and use the matched asymptotic ex-

pansion method to solve the resulting Klein-Gordon equation at each order in R+. Namely,

we consider two different regions: the far region, R � R+, and the near region, R � 1

12This follows from the Gamma function property Γ[−n] =∞ for n = 0, 1, 2, · · · .
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which have an overlapping region R+ � R � 1 since we are assuming R+ � 1. In the

near and far regions, certain contributions in the equation of motion are sub-dominant and

can be discarded. We are left with ODEs, with a source term that depends on the previous

order solutions and their derivatives, that can now be solved analytically. At each order,

the near and far region solutions are then matched in the overlapping region.

Both in the far (superscript out) and in the near (superscript in) regions, we write the

perturbative expansion in R+ of φ(R) and ω as:

φout(R) =
∑
k≥0

Rk+ φ
out
k (R), φin(R) =

∑
k≥0

Rk+ φ
in
k (R),

ω =
∑
k≥0

Rk+ ωk with ω0 = 3− µe, (3.23)

and solve the Klein-Gordon equation order by order. The choice of ω0 is justified because

the perturbation mode of RN-AdS4 with lowest frequency reduces to the lowest normal

mode of AdS (3.20) in the limit R+ → 0. At any order k ≥ 1 we have five parameters

to determine: two integration constants from φout
k (R), say αk and α̃k, two integration

constants from φin
k (R), say βk and β̃k, and the frequency coefficient ωk. For our purposes,

it is enough to present the results up to order k = 2: this is the order at which the frequency

acquires an imaginary contribution.

Far region analysis. In the far region, R� R+, the Klein-Gordon equation for φout(R)

around the RN-AdS4 black hole (3.1) effectively describes linearized perturbations around

global AdS. Indeed at each order in the R+ expansion it reads,

D̄µD̄µφ
out
k = Sout

k

(
φout
j<k, ∂φ

out
j<k

)
, (3.24)

where D̄µ = ∇̄mu− ieAµ is the gauge covariant derivative of the global AdS background ḡ

with a gauge potential A = µdt, and the r.h.s. is a source term that depends on the lower

order fields φout
j<k and their derivatives. As justified when discussing (2.9), at any expansion

order, in the far region we impose the Dirichelet boundary condition:

φout
∣∣
R→∞ =

ε

R3
+O(1/R5). (3.25)

At leading order, k = 0 the far region solution is

φout
0 (R) =

3α0R+ α̃0

(
R4 + 6R2 − 3

)
3R (R2 + 1)3/2

e−i(µe−3) arctanR. (3.26)

The boundary condition (3.25) requires we set α̃0 = 0. Moreover, without loss of generality

we can set α0 ≡ 1, and (3.25) and (3.26) then fix the amplitude of the scalar field to be

ε = −ie−
1
2
iπeµ.

For higher orders, k ≥ 1, the boundary condition (3.25) always fixes the two integration

constants αk and α̃k but leaves the frequency coefficient ωk undetermined. It is fixed by

matching the far region with the near region. The final far region solutions φout
k for k =

0, 1, 2, after imposing the boundary condition (3.25) and fixing the frequency coefficients,

are listed in (A.1) of appendix A.
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Near region analysis. In the near region R � 1, it is convenient to work with the

rescaled variable y = R
R+

. The reason for this rescaling will become fully clear in the

discussion associated to (6.3) and (6.4) that we avoid repeating here. In short, in the near

region the perturbation problem simplifies since, for R+ � 1, the electric field is weak

and the perturbation system reduces to a small perturbation around the neutral solution.

After this rescaling y = R
R+

, at each order, the Klein-Gordon equation for φin(y) around

the AdS4 black hole — see (6.4) — reads

D̄µD̄µφ
in
k = Sin

k

(
φin
j<k, ∂φ

in
j<k

)
, (3.27)

where D̄µ is the leading order part of the gauge covariant derivative of the rescaled coor-

dinate in the RN-AdS4 black hole,13 and the r.h.s. is a source term that depends on the

lower order fields φin
j<k and their derivatives. At each order, we solve (3.27) subject to the

boundary condition that the solution is regular at the horizon in Eddington-Finkelstein

coordinates.

At leading order, k = 0, the near region solution is

φin
0 (y) = β0 −

β̃0

µ2 − 2

[
log(y − 1)− log

(
2y − µ2

)]
, (3.28)

and smoothness requires that we set β̃0 = 0.

At any order k ≥ 1, the boundary condition at the horizon always fixes one of the

integration constants, say β̃k, but the other is left undetermined until we do the matching

of the near and far regions. The final near region solutions φin
k for k = 0, 1, 2, after

imposing the boundary condition and fixing the integration constants, are listed in (A.2)

of appendix A.

Matching the near and far region solutions. At this stage, at each order k ≥ 1 we

have two undetermined parameters, namely the near region integration constant βk and

the frequency coefficient ωk. They are fixed by requiring that the large radius expansion of

the near solution φin matches the small radius expansion of the far solution φout. In these

expansions we keep only terms that will not receive contributions from higher orders.

Let us illustrate this matching at the leading order, k = 0. The small radius limit of

φout
0 and the large radius limit of φin

0 yield

φout
0 (R) ' 1 +O(R),

φin
0 (R) = β0. (3.29)

Matching requires that we set β0 = 1.

13In (3.27), the gauge covariant derivatives D̄µ are covariant derivatives ∇̄µ, since the electric field makes

no contribution at this leading order.
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As another example consider the matching at order k = 1. The small radius expansion

of φout
1 and the large radius expansion of φin

1 are:

φout
1 (R) ' 1 + iR(3− eµ) +R+

[
1

R

16eµ− 3
(
4µ2 + πω1 + 8

)
16

+
1

48

(
− 24i(eµ− 3)

(
2eµ− µ2 − 2

)
+ 3π

[
µ(3ieω1 − 8e+ 12µ)− 17iω1 + 24

]
− 24i

(
µ2 + 2

)
(eµ− 3) log(R)− 16ω1

)]
+O(R2

+, RR+), (3.30)

φin
1 (R) ' 1 + iR(3− eµ) +R+

[
β1 +

1

2
i(3− eµ)

((
µ2 + 2

)
log

(
2R

R+

)
− 2

)]
+O(R2

+).

At order O(R0
+) the two solutions agree as a result of the previous order matching. Moving

to next-to-leading order, the divergent R+/R term in the far region has no counterpart

in the near region expansion so we fix ω1 to eliminate it. Matching the remaining terms,

namely the contributions proportional to R+R
0 and R+ logR then fixes uniquely the inte-

gration constant β1. A similar matching procedure can be done for higher orders.

By the end of the day, we find that the frequency coefficients in (3.23) up to order

k = 2 are:

ω0 = 3− µe ,

ω1 =−
4
(
3µ2 − 4µe+ 6

)
3π

,

ω2 = i (µe− 3)
16

3π
+

1

96

[
µ

(
− 264

(
µ2 + 2

)
e+ 9µ

(
3µ2 + 52

)
+ 224µe2

)
+ 108

]
− 4

27π2

(
45µ2 − 52µe+ 90

) (
3µ2 − 4µe+ 6

)
. (3.31)

The property in (3.31) to be highlighted is that at order k = 2 the frequency acquires

an imaginary part proportional to µe− 3. This is negative whenever µ ≤ 3
e , which signals

exponential damping, but it becomes positive for µ > 3
e . The latter case describes the

superradiant instability of RN-AdS4 black holes. The reader interested on the properties

of RN-AdS4 superradiant modes beyond the perturbative analysis done here can find them

in [22, 65].

The above analysis shows that global RN-AdS4 black holes are unstable to superra-

diance in the small horizon radius regime, R+ � 1. On the other hand, large radius

global RN-AdS4 black holes are expected to be stable to superradiance. Indeed, in the

most extreme case of a large radius black hole whereby R+ → ∞, the studies of [39, 40]

indicate that planar RN-AdS4 black holes are unstable only to the near-horizon instability

described in section 3.2. Starting from this planar limit, it seems natural to expect that,

as R+ decreases, the superradiant instability will kick in at (and below) a critical horizon

radius (in addition, the near-horizon instability becomes supressed in the limit R+ → 0 as

seen in (3.17)). It would be interesting to do a numerical linear perturbation analysis that

spans the full parameter space of RN-AdS4 black holes to find the instability properties
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of RN-AdS4. However, it should be noticed that such an analysis will not be able to dis-

entangle the nature of the two instabilities except in the two limiting cases R+ → 0 and

R+ →∞ that are covered by the analytical analysis done in this manuscript.

4 Small solitons (boson stars)

In subsection 3.3 we revisited the normal mode frequency spectrum of global AdS4. These

frequencies are quantized according to (3.19). A far-reaching property of this spectrum

is that the imaginary part of the frequency vanishes: the associated eingenmodes are not

dissipative. Moving beyond linear order in perturbation theory in the amplitude of the

scalar field, we might then consider the back-reaction of these scalar normal modes on the

gravitational and electromagnetic field. Since the leading order is not radiative we might

suspect that the normal mode can be back-reacted to all orders and yield a boson star, i.e.

a horizonless solution with static electromagnetic and gravitational fields and a complex

scalar field with time dependence e−iωt. We should further expect that the frequency ω

is given at leading order by (3.19) but gets corrected as we climb the expansion ladder.

We can further explore the U(1) gauge transformation freedom to rewrite this solution in

a gauge where the frequency vanishes and the scalar field is real. This static solution is

equivalent to the boson star but usually called a soliton. As explained in section 2, this

soliton is a 1-parameter family of solutions that we can take to be the asymptotic amplitude

ε of the scalar field as described in (2.10).

In this section, we consider the massless scalar field case m = 0, and will confirm these

ideas. Namely, we construct the ground state soliton — i.e. the soliton with lowest energy

that at leading order is described by the lowest normal mode (3.20) — up to fourth O(ε4).

A U(1) gauge transformation allows to set the frequency of the solution to zero; then

at leading order we have A = 3
e dT . To get this soliton, we solve perturbatively the three

second order ODEs for {f,A, φ}, that we obtain after replacing the algebraic equation (2.7)

for g into (2.6), subject to the boundary conditions (2.10) and (2.11) at the asymptotic

boundary and at the origin, respectively. The pair of integration constants associated to

each ODE is fixed by the boundary conditions. We build up the perturbative solution in

a power series expansion of the fields in ε around global AdS4,

f(R) = 1 +R2 +
∑
n≥1

ε2nf2n(R),

A(R) =
3

e
+
∑
n≥1

ε2nA2n(R),

φ(R) =
ε

(1 +R2)3/2
+
∑
n≥1

ε2n+1φ2n+1(R).

(4.1)

When ε = 0 we recover global AdS4 as expected. The O(ε) scalar field and its derivatives

source the first non-trivial contribution to the electromagnetic and gravitational fields at

order O(ε2). The structure of the equations of motion is then such that the odd (even)

powers of ε never contribute to the electro-gravitational (scalar) fields.
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The equations of motion can be solved analytically order by order for arbitrary order

but the expressions for the solutions quickly become quite long. In appendix B we display

the final (i.e. after imposing the boundary conditions and thus fixing all integration con-

stants) coefficient functions f2n(R), A2n(R) and φ2n+1(R) up to order n = 2. This order is

enough to extract the relevant physical conclusions of our study.

Using these field expansions we can now compute the gauge invariant thermodynamic

quantities discussed in section 2.2. Namely, the mass Msol, charge Qsol, chemical potential

µsol, Helmoltz free energy Fsol and Gibbs free energy Gsol of the ground state soliton up to

order O(ε6) are:

Msol/L =
9π

32
ε2 −

3π
(
−301e2 + 60π2

(
e2 − 9

)
+ 2898

)
10240

ε4 +O(ε6),

Qsol/L =
3

32
πe ε2 −

πe
(
−196e2 + 60π2

(
e2 − 9

)
+ 2583

)
10240

ε4 +O(ε6),

µsol =
3

e
+

21
(
e2 − 3

)
32e

ε2 +
ε4

204800 e

[
− 339814e4 + 3159903e2 (4.2)

+ 300π2(92e4 − 834e2 + 2079)− 7714818
]

+O(ε6),

Fsol =Msol,

Gsol/L =−
63π

(
e2 − 3

)
2048

ε4 +O(ε6).

