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ABSTRACT: We construct hairy black hole solutions that merge with the anti-de Sitter
(AdS4) Reissner-Nordstrom black hole at the onset of superradiance. These hairy black
holes have, for a given mass and charge, higher entropy than the corresponding AdSy-
Reissner-Nordstrom black hole. Therefore, they are natural candidates for the endpoint of
the charged superradiant instability. On the other hand, hairy black holes never dominate
the canonical and grand-canonical ensembles. The zero-horizon radius of the hairy black
holes is a soliton (i.e. a boson star under a gauge transformation). We construct our
solutions perturbatively, for small mass and charge, so that the properties of hairy black
holes can be used to testify and compare with the endpoint of initial value simulations.
We further discuss the near-horizon scalar condensation instability which is also present in
global AdS,-Reissner-Nordstrom black holes. We highlight the different nature of the near-
horizon and superradiant instabilities and that hairy black holes ultimately exist because
of the non-linear instability of AdS.
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1 Introduction and summary of main results

One of the most challenging open questions of general relativity concerns finding the time
evolution and endpoint of the superradiant instability in the Kerr-AdS black hole (or in
systems that mimic this system). When a wave with frequency w and azimuthal angular
momentum m,g scatters a Kerr-AdS black hole with angular velocity {2, its amplitude can
grow if w < myQy [1-3] (see [4, 5] for recent reviews on superradiance). This follows from
a linear perturbation analysis [6-8]. In global AdS, the amplified wave reflects at the AdS
boundary and keeps being amplified driving the system unstable. Finding the properties
of the instability evolution and its endpoint requires a non-trivial (3 + 1)-dimensional
numerical simulation not yet available.

However, valuable insights on the possible evolution can be obtained without solving
the actual initial value problem. Indeed, it was found that the zero mode (i.e. onset) of
the instability signals the existence of a new branch of black hole solutions with scalar
hair [9-12] or even gravitational hair [13]. Per se the existence of these hairy black holes is
interesting for two main reasons: 1) they immediately rule out any attempts of proving no-
hair theorems (under non-restrictive assumptions), and 2) they have a single Killing vector
field that is also the horizon generator, thus showing that the assumptions of Hawking’s
rigidity theorem can be evaded [11, 13, 14]. Of relevance for the initial value problem, it
turns out that, given a mass and angular momentum, these hairy black holes always have
higher entropy than the Kerr-AdS black hole. This property and the fact that they are
connected to the onset of superradiance suggest that these black holes could be the endpoint
of rotational superradiance. However, this is not the case because all of those constructed
to date have QL > 1 (where L is the AdS radius) and are thus still superradiantly
unstable [11, 13, 15], this time to superradiant modes with higher mg. This, together with
other observations that can be found in the original articles, led the authors of [11, 13, 16] to
conjecture that the superradiant instability might evolve into one of two possibilities: 1) the
endpoint of the superradiant instability is a singular solution reached in finite time which
implies cosmic censorship violation, or 2) the time evolution develops higher and higher
mg structure (with increasing entropy) and the system never settles down. In the latter
case quantum gravity effects would become relevant at some point and cosmic censorship
would also be violated, at least in spirit. In either case, we would have an explicit example
of cosmic censorship violation in four dimensions and in a system that can be formed by
gravitational collapse. This would show that the violation found in [17, 18] can also occur
in a four-dimensional geometry.

To downsize the level of difficulty of the problem while still keeping some essential ingre-
dients and associated questions, we can turn-off the rotation of the black hole and consider
a static, but electrically charged, black hole. Indeed the global AdS Reissner-Nordstrém
black hole still has a generalized (effective) ergoregion where negative energy states can
be excited [15, 19-22] and the initial value problem is now a simpler (1 + 1)-dimensional
problem. Such a black hole with chemical potential i can then be unstable to superradi-
ance when a scalar field with frequency w and charge ¢ scatters it if w < pg [15, 20-22].
Similar to the rotating geometry case, the onset of charged superradiance is associated to



novel hairy black holes with a charged scalar field floating above the horizon: electric re-
pulsion balances the scalar condensate against gravitational collapse. In global AdSs, these
charged hairy black holes were constructed perturbatively and then numerically in [23-27].

For a given energy and charge, the hairy solutions of [23-25, 27] have higher entropy
than the AdSs Reissner-Nordstrom black hole. Therefore, unless the phase diagram of
the theory contains a (unlikely) solution with even higher entropy, these hairy black holes
should be the endpoint of charged superradiance. Unlike the rotating case, this is a robust
statement since ¢ is fixed once we choose the theory and thus the hairy black holes are
not unstable to superradiance (in the rotating case mg is a quantized integer that is not
fixed by the theory so hairy black holes associated with a given my are always unstable
to higher mg’s). This is where the charged superradiant system becomes a less interesting
toy-model to discuss the endpoint of rotating superradiance.’

Nevertheless, moving beyond the initial motivation, there are good reasons to investi-
gate the charged system. Firstly, the properties of the evolution of the unstable charged
system should be known. This was addressed by a recent numerical time evolution simu-
lation which confirmed that, in AdS,, an unstable Reissner-Nordstrom black hole indeed
evolves towards a charged hairy black hole [28].

A second reason is related to the non-linear, weakly turbulent, instability of global
AdS. If we perturb global AdS with a scalar field or with a wave packet of gravitons, the
system evolves towards the formation of a black hole, for arbitrarily small initial data,
as several studies suggest [29-36]. If the spherically symmetric initial data is made of a
neutral scalar field the final black hole is an AdS-Schwarzschild black hole. However, if
the scalar field is charged then the endpoint of the nonlinear instability should be a hairy
black hole since it has higher entropy than the AdS-Reissner-Nordstrém with same charge
and energy. This was confirmed to be the case by numerical simulations in global AdSy
and AdSs [31, 37, 38].

Since non-linear simulations are computationally costly, the numerical evolution studies
of [28, 31, 37, 38] were necessarily limited in the range of parameters and initial data. Thus,
it would be desirable to construct the hairy black hole solutions of Einstein-Maxwell theory
in global AdS, directly as solutions of the elliptic boundary value problem. This would
confirm (or not) that the qualitative features of hairy black holes of AdSs extend to AdSy.
It would also give quantitative thermodynamic quantities that can be used to compare
with the endpoint of future numerical simulations similar to [28, 31, 37, 38]. This is a main
aim of our manuscript.

A third reason to be interested on the charged AdS system, even in the absence of
rotation, is related to a third instability of AdS known as the near-horizon scalar conden-
sation instability [39]. The superradiant instability is present only in global AdS black
holes and requires (for charged superradiance) that both the scalar field and the geome-
try are charged. On the other hand, the near-horizon scalar condensation instability (and
associated hairy black holes) was first found in planar AdS and, in the AdS/CFT duality

'Note however that the charged hairy black holes can still be unstable to superradiance if we introduce
a new scalar field in the system.



context, triggered the research field of “holographic superconductors” and AdS/condensed
matter correspondence [39—41]. This instability is present in any AdS geometry that has
an extremal (zero temperature) configuration even if the spacetime and the scalar field
are neutral [41, 42]. It occurs whenever the scalar field satisfies the asymptotic AdSy
Breitenlohner-Freedman (BF) bound [43] of the full theory but violates the AdSs BF bound
(associated with the near-horizon geometry of the extremal black hole of the theory). In
particular, the near-horizon instability is present in the global AdS-Reissner-Nordstrém
black hole, where it co-exists with the superradiant instability [25, 42]. These two instabil-
ities are entangled but in certain limits their distinct nature emerges: large (small) global
AdS-Reissner-Nordstrom black holes, in AdS radius units, only have the near-horizon (su-
perradiant) instability. In section 3, we will discuss the sharp distinction of these two
instabilities in AdSy,.

Since the superradiant instability is present in small AdS-Reissner-Nordstrom black
holes, the associated hairy black holes can be constructed perturbatively around global AdS
as a small expansion in the horizon radius and in the scalar condensate amplitude [23-25].
(On the other hand, large hairy black holes that emerge from the near-horizon instability
do not have such a perturbative expansion). A few observations immediately suggest the
existence of a perturbative expansion in the superradiant case. As mentioned above, a
complex scalar field with frequency w and charge ¢ scattering a charged black hole with
chemical potential y is superradiantly amplified when [20, 21]?

Rew < qp. (1.1)

For definiteness, consider a Reissner-Nordstrom black hole in global AdS4 (RN-AdS,), with
cosmological radius L, horizon radius r; and chemical potential p. Its gauge potential is
thus A = p (1 —ry/r)dt. Alternatively, we can parametrize this solution with r; and the

2
temperature T in which case p = /2 \/ 14 3;—; — 4mr,T. These black holes are regular all
the way to extremality (where their temperature vanishes), and the chemical potential is

V2 1+—<f+o( 2), (1.2)

‘ext L2 ~

where in the last approximation we considered the small horizon radius limit of the con-
dition. Consider now a scalar perturbation in this RN-AdS, background that we Fourier
decompose as ¢(t,) = e~ “¢(r). If we impose reflecting asymptotic boundary conditions
that preserve the energy and charge of the system, RN-AdS, behaves as a confined box
whereby waves can be dissipated only through the horizon. Therefore, only certain fre-
quencies can fit inside the AdS, box: the frequency spectrum is quantized. The inverse
of the imaginary part of the frequency gives the dissipation timescale (if Imw < 0) or an
instability growth rate (if Imw > 0). In the limit where ry — 0, one has Imw — 0 and

2Note that we can make, as we will typically do in this manuscript, the gauge choice A(r+) = 0. In
this case the criterion (1.1) for instability reads instead Re(w) < 0. For example, in this gauge (1.3) reads
W T gt O(ry).



the frequency spectrum reduces to the normal modes of global AdSy,

3+2
w~ 2p+0(r+), (1.3)

where p is the radial overtone of the perturbation that gives the number of radial nodes of
the associated wavefunction (in this manuscript we will be interested on the scalar solutions
with lowest energy which correspond to p = 0). Altogether, conditions (1.1)—(1.3) imply
that incident scalar waves on a small near-extremal RN-AdS, black hole drive it unstable
to superradiance if

3.9 3+ 2
Epm(m)sfiwswﬂmri) & eRetO(ry) with e = ;ip’
(1.4)

where we introduced the dimensionless scalar field charge e = qL. Thus, for p = 0 small
near-extremal black holes are unstable for e 2> % By continuity, they should also be
unstable when we move away from extremality up to a point where the instability switches-
off (this point is the onset of superradiance if we do the reversed path, from large to low
temperatures).