As a non-trivial check of our computation, we confirm that these quantities satisfy the first

law of thermodynamics for solitons (2.20) up to the required order O(ε6).

We postpone the physical discussion of our soliton results (4.2) to section 7.

5 Non-interacting thermodynamic model for hairy black holes

In the last section we have constructed the ground state AdS4 soliton of the Einstein-

Scalar-Maxwell theory (2.1). On the other hand, this theory also has the RN-AdS4 black

hole as a solution. In section (3.4) we have seen that the latter is unstable to superradiance

when scattered by a scalar field. It is natural to expect that this superradiant instability

drives the system to a hairy black hole that has a charged scalar condensate floating above

the horizon, with the electromagnetic repulsion balancing the gravitational collapse of the

scalar condensate into the horizon. For this to be true we need that: 1) a hairy black

solution of (2.1) does indeed exist, and 2) that for a given energy and charge, the entropy

of the hairy black hole is higher than the entropy of the unstable RN-AdS4 black hole

so that the system can evolve from the latter to the former solution while preserving the

second law of thermodynamics.

In this section we confirm the above expectations, i.e. we establish the existence of the

hairy black hole solutions and their leading order thermodynamic properties using a very

simple non-interacting thermodynamic model introduced in [23–25]. In the next section we

will confirm that this thermodynamic model yields the correct physical properties of the

sytem by solving directly the equations of motion (2.6)–(2.7) as a boundary value problem.

Our analysis thus complements a recent numerical time evolution simulation which, for
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some solution parameters and initial values, showed that RN-AdS4 are superradiantly

unstable and decay into hairy black holes [28].

The leading order thermodynamics of the hairy black hole can be constructed using the

so-called non-interacting thermodynamic model of [23, 24] (see also [8, 11, 13, 25] ). One

interprets the hairy BH as a non-interacting mix of a soliton and a RN-AdS4 BH. One first

observes that at leading order a charged boson star (soliton) is just a normal mode of the

ambient background (whose frequency ω is then corrected as we walk along the perturbation

expansion ladder). This is a 1-parameter family of solutions with E = ω
q Q+O(Q2), where

q is the charge of the scalar condensate. This soliton further obeys the first law, dE = ω
q dQ.

We can now place a small RN-AdS4 BH on top of this soliton to get a 2-parameter family

of hairy BHs. At leading order, we will assume a non-interacting mixture whereby we take

the mass M and the charge Q of the resulting hairy BH to be just the sum of the masses

and charges of the BH (MRN and QRN) and soliton (Msol and Qsol) components:14

M = Msol +MRN and Q = Qsol +QRN. (5.1)

The soliton carries no entropy, so the entropy S of the hairy BH simply reads

S = SRN(MRN, QRN) + Ssol(Msol, Qsol) = SRN(M −Msol, Q−Qsol). (5.2)

The hairy BH can partition its charge Q and mass M between the RN-AdS4 BH and

soliton components. On physical grounds one expects this distribution to be such that, for

fixed mass M and charge Q, the entropy S is maximised, dS = dSRN = 0, while respecting

the first law of thermodynamics,

dMRN

dQRN
= −

∂QRN
SRN

∂MRN
SRN

. (5.3)

For fixed total mass and charge, dM = 0 = dQ, and thus dMRN = −dMsol and dQRN =

−dQsol. It follows from the first law for the soliton that the l.h.s. in (5.3) yields the

chemical potential of the soliton, dMRN
dQRN

= µsol. On the other hand, the first law for the

RN-AdS4 BH implies that ∂MRN
SRN = 1/TH and ∂QRN

SRN = −µRN/TH where TRN =

TH is the temperature of the RN-AdS4 BH (and thus of the hairy BH) and µRN is its

chemical potential. Therefore the r.h.s. of (5.3) is simply − ∂QRN
SRN

∂MRN
SRN

= µRN. The simple

non-interacting thermodynamic model and associated maximization of entropy therefore

requires

µRN = µsol ≡ µ and TRN ≡ TH . (5.4)

That is, the hairy BH inherits the chemical potential of its solitonic component and the

system is in chemical and thermal equilibrium.

The mass and charge of the soliton are related by Msol = µQsol, while the leading

order thermodynamics of the RN-AdS4 black hole is given by (3.5). Using these properties

together with the non-interacting relation (5.1) and equilibrium conditions (5.4), we can

14Beyond the leading order this is property certainly does not hold due to the non-linear character of

Einstein’s equation. The validity of the non-intarecting assumption at leading order will be confirmed in

the next section.
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express the leading order thermodynamic quantities of the hairy black hole (and of its two

components) in terms of its mass M , charge Q and chemical potential µ:

R+L =
4

2− µ2
(M − µQ) +O

(
M2, Q2,MQ

)
,

T =

(
2− µ2

)2
32π(M − µQ)

+O
(
M2, Q2,MQ

)
,

S =
16π

(2− µ2)2 (M − µQ)2 +O
(
M3, Q3,M2Q,MQ2

)
; (5.5)

MRN =

(
2 + µ2

)
2− µ2

(M − µQ) +O
(
M2, Q2,MQ

)
,

Msol =
µ
(
2 + µ2

)
Q− 2µ2M

2− µ2
+O

(
M2, Q2,MQ

)
,

QRN =
2µ

2− µ2
(M − µQ) +O

(
M2, Q2,MQ

)
,

Qsol =

(
2 + µ2

)
Q− 2µM

2− µ2
+O

(
M2, Q2,MQ

)
.

The domain of existence of the hairy black hole can be inferred from this analysis.

In one extremum, the soliton component is absent and all the mass and charge of the

hairy BH is carried by the RN-AdS4 component. This describes the hairy black hole that

merges with the RN-AdS4 black hole at the zero-mode of its superradiant instability. On

the opposite extremum configuration, the RN-AdS4 component is absent and the soliton

component carries all the mass and charge of the solution. This is the zero-radius or zero-

entropy limit of the hairy black hole. It follows that the hairy black hole mass must be

within these two boundaries:(
µ2 + 2

)
2µ

Q+O(Q2) ≥M ≥ µQ+O(Q2). (5.6)

Equating the two extrema configurations, yields an interval of existence for the chemical

potential:

µ ≤
(
µ2 + 2

)
2µ

⇒ µ ≤
√

2 =⇒ e ≥ 3√
2
≡ ec, (5.7)

where in the last relation we used that for the ground state solution the leading order

potential is µ = ω/e = 3/e + O(R+). Note that condition (5.7) is the same we found in

the superradiant analysis leading to (1.4).

The above leading order thermodynamic analysis must be considered with a few grains

of salt. Indeed, first note that a theory can have hairy black holes that do not have a zero-

radius limit, i.e. a solitonic limit. Second, there is no reason why the non-interacting

mixture assumption (5.1) should hold, even at leading order.

In the next section we will construct the hairy black hole. In section 6.3 we compute

the thermodynamic quantities of the hairy black hole and we check that our intuition was

correct, and that, to leading order, the hairy black hole thermodynamic quantities are

indeed given by (5.5).
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6 Small hairy black holes

In this section we construct perturbatively the hairy black holes whose leading order ther-

modynamics was discussed in the previous section. For that we solve the elliptic equations

of motion (2.6)–(2.7), subject to the boundary conditions (2.10) and (2.12), to find a per-

turbative analytical expression for the hairy black hole.

6.1 Setting up the perturbation problem

As explained in section 2, the hairy black holes of our theory are a two-parameter family

of solutions that we can take to be the asymptotic scalar amplitude ε and the horizon

radius R+. Thus, their perturbative construction requires that we do a double expansion

of the fields in powers of ε and R+. In order to be able to solve analytically the equations of

motion (2.6)–(2.7) we must resort to a matched asymptotic expansion, similar to those done

in a similar context in [11, 12, 23–25]. Much like in section 3.4, we divide the outer domain

of communications of our black hole into two regions; a near-region where r+ ≤ r � L

and a far-region where r � r+. Restricting the analysis to small black holes that have

r+/L � 1, the two regions have an overlapping zone, r+ � r � L. In this overlapping

region, we can match/relate the set of independent parameters that are generated by solving

the perturbative equations of motion in each of the two regions.

The chemical potential of the solution should itself have a double expansion in powers

of ε and R+,

µ =
∑
n≥0

ε2n
∑
k≥0

Rkµ2n,k. (6.1)

Indeed, recall that the soliton is the back-reaction of a normal mode of AdS to higher orders.

At leading oder the chemical potential of the soliton is related, via a gauge transformation,

to an AdS normal mode frequency. We saw that this is corrected at higher orders. Thus,

we must permit similar corrections when the horizon is present. We shall construct the

hairy black hole family whose zero-radius limit is the ground state soliton of section 4 (so

with lowest energy for a given charge).15

In the far region, R� R+, the hairy black hole can be seen as a small perturbation in

R+ and ε around global AdS. We use the superscript out when referring to far region fields

which have the double expansion:

fout(R) =
∑
n≥0

ε2n
∑
k≥0

Rk+ f
out
2n,k(R), Aout(R) =

∑
n≥0

ε2n
∑
k≥0

Rk+A
out
2n,k(R),

φout(R) =
∑
n≥0

ε2n+1
∑
k≥0

Rk+ φ
out
2n+1,k(R).

(6.2)

This expansion already anticipates that odd (even) powers of the scalar condensate do not

correct the fields f,A (φ).

At each order {n, k} the perturbed equations of motion can be solved analytically

(with the help of Mathematica) to find the far fields up to a total of 6 integration constants

15A similar construction could be done for the excited hairy black holes.
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(recall that the equations of motion are a system of 3 second order ODEs). In addition,

the system also depends on the chemical potential corrections µ2n,k. The requirement

that the far-region fields obey the asymptotic boundary conditions (2.10) typically fixes 4

of the integration constants (namely, those associated to φout
2n+1,k, one associated to fout

2n,k

and another to Aout
2n,k). We are left with two integration constants and µ2n,k that will

be determined by the requirement that the far fields match the near-region fields in the

overlapping region. To prepare the system for the matching we need to take the small

radius R expansion of f (out), A(out), φout (with the expansion coefficients available at the

order under consideration). We find that these are singular as R → 0, diverging with a

power of R+

R . This indicates that the far-region analysis breaks down at R ∼ R+. This

justifies why the far-region analysis is valid only for R � R+. Also, it follows that in

the far-region we can safely do a Taylor expansion in R � 1 and ε � 1 since the large

hierarchy of scales between the solution parameters and the distance guarantees that they

do not compete.

Consider now the near-region, R+ ≤ R � 1. This time the Taylor expansions in

R � 1 and ε � 1 should proceed with some caution since the small parameters can now

be of similar order as the radius R+. This is closely connected with the fact that the

far-region solution breaks down when R/R+ ∼ O(1). This suggests that to proceed with

the near-region analysis we should define a new radial, y, and time, τ , coordinates as

y =
R

R+
, τ =

T

R+
. (6.3)

The near region now corresponds to 1 ≤ y � R−1
+ . If we further require that R+ � 1

one sees that the near region corresponds to y ≥ 1 � R+ (and y � ε). In particular, we

can now safely do Taylor expansions in R � 1 and ε � 1 since the radial coordinate y

and the black hole parameters have a large hierarchy of scales.16 To have further physical

insight it is also instructive to rewrite the RN-AdS4 solution (3.1) in the new coordinate

system (6.3)

ds2 = R2
+

(
−f(y)dτ2 +

dy2

f(y)
+ y2dΩ2

2

)
, (6.4)

f(y) = 1− 1

y
− 1

y

(
1

2
µ2

(
1− 1

y

)
+R2

+

(
1− y3

))
,

Aτ (y) = R+ AT (y) = R+ µ

(
1− 1

y

)
,

φ(y) = 0.

The explicit factor of R+ � 1 in Aτ (y) indicates that in the near region the electric field is

weak and the system can be seen as a small perturbation around the neutral solution. The

same should hold when we add a small scalar condensate to the system. The near fields of

16At the heart of the matching expansion procedure, note that a factor of R+ (one of the expansion

parameters) is absorbed in the new coordinates.
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the hairy black hole thus have the double expansion,

f in(y) =
∑
n≥0

ε2n
∑
k≥0

Rk+ f
in
2n,k(y), Ain(y) =

∑
n≥0

ε2n
∑
k≥0

Rk+A
in
2n,k(y),

φin(y) =
∑
n≥0

ε2n+1
∑
k≥0

Rk+ φ
in
2n+1,k(y).

(6.5)

At each order {n, k}, we can solve the perturbed equations of motion analytically to

find the near fields up to a total of 6 near region integration constants. Imposing the

horizon boundary conditions (2.12) typically fixes 3 of the integration constants (namely,

one associated to φin
2n+1,k, one to f in

2n,k and another to Ain
2n,k). The 3 leftover near field

integration constants are left undetermined until we match the far and near region fields in

the overlapping region. For the matching, we first need to restore the original coordinates

{T,R} and take the large radius limit of f in(R), Ain(R), φin(R) (with the expansion coef-

ficients available at the given order). We find that these diverge as a power of R, which

shows that the near region analysis breaks down at R ∼ 1. This explains why the near

region analysis is valid only for R� 1.

In the following subsection, we give some low order detailed examples of the matching

asymptotic expansion implementation. We are necessarily constrained on this exposition

to lowest orders since, as the expansion order grows, the analytical expressions for the far

and near fields become quite large. For the benefit of the reader that wants to reproduce

our results in full, we give the far and near field functions in appendices C.1 and C.2,

respectively. These are the final fields, i.e. after fixing all the integration constants of

the system using the boundary conditions (2.10) and (2.12) and the matching of far and

near fields.

We leave to subsection (6.3) in the main text, the physically relevant outcome of our

matching asymptotic construction, namely the thermodynamic quantities that describe

uniquely the hairy black holes.

6.2 Examples illustrating the matching asymptotic expansion

6.2.1 Matching asymptotic expansion at O
(
ε1, Rk+

)
We insert the double expansion (6.2) (far region) or (6.5) (near region) into the equations

of motion (2.6)–(2.7) and solve the resulting perturbed equations order by order.

At lowest order, O(ε0) in the scalar amplitude expansion, the scalar field is naturally

absent and the far field coefficients {fout
0,k (R), Aout

0,k (R)} can be read directly from an R+ � 1

expansion of the RN-AdS4 solution (3.1). A similar Taylor expansion of (6.4) yields the

near field coefficients {f in
0,k(y), Ain

0,k(y)}. The O(ε1) correction turns-on the scalar field φ

without back-reacting yet in the gravitational background: it describes a small perturbation

of the scalar field around the RN-AdS4 black hole. That is, the non-trivial equations of

motion (2.6)–(2.7) reduce to the Klein-Gordon equation without a source.17

Next, we illustrate how the matching asymptotic expansion determines φ1,k. A similar

procedure yields the fields φ2n+1,k at the odd orders O(ε2n+1).

17At higher orders in n, the equation of motion for φ still has the form of a Klein-Gordon equation but

with an inhomogeneous term sourced by the lower order fields and their derivatives.
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• Far region, R � R+.

The definition of ε introduced in the boundary condition (2.10) determines completely the

solution at order O(R0
+):18

φout
1,0 (R) =

1

(1 +R2)3/2
, (6.6)

and the equation of motion is obeyed only for the choice µ0,0 = 3/e (which corresponds, via

a gauge transformation, to the lowest normal mode frequency of AdS4). We now expand

the equation to O(R1
+). We get a Klein-Gordon equation with an inhomogeneous term

sourced by a derivative of φout
1,0 (R) which can be solved analytically. The two integration

constants are directly determined by the asymptotic boundary condition (2.10) (see also

footnote 18). This yields

φout
1,1 (R) =

1

48e2R (R2 + 1)5/2

(
36
(
2e2−18

(
R3+R

)
arctanR+ 9

(
R
(
πR2−2R+π

)
−1
))

+ e3
(
R2 + 1

)
µ0,1(−2R

(
3R2 + 17

)
+ 3π

(
R4 + 6R2 − 3

)
− 6(R4 + 6R2

− 3) arctanR)
)
. (6.7)

The value of the chemical potential correction µ0,1 will be determined only in the matching

of the far region with the near region.

As explained above, we skip here the details of the computation of the field coefficient

φout
1,2 (R). However, it is perhaps useful to highlight that it is typically a good idea to

complete the matching procedure, that fixes constants not determined by the boundary

conditions, before proceeding to the next order. This keeps the size of the expressions that

carry to next order smaller.

• Near region, R+ ≤ R � 1.

The homogeneous Klein Gordon equation in the near region at O(R0
+) has the solution

φin
1,0(y) = C1 +

C2

(
− log

(
3e2y2 − 32

)
+ log

(
y2 − 1

)
− iπ

)
6e2 − 64

. (6.8)

We need to impose the boundary conditions (2.12) at the horizon y = 1. Namely regularity

of the scalar field at the horizon requires that we eliminate the divergent logarithmic term

by choosing C2 = 0. Hence, the regular near region solution is

φin
1,0(y) = C1. (6.9)

At order O(R1
+), φin

1,1(y) still solves the homogeneous Klein-Gordon equation.19 There-

fore, its regular solution is

φin
1,1(y) = Ĉ1. (6.10)

18To be precise, ε is an integration constant that parametrizes our solution and, without loss of generality,

we choose not to allow corrections to its definition (2.10) at any order.
19A would be source term is proportional to the derivatives of the previous order field φin

1,0, but the latter

is just a constant, see (6.9).
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• Matching in the overlapping region R+ � R � 1.

In order to do the matching we take the small R limit of the far region solution and the

large R limit of the near solution. Notice that at this order only terms up to R0R1
+ and

R1R0
+ are correctly accounted for (terms higher than this will receive corrections from the

next order). The small R expansion of the far region is:

φout
1,0 (R) +R+φ

out
1,1 (R)

∣∣∣
R→0

=1 +R+

(
−
(

3πe
16 µ0,1 + 27

4e2
− 3

2

)
R

+

(
27π

4e2
− e

3
µ0,1

)
+O(R)

)
+O(R2

+). (6.11)

On the other hand, the large R expansion of the near region solution is:

φin
1,0

(
R

R+

)
+R+φ

in
1,1

(
R

R+

) ∣∣∣
R→∞

= C1 +R+Ĉ1. (6.12)

The divergent term in the far region expansion has no counterpart in the near region and

needs to be eliminated by a judicious choice of µ0,1. Then, the matching of the two leftover

terms fixes the integration constants C1 and Ĉ1 that were not fixed by the boundary

conditions. Altogether we find,

µ0,1 =
4
(
2e2 − 9

)
πe3

, C1 = 1, Ĉ1 =
−32e2 + 81π2 + 144

12πe2
. (6.13)

With this we have completed the solution up to O(ε1, R1
+). We can now proceed to

order O(ε1, R2
+) following a similar procedure. The final far and near field coefficients

{fout
0,2 , A

out
0,2 , φ

out
1,2 } and {f in

0,2, A
in
0,2, φ

in
1,2}, after imposing the boundary conditions and the

matching are listed in appendices C.1 and C.2, respectively.

6.2.2 Matching asymptotic expansion at O
(
ε2, Rk+

)
At order O

(
ε2
)
, the order O

(
ε1
)

scalar field back-reacts on the metric and gauge potential

and the hairy black hole starts differentiating from the RN-AdS4 solution. On the other

hand the Klein Gordon equation is trivially satisfied. Next, we illustrate how the matching

asymptotic expansion determines f2,k and A2,k. The procedure applies similarly for all the

even orders
(
ε2n
)
.

• Far region, R � R+.

Starting at order O
(
ε2, R0

+

)
the far field equation of motion can be solved analytically to

get fout
2,0 and Aout

2,0 . Each one of these fields has two integration constants. Imposing the

asymptotic Dirichlet boundary condition (2.10) we fix one of the constants in each pair.

We are left with the integration constants Cf and CA that will be fixed in the matching

step. At this stage the fields read:

fout
2,0 (R) =

Cf
R
−

3
(
R
(
3R2 + 5

)
+ 3

(
R2 + 1

)2
arctanR

)
8R (R2 + 1)2 , (6.14)

Aout
2,0 (R) = µ2,0 −

CA
R
−
e
(
3R2 + 5

)
8 (R2 + 1)2 −

3e arctanR

8R
. (6.15)
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• Near region, R+ ≤ R � 1.

Also at order O
(
ε2, R0

+

)
, we solve for the near fields f in

2,0 and Ain
2,0 up to a pair of integration

constants. Requiring that these fields vanish linearly at the horizon y = 1, as required by

the horizon boundary condition (2.12), we fix two of the constants. The near region fields

are then still a function of two arbitrary constants Kf and KA:

f in
2,0(y) =

Kf ey − 3KA

ey2
(y − 1), (6.16)

Ain
2,0(y) =

KA

y
(y − 1). (6.17)

• Matching in the overlapping region R+ � R � 1.

To match the far and near fields, we take the small R expansion of the far fields (6.14):

fout
2,0 (R)

∣∣∣
R→0

=
Cf
R
− 3 +O

(
R1, R1

+

)
, (6.18)

Aout
2,0 (R)

∣∣∣
R→0

= (µ2,0 − e)−
CA
R

+O
(
R2
)
. (6.19)

and the large R expansion of the near fields (6.16):

f in
2,0

(
R

R+

) ∣∣∣
R→∞

= Kf +O(R1
+), (6.20)

Ain
2,0

(
R

R+

) ∣∣∣
R→∞

= KA +O(R1
+). (6.21)

Note that we keep only terms that will not be corrected by higher order contributions.

Matching the two expansions fixes the four integration constants, that were not deter-

mined by the boundary conditions, as

Cf = 0, CA = 0, Kf = −3, KA = µ2,0 − e. (6.22)

At this stage the chemical potential correction µ2,0 is still left undetermined. It is fixed

at order O
(
ε3, R0

+

)
, when the scalar field φ3,0 is found.

6.3 Thermodynamic quantities

The final results for the field coefficients introduced in (6.2) and (6.5) are given in appen-

dices C.1 (for the far region) and C.2 (for the near field). These are the final fields, i.e.

after fixing all the integration constants of the system using the boundary conditions (2.10)

and (2.12) and the matching of the far and near fields.

In the presentation of our results, we take ε � 1 and R+ � 1 and we assume that

O(ε2) ∼ O(R+). The latter assumption implies that terms with the same (n+k) contribute

equally to the perturbative expansion, i.e. O
(
ε0, R2

+

)
∼ O

(
ε2, R+

)
∼ O

(
ε4, R0

+

)
. We did

the consistent perturbative expansion analysis up to (n+k) = 2, which is sufficient for our

purposes. Extending the perturbative analysis to higher orders is possible, but increasingly

cumbersome.