In the absence of a horizon, a normal mode of global AdS,, with frequency w and am-
plitude ¢, solves the Klein-Gordon equation. Going beyond the linear order, this scalar field
sources the Einstein equation at order O (62) and higher and back-reacts in the background
geometry. If we impose reflecting boundary conditions on the boundary of global AdSy, it is
conceivable that the solution can be back-reacted (while being smooth everywhere) to any
order in a perturbative expansion in the scalar amplitude €. In the back-reaction process
the normal mode frequency should itself receive corrections at each order. This possibility
turns out to be correct and the back-reaction of a normal mode of global AdS is known
as a boson star. Indeed they were explicitly constructed in AdSs in [23-26] and studied
with much detail in [26]. Similarly, these solutions exist in AdS, and will be constructed
in section 4. We have the freedom to do a U(1) gauge transformation that eliminates the
phase of the scalar field at the expense of changing the gauge potential. So the ‘boson star’
can be equivalently written as a ‘soliton’, i.e. a time-independent horizonless solution that
is regular everywhere. In most of our manuscript we will adopt this perspective.

When a theory has a solitonic solution and a black hole solution that is unstable, we
should consider, as a rule of thumb, the possibility that there might exist a third solution
that describes a hairy black hole constructed by placing the small black hole at the core of
the soliton.® This was first observed in the Einstein-Yang-Mills theory: a black hole can
be added to the Bartnik-Mckinnon soliton [48] of the theory leading to a coloured black

3In the literature there were attempts, to find no-hair theorems stating that one cannot add black holes
inside boson stars or solitons [44-46]. However, as pointed out in [11] for asymptotically AdS and in [47]
for asymptotically flat, these results only apply to static black holes with no coupling to the Maxwell field
and follow essentially because the boson star has e~ ** time dependence and t — co at the horizon of a BH.
The scalar field thus oscillates infinitely often near the horizon and cannot be smoothly continued inside.
There are however ways to evade this no-go fate [11, 23, 25, 47] if a gauge field or rotation are present in
the system.



hole with non-abelian Yang-Mills hair [49-51]. This rule of thumb also materializes in
the gravitational Abelian Higgs model (i.e. Einstein-Maxwell theory with a complex scalar
field) that we are considering [23-25]. The theory has a small RN-AdSy black hole that we
can put on top of the soliton that we construct in section 4.

Quite remarkably, the idea encoded in the above rule of thumb can be realized in a
simple ‘non-interacting thermodynamic model’ that captures the leading order thermody-
namics of the system without solving the equations of motion of the theory.* The model
simply assumes that at leading order the energy and charge of the hairy black hole is just
the sum of the energies and charges of its RN-AdS, and solitonic components. The dis-
tribution of charges among the two constituents is determined by the condition that the
entropy must be maximized. This is equivalent to require that the chemical potential of
the RN-AdS,4 and solitonic component match, i.e. that the system is in thermodynamic
equilibrium. We apply this model in section 5 and will find that it gets the correct leading
order thermodynamics of the system.

Moving beyond the leading order inspection of the system, the hairy black holes will be
constructed perturbatively in a double expansion in the dimensionless horizon radius /L
and scalar condensate amplitude ¢ in section 6. The equations of motion of the gravitational
Abelian Higgs theory are solved using a standard matching asymptotic expansion procedure
(see e.g. [11, 12, 23-25]) whereby we consider a near region 7 < + < 1 and a far region
r > r which overlap in the region % < 7 < 1if we consider small black holes, <
The resulting thermodynamic quantities of the hairy black hole — energy, charge, chemical
potential, temperature, entropy, and the Helmoltz and Gibbs free energies — are then
computed in (6.23) and obey the first law of thermodynamics. Confirming the rationale
beyond their construction, hairy black holes merge with the RN-AdS, family at the onset of
superradiance and their zero-horizon radius limit is a soliton. The reader not interested on
the construction details can immediately jump to these expressions that describe uniquely
the hairy black holes and to their physical discussion in section 7.

The hairy black holes and solitons of the theory add new competitions in the phase
diagram of thermal phases of the gravitational Abelian Higgs model. The discussion of
these competitions depends on the thermal ensemble — microcanonical, canonical or grand-
canonical — that we consider. It turns out that, as summarized in the phase diagrams of
figure 1, in the microcanonical ensemble hairy black holes are always the dominant thermal
phase. However, large RN-AdS, are still the preferred thermal phase both in the canonical
ensemble (see phase diagram of figure 3) and grand-canonical ensemble (see phase diagram
of figure 6).

4To our knowledge, the first work that tried to concretize explicitly from first principles (i.e., beyond the
numerical confirmation) the idea that we can place a black hole inside a solitonic solution goes back to [52].
Indeed, in the context of the Einstein-Yang-Mills theory, [52] proposed an ‘interacting thermodynamic
bound state model’ where the energy of the final colored (hairy) black hole is the sum of the energies of the
solitonic background plus the small bare black hole (i.e. the uncolored, hairless, black hole of the theory)
and, in addition, a binding energy contribution that would account for the interactions between the two
previous components of the system. This model was then explored to extract some bounds and monotonic
behaviors of the thermodynamic quantities of colored BHs. The non-interacting model on the other hand,
neglects the interaction or binding energy contribution, and allows to find analytical expressions, not only
bounds, for the thermodynamic quantities.



A final comment on the near-horizon scalar condensation instability and its associated
hairy black holes is in order. In section 3.2 we will find the conditions under which a scalar
field in an extremal RN-AdSy is unstable to the near-horizon instability. This happens
when the dimensionless scalar charge e is above the bound (3.15). In the limit where the
dimensionless horizon radius Ry — 0o, we recover the known result for planar RN-AdSy
black holes, 2 > 2 + O (R;?) (for a massless field) [39-41]. Global RN-AdS, black holes
are unstable for larger values of the scalar field charge. However, in the opposite limit,
Ry — 0, we get ¢ > ﬁ—i—(’)(l), which indicates that the near-horizon scalar condensation

instability is suppressed for small (global) RN-AdS, black holes. This is to be contrasted
with the superradiant instability and highlights the different nature of the two instabilities.
In particular, this also means that hairy black holes branching-off from the RN-AdS,4 family
do not admit a small perturbative expansion in the dimensionless horizon radius R (and
). A numerical non-linear construction, that we leave for future work, would be required.

Summarizing our conclusions, the phase diagram of AdS4-FEinstein-Maxwell theory
with a complex scalar field depends on the window of the dimensionless scalar field charge
e that we consider. There are three cases:

o e < %: in this case RN-AdSy is stable both against superradiance and the near-

horizon scalar condensation instability. Thus, there are no hairy black hole solutions.
We do have a l-parameter soliton family. Based on the AdSs results of [23-25] and
specially of [26], very likely this soliton has an intermediate Chandrasekhar limit
at a critical charge and mass and then an intricate discontinuous branch structure.
Finding wether this is the case for large charges also in AdSy requires a numerical
study beyond the perturbative analysis done here.

° % < e? < %: the near horizon instability takes place near extremality for large

RN-AdS4 black holes, i.e. only above a critical mass and charge. Consequently, the
associated large hairy black hole solutions cannot be constructed perturbatively and
would require a full non-linear numerical construction. Since they do not have a per-
turbative construction their zero-horizon radius limit is likely singular and certainly
not the soliton (this is the case in AdSs [23-25]). The soliton, on the other hand has
similar properties to those of the previous case.

o 2> %: small RN-AdS, black holes are unstable to the superradiant instability and
the associated hairy black holes can be constructed perturbatively for small mass and
charge (see section 6). They are a 2-parameter family of solutions that in a phase
diagram span an area bounded by the onset of superradiance (where they merge
with RN-AdS4) and, at their zero-horizon radius limit, the soliton (see figure 1).
Eventually, for larger values of the charges (that are not captured by our perturbative
analysis) the zero-horizon radius limit of the hairy black hole might no longer be the
soliton (this is the case in AdSs [25]) but answering this requires a numerical analysis.
These hairy black holes always have higher entropy than the RN-AdS,4 black hole in
the window of energy and charge where the two phases co-exist. Interestingly, in the
phase diagram of solutions of the theory, the hairy black holes connect the onset of



the (linear) superradiant instability with the key player — the soliton — of the non-
linear weakly turbulent instability of AdS4. Indeed, at the simplest but fundamental
level, this non-linear instability follows from the appearance of irremovable secular
resonances when two or more solitons are taken as initial data and collide [29, 30, 53].

A perturbative construction of the hairy solutions for the gravitational Abelian Higgs
model in AdSs was done in [23-25] and agree extremely well (for small charges) with the
full nonlinear solutions constructed in [25, 26]. Our perturbative construction finds hairy
solutions for the AdS, theory. Qualitatively, we do not find differences between the AdSs
and AdS; phase diagrams. Therefore, [25, 26] and our results suggest that (at least for
small black holes) the qualitative phase diagram of gravitational Abelian Higgs theory is
independent of the dimension. In addition, our quantitative results can be used to compare
against and testify the hairy solutions that are the endpoint of initial value simulations like
the ones reported in [28, 31, 37, 38]. Hairy black hole solutions of gravitational Abelian
Higgs model in AdS, for a scalar field mass of m? = —4/L? were recently constructed
numerically in [54] and discussed in the grand-canonical ensemble. Their qualitative results
agree with our conclusions for the grand-canonical ensemble (namely, hairy black holes are
always subdominant with respect to RN-AdS,) indicating that the qualitative conclusions,
at least in the grand-canonical ensemble, might be similar for different scalar masses. The
reader interested on superradiance and asymptotically AdSsxS® hairy black holes that are
solutions of supergravity can find an exhaustive discussion in [24, 27].

The plan of the manuscript is as follows. In section 2 we introduce the theory, its
equations of motion and the boundary conditions for the elliptic problem, and describe
how the thermodynamic quantities can be computed. Section 3 briefly reviews the RN-
AdS, solution and discusses in detail the conditions where they are unstable to near-
horizon scalar condensation and/or superradiant instabilities. The soliton (boson star) of
the theory is constructed perturbatively in section 4. The leading order thermodynamics of
hairy black holes is discussed in section 5 using the non-interacting thermodynamic model.
In section 6, hairy black hole solutions are constructed perturbatively using a matched
asymptotic expansion analysis. The thermodynamical and physical properties of the hairy
solutions are analysed in detail in the three thermal ensembles in section 7. For the benefit
of a reader who wants to reproduce our results, the technical appendices A, B, and C give
the expressions for the field coefficients that appear in the perturbative expansions of the
superradiant instability of section 3.4, of the soliton construction of section 4 and of the
hairy black hole of section 6.

2 Model

2.1 Field ansatz, equations of motion and boundary conditions

We consider 4-dimensional Einstein-Maxwell gravity with negative cosmological constant
A= -3
L2 Y

associated action is

_ 1 4, Y v :
5= 167TG4/d =g [R 20 = SEuwF™ = 2D, ¢(D")' +2V(|9]) | | (2.1)

minimally coupled to a charged complex scalar field ¢ with charge ¢q. The




where R is the Ricci scalar, F' = dA with A being a gauge potential and D, ¢ = V ,¢—iqA,¢
is the associated gauge covariant derivative. We consider a potential V' (|¢|) = m?¢¢*, with
m being the mass of the scalar field. For definiteness, onwards we set m = 0 but our
nonlinear construction can be extended to a massive scalar field or to a more generic
potential. We fix Newton’s constant as G4 = 1.

We are interested on solitonic and black hole solutions of (2.1) that are static, spheri-
cally symmetric and asymptotically global AdS4. We can use reparametrization of the time
t and radial coordinates 7, r — 7(r) and t — ¢ = t+ H(t,) to fix the gauge to be such that
the radius of a round S? is r and there is no cross term dtdr (this is often called the radial
or Schwarzschild gauge).® A field ansatz that accommodates the desired symmetries is

ds? = — f(r)dt2 + g(r)dr + 1240, Audat = A, o =of = (). (22)

where dQé) describes the line element of a unit radius S? (parametrized by {6,v}, say).

Once a static solution is found we can always use a U(1) gauge transformation, ¢ —
©+qx, A — Ay + Vix to rewrite a scalar field ¢ = |¢|e?¥ in a gauge where the scalar
field oscillates with a frequency w, ¢ = |¢le"™!. However, since the energy-momentum
tensor of the scalar field only depends on ¢¢! and d¢(9¢)T, the gravitational and Maxwell
fields are always invariant under the action of the Killing vector field 0;. In this gauge, the
equations of motion require that A‘u = w/q, if the solution has a horizon at r = r;. In
particular, we shall adopt this gauge in sections 3.2 and 3.3.

At this point we have fixed all the diffeomorphic and U(1) gauge freedom to simplify
our field ansatz. However, our system still has two scaling symmetries that we can use for
further simplifications.® The first scaling symmetry is

{tu T,97¢} - {A1t7 )\1T,(9,¢}, {f:g7A7¢} — {f:g)A7¢}7 {CbLar-‘r} - {)i]luAlL) )‘T-i-} )
(2.3)

which leaves the equations of motion invariant and rescales the line element and the gauge
field 1-form as ds? — A2ds? and Adt — \; Adt. We use this scaling symmetry to work
with dimensionless coordinates and measure our thermodynamic quantities in units of L,
the natural scale of AdS (this amounts to set L = 1),

e =qL. (2.4)
The second scaling symmetry is

{tanead)} — {>\2t,7“39,¢}a {fag7A7¢} — {A52f’gv AglAv d)}v {Q7L7T+} — {Q7L7T+}'
(2.5)

®In this gauge, the horizon radius 4, if present, is also a gauge invariant quantity since it is proportional
to the entropy r4 = /S/4mw.

SFor planar solutions, i.e. solutions that asymptote to local AdS there is a third scaling symmetry that
allows to set the Poincare horizon at r = r4 =1 (see e.g. [41]). This is the reason why we can have small
and large black holes in global AdS but not in planar AdS. Actually, in planar AdS a black hole is always
‘large’ in the sense that it does not have the superradiant instability (see further discussions of section 3).



A Taylor expansion of the equations of motion at the asymptotic boundary yields f ~
co(R?+1)+--- and g7t ~ R? + 1+ ---. We use the scaling symmetry (2.5) to require
that g approaches 1/f as r — o0, i.e. to fix ¢y = 1. This choice can also be motivated by
the following observation (see e.g. [41]). In the context of the AdSs/CFT3 duality, AdS4
black holes are dual to thermal states on the boundary CFT. The choice g = % as r — oo
fixes the normalization of the time coordinate with respect to the gravitational redshift
normalization of the radial coordinate to be such that the Hawking temperature of the
black hole in the bulk matches the temperature of the dual CFT on the boundary.

Variation of (2.1) yields the equations of motion for the fields f, g, A and ¢:

/ 2 At 2 62 2

o'(r)+ 30 (1= TR v atm R 1) + SHEECUAR) g,
(2.6a)

" A'(R) _62R2A<R)2¢<R)29(R)_ 24/(R)2 ) — 262 2 _
am)+ 4 (2 phs R (R)?) = 20(R7g(R)A(R) =,
(2.6b)

/ f(R) N p2ap2y L B2 o2 2 2 _
F'(B) + =% (1-g(R)(1+3R?) R¢(R))+2(A(R) 2¢?A(R)*¢(R)*g(R)) = 0,
(2.6¢)

9O (L PR o N g(R? (L RRAGRPO(R
g(R) - (1+ SFE) +R¢(R))+ - <1+3R . >_o.
(2.6d)

We can use (2.6¢) to get an algebraic relation for g in terms of the other fields and
their first order derivatives:

2f(R) (R*¢'(R)* —1) — R(RA'(R)* +2f'(R))
2(e2R2A(R)*¢(R)* + f(R) (14 3R?))

9(R) = — (2.7)

We insert this algebraic relation into (2.6a), (2.6b) and (2.6d) to obtain a coupled system
of three second order ODE’s. Onwards, these are the three equations of motion that we
will solve to find the three fields {f, 4, ¢} (and thus also g).

The most notable solution of (2.1) is global AdS, spacetime: f(R) = g '(R) = 1+ R?
A(R) = ¢(R) = 0. We are interested in solutions that asymptote to this background.

We can rewrite our ansatz and equations of motion in Fefferman-Graham coordinates
(defined such that g,, = 1/ 2% and g., = 0, where z is the radial distance with boundary
at z = 0, and 2® = {t,0,%} are the boundary coordinates) [55-57]. Any asymptotically
AdS, spacetime has the following Taylor expansion of the metric around the holographic
boundary z = 0 [58, 59]:

1
d82 = ? [dZQ —|—gab(2’x)dxadﬂ§b ’

garl, o = 90 @) 4 P @) o, with (L)) = gD () (28)
20 ab ab ’ 167Gy 7P
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and where ¢(©(z) and ¢ (z) are the two integration “constants” of the expansion;” the
first dots include only even powers of z (smaller than 3) and depend only on g (thus being
the same for any solution that asymptotes to global AdS,) while the second dots depend
on the two independent terms ¢(?), ¢®. Within the AdS/CFT duality we are (typically)
interested in Dirichlet boundary conditions (BCs) that do not deform the conformal metric
¢'9: the dual holographic CFT is formulated on this fixed background. This is the static
Einstein Universe R; x S2, ds% = —dT?+ dQ%Z). Given this Dirichlet BC our task is then to
solve the equations of motion in the bulk, subject to regular BCs at the horizon or radial
origin, to read ¢(®. Using the holographic renormalization formalism, this gives us the
expectation value of the holographic stress tensor (T,;(x)) which specifies and describes
the boundary CFT [58-60]. This Dirichlet BC also ensures that there is no dissipation of
energy at the asymptotic boundary (see appendix A of [8]). For this reason these Dirichlet
BCs can be denoted as ‘reflecting boundary conditions’.®

We still need to discuss the asymptotic BCs for the Maxwell and massless scalar fields.
A Taylor expansion of the equations of motion at the conformal boundary yields,

A(R) = pt ot

(2

3.3
O(R) =~ px—+ +e, with Ar=o i+, (2.9)

RA+ 2

where p and p are the chemical potential and charge density, respectively, and € and o are
the two arbitrary integration constants describing the decay of the massless scalar field. In
d = 4 the unitarity bound for the scalar field mass is m2 ;, L? = —5/4. We have chosen to
work with a massless scalar field. Hence it is above the unitarity bound. It follows that
only the mode e/r>+ with faster fall-off is normalisable (since it has finite canonical energy)
and o /r®- is a non-normalisable mode [43, 61]. We thus choose the BC ¢ = 0. According
to the AdS/CFT dictionary, the boundary CFT is then not sourced and the scalar field
amplitude ¢ is proportional to the expectation value (O) of the boundary operator O that
has dimension Ay = 3 [62].

To summarize, at the asymptotic boundary (R — oo) we will impose Dirichlet BCs

such that our solutions at large R behave as
f(R)=1+R*+ % +O(1/R?),
AR) = p+ % +O(1/R),
+O(1/R?) (2.10)

with the dots representing terms that are a function of mg, u, p, €.

Consider now the inner boundary of our solution. This is a fictitious boundary since it
is a coordinate singularity at the edge of our integration domain, but is at a finite proper
distance from other points [14]. In the present study, this can be the origin of the radial

“Our solutions are static and spherically symmetric so there is no x dependence.
8We can however have other reflecting BCs that preserve the charges but not the static Einstein Universe
conformal boundary.
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coordinate, R = 0, if we look into a soliton (boson star). Or, it can be a horizon at R = R4
if the solution is a black hole, a condition that is imposed by demanding that f(Ry) = 0.
In both cases to find the physical BCs we can Euclideanise the metric with a Wick rotation
and require regularity of the metric and matter fields in Cartesian coordinates, as explained
in detail in the review [14].7

For a soliton, a Taylor expansion of the equations of motion at the origin yields,

f(R) = fo+0O (R,
A(R) = ag+ O (R?),
d(R) = ¢+ O (R?), (2.11)

where { fo, ao, ¢o} are arbitrary integration constants and all higher order terms in (2.11)
are even powers of R with coefficients fixed in terms of {fy, ag, ¢o}. Here we have already
imposed smoothness of the fields at the origin by imposing a defining BC (in the nomen-
clature of [14]). Namely, we set to zero three integration constants (one for each field f, g,
and ¢) which are associated to terms that diverge as R — 0. Following the nomenclature
of [14], if we wish, we can now use this defining BC together with the equations of motion
to impose a derived BC to find the soliton. For example, it follows from (2.11) that a good
derived BC is a Neumann BC for the three fields at R = 0 since the derivative of all of
them vanishes.

On the other hand, if the solution is a black hole a Taylor expansion around its horizon
— defined as the locus f(Ry) =0 — yields

f(R) = fo(R— Ry) + O ((R—Ry)?),
A(R) = ao(R— Ry) + O ((R—Ry)?),
¢(R) = ¢o+ O (R~ R+)?), (2.12)

after imposing defining BCs that set three integration constants to zero (one for each
function) to have smoothness as R — R,. We are left with the remaining three arbitrary
integration constants { fo, ag, ¢o}, and all higher order terms in (2.12) are fixed as a function
of {fo, a0, ¢o}-

At this stage we can ask how many parameters we need to describe the soliton and
hairy black hole that we want to construct. The theory (2.1) is fixed once we choose the
mass and charge of the scalar field. At the UV asymptotic boundary we have a total
of five free parameters {cg, mo, i, p,e} to which we need to add the cosmological radius
L and the horizon radius R, (if present). As explained previously, we can use the two
scaling symmetries (2.3) and (2.5) to fix L and ¢y. We are therefore left with four UV
free parameters {mg, i1, p, e} and the horizon radius R;. On the other hand, in the IR we
have a total of three free parameters { fo, ag, ¢o} (both in the soliton and black hole case).
Therefore, any black hole of the theory is described by 4yy + 1 — 31r = 2 parameters. The
AdS4-Reissner-Nordstrom black hole is indeed a 2-parameter family of black holes. More

9For the gauge field, this refers to the gauge invariant field strength tensor F' = dA, rather than the
gauge potential A.
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importantly, we also find that the hairy black holes we want to construct are described by
two parameters. These are the mass and the electric charge of the black hole. Alternatively
(but equivalently) we can take these to be the horizon radius Ry and the amplitude of
the scalar condensate €. On the other hand, any soliton of the theory is described by
4yyv — 31r = 1 parameter. This can be the mass of the soliton (which fixes its charge) or,
alternatively, the amplitude of the scalar condensate ¢.