– 31 –



J
H
E
P
0
2
(
2
0
1
7
)
1
2
8

The fields presented in appendix C allow to compute the relevant physical properties of

hairy black holes. Namely, as described in 2.2, we can compute the thermodynamic quanti-

ties of the hairy solutions. The dimensionless mass M , electric charge Q, chemical potential

µ, entropy S, temperature T , Helmoltz free energy F and Gibbs free energy G are:

M/L =

[(
9

4e2
+

1

2

)
R+ +

6(2e2 − 9)

πe4
R2

+ +O(R3
+)

]
+ ε2

[
9π

32
+

9(27π2 − 2(e2 + 9))

128e2
R+

+O(R2
+)

]
+ ε4

[
− 3π(−301e2 + 60π2(e2 − 9) + 2898)

10240
+O(R1

+)

]
+O(ε6),

Q/L =

[
3

2e
R+ +

2(2e2 − 9)

πe3
R2

+ +O(R3
+)

]
+ ε2

[
3πe

32
+

(−38e2 + 81π2 + 90)

128e
R+

+O(R2
+)

]
+ ε4

[
− πe(−196e2 + 60π2(e2 − 9) + 2583)

10240
+O(R1

+)

]
+O(ε6),

µ =

[
3

e
+

4(2e2 − 9)

πe3
R+ +

(2e2 − 9)[−256e2 + 9π2(10e2 − 9) + 2688]

32π2e5
R2

+

+O(R3
+)

]
+ ε2

[
21(e2 − 3)

32e
+

1

9600πe3

[
75π2(236e4 − 1809e2 + 4212)

− 8(25330e4 − 264861e2 + 685503)R+

]
+O(R2

+)

]
+ ε4

[
1

204800e

[
− 339814e4

+ 3159903e2 + 300π2(92e4 − 834e2 + 2079)− 7714818
]

+O(R1
+)

]
+O(ε6),

S/L2 =πR2
+, (6.23)

TL =
1

4πR+

{[
2e2 − 9

2e2
−

12
(
2e2 − 9

)
πe4

R+ +
1

32π2e6

(
96π2e6 − 540π2e4 + 512e4

+ 2916π2e2 − 13824e2 − 2187π2 + 51840
)
R2

+ +O(R3
+)

]
+ ε2

[
−

3
(
5e2 + 9

)
32e2

− 3R+

6400πe4
(7300π2e4 − 89760e4 − 87750π2e2 + 982992e2 + 289575π2 − 2640816)

+O(R2
+)

]
+ ε4

[
1

204800e2
(−66600π2e4 + 716782e4 + 653400π2e2 − 6564933e2

− 1761750π2 + 16179426) +O(R1
+)

]
+O(ε6)

}
,

F/L =

[(
27

8e2
+

1

4

)
R+ +

(
18

πe2
− 81

πe4

)
R2

+ +O(R3
+)

]
+ ε2

[
9π

32
+

(
243π2

128e2
− 135

128e2

− 3

128

)
R+ +O(R2

+)

]
+ ε4

[
− 9π3e2

512
+

903πe2

10240
+

81π3

512
− 4347π

5120
+O(R1

+)

]
+O(ε6),

G/L =

[(
1

4
− 9

8e2

)
R+ +

(
27

πe4
− 6

πe2

)
R2

+ +O(R3
+)

]
+ ε2

[(
405

128e2
− 111

128

)
R+

+O(R2
+)

]
+ ε4

[
189π

2048
− 63πe2

2048
+O(R1

+)

]
+O(ε6).

In the next section we discuss physical checks to these quantities and withdraw physical

conclusions.
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7 Discussion of physical properties

7.1 Checking the hairy solutions and their interpretation

The thermodynamic quantities (6.23) for the hairy black hole must pass a few checks that

already give valuable information about their physical interpretation.

Firstly, when we set the horizon radius to zero, R+ → 0, we do get the thermody-

namical quantities (4.2) of the soliton. Recall that the latter was obtained without any

matching asymptotic expansion. This also confirms that the soliton is the zero horizon

radius limit of the hairy black hole. We have assumed this was the case in our construction

and the fact that the computation can be done is consistent with it.

Secondly, when we set the scalar condensate amplitude to zero, ε → 0, we get the

thermodynamical quantities (3.4) of the RN-AdS4 black hole, with a very specific chemical

potential namely,

µ =
3

e
+

4(2e2 − 9)

πe3
R+ +

(2e2 − 9)[−256e2 + 9π2(10e2 − 9) + 2688]

32π2e5
R2

+ +O(R3
+). (7.1)

That is, although the RN-AdS4 black hole is a 2-parameter family of solutions, the

ε→ 0 limit of the hairy black hole gives a particular 1-parameter sub-family of RN-AdS4

parametrized by R+ and chemical potential fixed by (7.1). This is precisely the RN-AdS4

1-parameter family at the onset of the superradiant instability studied in section 3.4. To

see this is indeed the case start by recalling that in section 3.4 we studied scalar field pertur-

bations with Fourier time dependence φ(T,R) ∼ e−iωTφ(R) and found that the frequency

is quantized as described in (3.23) and (3.31). In particular, the frequency has a positive

imaginary part for ω > eµ signalling the superradiant instability. The onset of the super-

radiant instability occurs when the imaginary part of the frequency vanishes and we can

work in the U(1) gauge where the real part of the frequency vanishes. If we impose these

superradiant onset conditions on (3.31) and solve with respect to the chemical potential in

a series expansion in R+ up to order O
(
R2

+

)
we precisely get (7.1). This is an important

check to our computations and, together with the information from the last paragraph,

confirms that hairy black holes are indeed a 2-parameter family of solutions that spans an

area in a phase diagram that has the onset curve of the RN-AdS4 superradiance and the

soliton curve as boundaries. At leading order, these are the boundaries (5.6) predicted by

the simple thermodynamical model of section 5 and that will be very clear in the left panel

of figure 1 (red and black curves).

The first law of thermodynamics provides the third check. Indeed, we can explicitly

verify that the thermodynamic quantities (6.23) do obey the first law (2.19) up to order

(n+ k) = 2. We emphasize this is a fundamental and non-trivial check of our results.

To summarize, we have constructed analytically the hairy black hole within pertur-

bation theory up to order (n + k) = 2 (and we could extend this construction to higher

order). This was done solving directly the perturbed equations of motion (2.6)–(2.7) of the

theory as a boundary value problem.

We can confirm that the simple non-interacting thermodynamic model of section 5

— which does not use the equations of motion — yields the correct leading order ther-

modynamics, i.e. the leading terms of (6.23). First note that at leading order it follows
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from (6.23) that µ = 3
e . Assuming, as justified above, that O(ε2) ∼ O(R+), the leading

order contributions of the expansion (6.23) allows to express analytically R+ and ε in terms

of M and Q,

R+ =
4e(eM−3Q)

2e2 − 9
+O

(
M2, Q2,MQ

)
, ε=

√
32 ((2e2+9)Q−6eM)

3πe (2e2 − 9)
+O

(
M2, Q2,MQ

)
,

(7.2)

which we insert in the expressions for the other thermodynamic quantities to find that at

leading order in M and Q one has:

µ =
3

e
+O (M,Q) ,

S =
16πe2(Me− 3Q)2

(9− 2e2)2 +O
(
M2, Q2,MQ

)
,

T =

(
9− 2e2

)2
32πe3(Me− 3Q)

+O
(
M2, Q2,MQ

)
.

(7.3)

These quantities do match the result of the non-interacting model (5.5). This confirms that

the non-interacting thermodynamic model, in spite of its crude simplicity, is quite robust

and does indeed capture the fundamental leading order properties of the hairy black hole

system at very low cost. This explicit confirmation adds to those done in similar hairy

black hole systems in [8, 11, 13, 23–25].

A more detailed discussion of the regime of validity of our perturbation theory is also

in order. By construction, it should be valid only for ε � 1 and R+ � 1. On the other

hand, the scalar charge of the hair must obey e & 3√
2
∼ 2.12 to have superradiant hairy

black holes: see discussion that leads to (1.4). However, since the black holes are a small

expansion around AdS4, e should not be too large to avoid large back-reactions. This

suggests that it is appropriate to require at most ε . 0.1, R+ . 0.1 and 3√
2
. e . 3, say.

Inserting these bounds into the thermodynamic formulas (3.4), (4.2), and (6.23) we get

approximate upper bounds for the physical charges. For example, for e = 2.5 we should

look into masses and charges that, in AdS units, are themselves below 10−1. However

the reader interested on making a direct comparison between our perturbative results and

exact numerical constructions that emerge from a nonlinear code or from the endpoint of

the superradiant time evolution might require more precise statements. We will have the

opportunity to give precise criteria in the following discussion: see footnotes 21 and 25.

We have found that the gravitational Higgs model with action (2.1) admits several

solutions. Namely, global AdS4, the RN-AdS4 black hole, the ground state soliton, the

ground state hairy black hole and an infinite tower of excited solitons and hairy black

holes.20 For a given electric charge, the latter excited solutions always have larger energy

than the ground state partners so we do not discuss them further.

Naturally, these thermal phases of the theory compete with each other. This competi-

tion can be framed in one of the three possible ensembles: the microcanonical, canonical or

20Recall that the ground state solutions have their perturbative root in the lowest normal mode frequency

of global AdS4, and the excited states emerge from the remaining infinite tower of normal mode frequencies.
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grand-canonical ensembles. We discuss the phase diagram in these three ensembles in the

next three subsections. Recall that the thermodynamic quantities of the RN-AdS4 black

hole, (ground state) soliton and hairy black hole are revisited in (3.4), (4.2), and (6.23),

respectively [66, 67].

Our results are better illustrated with some plots. Recall that the gravitational Higgs

theory with action (2.1) is only fully defined once the particular value for the scalar field

charge q = e/L is specified. For definiteness we will choose the particular value of e = 2.5

in our plots.

7.2 Phase diagram in the microcanonical ensemble

In the microcanonical ensemble the energy M and electric charge Q of the system are fixed

and the the entropy S is the relevant thermodynamic potential to discuss the competition

between the several thermal phases: the phase with higher entropy is the favoured one

(global AdS4 and the soliton have vanishing entropy).

In figure 1 we display the phase diagram M vs Q of the microcanonical ensemble for

e = 2.5 (our perturbative expressions are valid for small M,Q). To make the diagram more

clear, in the vertical axis we actually plot the difference between the mass of the solution

and the mass of the extremal RN-AdS4 with the same electric charge, ∆M ≡ M −Mext.

So RN-AdS4 black holes exist in regions I and II where ∆M ≥ 0. The black line with

negative slope describes the soliton. Hairy black holes exist in regions II and III. Namely

they fill the area limited by the soliton curve (where R+ → 0) all the way up to the magenta

line with positive slope (with ε = 0). The latter also describes RN-AdS4 black holes at

the onset of superradiance. So RN-AdS4 black holes below (above) the magenta line are

unstable (stable) to superradiance.

In region II there is no uniqueness since RN-AdS4 and hairy black holes coexist with

the same M and Q. To find the preferred phase in the microcanonical ensemble we must

compare their entropy S. We find that for a given electric charge Q the hairy black hole

always has higher entropy and is thus the favoured solution, whenever they coexist. This is

illustrated with a particular example in the right panel of figure 1 where we fix the electric

charge to be Q/L = 0.01 and plot S vs M (again for e = 2.5). The blue line describes

the RN-AdS4 black hole and extends from arbitrarily large M and S all the way down to

the extremal configuration A. It is stable along this path until it reaches point B that

signals the onset of the superradiant instability (so BA describes unstable RN-AdS4). At

this point B there is a second order phase transition21 to the hairy black hole branch that

extends all the way down to the zero-horizon radius (S = 0) where it meets the soliton

(point C). This dominance of the hairy black hole in the microcanonical ensemble extends

21This provides a further check of our computations. Indeed, note that the first law requires that at a

second order phase transition the slope dS/dM is the same for the two branches since T is the same at the

bifurcation point (and dQ = 0 in the right panel of figure 1). This is clearly the case in our plot. However,

if we start departing from the regime of validity of our perturbation analysis we increasingly find that the

merger is not perfect and the slopes of the two branches no longer match. This is the best criterion to

identify the regime of validity of (6.23).
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Figure 1. Left panel : microcanonical ensemble phase diagram ∆M = M −Mext vs Q for e = 2.5.

RN-AdS4 black hole exist in regions I and II, with the magenta line with positive slope describing

the onset curve of superradiant instability. The black line with negative slope describes the soliton.

Hairy black holes exist in between the two above lines, i.e. in regions II and III (red shaded).

Right panel : entropy as a function of the mass at constant value of the charge Q/L = 0.01 and

e = 2.5. The unbounded blue line starting at A (extremality) is the RN-AdS4 black hole and the

red line BC is the hairy back hole branch that ends on the soliton C. The merger point B is the

superradiant zero-mode.

to all values of the electric and scalar charges (again, in the regime where our perturbative

results hold).