2.2 Conserved and thermodynamic quantities

Once we have found our fields {f, g, A, ¢} we can read the gauge invariant thermodynamic
quantities that describe hairy black holes or solitons.

To find the energy we can use either holographic renormalization [58-60] or the
Ashtekar-Das formalism [63, 64]. We describe briefly the latter formalism. Energy is a
conserved asymptotic quantity associated to the Killing vector field €0, = 0;. Consider a
conformal transformation of the metric (2.2) defined as: g, = Qgqp. The appropriate con-
formal factor to use here is Q) = %. Then consider the Weyl tensor of the conformal metric:
Caped- Consider also the conformal hypersurface defined by ¥|o—o and the normal vector
to it: ng = 9,9. We define the tensors Kapeq = 93_d(§'abcdlgzo and &4 = Kapegn®n®. Con-
sider, on the conformal hypersurface ¥|g—¢, the timelike surfaces of constant ¢, i\ﬂ:o,tzconst
with normal vector t, = J,t. This surface has dimension 2 and induced metric hy,. Then
the conserved energy is defined as:

1 ~
M=—— [ &, 4% 2.13
3 b (213)

which, in terms of the expansion parameters defined in (2.10) yields,

M mo

—_—=—— 2.14

T 5 (2.14)
To define the conserved electric charge, we use Gauss’ law. Consider a 2-sphere S? at

constant time ¢ and R in the limit R — co. The electrical charge is

1
= lim — F 2.15
Q= jim 1o [+ (2.15)
where xF' is the Hodge dual of the field strength. As a function of the asymptotic expansion
parameters defined in (2.10) this gives,

(2.16)

The value of the temperature for a soliton is undefined, and its entropy is zero as it
does not have a horizon. Our black holes have a Killing horizon at R = R, generated by
the Killing vector field K = 0;. Their temperature is thus given by its surface gravity over
27 which yields,

1 "(R

= IR @11

Ry
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The entropy of the black hole is a quarter of horizon area. In terms of the expansion
parameters introduced in (2.12), the temperature and entropy are then

fo (3R% +1)

TH L - ’
2v/2m\[Ry (3R% +1) (a3 Ry + 2fo)
% =TR3. (2.18)

The chemical potential p is defined in (2.10). It is the difference between the value of the
electromagnetic field at infinity and at the horizon.!'®

To discuss the competition between thermal phases in the canonical and in the grand-
canonical ensembles we have to compute the associated thermodynamic potentials, namely
the Helmholtz free energy F' = E — T'S and the Gibbs free energy, G = M — TS — uQ,
respectively.

Solutions of (2.6) must satisfy the first law of thermodynamics:

dM = TydS + pd@Q, for black holes, (2.19)
dM = pd@, for solitons. (2.20)

3 AdSs-Reissner-Nordstrom black hole and its instabilities

3.1 AdSi-Reissner-Nordstrom black holes

When the scalar field vanishes, global AdSs-Reissner-Nordstrom (RN-AdSy4) black hole is
a known solution of (2.6). This is a 2-parameter family of solutions, that we can take to be
the horizon radius R and the chemical potential p. It is described by ansatz (2.2) with

2
f(R):g(;):HR?—}E[HRi#;<1—}§;>},
AR) = 1 Jf,;]
P(R) =0 (3.1)

Alternatively, we can parametrize RN-AdS, with R, and the temperature T in which case
the chemical potential is given by

j=2\/1+ 3R — 4xR.T. (3.2)

It follows that regular RN-AdS, black holes exist if their chemical potential satisfies

i< V24/1+3R2. (3.3)

When p = 0 one recovers the AdSy-Schwarzschild solution while the upper bound of (3.3)
occurs for the extremal configuration (7' = 0) where the entropy is finite but the tempera-

ture vanishes.

10Recall that we work in the gauge where A‘T+ = 0. With a gauge transformation, we can instead work

in the gauge A‘Oo = 0 and the scalar field acquires a harmonic time dependence.
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The mass, charge, entropy and temperature expressed as a function of Ry and p are

Ry w 2 1
Mpn/L=—= {1+ + R, Qry/L =S Ry,
1
Sern/L? = mRZ, TanL = (2—p*+6R3). (3.4)
87TR+

In section 5, we will find the leading order thermodynamics of hairy black holes as-
suming that they can be described as a non-interacting mixture of a soliton and a small
RN-AdS, black hole. To complete that analysis, we will only consider the leading order
(in the R4 expansion) thermodynamics of the RN-AdS, black hole. For future reference
this is:

MRN/L27 1+7 + O(R3), QRN/L:§MR+7
Srn/L? = TR2, TanL ~ (2—p?) +O(Ry).  (3.5)

87TR+

When perturbed by an infinitesimal scalar field perturbation, global AdS4-RN black
holes can develop two types of linear instabilities that have different physical nature. One
is the near-horizon scalar condensation instability and the other is the superradiant insta-
bility. The former is already present in planar RN-AdS, black holes (where it was first
found) while the later is only present in global AdS RN black holes. The zero mode of these
instabilities is closely connected to the existence of hairy black hole solutions. Therefore,
in the next two subsections we discuss the main properties of these two instabilities with
some detail.

3.2 Near horizon scalar condensation instability of large black holes

Consider a scalar field with mass m and charge ¢ in an asymptotically AdS4 background. A

Taylor expansion around the asymptotic boundary yields the two independent solutions!!

o € . 3 9
¢(R):ﬁ+"'+ﬂ+"'7 with Ay =2 & Z+m2L2, (3.6)
which reduces to (2.9) when m = 0. Breitenlohner and Freedman (BF) found that a scalar
field in AdS, is normalizable, i.e. it has finite energy, as long has its mass obeys the AdS,

BF bound,
91

4L
When this is the case we can have asymptotically AdS, solutions that are stable in the UV

m? > mip = (3.7)

region.

But this analysis is blind to the behaviour of the scalar field in the interior of the
spacetime. In particular, the properties of the scalar field in the IR region of a particular
spacetime might drive the system unstable. This is indeed the case: as first found in the

"1 this subsection it is illuminating to restore the factors of L and coordinates {t,7} — see (2.4) — and
consider a massive scalar filed.
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context of holographic superconductors [39-41], planar AdS black holes can be unstable
to a near horizon scalar condensation mechanism [39]. The zero mode of this instability
then signals a second order phase transition to planar hairy black holes that are dual
to holographic superconductors [40, 41]. It was later understood that the near horizon
scalar condensation instability is quite universal and present for any asymptotically AdS
background that has a black hole with an extremal (zero temperature) configuration [41, 42]
(this includes even some systems with neutral black holes and uncharged scalar fields). The
criterion for this instability is the following. Start with a scalar field whose mass obeys the
UV BF bound (3.7). When it violates the AdSs BF bound,

1 1
m? > m3gs, pr = 11 (3.8)
AdS,

the system, although asymptotically stable, is unstable in its near-horizon region. We might
then expect the system to evolve into a hairy black hole with the same UV asymptotics
but different IR behaviour.

We can work out in more detail the consequences of this instability for our current
system, following the original analysis in [42] and [25]. Global AdSs-RN black holes de-
scribed by (2.2) and (3.1) have an extremal configuration when the bound (3.3) is saturated,

2
w=v2\/1+ 3%. Take the near-horizon limit of this extremal RN-AdS, black hole, i.e.
introduce the new coordinates {7, 5},

T ~
t= LidSQ Xa r=ry+ Apa (39)

and let A — 0. Setting,

Lr
Laas, = ———— (3.10)

\/L? + 612
this procedure yields the solution of (2.6),

_ dp
ds? = L2, <—,02d72 + P2 ) +72d0G,),

L
Aydat = apdt with a = M,/Ti + L124d52‘ (3.11)
T+

So, the near-horizon limit of extremal RN-AdS, is the direct product of AdSs with a
sphere S2. Applying this near-horizon limit to the Klein-Gordon equation that describes

a perturbation 6¢(t,7) = et R(r) of a scalar field (with mass m and charge ¢) about the
extremal RN-AdS, black hole yields

(w+qap)?

9; (P°0sR) + ( P2 - m2L?4d52> R=0, (3.12)

which, not surprisingly, is the Klein-Gordon equation for a scalar field around AdSy with
an electromagnetic potential Ar = ap. A Taylor expansion of (3.12) yields

A x ~ 11
~_A_ ~—A .
R|ﬁ_>oo:ap +--+4bp "t 4+, with Ai:§i§1/1+mgﬁL?4dszv (3.13)
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which dictates the effective mass of the scalar field from the perspective of a near-horizon
observer,

2 2 _ 2712 2 2
MegLags, = m Ligs, — ¢«

= 'rrL2L124dS2 —2¢*R% (3.14)

(1+6R2)%
where in the second line we re-introduced the dimensionless quantities Ry = ry /L and
e=qlL.

A scalar field with mass (3.14) in AdSy is unstable if it violates the AdS, BF

bound (3.8). It follows that extremal RN-AdS, black holes are unstable whenever the
charge of the scalar field obeys

R? 1+ 6R%)?
e* > (1 +Am* L ——— ) (2 - +)2 : (3.15)
1+6R2 ) 8R% (1+3R2)
Taking the large R4 expansion, this yields
3 m2L? 1 4 1
2> (24 m?L?) — — + 1+ =m2L? O(1/RY). 3.16
e_<2+m o+ (1558 gy O/ (3.16)

In the strict limit R; — oo, we recover the known result for planar RN-AdS, black holes,
e* > (3 + m?L?) [39-41]. Global RN-AdS, black holes are unstable for larger values of
the scalar field charge.

In the opposite Ry — 0 limit, an expansion of (3.15) yields

1
2> 1 1
@2 g T O (317)

which indicates that the near-horizon scalar condensation instability is suppressed for small
(global) RN-AdSy black holes. This is to be contrasted with the superradiant instability
(discussed in the next subsection) which is present for small black holes but not large black
holes. This property highlights the different nature of the two instabilities.

The near-horizon instability criterion that we have been discussing applies strictly to
extremal black holes. Continuity indicates that this instability should extend to near-
extremal black holes. Thus large, near extremal RN-AdS, black holes are unstable to
condensation of the scalar field when condition (3.15) is satisfied.

We have chosen to work with a massless (m = 0) scalar field, so the near horizon

. .1 . . . 3
instability is present in our system for large black holes with e > \/g .