Our findings also permit robust conclusions about the endpoint of the superradiant

instability of the RN-AdS4 black holes. Typically, numerical simulations are done at fixed

energy and charge. Consider starting with a RN-AdS4 that is within the curve AB and

thus unstable to superradiance. By the second law of thermodynamics, the entropy of

the system can only increase. Assuming that there is no other black hole solution in the

spectrum of the theory besides the ones discussed so far, the system must evolve towards

the hairy black hole that has the same M and Q but higher entropy. The latter can

be pinpointed in (6.23) or in figure 1. By construction, this hairy black hole is stable

to superradiance and we have no arguments suggesting that it is unstable to any other

mechanism (see however footnote 1). Of course our findings say nothing about how the

system actually evolves in time but the endpoint of the numerical simulation that gives

this information can be tested against (6.23).22

22Also recall that for
√

3/2 < e < 3/
√

2 there are hairy black holes that emerge from the near-horizon

scalar condensation instability that are not captured by our “superradiant” solutions (6.23). But they can

be found as the endpoint of a time evolution simulation or by solving numerically the elliptic system of

equations (2.6)–(2.7).
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7.3 Phase diagram in the canonical ensemble

In the canonical ensemble the temperature and electric charge of the system are held

fixed. The relevant thermodynamic potential in this ensemble is the Helmholtz free energy

F = E − TS and the preferred phase is the one with lowest free energy.

Before discussing the hairy phase and thermal competition it is convenient to review the

thermal properties of the RN-AdS4 solution. These were discussed in detail in the seminal

works of [66] and [67]. The left panel of figure 2 displays the temperature of RN-AdS4 as

a function of the horizon radius for four different values of the charge. This figure reveals

two key properties (the upper, brown, curve describes the Schwarzschild-AdS4 solution and

is present only for reference). First, notice that there is a critical charge, Qcrit/L = 1
6
√

2
,

associated to the dashed green curve. For charges above this (lower black curve) there is

only one RN-AdS4 black hole for a given {Q,T} pair. However, for Q > Qcrit (second,

blue, curve from the top) we see that there is a window of T where {Q,T} do not uniquely

describe the RN-AdS4 solution since we can have three different RN-AdS4 branches that

can be denoted as the ‘small’, ‘intermediate’ and ‘large’ black holes depending on their

horizon radius (which is proportional to the square root of their entropy).23

A second property observed in the left panel of figure 2 is that T → 0 as we decrease

R+ towards the extremal configuration (which is absent when Q = 0). Therefore, small

horizon radius corresponds to small temperatures. However, T = 0 is reached at a finite

minimal radius that increases with Q. We will come back to this observation later when

discussing the validity regime of our perturbation theory.

We can now introduce these RN-AdS4 solutions in a phase diagram for the canonical

ensemble and populate it with the novel hairy solutions. The canonical phase diagram

consists of plotting the free energy F as a function of T for a fixed Q.24

In figure 3 we show this phase diagram F (T ) for the three relevant cases: Q = 0, 0 <

Q < Qcrit andQ > Qcrit (left, middle and right panels). For the phases without hair we keep

the same colour code as in the left panel of figure 2. Moreover we necessarily do the plots

for specific values of Q and e but they are qualitatively similar for all other values where the

perturbation results (6.23) are valid. The left panel with Q = 0 describes the Schwarzschild

23For reference, when Q = 0 (top brown curve in left panel of figure 2) we have not three but two black

hole branches because T → ∞ as R+ → 0. These are commonly designated by the ‘small’ and ‘large’

Schwarzschild-AdS4 black holes. For Q ≤ Qcrit, the first branch, that corresponds to smaller values of the

horizon radius, goes from extremality to a maximum found at R+ =

√
1−
√

1−72Q2
√
6

. The second branch goes

from this maximum to the minimum at R+ =

√
1+
√

1−72Q2
√
6

. And the third branch from this minimum to

larger horizon radius. The intervals for the temperatures of the three RN-AdS4 branches are:

0 ≤ T1 ≤

√
3
2

(
1− 24Q2 −

√
1− 72Q2

)
π
(

1−
√

1− 72Q2
)3/2 ≤ T2 ≤

√
3
2

(
−24Q2 +

√
1− 72Q2 + 1

)
π
(√

1− 72Q2 + 1
)3/2 ≤ T3 <∞.

The critical charge Qcrit is the case where the maximum and the minimum of T (R+) coincide (inflection

point).
24Ideally we would show the 3-dimensional plot F (T,Q) but it is not very clear. The plots F (T ) for fixed

Q (or F (Q) for fixed T ) illustrate better the relevant conclusions.
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Figure 2. Left panel: temperature TL of RN-AdS4 black hole as a function of the horizon radius

r+/L for four different charges. From top to bottom, the curves are for Q/L = 0 (Schwarzschild

case for reference), Q/L = 0.05, Q = Qcrit, and Q/L = 0.3, respectively. Right panel : canonical

ensemble phase diagram T vs Q (for e = 2.5). RN-AdS4 black holes as well as ‘thermal’ solitons

exist in all regions. Regions I–IV have three (namely, ‘small’, ‘intermediate’ and ‘large’) branches

of RN-AdS4 black holes. The dashed upper line is the curve described by the ‘right’ cusp of the

middle panel of figure 3, while the dashed lower line is the curve followed by the ‘top’ cusp of the

same figure (the upper and lower dashed curves merge and terminate at a value of Q not shown).

On the other hand regions V and V I have a single RN-AdS4 branch. Hairy black holes exist in

regions II, IV and V I. The magenta line (above which hairy black holes exist) describes the onset

of superradiance (ε = 0). The dotted green line signals the Hawking-Page transition (its TL grows

as Q/L increases). Below this line, thermal AdS4 is the dominant phase while above, the preferred

thermal phase is the large branch of RN-AdS4 black holes.

(Schw-AdS4) black hole and is given here again for a familiar reference [68]. We have

the ‘large’ branch with negative specific heat (left) and the ‘small’ branch with positive

specific heat (right). The free energies of large Schw-AdS4 are always lower than that

of the corresponding small Schw-AdS4 with the same T . Therefore, large Schw-AdS4 are

favoured over small Schw-AdS4 black holes. In the phase diagram of the left panel of figure 2

the large and small Schw-AdS4 branches meet at the regular cusp (where the specific heat

vanishes). This is not the whole story since there is a third phase — thermal AdS4 — which

is just the Euclidean solution of global AdS4 with an arbitrary period (and thus T ) chosen

for the Euclidean time circle. For a temperature below the Hawking-Page THP (defined as

F (THP) = 0), thermal AdS4 has lower free energy than both large and small Schw-AdS4

black holes. However, at temperatures above THP, large Schw-AdS4 black holes are the

preferred phase. This is the familiar Hawking-Page (HP) first-order phase transition [68].

In the AdS/CFT context, this is interpreted as a confinement/deconfinement transition in

the dual conformal field theory [69].
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Consider now the case 0 < Q < Qcrit, whose phase diagram (for Q/L = 0.05) is

plotted in the middle panel in figure 3. As explained above we have now three RN-AdS4

branches. The large branch is the natural extension to Q 6= 0 of the large Schw-AdS4

branch. However, the small branch now extends all the way down to the extremal, T = 0,

solution (for Q = 0 it extends instead to T → ∞). These two branches are connected

by a third, ‘intermediate’ branch. When they coexist small RN-AdS4 black holes are

the dominant branch below a critical temperature (determined by the intersection of the

small and large branches in the middle panel). Above this critical temperature, large RN-

AdS4 black holes have lower free energy than the small and intermediate branches and

thus dominate the canonical ensemble. Above THP (defined such that F (THP) = 0) large

RN-AdS4 are the preferred phase, but below it there is a first order Hawking-Page phase

transition and thermal AdS4 is the favoured phase for all T < THP. In particular, as T

decreases to T = 0 and small RN-AdS4 becomes the only branch, thermal AdS4 is still

the preferred phase. When Q 6= 0 the theory also has hairy black hole solutions. In the

perturbative regime where our results are valid,25 the hairy family bifurcates from the

branch of small RN-AdS4 at the onset of superradiance and extends to larger values of the

temperature all the way up to the soliton limit (R+ → 0) that is reached at a finite value

of T .26 However, the free energy of the hairy black hole (and soliton) is always larger that

the free energies of small and/or large RN-AdS4 and of thermal AdS4. Therefore, hairy

black holes and the soliton are never the preferred phase in the canonical ensemble. This

is thus in sharp contrast with the situation in the microcanonical ensemble.

Finally we have to discuss the case Q > Qcrit (right panel in figure 3). Recall from the

discussion associated with the left panel of figure 2 that in this case there is a single branch

of RN-AdS4 black holes. Its free energy is plotted in the right panel in figure 3. As before,

the Hawking-Page phase transition is present at T = THP with thermal AdS4 (RN-AdS4)

being the preferred phase at T < THP (T > THP). For Q > Qcrit there are also hairy black

hole solutions. We choose not to show them in the right plot of figure 3 because we do

not expect our perturbative results (6.23) to be valid for such large charge. To understand

the reason we go back to the left panel of figure 2. For Q > Qcrit, RN-AdS4 has horizon

radius R+ & 0.2. But our perturbative results for the hairy black holes that merge with

the RN-AdS4 solution are valid for R+ � 1 so we should not expect our perturbative hairy

results to be accurate for this case, at least around the merger point.

Given that the canonical ensemble keeps the temperature T and electric charge Q fixed,

it is also relevant to summarize the conclusions above for the thermal phases of the theory

in a phase diagram T vs Q. This effectively describes a projection of the 3-dimensional plot

25Much like in the microcanonical ensemble (see footnote 21) the first law of thermodynamics (with

dQ = 0) requires that the slope dF/dT is the same for the two branches at the bifurcation point (since they

have the same S). This is definitely the case in our plot. However, if we start departing from the regime of

validity of our perturbation analysis we increasingly find that the merger is not perfect and the slopes of

the two branches no longer match. This is the best criteria to identify the regime of validity of (6.23) for

the canonical ensemble.
26We can identify the Euclidean time circle of the soliton with any period so that it can have an arbitrary

temperature. However, the free energy of this ‘thermal’ soliton coincides with its mass, hence it is always

positive and the soliton is always dominated by thermal AdS4.
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Figure 3. Canonical ensemble phase diagram F vs T at fixed Q and e = 2.5. Left panel : Q = 0

case with the large and small Schwarzschild black holes, but no hairy phases. Middle panel : Q/L =

0.05 < Qcrit/L case with the blue curve representing the RN-AdS4 family with its 3 branches and

the simple red curve describing the hairy black hole. Right panel : Q/L = Qcrit/L+ 0.1. This case

falls outside the regime of validity of our perturbation theory, hence we opt to display only the

(single) RN-AdS4 branch.

F (T,Q). This is done in the right panel of figure 2, and the reader can find its discussion

in the caption of the figure.

So far we have discussed the preferred global thermodynamic phases of the canonical

phase diagram. Given that in this ensemble we keep an intensive thermodynamic quan-

tity — the temperature — fixed we can also discuss the local thermodynamic stability of

the solutions. Local thermodynamic stability in the canonical ensemble requires that the

specific heat at constant charge

CQ = T

(
∂S

∂T

)
Q

= −T
(
∂2F

∂T 2

)
Q

(7.4)

is non-negative. To get the second relation we used the first law, dF = −SdT + µdQ. We

find that small hairy black holes have CQ < 0. Thus, they are locally thermodynamically

unstable. This is illustrated in figure 3 (for Q = 0.05 and e = 2.5): the sign of CQ =

−T
(
∂2
TF
)
Q

is negative.27 Essentially, a thermal fluctuation that increases the temperature

of the small hairy black hole leads to a decrease of its entropy (horizon size).

7.4 Phase diagram in the grand-canonical ensemble

In the grand-canonical ensemble the system is kept at fixed temperature T and fixed

chemical potential µ. The dominant thermal phase is the one that minimizes the Gibbs

free energy, G = M − TS − µQ.

The discussion of the hairy solutions in this ensemble requires that we revisit first the

properties of the RN-AdS4 black hole [66, 67]. Taking the RN-AdS4 temperature (3.4) and

27The local thermodynamic stability of the RN-AdS4 branches can also be inferred from the concav-

ity/convexity of the free energy. This stability was already discussed in detail in [66] and [67] and we do not

repeat it here. Recent discussions of local thermodynamic instability can be found in [70–72] and references

therein.
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Figure 4. Left panel : temperature TL as a function of the horizon radius r+/L for values of the

chemical potential (from top to bottom): µ = 0 (brown, Schw-AdS4 case), µ = 3
2.5 < µc (blue),

µ = µc =
√

2 (dashed green), µ = 3
2µc (black). Right panel : RN-AdS4 chemical potential µ vs

horizon radius r+/L for four fixed values of T (curves from top to bottom): T = 0 (dark blue),

T = 0.2 < Tc (black), Tc =
√
3

2π (dashed green) and T = 0.3 > Tc (blue).

solving it with respect to R+ we find

R+

∣∣
± =

1

6

(
4πTL±

√
2
√

3µ2 + 8π2(TL)2 − 6
)
, (7.5)

which indicates that for µ <
√

2 there are two branches of RN-AdS4 solutions: the ‘small’

and ‘large’ black holes described by R+

∣∣
− and R+

∣∣
+

, respectively. For µ >
√

2 only the

large branch is present. This is best illustrated in the plots and caption of figures 4 where

we display T (R+) for several fixed µ’s (left panel) and µ(R+) for several fixed T ’s (right

panel). For later use, notice that small horizon radius corresponds to large temperatures.

In the grand-canonical ensemble, the appropriate phase diagram to describe the ther-

mal phases of the theory is G(µ, T ). To make the presentation clear, in figure 5 we plot

the G of the RN-AdS4 black hole as a function of µ for several fixed temperatures. At

extremality (left panel), the RN-AdS4 black hole dominates over thermal AdS4. Above ex-

tremality, large black holes always have lower G than small RN-AdS4 black holes whenever

they co-exist (G of small black holes is always non-negative). For 0 < T < Tc2 = 1
π ∼ 0.32,

large black holes have G > 0 for µ < µHP but G < 0 for µ > µHP (see middle and right

panels). So thermal-AdS4 is preferred over RN-AdS4 for µ < µHP, and a Hawking-Page

phase transition occurs at µ = µHP, with large black holes becoming the dominant phase.

However, for T > Tc2 = 1
π (not shown in this figure; case represented in the left panel

of figure 6), there is no Hawking-Page phase transition since large RN-AdS4 black holes

always have G ≤ 0 and dominate the ensemble.

We can now add the hairy thermal phases to the grand-canonical phase diagram. Our

perturbative analysis describes hairy black holes that bifurcate, at the onset of superra-

– 41 –



J
H
E
P
0
2
(
2
0
1
7
)
1
2
8

���� ���� ���� ���� ���� ���� ���� ����

-�����

-�����

-�����

�����

μ

�
/
�

��� ��� ��� ��� ��� ��� ���
-����

-����

-����

-����

����

����

μ

�
/
�

��� ��� ��� ���

-���

-���

-���

���

μ

�
/
�

Figure 5. Gibbs free energy G vs chemical potential µ of the RN-AdS4 black hole for: T = 0 (left

panel), T = 0.2 < Tc (middle panel) and T = 0.3 > Tc (right panel). For Tc =
√
3

2π ∼ 0.28 the cusp

seen in the middle panel plot hits µ = 0. The upper (lower) curve describes small (large) RN-AdS4

black holes. The vertical dashed line is at µ =
√

2 (see also figure 4). For 0 < T < Tc2 = 1
π ∼ 0.32,

the Hawking-Page phase transition occurs when large black holes attain G(µHP) = 0 (see middle

and right panels). However, for T > Tc2 = 1
π (not shown in this figure; case represented in the left

panel of figure 6), large black holes always have G ≤ 0 and thus there is no Hawking-Page phase

transition.

diance, from small R+ RN-AdS4 black holes. It follows from figures 4 that our pertur-

bative computation is valid for large temperatures T � Tc =
√

3
2π and chemical potential

µ <
√

2 ∼ 1.41. Therefore, as an illustrative example, in the left panel of figure 6 we fix

the temperature to be T = 5 > Tc2 > Tc and the scalar field charge to be e = 2.5, and we

show all the thermal phases (small and large RN-AdS4, thermal AdS4, thermal soliton and

hairy black hole) in the phase diagram G vs µ. In the main plot we find the large RN-AdS4

black hole branch which exists for any µ and — since we are at T > Tc2 — always has

G < 0. We also display the small RN-AdS4 that has G ≥ 0 and exists for µ ≤
√

2. The

magenta point in this small RN-AdS4 branch signals the zero-mode of superradiance, with

small RN-AdS4 to the right of this point being unstable. The inset plot then zooms the

phase diagram to capture the region where the small RN-AdS4 black holes are unstable. It

also shows the hairy black hole branch (red curve) that bifurcates from the small RN-AdS4

at the onset of superradiance. These black holes have lower G, and are thus preferred,

than small RN-AdS4 black holes, whenever the two phases coexist. For sufficiently large

µ, the hairy black holes also have lower G than thermal AdS4 (which, recall, has G = 0).

However, hairy black holes always have higher G than large RN-AdS4 black holes, when

they co-exist. Thermal solitons (black curve) have G < 0.28

These qualitative properties extend to all other values of T (and e) where our per-

turbative analysis is valid. Therefore, we conclude that in the perturbative regime where

our hairy results hold and the solutions co-exist, large RN-AdS4 black holes are always the

preferred thermal phase over the hairy solutions in the grand-canonical ensemble.

Given that in the grand-canonical ensemble we keep the temperature T and chemical

potential µ fixed, it is instructive to summarize the conclusions above for the thermal

phases of the theory in a phase diagram T vs µ, or β = 1/T vs µ. This effectively describes

28For T < Tc2 ∼ 0.32, solitons can be the overall preferred phase for small µ over 3
e
.
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Figure 6. Left panel : Grand-canonical ensemble phase diagram G vs µ for TL = 5 and e = 2.5. In

the main plot, the upper (lower) curve describes small (large) RN-AdS4 black holes. The vertical

dashed line is at µ =
√

2. The magenta point signals the onset of superradiance. The inset plot,

is a zoom around the superradiant onset. It now also includes the hairy black hole (red curve)

that branches-off from the small RN-AdS4 black hole at the onset of superradiance, as well as

the thermal soliton (black curve) that starts at µ = 0, G = 0 and extends to negative values of

G. The dashed horizontal line describes the Giggs free energy of thermal AdS4. The dominant

thermal phase has the lowest Gibbs free energy. Right panel : phase diagram β = 1
T vs µ of the

grand-canonical ensemble (shown for e = 2.5). This is discussed in the text.

a projection of the 3-dimensional plot G(T, µ). This phase diagram is given in the right

panel of figure 6 (for e = 2.5). Recall that the perturbative results are valid for large values

of the temperature, i.e. small β = 1/T (say β . 3) and µ <
√

2. Consider first the main

plot in the right panel of figure 6. This is for µ <
√

2 ∼ 1.4 and regions A, B and C are

populated both by small and large RN-AdS4 black holes. The onset curve of superradiance

is the magenta boundary of regions B and C. Small RN-AdS4 black holes to the right of

this curve are unstable to superradiance. Hairy black holes with lower free energy than

the small RN-AdS4 solutions exist in region C. Thermal solitons exist in regions B and C

and have lower G than thermal AdS4, small RN-AdS4 and hairy black holes. However, the

solution with lowest Gibbs free energy in all regions A, B and C is the large RN-AdS4 that

always dominates the grand-canonical ensemble for β < βc2 = π. Consider now the inset

plot. This extends the main plot to values of β higher than βc2 = π (the horizontal dashed

line) and µ >
√

2, but does not include information about the hairy solutions. It allows

to identify clearly the Hawking-Page phase transition (the main plot is a subset of region

IV ). Regions I − V I describe the domain of existence of thermal AdS4. Small RN-AdS4

black holes exist on regions II, III and IV i.e for µ <
√

2 (vertical dashed line), while

large RN-AdS4 black holes exist in regions II − V I. The boundary between regions I and

II corresponds to the cusp in the middle panel of figure 5. The green dashed curve is the

Hawking-Page phase transition curve. Below it, large RN-AdS4 black holes dominate the

grand-canonical ensemble.
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So far we have found that small hairy black holes are never the preferred global ther-

modynamic phase of the grand-canonical phase diagram. However, they still dominate over

small RN-AdS4 black holes so, for completeness, we can discuss their local thermodynamic

stability. In the grand-canonical we keep the intensive variables T and µ fixed. Therefore,

the local thermodynamic stability condition in this ensemble requires that the inverse of

the Weinhold Hessian matrix, namely [66, 67, 70, 71]

gµνW = − ∂2G

∂yµ ∂yν
=

[
βCµ η

η εT

]
, yµ = (T, µ), (7.6)

is positive definite. Here, G is the Gibbs free energy, and Cµ and εT are, respectively, the

specific heat at constant chemical potential and the isothermal permittivity (i.e. capaci-

tance) and given by

Cµ = −T
(
∂2G

∂T 2

)
µ

= T

(
∂S

∂T

)
µ

, εT = −
(
∂2G

∂µ2

)
T

=

(
∂Q

∂µ

)
T

, (7.7)

where we used the first law dG = −SdT − Qdµ to rewrite Cµ and εT in terms of first

derivative quantities. Finally, the off-diagonal term is η =
(
∂Q
∂T

)
µ

=
(
∂S
∂µ

)
T

. The equality

of these two expressions is a Maxwell relation that follows from the symmetry of the

Hessian matrix. The Hessian matrix (7.6) can be written in the new basis (dT, dµ) →
(dT, dµ+ ε−1

T ηdT ), where it diagonalizes as diag{βCµ, εT }. We find that small hairy black

holes have Cµ > 0 and εT < 0. That is, Cµ and εT have opposite signs, and thus the Hessian

has a negative eigenvalue. Small hairy black holes are thus locally unstable in the grand-

canonical ensemble. Essentially, this is because they have εT < 0 and are thus electrically

unstable: our theory has charged scalar field quanta and a small electric fluctuation that

increases the charge of the black hole reduces its chemical potential.
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A Coefficients of the superradiant expansion

A.1 Far region

Here, we give the coefficients of the far region expansion (3.23). The integration con-

stants and frequency coefficients ω1 and ω2 have already been determined by the boundary
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conditions and matching conditions as described in section 3.4.

φout
0 (R) =

e−i(µe−3) arctanR

(R2 + 1)3/2
,

φout
1 (R) =

e−i(µe−3) arctanR

96R(R2 + 1)5/2

[
(R2 + 1)

(
− 24i(µ2 + 2)R(µe− 3) log

(
R2

R2 + 1

)
− 48R arctanR(3µ2 − 2µe− 2iω1 + 6)− 4R(3R2 + 12iπ + 17)ω1 + 3(R4 + 6R2

− 3)ω1

(
2i log(R− i)− i log(4 + (R− i)2) + 2 tan−1

(
2

R− i

)))
+ 24(−iµ3eR

+ 3µ2(−1 +R(πR2 − 2R+ i+ π))− 2µe(−2 +R(πR2 − 2R+ i+ π))

+ 6(−1 +R(πR2 − 2R+ i+ π)))

]
, (A.1)

φout
2 (R) =

1

R

(
− 3

16
πω2 +

1

4608π2

(
− 256i(3µ2 − 4µe+ 6)2(2 tanh−1(2)− log(3))

+ 32π(3µ2 − 4µe+ 6)(9µ3e(2 tanh−1(2)− log(3))− 3µ2(52− 9 log(3)

+ 18 tanh−1(2)) + 2µe(88− 9 log(3) + 18 tanh−1(2))− 6(52− 9 log(3)

+ 18 tanh−1(2))) + 9π3(27µ4 − 264µ3e+ 4µ2(56e2 + 117)− 528µe+ 108)

+ 288iπ2(7µ5e−µ4(4e2 + 21) + 32µ3e− 4µ2(2e2 + 15) + 52µe− 84)
))

+O(R0)

Due to the length of the expression, we only show the leading term of the small R expansion

of φout
2 (R) that is needed to determine ω2.