3.3 Normal modes of AdS,

Consider a massive charged scalar field perturbation ¢(¢,7) in global AdS, with a constant
gauge field A = pdt, which is governed by the Klein-Gordon equation. The background
is time independent so we can do a Fourier decomposition of the perturbation in time
such that a particular mode is described by ¢(T, R) = e~ “T4(R) (w is the frequency of
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the mode). If the scalar field mass m is above the BF bound (3.7), we can impose the
boundary condition o = 0 in (3.6) and this yields the normalizable solution

€ 1

Q/’n(R) = W2Fl 9 (A+ —eu —Wn),

11
21+ R
(3.18)
where A, is defined in (3.6), € is an arbitrary amplitude and 9 F} is the hypergeometric

1
§(A+—|—e,u—|—wn),A

function. To have a regular solution at the origin, the frequency spectrum must then be
quantized as'?
wp = A4 4 2n — ep, (3.19)

where the non-negative integer n is the radial overtone that gives the number of radial zeros
of ¥(R). Equations (3.18) and (3.19) give, respectively, the eigenvectors and eigenvalues
of the normal modes of a scalar field. Note however that we can use the U(1) gauge
transformation of the system to choose the gauge potential to be such that, e.g. p =
(A4 4+ 2n) /e and the normal mode frequency (i.e. for a given n) vanishes, w, = 0.

In our current study, we are interested in the case m = 0, which implies that A, = 3,
and onwards we choose to work with the solution that has the lowest frequency (and thus
energy), namely we set n = 0. Then, (3.19) reads

wo=3—epu. (3.20)

3.4 Superradiant instability of small black holes

In subsection 3.2 we have seen that large RN-AdSy black holes are unstable to the near-
horizon scalar condensation instability. In the present subsection we show that, in the
opposite limit, small RN-AdS, black holes are unstable to the superradiant instability.
For that we solve the Klein-Gordon equation for a massless scalar field perturbation with
charge e > % (see discussion associated with (1.4)),

H(T,R) = e “Tp(R) (3.21)

around the RN-AdS, in a perturbative expansion in the horizon radius R.. We will find
that the imaginary part of the perturbation frequency w is positive, and thus the system
is unstable, when p > %

To impose smoothness of the perturbations at the horizon boundary it is convenient
to work in ingoing Eddington-Finkelstein coordinate

1
v = T+/f(R)dR. (3.22)

The Klein-Gordon equation cannot be solved analytically at each order. To circumvent
this limitation, we consider small black holes, R, < 1, and use the matched asymptotic ex-
pansion method to solve the resulting Klein-Gordon equation at each order in Ry. Namely,
we consider two different regions: the far region, R > R, , and the near region, R < 1

12This follows from the Gamma function property I'[—n] = co for n = 0,1,2,---.
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which have an overlapping region Ry < R < 1 since we are assuming R, < 1. In the
near and far regions, certain contributions in the equation of motion are sub-dominant and
can be discarded. We are left with ODEs, with a source term that depends on the previous
order solutions and their derivatives, that can now be solved analytically. At each order,
the near and far region solutions are then matched in the overlapping region.

Both in the far (superscript °*') and in the near (superscript ™) regions, we write the
perturbative expansion in Ry of ¢(R) and w as:

(z)out Z RJr ¢0ut 7 ¢1n Z R

k>0 k>0
w= Z RE wy,  with wo = 3 — pe, (3.23)
k>0

and solve the Klein-Gordon equation order by order. The choice of wyq is justified because
the perturbation mode of RN-AdSy with lowest frequency reduces to the lowest normal
mode of AdS (3.20) in the limit Ry — 0. At any order £ > 1 we have five parameters
to determine: two integration constants from ¢9"*(R), say aj and dy, two integration
constants from qb}f (R), say B and Bk, and the frequency coefficient wy. For our purposes,
it is enough to present the results up to order k = 2: this is the order at which the frequency
acquires an imaginary contribution.

Far region analysis. In the far region, R > R, the Klein-Gordon equation for ¢°"*(R)
around the RN-AdS, black hole (3.1) effectively describes linearized perturbations around
global AdS. Indeed at each order in the R, expansion it reads,

DuDH¢out out ( ?ztka 8¢?2tk) ) (324)

where Du = Vontt — ieA, is the gauge covariant derivative of the global AdS background g
with a gauge potential A = udt, and the r.h.s. is a source term that depends on the lower
order fields qb?gtk and their derivatives. As justified when discussing (2.9), at any expansion
order, in the far region we impose the Dirichelet boundary condition:

¢ = R3 +O(1/R?). (3.25)

At leading order, k = 0 the far region solution is

30&0R + Oéo (R4 + 6R2 — 3)
3R (R? +1)%/?

(bgut( ) —i(pue—3) arctanR' (326)

The boundary condition (3.25) requires we set &g = 0. Moreover, without loss of generality
we can selt ag = 1, and (3.25) and (3.26) then fix the amplitude of the scalar field to be
€= —ie 2",

For higher orders, k > 1, the boundary condition (3.25) always fixes the two integration
constants ay and &y but leaves the frequency coefficient wy undetermined. It is fixed by
matching the far region with the near region. The final far region solutions ¢9"* for k =
0, 1,2, after imposing the boundary condition (3.25) and fixing the frequency coefficients,

are listed in (A.1) of appendix A.
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Near region analysis. In the near region R < 1, it is convenient to work with the
rescaled variable y = %. The reason for this rescaling will become fully clear in the
discussion associated to (6.3) and (6.4) that we avoid repeating here. In short, in the near
region the perturbation problem simplifies since, for Ry < 1, the electric field is weak
and the perturbation system reduces to a small perturbation around the neutral solution.
After this rescaling y = R—i, at each order, the Klein-Gordon equation for ¢ (y) around

the AdS,4 black hole — see (6.4) — reads
DFDugit = St ($lfey, Odiy) | (3.27)

where D# is the leading order part of the gauge covariant derivative of the rescaled coor-
dinate in the RN-AdS, black hole,'® and the r.h.s. is a source term that depends on the
lower order fields qbijn<k and their derivatives. At each order, we solve (3.27) subject to the
boundary condition that the solution is regular at the horizon in Eddington-Finkelstein
coordinates.

At leading order, k = 0, the near region solution is

o0 (y) = Bo — ,ﬂﬁiz [log(y — 1) —log (2y — 1i*)] , (3.28)

and smoothness requires that we set 8y = 0.

At any order k > 1, the boundary condition at the horizon always fixes one of the
integration constants, say B, but the other is left undetermined until we do the matching
of the near and far regions. The final near region solutions (b}f for k = 0,1,2, after
imposing the boundary condition and fixing the integration constants, are listed in (A.2)
of appendix A.

Matching the near and far region solutions. At this stage, at each order £ > 1 we
have two undetermined parameters, namely the near region integration constant [ and
the frequency coefficient wy. They are fixed by requiring that the large radius expansion of
the near solution ¢™ matches the small radius expansion of the far solution ¢°**. In these
expansions we keep only terms that will not receive contributions from higher orders.

Let us illustrate this matching at the leading order, k¥ = 0. The small radius limit of
#3" and the large radius limit of ¢ yield

¢ (R) ~ 1+ O(R),
5 (R) = fo. (3.29)

Matching requires that we set Gy = 1.

13Tn (3.27), the gauge covariant derivatives D,, are covariant derivatives V,,, since the electric field makes
no contribution at this leading order.
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As another example consider the matching at order £ = 1. The small radius expansion
of ¢ and the large radius expansion of ¢!" are:

. , 1 16eu — 3 (4> + mwy + 8
#"(R) ~1+iR(3 —ep) + Ry [R ( 16 )

1
+ 8 ( — 24i(ep — 3) (2ep — p* — 2) + 37 [1(3iewr — 8e + 12u) — 17iw + 24]

—24i (i +2) (e — 3) log(R) — 16w1>] + O(R%,RR), (3.30)

P(R) ~1+4iR(3—en) + Ry [Bl + %i(?) —ep) ((;ﬂ +2) log <12£> — 2)] + O(R%).
At order (’)(RS)F) the two solutions agree as a result of the previous order matching. Moving
to next-to-leading order, the divergent R, /R term in the far region has no counterpart
in the near region expansion so we fix w; to eliminate it. Matching the remaining terms,
namely the contributions proportional to Ry R” and R, log R then fixes uniquely the inte-
gration constant 81. A similar matching procedure can be done for higher orders.

By the end of the day, we find that the frequency coefficients in (3.23) up to order
k =2 are:

wo =3 — pe,
4 (3p* — 4pe +6)

w1 = — )

3
wa :z(ue—3)3—+% p| — 264 (u° +2) e+ 9 (3p° +52) + 224pe” | + 108

7

4 2 2
~ 373 (450° — 52pe 4 90) (3u® — 4pe 4 6) . (3.31)

The property in (3.31) to be highlighted is that at order & = 2 the frequency acquires
an imaginary part proportional to pe — 3. This is negative whenever p < %, which signals
exponential damping, but it becomes positive for p > % The latter case describes the
superradiant instability of RN-AdS4 black holes. The reader interested on the properties
of RN-AdS, superradiant modes beyond the perturbative analysis done here can find them
in [22, 65].

The above analysis shows that global RN-AdS, black holes are unstable to superra-
diance in the small horizon radius regime, Ry < 1. On the other hand, large radius
global RN-AdS, black holes are expected to be stable to superradiance. Indeed, in the
most extreme case of a large radius black hole whereby R, — oo, the studies of [39, 40]
indicate that planar RN-AdS, black holes are unstable only to the near-horizon instability
described in section 3.2. Starting from this planar limit, it seems natural to expect that,
as R, decreases, the superradiant instability will kick in at (and below) a critical horizon
radius (in addition, the near-horizon instability becomes supressed in the limit R4 — 0 as
seen in (3.17)). It would be interesting to do a numerical linear perturbation analysis that
spans the full parameter space of RN-AdS, black holes to find the instability properties
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of RN-AdS4. However, it should be noticed that such an analysis will not be able to dis-
entangle the nature of the two instabilities except in the two limiting cases R; — 0 and
R, — oo that are covered by the analytical analysis done in this manuscript.

4 Small solitons (boson stars)

In subsection 3.3 we revisited the normal mode frequency spectrum of global AdSy. These
frequencies are quantized according to (3.19). A far-reaching property of this spectrum
is that the imaginary part of the frequency vanishes: the associated eingenmodes are not
dissipative. Moving beyond linear order in perturbation theory in the amplitude of the
scalar field, we might then consider the back-reaction of these scalar normal modes on the
gravitational and electromagnetic field. Since the leading order is not radiative we might
suspect that the normal mode can be back-reacted to all orders and yield a boson star, i.e.
a horizonless solution with static electromagnetic and gravitational fields and a complex
scalar field with time dependence e~™*!. We should further expect that the frequency w
is given at leading order by (3.19) but gets corrected as we climb the expansion ladder.
We can further explore the U(1) gauge transformation freedom to rewrite this solution in
a gauge where the frequency vanishes and the scalar field is real. This static solution is
equivalent to the boson star but usually called a soliton. As explained in section 2, this
soliton is a 1-parameter family of solutions that we can take to be the asymptotic amplitude
¢ of the scalar field as described in (2.10).