A.2 Near region

Here we present the coefficients of the near region expansion (3.23). The integration con-

stants have already been determined by the boundary conditions and by the matching

conditions, as described in section 3.4.

φin
0 (y) = 1,

φin
1 (y) =

1

36π

(
9π2(−2eµ+3µ2+6)− 64eµ−18iπ(µ2+2)(eµ−3)(log

(
y − µ2

2

)
+ log(Rp))

− 3iπ(eµ(3µ2 + 38) + 12y(eµ− 3)− 33(µ2 + 2)) + 48(µ2 + 2)

)
, (A.2)

φin
2 (y) = y2

(
−1

2
e2µ2 + 3eµ− 6

)
+

y

36π

(
(i(9π2(2e2µ2 − 3e(µ2 + 4)µ+ 9(µ2 + 2))

+ 3iπ(e2(3µ2 + 38)µ2 − 6e(7µ2 + 36)µ+ 144(µ2 + 2)) + 16eµ(4eµ− 3(µ2 + 2)))

− 18π(µ2 + 2)(eµ− 3)2 log(Rp)− 18π(µ2 + 2)(eµ− 3)2 log(y))
)

+O
(
y0
)
.

Due to the length of the expression, we only show the large y expansion of φin
2 (y)

needed to determine ω2. However, note that the next order contributions to φin
2 (y) and

φout
2 (R) are required to fix a remaining integration constant.
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B Coefficients of the soliton expansion

In this appendix we give the final coefficients of the soliton expansion (4.1). The integration

constants have already been fixed by the boundary conditions as described in section 4.

f0(R) =R2 + 1,

f2(R) =−
3
(
3R2 + 5

)
8 (R2 + 1)2 −

9 arctanR

8R
,

f4(R) =− 315π2(2e2 − 9)(R2 + 1)

1024
(B.1)

+
1

12800R2(R2 + 1)5

(
15(R2 + 1)2 arctanR

(
R(90π2(e2 − 9)(R2 + 1)3

+ e2(4200R6 + 10899R4 + 8398R2 + 1339)(R2 + 1)− 18(1050R8 + 3689R6

+ 4447R4+1887R2 + 159)) + 30(R2 + 1) arctanR(−4(e2−9)R(R2+1)2 arctanR

+ e2(70R8 + 210R6 + 200R4 + 54R2 + 2)− 9R2((35(R2 + 3)R2 + 93)R2 + 15))
)

+R2
(

450π2(e2 − 9)(3R2 + 5)(R2 + 1)3 + e2(31500R10 + 163485R8 + 340630R6

+ 361612R4 + 198846R2 + 45751)− 18(7875R10 + 39585R8 + 78480R6

+ 76232R4 + 35821R2 + 5751)
))
,

A0(R) =
3

e
,

A2(R) =
21(e2 − 3)

32e
− e(3R2 + 5)

8(R2 + 1)2
− 3e arctanR

8R
, (B.2)

A4(R) =
1

614400e

(
1

(R2 + 1)5

(
16e2(450π2(e2 − 9)(3R2 + 5)(R2 + 1)3 + 4e2(6015R6

+ 19355R4 + 21443R2 + 8217)(R2 + 1)

+
1

R

(
15(R2 + 1)2 arctanR(90π2(e2 − 9)(R2 + 1)3 + 4e2(851R4 + 1312R2

+ 311)(R2+1) + 60 arctanR((R3+R)(e2(30R4+54R2 + 20)− 9(15R4 + 24R2

+ 5))− 2(e2 − 9)(R2 + 1)3 arctanR)− 9(1513R6 + 3579R4 + 2259R2 + 353))
)

− 9(9195R8 + 36610R6 + 53524R4 + 33830R2 + 6761))
)
− 3
(

339814e4

− 3159903e2 + 2100π2(4e4 + 42e2 − 297) + 7714818
))

.

φ1(R) =
1

(R2 + 1)3/2
,

φ3(R) =− 3

320R(R2 + 1)9/2

(
20(R2 + 1)2 arctanR

(
− 2e2(R2 + 1)− (e2 − 9)R(R2

+ 1) arctanR+ 18R2 + 9
)

+R
(

5π2(e2 − 9)(R2 + 1)3 + e2(22R4 + 48R2 + 26)

+ 54R4 + 36R2 + 22
))
, (B.3)

φ5(R) =
(
. . .
)
.
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The expression for φ5(R) is too long and not illuminating. We note that the inte-

gration constants arising from its equation of motion are determined by imposing that

φ5(R)
∣∣∣
R→∞

= O(R−4). Also, imposing regularity at R = 0 directly gives the expression

for µ4 in (4.2).

C Coefficients of the hairy black hole expansion

C.1 Far region expansion

Below, we give the coefficients of the hairy black hole far region expansion (6.2). The inte-

gration constants have already been fixed by the boundary conditions and by the matching

with the near region as discussed in section 6.

fout
00 (R) =R2 + 1,

fout
01 (R) =−

9
e2

+ 2

2R
,

fout
02 (R) =− 3(16e2R− 3πe2 − 72R)

2πe4R2
,

fout
20 (R) =− 3(R(3R2 + 5) + 3(R2 + 1)2 arctanR)

8R(R2 + 1)2
,

fout
21 (R) =

1

32πe2R2(R2 + 1)3

(
3(R2 + 1) arctanR

(
6R(R2 + 1)2(16(2e2 − 9)R(R2 + 1)

+ 27π) arctanR+ 3π(2e2(R2 + 1)2(3(R4 +R2) + 2) + 153R2 − 27(R4 + 3R2

− 1)R4) + 8(2e2 − 9)R(24R6 + 73R4 + 66R2 + 9)− 162π2R(R2 + 1)2
)

+
1

2
R
(

16(2e2 − 9)R(R2 + 1)(3R2 + 5)(12R2 + 17)

− 9π2R(R2 + 1)(19(2e2(R2 + 1)3 − 9R4(R2 + 3))− 405R2 + 9) + 6π(e2(18R8

− 3R6 − 69R4 −R2 + 31) + 9(−9R8 + 6R6 + 72R4 + 72R2 + 7))
))

, (C.1)

fout
40 (R) =

1

12800R2(R2 + 1)5

(
− 1800(e2 − 9)R(R2 + 1)5 arctanR3

+ 450(R2 + 1)3(e2(70R8 + 210R6 + 200R4 + 54R2 + 2)− 9R2(35R6 + 105R4

+ 93R2 + 15)) arctanR2 + 15R(R2 + 1)2
(

90π2(e2 − 9)(R2 + 1)3 + e2(4200R8

+ 15099R6 + 19297R4 + 9737R2 + 1339)− 18(1050R8 + 3689R6 + 4447R4

+ 1887R2 + 159)
)

arctanR− 1

2
R2
(

225π2(R2 + 1)3(2e2(35R6 + 105R4 + 99R2

+ 25)− 9(35R6+105R4+93R2+15))− 2e2(31500R10 + 163485R8 + 340630R6

+ 361612R4 + 198846R2 + 45751) + 36(7875R10 + 39585R8 + 78480R6

+ 76232R4 + 35821R2 + 5751)
))

.
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Aout
00 (R) =

3

e
,

Aout
01 (R) =

4(2e2 − 9)

πe3
− 3

eR
,

Aout
02 (R) =

(2e2 − 9)(9π2(10e2 − 9)R+ 128(21− 2e2)R− 128πe2)

32π2e5R
,

Aout
20 (R) =

21(e2 − 3)

32e
− e(3R2 + 5)

8(R2 + 1)2
− 3e arctanR

8R
,

Aout
21 (R) =

1

9600πe3

(
1

R(R2 + 1)3

(
100e2(8(2e2 − 9)R(R2 + 1)(57R2 + 77) + 3(R2

+ 1) arctanR(6(R2 + 1)2(8(2e2 − 9)R+ 27π) arctanR+ 8(2e2 − 9)(25R4

+ 42R2 + 9) + 27πR(2e2(R2 + 1)2 − 9R4 − 6R2 + 11)− 162π2(R2 + 1)2)

− 3π(e2(31R6 + 79R4 + 21R2 − 11)− 9(20R6 + 71R4 + 66R2 + 7)) (C.2)

− 162π2R(3R4+8R2+5))
)
−7650π2(2e2−9)e2+75π2(236e4−1809e2+4212)

− 8(25330e4 − 264861e2 + 685503)

)
Aout

40 (R) =
1

614400

(
− 3(339814e4 − 3159903e2 + 2100π2(4e4 + 42e2 − 297) + 7714818)

e

+
138240e

(R2 + 1)5
+

384e(19e2 + 63)

(R2 + 1)4
+

128e(389e2 + 1278)

(R2 + 1)3
+

160e

(R2 + 1)2

(
(524e2

+ 90π2(e2 − 9) + 153)
)

+
240e(1604e2 + 90π2(e2 − 9)− 5517)

R2 + 1

+
240e arctanR

R(R2 + 1)3

(
90π2(e2 − 9)(R2 + 1)3 + 4e2(851R4 + 1312R2 + 311)(R2 + 1)

+ 60 arctanR((R3 +R)(e2(30R4 + 54R2 + 20)− 9(15R4 + 24R2 + 5))

− 2(e2 − 9)(R2 + 1)3 arctanR)− 9(1513R6 + 3579R4 + 2259R2 + 353)
))

φout
10 (R) =

1

(R2 + 1)3/2
,

φout
11 (R) =

1

12πe2R (R2+1)5/2

(
R(−2(2e2−9)(3R2+17)(R2+1) + 3πR(2e2(R4+7R2+3)

− 9(R4 + 7R2 + 9)) + 81π2(R2 + 1))− 6(R2 + 1)(2e2(R4 + 6R2 − 3)− 9(R4

+ 6R2 − 3πR− 3)) arctanR
)
,

φout
12 (R) =

1

288π2e4

(
108π2

(
4e4 + 72e2 − 891

)
log(R) + 128

(
28e4 − 324e2 + 891

)
− 36π2(28e4 + 90e2 + 432

(
9− 2e2

)
log(2) + 243) + 6561π4

)
+O(R),
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φout
30 (R) =− 3

320R (R2 + 1)9/2

(
20(R2 + 1)2 arctanR(−2e2(R2 + 1)

− (e2 − 9)R(R2 + 1) arctanR+ 18R2 + 9) +R(5π2(e2 − 9)(R2 + 1)3

+ e2(22R4 + 48R2 + 26) + 54R4 + 36R2 + 22)
)
, (C.3)

φout
31 (R) =− 1

57600 (πe2)

(
− 37800

(
2e2 − 9

) (
5e2 − 36

)
ζ(3) + 42525π4

(
e2 − 9

)
+ 16

(
14092e4 − 182394e2 + 528849

)
+ 30π2(4e4(1260 log(2)− 773)

− 16200e2(log(8)− 2) + 81(900 log(2)− 307))
)

+O(R),

φout
50 (R) =

1

64512000

(
− 39749042e4 + 533807289e2 + 307125π4

(
e2 − 9

)2
+ 3969000(10e4

− 84e2 + 135)ζ(3)− 18900π2(−292e4 + 2513e2 + 60
(
10e4 − 84e2 + 135

)
log(2)

− 1341)− 1456792614
)

+O(R).

φout
12 (R), φout

31 (R) and φout
50 (R) have large expressions. We only display the small R expansion

that is needed for the matching with the near region.

C.2 Near region expansion

Next, we present the coefficients of the hairy black hole near region expansion (6.4). The

integration constants have already been determined by the boundary conditions and by

the matching with the far region as described in section 6.

f in
00(y) =

(y − 1)
(
2e2y − 9

)
2e2y2

,

f in
01(y) =−

12
(
2e2 − 9

)
(y − 1)

πe4y2
,

f in
02(y) =

(y − 1)

32π2e6y2

(
128(4(e2 − 27)e2 + 405) + π2(32e6y(y2 + y + 1)− 540e4 + 2916e2

− 2187)
)
,

f in
20(y) =− 3(y − 1)(e2(32y − 11)− 63)

32e2y2
, (C.4)

f in
21(y) =− (y − 1)

3200πe4y2

(
75π2(4e4(57y + 8) + 27e2(26y − 97) + 4212) + 8(−10e4(2240y

+ 563) + 63e2(1600y + 2697)− 657153)
)
,

f in
40(y) =− (y − 1)

204800e2y2

(
− 2e4(533888y + 91447) + 27e2(86784y + 291935)

+ 900π2(4e4(19y + 9)− 6e2(9y + 145) + 2079)− 22747554
)
.
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Ain
00(y) =

3(y − 1)

ey
,

Ain
01(y) =

4
(
2e2 − 9

)
(y − 1)

πe3y
,

Ain
02(y) =

(
2e2 − 9

) (
−256e2 + 9π2

(
10e2 − 9

)
+ 2688

)
(y − 1)

32π2e5y
,

Ain
20(y) =−

(
11e2 + 63

)
(y − 1)

32ey
, (C.5)

Ain
21(y) =

(
80
(
10π2 − 151

)
e4 + 9

(
50744− 7275π2

)
e2 + 4212

(
25π2 − 434

))
(y − 1)

3200πe3y
,

Ain
40(y) =

3
(
−21666e4 + 860405e2 + 300π2

(
12e4 − 290e2 + 693

)
− 2571606

)
(y − 1)

204800ey
.

φin
10(y) =1,

φin
11(y) =

−32e2 + 81π2 + 144

12πe2
,

φin
12(y) =

1

8e4

(
1458Li2

(
9− 2e2y

9− 2e2

)
− 6e2y(2e2(y − 1) + 45) + 3iπ(4e4 + 72e2 − 891)−

1458 log(2e2 − 9) log

(
y − 1

2e2y − 9

)
+

1

36π2

(
108π2(243 log2

(
2e2

9Rp − 2e2Rp

)
+ log

(
2e2

Rp

)
(243 log

(
2e2

Rp

)
− 486 log

(
2e2

(2e2 − 9)Rp

)
− 4(e2 + 18)e2 − 486iπ

+ 891) + 486 log(
1

2e2
) log(2e2 − 9))− 108iπ3(4e4 + 72e2 − 891) + 128(28e4

− 324e2 + 891)− 36π2(28e4 + 90e2 + 432(9− 2e2) log(2) + 243) + 15309π4
)

+ 3 log(2e2y − 9)(4e4 + 486 log(
2e2(y − 1)

2e2 − 9
)− 243 log(2e2y − 9) + 72e2 + 486iπ

− 891)

)
, (C.6)

φin
30(y) =

1

320
(−3)

(
−14e2 + 5π2

(
e2 − 9

)
+ 202

)
,

φin
31(y) =

3π
(
28e4 − 270e2 + 405

)
log(2)

32e2
−

21
(
2e2 − 9

) (
5e2 − 36

)
ζ(3)

32πe2

+
1

57600πe2

(
225472e4 − 2918304e2 + 42525π4(e2 − 9)− 30π2(3092e4 − 32400e2

+ 24867) + 8461584
)
,

φin
50(y) =

1

64512000

(
− 39749042e4 + 533807289e2 + 307125π4(e2 − 9)2 + 3969000(10e4

− 84e2 + 135)ζ(3)− 18900π2(−292e4 + 2513e2 + 60(10e4 − 84e2 + 135) log(2)

− 1341)− 1456792614
)
.
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– 53 –

http://dx.doi.org/10.1103/PhysRevD.92.084001
https://arxiv.org/abs/1507.08261
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08261
http://dx.doi.org/10.1103/PhysRevLett.115.081103
https://arxiv.org/abs/1506.03519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03519
http://dx.doi.org/10.1103/PhysRevD.87.123006
http://dx.doi.org/10.1103/PhysRevD.87.123006
https://arxiv.org/abs/1304.4166
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4166
http://dx.doi.org/10.1007/JHEP09(2016)024
http://dx.doi.org/10.1007/JHEP09(2016)024
https://arxiv.org/abs/1606.00830
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.00830
http://dx.doi.org/10.1103/PhysRevD.78.065034
http://dx.doi.org/10.1103/PhysRevD.78.065034
https://arxiv.org/abs/0801.2977
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2977
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://dx.doi.org/10.1103/PhysRevLett.101.031601
https://arxiv.org/abs/0803.3295
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3295
http://dx.doi.org/10.1088/1126-6708/2008/12/015
http://dx.doi.org/10.1088/1126-6708/2008/12/015
https://arxiv.org/abs/0810.1563
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1563
http://dx.doi.org/10.1007/JHEP11(2010)036
https://arxiv.org/abs/1007.3745
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3745
http://dx.doi.org/10.1016/0003-4916(82)90116-6
http://dx.doi.org/10.1016/0003-4916(82)90116-6
http://inspirehep.net/search?p=find+J+%22AnnalsPhys.,144,249%22
http://dx.doi.org/10.1103/PhysRevD.46.5399
https://arxiv.org/abs/hep-th/9207070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9207070
http://dx.doi.org/10.1088/0264-9381/14/11/013
http://dx.doi.org/10.1088/0264-9381/14/11/013
http://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,14,3131%22
http://dx.doi.org/10.1016/S0550-3213(03)00482-6
http://dx.doi.org/10.1016/S0550-3213(03)00482-6
https://arxiv.org/abs/gr-qc/0309131
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0309131
http://dx.doi.org/10.1103/PhysRevLett.112.221101
http://dx.doi.org/10.1103/PhysRevLett.112.221101
https://arxiv.org/abs/1403.2757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.2757
http://dx.doi.org/10.1103/PhysRevLett.61.141
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,61,141%22
http://dx.doi.org/10.1103/PhysRevLett.64.2844
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,64,2844%22
http://dx.doi.org/10.1063/1.528773
http://inspirehep.net/search?p=find+J+%22J.Math.Phys.,31,928%22
http://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,51,747%22
http://dx.doi.org/10.1088/0264-9381/18/5/310
https://arxiv.org/abs/gr-qc/0011081
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0011081
http://dx.doi.org/10.1088/0264-9381/33/23/23LT01
https://arxiv.org/abs/1602.03890
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.03890
http://dx.doi.org/10.1007/JHEP06(2016)139
http://dx.doi.org/10.1007/JHEP06(2016)139
https://arxiv.org/abs/1602.07211
http://inspirehep.net/search?p=find+EPRINT+arXiv:1602.07211
http://dx.doi.org/10.1007/BF01205790


J
H
E
P
0
2
(
2
0
1
7
)
1
2
8

[56] C.R. Graham, Volume and area renormalizations for conformally compact Einstein metrics,

math/9909042 [INSPIRE].

[57] M.T. Anderson, Geometric aspects of the AdS/CFT correspondence, IRMA Lect. Math.

Theor. Phys. 8 (2005) 1 [hep-th/0403087] [INSPIRE].

[58] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[59] M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023

[hep-th/9806087] [INSPIRE].

[60] V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun.

Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[61] L. Mezincescu and P.K. Townsend, Stability at a Local Maximum in Higher Dimensional

Anti-de Sitter Space and Applications to Supergravity, Annals Phys. 160 (1985) 406

[INSPIRE].

[62] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.

B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

[63] A. Ashtekar and S. Das, Asymptotically Anti-de Sitter space-times: Conserved quantities,

Class. Quant. Grav. 17 (2000) L17 [hep-th/9911230] [INSPIRE].

[64] S. Das and R.B. Mann, Conserved quantities in Kerr-anti-de Sitter space-times in various

dimensions, JHEP 08 (2000) 033 [hep-th/0008028] [INSPIRE].

[65] R. Li, H. Zhang and J. Zhao, Time evolutions of scalar field perturbations in D-dimensional

Reissner-Nordström Anti-de Sitter black holes, Phys. Lett. B 758 (2016) 359

[arXiv:1604.01267] [INSPIRE].

[66] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and

catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

[67] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermodynamics and

fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197]

[INSPIRE].

[68] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space,

Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

[69] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[70] R. Monteiro and J.E. Santos, Negative modes and the thermodynamics of Reissner-Nordstrom

black holes, Phys. Rev. D 79 (2009) 064006 [arXiv:0812.1767] [INSPIRE].

[71] R. Monteiro, M.J. Perry and J.E. Santos, Thermodynamic instability of rotating black holes,

Phys. Rev. D 80 (2009) 024041 [arXiv:0903.3256] [INSPIRE].

[72] S. Hollands and R.M. Wald, Stability of Black Holes and Black Branes, Commun. Math.

Phys. 321 (2013) 629 [arXiv:1201.0463] [INSPIRE].

– 54 –

http://arxiv.org/abs/math/9909042
http://inspirehep.net/search?p=find+EPRINT+math/9909042
https://arxiv.org/abs/hep-th/0403087
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403087
http://dx.doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
http://inspirehep.net/search?p=find+EPRINT+hep-th/0002230
http://dx.doi.org/10.1088/1126-6708/1998/07/023
https://arxiv.org/abs/hep-th/9806087
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806087
http://dx.doi.org/10.1007/s002200050764
http://dx.doi.org/10.1007/s002200050764
https://arxiv.org/abs/hep-th/9902121
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902121
http://dx.doi.org/10.1016/0003-4916(85)90150-2
http://inspirehep.net/search?p=find+J+%22AnnalsPhys.,160,406%22
http://dx.doi.org/10.1016/S0550-3213(99)00387-9
http://dx.doi.org/10.1016/S0550-3213(99)00387-9
https://arxiv.org/abs/hep-th/9905104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905104
http://dx.doi.org/10.1088/0264-9381/17/2/101
https://arxiv.org/abs/hep-th/9911230
http://inspirehep.net/search?p=find+EPRINT+hep-th/9911230
http://dx.doi.org/10.1088/1126-6708/2000/08/033
https://arxiv.org/abs/hep-th/0008028
http://inspirehep.net/search?p=find+EPRINT+hep-th/0008028
http://dx.doi.org/10.1016/j.physletb.2016.05.031
https://arxiv.org/abs/1604.01267
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.01267
http://dx.doi.org/10.1103/PhysRevD.60.064018
https://arxiv.org/abs/hep-th/9902170
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902170
http://dx.doi.org/10.1103/PhysRevD.60.104026
https://arxiv.org/abs/hep-th/9904197
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904197
http://dx.doi.org/10.1007/BF01208266
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,87,577%22
https://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1103/PhysRevD.79.064006
https://arxiv.org/abs/0812.1767
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1767
http://dx.doi.org/10.1103/PhysRevD.80.024041
https://arxiv.org/abs/0903.3256
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3256
http://dx.doi.org/10.1007/s00220-012-1638-1
http://dx.doi.org/10.1007/s00220-012-1638-1
https://arxiv.org/abs/1201.0463
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0463

	Introduction and summary of main results
	Model 
	Field ansatz, equations of motion and boundary conditions
	Conserved and thermodynamic quantities

	AdS(4)-Reissner-Nördstrom black hole and its instabilities
	AdS(4)-Reissner-Nördstrom black holes
	Near horizon scalar condensation instability of large black holes 
	Normal modes of AdS(4) 
	Superradiant instability of small black holes 

	Small solitons (boson stars)
	Non-interacting thermodynamic model for hairy black holes
	Small hairy black holes
	Setting up the perturbation problem
	Examples illustrating the matching asymptotic expansion
	Matching asymptotic expansion at O(varepsilon*1,R*k(+))
	Matching asymptotic expansion at O(varepsilon*1,R*k(+))

	Thermodynamic quantities

	Discussion of physical properties
	Checking the hairy solutions and their interpretation
	Phase diagram in the microcanonical ensemble
	Phase diagram in the canonical ensemble
	Phase diagram in the grand-canonical ensemble

	Coefficients of the superradiant expansion
	Far region
	Near region

	Coefficients of the soliton expansion
	Coefficients of the hairy black hole expansion
	Far region expansion
	Near region expansion