In this section, we consider the massless scalar field case m = 0, and will confirm these
ideas. Namely, we construct the ground state soliton — i.e. the soliton with lowest energy
that at leading order is described by the lowest normal mode (3.20) — up to fourth O(g%).
A U(1) gauge transformation allows to set the frequency of the solution to zero; then
at leading order we have A = %dT. To get this soliton, we solve perturbatively the three
second order ODE:s for {f, A, ¢}, that we obtain after replacing the algebraic equation (2.7)
for g into (2.6), subject to the boundary conditions (2.10) and (2.11) at the asymptotic
boundary and at the origin, respectively. The pair of integration constants associated to
each ODE is fixed by the boundary conditions. We build up the perturbative solution in
a power series expansion of the fields in £ around global AdSy,

F(R)=1+R*+> ™ fou(R),

n>1
3
A(R) ==+ ) & Aw(R), (4.1)
n>1
S(R) = ———— + 3 gy, 41 (R).
(1+ R2)3/2 ; 2

When e = 0 we recover global AdS, as expected. The O(e) scalar field and its derivatives
source the first non-trivial contribution to the electromagnetic and gravitational fields at
order O(g?). The structure of the equations of motion is then such that the odd (even)
powers of € never contribute to the electro-gravitational (scalar) fields.
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The equations of motion can be solved analytically order by order for arbitrary order
but the expressions for the solutions quickly become quite long. In appendix B we display
the final (i.e. after imposing the boundary conditions and thus fixing all integration con-
stants) coefficient functions fa,,(R), A2,(R) and ¢ap41(R) up to order n = 2. This order is
enough to extract the relevant physical conclusions of our study.

Using these field expansions we can now compute the gauge invariant thermodynamic
quantities discussed in section 2.2. Namely, the mass My,, charge Qso1, chemical potential
Usol, Helmoltz free energy Fy, and Gibbs free energy Gy of the ground state soliton up to
order O(°) are:

97 5 3w (—301e® +607* (e* —9) 4 2898)

My /L =="=¢? — 6
sl/L=35€ 10240 e +0(),
3 me (—196¢€* + 6072 (e — 9) + 2583)
L =2 e 2 4 6
@sor/ L =55 mee 10240 e +0(e),
3 21 (62 - 3) 2 et 4 2
o =— — 339814 3159903 4.2
ol =+ g€+ Sl et € (4.2)
+ 3007 (92¢* — 834e® + 2079) — 7714818] + O(e%),
Fsol :MSOI7
637 (e2 — 3
Gsol/L:_ 2(048 ) €4+O(66).

As a non-trivial check of our computation, we confirm that these quantities satisfy the first
law of thermodynamics for solitons (2.20) up to the required order O(e®).
We postpone the physical discussion of our soliton results (4.2) to section 7.

5 Non-interacting thermodynamic model for hairy black holes

In the last section we have constructed the ground state AdS, soliton of the Einstein-
Scalar-Maxwell theory (2.1). On the other hand, this theory also has the RN-AdSy black
hole as a solution. In section (3.4) we have seen that the latter is unstable to superradiance
when scattered by a scalar field. It is natural to expect that this superradiant instability
drives the system to a hairy black hole that has a charged scalar condensate floating above
the horizon, with the electromagnetic repulsion balancing the gravitational collapse of the
scalar condensate into the horizon. For this to be true we need that: 1) a hairy black
solution of (2.1) does indeed exist, and 2) that for a given energy and charge, the entropy
of the hairy black hole is higher than the entropy of the unstable RN-AdS,4 black hole
so that the system can evolve from the latter to the former solution while preserving the
second law of thermodynamics.

In this section we confirm the above expectations, i.e. we establish the existence of the
hairy black hole solutions and their leading order thermodynamic properties using a very
simple non-interacting thermodynamic model introduced in [23-25]. In the next section we
will confirm that this thermodynamic model yields the correct physical properties of the
sytem by solving directly the equations of motion (2.6)—(2.7) as a boundary value problem.
Our analysis thus complements a recent numerical time evolution simulation which, for
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some solution parameters and initial values, showed that RN-AdSs are superradiantly
unstable and decay into hairy black holes [28].

The leading order thermodynamics of the hairy black hole can be constructed using the
so-called non-interacting thermodynamic model of [23, 24] (see also [8, 11, 13, 25] ). One
interprets the hairy BH as a non-interacting mix of a soliton and a RN-AdS4 BH. One first
observes that at leading order a charged boson star (soliton) is just a normal mode of the
ambient background (whose frequency w is then corrected as we walk along the perturbation
expansion ladder). This is a 1-parameter family of solutions with E = QR+ 0O(Q?), where
q is the charge of the scalar condensate. This soliton further obeys the first law, dE = % dQ.
We can now place a small RN-AdS,; BH on top of this soliton to get a 2-parameter family
of hairy BHs. At leading order, we will assume a non-interacting mixture whereby we take
the mass M and the charge @ of the resulting hairy BH to be just the sum of the masses
and charges of the BH (Mgrx and Qrn) and soliton (M, and Q1) components:'4

M = My, + Mrn  and @ = Qg1 + QrN- (5'1)

The soliton carries no entropy, so the entropy S of the hairy BH simply reads

S = SrRN(MRN, @RN) + Ssol(Msol, Qsol) = SRN(M — Mgol, @ — Qsol)- (5.2)

The hairy BH can partition its charge @ and mass M between the RN-AdSy BH and
soliton components. On physical grounds one expects this distribution to be such that, for
fixed mass M and charge @, the entropy S is maximised, dS = dSgn = 0, while respecting
the first law of thermodynamics,

dMRgN _ 0Qrn SRN ‘ (5.3)
dQrN OMpn SRN
For fixed total mass and charge, dM = 0 = d@Q, and thus dMgrn = —dM, and dQrN =
—dQso1. It follows from the first law for the soliton that the Lh.s. in (5.3) yields the
chemical potential of the soliton, ‘flgl‘:g = pgol- On the other hand, the first law for the
RN-AdS,; BH implies that GMRNSRN = 1/TH and 8QRNSRN = —NRN/TH where Trny =
Ty is the temperature of the RN-AdSs BH (and thus of the hairy BH) and ugn is its

OQ RN SRN
: . . : . Ontgyy SmN
non-interacting thermodynamic model and associated maximization of entropy therefore

chemical potential. Therefore the r.h.s. of (5.3) is simply — = pugrn. The simple
requires
HURN = Usol = U and TRN = TH (54)

That is, the hairy BH inherits the chemical potential of its solitonic component and the
system is in chemical and thermal equilibrium.

The mass and charge of the soliton are related by My, = pQso1, while the leading
order thermodynamics of the RN-AdS, black hole is given by (3.5). Using these properties
together with the non-interacting relation (5.1) and equilibrium conditions (5.4), we can

1Beyond the leading order this is property certainly does not hold due to the non-linear character of
Einstein’s equation. The validity of the non-intarecting assumption at leading order will be confirmed in
the next section.
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express the leading order thermodynamic quantities of the hairy black hole (and of its two
components) in terms of its mass M, charge @) and chemical potential p:

R+L: 2_M2(M—,UQ)+O(M27Q27MQ)7
_ (2_”2)2 2 2
T_erO(M,Q ,MQ),
5= T pQP O (MQULMPQMQY): (55)
(2—p?)
2 2
MRN:(zi_ZQ)(M_MQ)—FO(M27Q27MQ)7
2 o 2
Msolz M(z—’_l;)_QMQ 2:“‘ M +O(M27Q27MQ)a
QRN: 23MM2(M_MQ)+O(M2’Q27MQ)3
2 _
Qsolz (2+M )Q 2”M+O(M2,Q2’MQ).

2 — p?

The domain of existence of the hairy black hole can be inferred from this analysis.

In one extremum, the soliton component is absent and all the mass and charge of the

hairy BH is carried by the RN-AdSy component. This describes the hairy black hole that

merges with the RN-AdSy black hole at the zero-mode of its superradiant instability. On

the opposite extremum configuration, the RN-AdSs component is absent and the soliton

component carries all the mass and charge of the solution. This is the zero-radius or zero-

entropy limit of the hairy black hole. It follows that the hairy black hole mass must be
within these two boundaries:
2

(“2:2)Q+0(Q2) > M > uQ + 0(QY). (5.6)

Equating the two extrema configurations, yields an interval of existence for the chemical

potential:

2
(,u + 2) 3
<=7 = <V2 = e> -
20 = V2
where in the last relation we used that for the ground state solution the leading order
potential is y = w/e = 3/e + O(R). Note that condition (5.7) is the same we found in

the superradiant analysis leading to (1.4).

= e, (5.7)

The above leading order thermodynamic analysis must be considered with a few grains
of salt. Indeed, first note that a theory can have hairy black holes that do not have a zero-
radius limit, i.e. a solitonic limit. Second, there is no reason why the non-interacting
mixture assumption (5.1) should hold, even at leading order.

In the next section we will construct the hairy black hole. In section 6.3 we compute
the thermodynamic quantities of the hairy black hole and we check that our intuition was
correct, and that, to leading order, the hairy black hole thermodynamic quantities are
indeed given by (5.5).
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6 Small hairy black holes

In this section we construct perturbatively the hairy black holes whose leading order ther-
modynamics was discussed in the previous section. For that we solve the elliptic equations
of motion (2.6)—(2.7), subject to the boundary conditions (2.10) and (2.12), to find a per-
turbative analytical expression for the hairy black hole.

6.1 Setting up the perturbation problem

As explained in section 2, the hairy black holes of our theory are a two-parameter family
of solutions that we can take to be the asymptotic scalar amplitude ¢ and the horizon
radius Ry. Thus, their perturbative construction requires that we do a double expansion
of the fields in powers of £ and R4. In order to be able to solve analytically the equations of
motion (2.6)—(2.7) we must resort to a matched asymptotic expansion, similar to those done
in a similar context in [11, 12, 23—-25]. Much like in section 3.4, we divide the outer domain
of communications of our black hole into two regions; a near-region where ry < r < L
and a far-region where r > r,. Restricting the analysis to small black holes that have
ry/L < 1, the two regions have an overlapping zone, ry < r < L. In this overlapping
region, we can match /relate the set of independent parameters that are generated by solving
the perturbative equations of motion in each of the two regions.

The chemical potential of the solution should itself have a double expansion in powers

= ZsQ”ZRk,ugn,k. (6.1)

n>0 k>0

of € and R,

Indeed, recall that the soliton is the back-reaction of a normal mode of AdS to higher orders.
At leading oder the chemical potential of the soliton is related, via a gauge transformation,
to an AdS normal mode frequency. We saw that this is corrected at higher orders. Thus,
we must permit similar corrections when the horizon is present. We shall construct the
hairy black hole family whose zero-radius limit is the ground state soliton of section 4 (so
with lowest energy for a given charge).!®

In the far region, R > R, the hairy black hole can be seen as a small perturbation in
R, and € around global AdS. We use the superscript ®** when referring to far region fields

which have the double expansion:

fout Z 6271 Z Rk g#tk Aout Z 2,52n Z Rk Agztk

n>0 k>0 n>0 k>0

) = 30 S R 65 R).

n>0 k>0

(6.2)

This expansion already anticipates that odd (even) powers of the scalar condensate do not
correct the fields f, A (¢).

At each order {n,k} the perturbed equations of motion can be solved analytically
(with the help of Mathematica) to find the far fields up to a total of 6 integration constants

15 A similar construction could be done for the excited hairy black holes.
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(recall that the equations of motion are a system of 3 second order ODEs). In addition,
the system also depends on the chemical potential corrections pg, . The requirement
that the far-region fields obey the asymptotic boundary conditions (2.10) typically fixes 4
of the integration constants (namely, those associated to 8311,1@ one associated to fg#fk
and another to Agfltk) We are left with two integration constants and poy, ; that will
be determined by the requirement that the far fields match the near-region fields in the
overlapping region. To prepare the system for the matching we need to take the small
radius R expansion of f(out) A(0ut) 4out (with the expansion coefficients available at the
order under consideration). We find that these are singular as R — 0, diverging with a
power of %. This indicates that the far-region analysis breaks down at R ~ Ry. This
justifies why the far-region analysis is valid only for R > R.. Also, it follows that in
the far-region we can safely do a Taylor expansion in R < 1 and ¢ < 1 since the large
hierarchy of scales between the solution parameters and the distance guarantees that they
do not compete.

Consider now the near-region, Ry < R < 1. This time the Taylor expansions in
R <« 1 and € < 1 should proceed with some caution since the small parameters can now
be of similar order as the radius Ry. This is closely connected with the fact that the
far-region solution breaks down when R/Ry ~ O(1). This suggests that to proceed with
the near-region analysis we should define a new radial, y, and time, 7, coordinates as

R T

Y

The near region now corresponds to 1 < y < Rjrl. If we further require that Ry < 1
one sees that the near region corresponds to y > 1> R, (and y > ¢). In particular, we
can now safely do Taylor expansions in R < 1 and ¢ <« 1 since the radial coordinate y
and the black hole parameters have a large hierarchy of scales.'® To have further physical
insight it is also instructive to rewrite the RN-AdS, solution (3.1) in the new coordinate
system (6.3)

d2:R2 _f( d 2 diyz 2 2
s il y)dr +f(y) +y“dQs |, (6.4)
1t )

The explicit factor of R4 < 1 in A, (y) indicates that in the near region the electric field is
weak and the system can be seen as a small perturbation around the neutral solution. The
same should hold when we add a small scalar condensate to the system. The near fields of

16At the heart of the matching expansion procedure, note that a factor of Ry (one of the expansion
parameters) is absorbed in the new coordinates.
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the hairy black hole thus have the double expansion,

fln Z 5271, Z Rk Am Z 6211 Z Rk 2n k:

n>0 k>0 n>0 k>0

=> "N RE 6b kW),

n>0 k>0

(6.5)

At each order {n,k}, we can solve the perturbed equations of motion analytically to
find the near fields up to a total of 6 near region integration constants. Imposing the
horizon boundary conditions (2.12) typically fixes 3 of the integration constants (namely,
one associated to qﬁg;b 414> one to f2n & and another to A2n p)- The 3 leftover near field
integration constants are left undetermined until we match the far and near region fields in
the overlapping region. For the matching, we first need to restore the original coordinates
{T, R} and take the large radius limit of f(R), A"(R), ¢™(R) (with the expansion coef-
ficients available at the given order). We find that these diverge as a power of R, which
shows that the near region analysis breaks down at R ~ 1. This explains why the near
region analysis is valid only for R < 1.

In the following subsection, we give some low order detailed examples of the matching
asymptotic expansion implementation. We are necessarily constrained on this exposition
to lowest orders since, as the expansion order grows, the analytical expressions for the far
and near fields become quite large. For the benefit of the reader that wants to reproduce
our results in full, we give the far and near field functions in appendices C.1 and C.2,
respectively. These are the final fields, i.e. after fixing all the integration constants of
the system using the boundary conditions (2.10) and (2.12) and the matching of far and
near fields.

We leave to subsection (6.3) in the main text, the physically relevant outcome of our
matching asymptotic construction, namely the thermodynamic quantities that describe
uniquely the hairy black holes.

6.2 Examples illustrating the matching asymptotic expansion
6.2.1 Matching asymptotic expansion at O (51, Ri)

We insert the double expansion (6.2) (far region) or (6.5) (near region) into the equations
of motion (2.6)—(2.7) and solve the resulting perturbed equations order by order.

At lowest order, O(£°) in the scalar amplitude expansion, the scalar field is naturally
absent and the far field coefficients { f, Out( ), Agukt(R)} can be read directly from an R, < 1
expansion of the RN-AdS, solution (3.1). A similar Taylor expansion of (6.4) yields the
near field coefficients { f(l)nk(y), A (y)}. The O(e') correction turns-on the scalar field ¢
without back-reacting yet in the gravitational background: it describes a small perturbation
of the scalar field around the RN-AdS, black hole. That is, the non-trivial equations of
motion (2.6)—(2.7) reduce to the Klein-Gordon equation without a source.!”

Next, we illustrate how the matching asymptotic expansion determines ¢; ;. A similar

procedure yields the fields ¢, 11k at the odd orders O(g2"*1).

17 At higher orders in n, the equation of motion for ¢ still has the form of a Klein-Gordon equation but
with an inhomogeneous term sourced by the lower order fields and their derivatives.

~ 98 —



e Far region, R > R,.
The definition of ¢ introduced in the boundary condition (2.10) determines completely the

solution at order O(RY):1®
1

(it R2”

and the equation of motion is obeyed only for the choice p90 = 3/e (which corresponds, via

10 (R) = (6.6)

a gauge transformation, to the lowest normal mode frequency of AdS,). We now expand

the equation to O(R}). We get a Klein-Gordon equation with an inhomogeneous term

sourced by a derivative of gi)(l’}bt (R) which can be solved analytically. The two integration

constants are directly determined by the asymptotic boundary condition (2.10) (see also
footnote 18). This yields

1
 48¢2R (R? + 1)
+¢e® (R* + 1) po,1(—2R (3R* + 17) + 37 (R* + 6R* — 3) — 6(R" + 6R°
— 3) arctan R)) (6.7)

2 (R) =7 (36 (2¢*—18 (R*+R) arctan R+ 9 (R (nR*—2R+m)—1))

The value of the chemical potential correction 11 will be determined only in the matching
of the far region with the near region.
As explained above, we skip here the details of the computation of the field coefficient
‘qut(R) However, it is perhaps useful to highlight that it is typically a good idea to
complete the matching procedure, that fixes constants not determined by the boundary
conditions, before proceeding to the next order. This keeps the size of the expressions that
carry to next order smaller.

e Near region, Ry < R K 1.
The homogeneous Klein Gordon equation in the near region at O(R}) has the solution

N Co (— log (362y2 — 32) + log (y2 — 1) — i7r)

6e2 — 64 (6.8)

¢i11,10(y) =0

We need to impose the boundary conditions (2.12) at the horizon y = 1. Namely regularity
of the scalar field at the horizon requires that we eliminate the divergent logarithmic term
by choosing Co = 0. Hence, the regular near region solution is

Poly) = Ci. (6.9)

At order O(RL), ‘1n1 (y) still solves the homogeneous Klein-Gordon equation.!? There-
fore, its regular solution is

n (y) = Ch. (6.10)

1876 be precise, ¢ is an integration constant that parametrizes our solution and, without loss of generality,

we choose not to allow corrections to its definition (2.10) at any order.
19 A would be source term is proportional to the derivatives of the previous order field @10, but the latter
is just a constant, see (6.9).
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e Matching in the overlapping region R, < R <K 1.

In order to do the matching we take the small R limit of the far region solution and the
large R limit of the near solution. Notice that at this order only terms up to ROR}r and
RlRE)|r are correctly accounted for (terms higher than this will receive corrections from the
next order). The small R expansion of the far region is:

out out (SILGeMOvl + % B %) 277T €
10(R) + Ryo7y (R)‘R—m =1+ Ry | — R + 1z~ 3hoa + O(R)

+O(RY). (6.11)

On the other hand, the large R expansion of the near region solution is:

. R _ R .
n n — . 12
1,0 (R+> + Ri¢1, (R+> ‘R_m Ci+ Ry Ch (6.12)

The divergent term in the far region expansion has no counterpart in the near region and
needs to be eliminated by a judicious choice of g 1. Then, the matching of the two leftover
terms fixes the integration constants C7 and 61 that were not fixed by the boundary
conditions. Altogether we find,

4(2¢2 -9 ~  —322 4+ 8172+ 144
(2e )’ Ci—1 & - 32¢% + 817° + 144
127e?

Ho,1 = (6.13)

med

With this we have completed the solution up to O(el, R}r) We can now proceed to
order O(e', R?) following a similar procedure. The final far and near field coefficients
{f6%", AR, @'} and { féflz,AiOI}Q, gf)ifQ}, after imposing the boundary conditions and the
matching are listed in appendices C.1 and C.2, respectively.

6.2.2 Matching asymptotic expansion at O (52, Rﬁ)

At order O (82), the order O (51) scalar field back-reacts on the metric and gauge potential
and the hairy black hole starts differentiating from the RN-AdS, solution. On the other
hand the Klein Gordon equation is trivially satisfied. Next, we illustrate how the matching
asymptotic expansion determines fsj and Ay . The procedure applies similarly for all the
even orders (52”).

e Far region, R > R,.

Starting at order O (52, Ri) the far field equation of motion can be solved analytically to
out

get f30
asymptotic Dirichlet boundary condition (2.10) we fix one of the constants in each pair.

and Agfbt. Each one of these fields has two integration constants. Imposing the

We are left with the integration constants C'y and C4 that will be fixed in the matching
step. At this stage the fields read:

Cy 3 (R (3R2 + 5) +3 (R2 + 1)2 arctan R)
50 (R) = — — 3
R S8R (R2+1)

Cy e (SR2 + 5) 3earctan I?
Aout R — . Aa _ )
2,0 ( ) 2,0 R 3 (R2 + 1)2 SR

: (6.14)

(6.15)
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e Near region, R, < R K 1.

Also at order O (2, RY.), we solve for the near fields féflo and AiQI,IO up to a pair of integration
constants. Requiring that these fields vanish linearly at the horizon y = 1, as required by
the horizon boundary condition (2.12), we fix two of the constants. The near region fields
are then still a function of two arbitrary constants Ky and K4:

in Krey— 3Ky

) = = - 1), (6.16)
Y

in KA

20(y) = e (y—1). (6.17)

e Matching in the overlapping region R, < R K 1.
To match the far and near fields, we take the small R expansion of the far fields (6.14):

C
SR)| =340 (RLRY), (6.18)
C
Agfﬁt(R)‘Rﬁo = (p20—€) — fA +0(R?). (6.19)

and the large R expansion of the near fields (6.16):

W (R

o | 5 =K ! 2
2,0 <R+) ‘R_m r+O(RY), (6.20)
in R _ 1

270 <R+> ]PHOO = K4+ O(R%). (6.21)

Note that we keep only terms that will not be corrected by higher order contributions.
Matching the two expansions fixes the four integration constants, that were not deter-
mined by the boundary conditions, as

Cf = 0, CA = 0, Kf = —3, KA = M2,0 — €. (6.22)

At this stage the chemical potential correction pg g is still left undetermined. It is fixed
at order O (53, RS)F), when the scalar field ¢3¢ is found.

6.3 Thermodynamic quantities

The final results for the field coefficients introduced in (6.2) and (6.5) are given in appen-
dices C.1 (for the far region) and C.2 (for the near field). These are the final fields, i.e.
after fixing all the integration constants of the system using the boundary conditions (2.10)
and (2.12) and the matching of the far and near fields.

In the presentation of our results, we take ¢ < 1 and Ry <« 1 and we assume that
O(€%) ~ O(Ry). The latter assumption implies that terms with the same (n+k) contribute
equally to the perturbative expansion, i.e. O (60, Ri) ~ O (62, R+) ~ O (64, Rﬂ)r). We did
the consistent perturbative expansion analysis up to (n+ k) = 2, which is sufficient for our
purposes. Extending the perturbative analysis to higher orders is possible, but increasingly
cumbersome.
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The fields presented in appendix C allow to compute the relevant physical properties of
hairy black holes. Namely, as described in 2.2, we can compute the thermodynamic quanti-
ties of the hairy solutions. The dimensionless mass M, electric charge (), chemical potential
w, entropy S, temperature 7', Helmoltz free energy F' and Gibbs free energy G are:

9 1 6(2e2 —9) _, 3 o[9m  9(2772 — 2(e? +9))
M/L=||-—+= —_ —
/ [(462 * 2>R+ i o) R 128¢2 By
3m(—301e% + 6072 (e? — 9) + 2898)
2 4l
+(’)(R+)}+€ [ 10940
3 2(2¢2-9) , 5 o[3me  (—38e* + 81x? + 90)
L=|—R — R O(R — R
Q/ [2e T B O e 128¢ *
—196€2 + 6072 (e? — 9) + 2583
L O(R2)| 4 et | - TAZ196” £ 60T Z9) £ 2583) | )| 4 (e,
10240
3 4(2e*—-9) (2e? — 9)[—256€2 + 972(10e% — 9) + 2688

n O<Ri>] Lo,

R2
e med +
21(e? - 3)

32e + 96007me3

+ (’)(Ri)} + &2 [ [757%(236¢* — 1809¢? + 4212)
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In the next section we discuss physical checks to these quantities and withdraw physical
conclusions.
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7 Discussion of physical properties

7.1 Checking the hairy solutions and their interpretation

The thermodynamic quantities (6.23) for the hairy black hole must pass a few checks that
already give valuable information about their physical interpretation.

Firstly, when we set the horizon radius to zero, Ry — 0, we do get the thermody-
namical quantities (4.2) of the soliton. Recall that the latter was obtained without any
matching asymptotic expansion. This also confirms that the soliton is the zero horizon
radius limit of the hairy black hole. We have assumed this was the case in our construction
and the fact that the computation can be done is consistent with it.

Secondly, when we set the scalar condensate amplitude to zero, ¢ — 0, we get the
thermodynamical quantities (3.4) of the RN-AdS, black hole, with a very specific chemical
potential namely,

3 4(2e2-9) (2% — 9)[—256€? + 972 (10e% — 9) + 2688)]

F=2 + mwed Byt 32m2ed
That is, although the RN-AdS; black hole is a 2-parameter family of solutions, the
€ — 0 limit of the hairy black hole gives a particular 1-parameter sub-family of RN-AdSy

R:E+O(RY). (1.1)

parametrized by Ry and chemical potential fixed by (7.1). This is precisely the RN-AdSy
1-parameter family at the onset of the superradiant instability studied in section 3.4. To
see this is indeed the case start by recalling that in section 3.4 we studied scalar field pertur-
bations with Fourier time dependence ¢(T, R) ~ e~“T¢(R) and found that the frequency
is quantized as described in (3.23) and (3.31). In particular, the frequency has a positive
imaginary part for w > ey signalling the superradiant instability. The onset of the super-
radiant instability occurs when the imaginary part of the frequency vanishes and we can
work in the U(1) gauge where the real part of the frequency vanishes. If we impose these
superradiant onset conditions on (3.31) and solve with respect to the chemical potential in
a series expansion in Ry up to order O (Ri) we precisely get (7.1). This is an important
check to our computations and, together with the information from the last paragraph,
confirms that hairy black holes are indeed a 2-parameter family of solutions that spans an
area in a phase diagram that has the onset curve of the RN-AdS, superradiance and the
soliton curve as boundaries. At leading order, these are the boundaries (5.6) predicted by
the simple thermodynamical model of section 5 and that will be very clear in the left panel
of figure 1 (red and black curves).

The first law of thermodynamics provides the third check. Indeed, we can explicitly
verify that the thermodynamic quantities (6.23) do obey the first law (2.19) up to order
(n + k) = 2. We emphasize this is a fundamental and non-trivial check of our results.

To summarize, we have constructed analytically the hairy black hole within pertur-
bation theory up to order (n + k) = 2 (and we could extend this construction to higher
order). This was done solving directly the perturbed equations of motion (2.6)—(2.7) of the
theory as a boundary value problem.

We can confirm that the simple non-interacting thermodynamic model of section 5
— which does not use the equations of motion — yields the correct leading order ther-
modynamics, i.e. the leading terms of (6.23). First note that at leading order it follows

— 33 —



from (6.23) that p = 3. Assuming, as justified above, that O(e2) ~ O(R.), the leading

€
order contributions of the expansion (6.23) allows to express analytically Ry and ¢ in terms

of M and @Q,

_de(eM -3Q)
229

32((2e2+9) Q—6eM)
3me (2e2 —9)

R+ +O(M21Q27MQ)>

(7.2)
which we insert in the expressions for the other thermodynamic quantities to find that at

+0 (M*,Q* MQ), 5:\/

leading order in M and @ one has:

p="+000Q),
P 16me?(Me — 3Q)?
(9 — 2¢2)*
N 2¢2)
~ 327me3(Me — 3Q)

+O(M2,Q% MQ) 73

+0 (M?Q* MQ).

These quantities do match the result of the non-interacting model (5.5). This confirms that
the non-interacting thermodynamic model, in spite of its crude simplicity, is quite robust
and does indeed capture the fundamental leading order properties of the hairy black hole
system at very low cost. This explicit confirmation adds to those done in similar hairy
black hole systems in [8, 11, 13, 23-25].

A more detailed discussion of the regime of validity of our perturbation theory is also
in order. By construction, it should be valid only for ¢ < 1 and Ry < 1. On the other
hand, the scalar charge of the hair must obey e 2 % ~ 2.12 to have superradiant hairy
black holes: see discussion that leads to (1.4). However, since the black holes are a small
expansion around AdSy4, e should not be too large to avoid large back-reactions. This
suggests that it is appropriate to require at most ¢ < 0.1, Ry < 0.1 and % <e < 3, say.
Inserting these bounds into the thermodynamic formulas (3.4), (4.2), and (6.23) we get
approximate upper bounds for the physical charges. For example, for e = 2.5 we should
look into masses and charges that, in AdS units, are themselves below 10~!. However
the reader interested on making a direct comparison between our perturbative results and
exact numerical constructions that emerge from a nonlinear code or from the endpoint of
the superradiant time evolution might require more precise statements. We will have the
opportunity to give precise criteria in the following discussion: see footnotes 21 and 25.

We have found that the gravitational Higgs model with action (2.1) admits several
solutions. Namely, global AdS4, the RN-AdS, black hole, the ground state soliton, the
ground state hairy black hole and an infinite tower of excited solitons and hairy black
holes.?’ For a given electric charge, the latter excited solutions always have larger energy
than the ground state partners so we do not discuss them further.

Naturally, these thermal phases of the theory compete with each other. This competi-
tion can be framed in one of the three possible ensembles: the microcanonical, canonical or

20Recall that the ground state solutions have their perturbative root in the lowest normal mode frequency
of global AdS4, and the excited states emerge from the remaining infinite tower of normal mode frequencies.
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grand-canonical ensembles. We discuss the phase diagram in these three ensembles in the
next three subsections. Recall that the thermodynamic quantities of the RN-AdS, black
hole, (ground state) soliton and hairy black hole are revisited in (3.4), (4.2), and (6.23),
respectively [66, 67].

Our results are better illustrated with some plots. Recall that the gravitational Higgs
theory with action (2.1) is only fully defined once the particular value for the scalar field
charge ¢ = e/L is specified. For definiteness we will choose the particular value of e = 2.5
in our plots.

7.2 Phase diagram in the microcanonical ensemble

In the microcanonical ensemble the energy M and electric charge Q of the system are fixed
and the the entropy S' is the relevant thermodynamic potential to discuss the competition
between the several thermal phases: the phase with higher entropy is the favoured one
(global AdS, and the soliton have vanishing entropy).

In figure 1 we display the phase diagram M vs @ of the microcanonical ensemble for
e = 2.5 (our perturbative expressions are valid for small M, Q). To make the diagram more
clear, in the vertical axis we actually plot the difference between the mass of the solution
and the mass of the extremal RN-AdS, with the same electric charge, AM = M — Mext.
So RN-AdS, black holes exist in regions I and I where AM > 0. The black line with
negative slope describes the soliton. Hairy black holes exist in regions I1 and I11. Namely
they fill the area limited by the soliton curve (where R — 0) all the way up to the magenta
line with positive slope (with € = 0). The latter also describes RN-AdS4 black holes at
the onset of superradiance. So RN-AdSy black holes below (above) the magenta line are
unstable (stable) to superradiance.

In region I there is no uniqueness since RN-AdS, and hairy black holes coexist with
the same M and Q). To find the preferred phase in the microcanonical ensemble we must
compare their entropy S. We find that for a given electric charge @ the hairy black hole
always has higher entropy and is thus the favoured solution, whenever they coexist. This is
illustrated with a particular example in the right panel of figure 1 where we fix the electric
charge to be Q/L = 0.01 and plot S vs M (again for e = 2.5). The blue line describes
the RN-AdS, black hole and extends from arbitrarily large M and S all the way down to
the extremal configuration A. It is stable along this path until it reaches point B that
signals the onset of the superradiant instability (so BA describes unstable RN-AdSy). At
this point B there is a second order phase transition®' to the hairy black hole branch that
extends all the way down to the zero-horizon radius (S = 0) where it meets the soliton
(point C'). This dominance of the hairy black hole in the microcanonical ensemble extends

21This provides a further check of our computations. Indeed, note that the first law requires that at a
second order phase transition the slope dS/dM is the same for the two branches since T is the same at the
bifurcation point (and d@ = 0 in the right panel of figure 1). This is clearly the case in our plot. However,
if we start departing from the regime of validity of our perturbation analysis we increasingly find that the
merger is not perfect and the slopes of the two branches no longer match. This is the best criterion to
identify the regime of validity of (6.23).
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Figure 1. Left panel: microcanonical ensemble phase diagram AM = M — Mgyt vs @ for e = 2.5.
RN-AdS, black hole exist in regions I and I1, with the magenta line with positive slope describing
the onset curve of superradiant instability. The black line with negative slope describes the soliton.
Hairy black holes exist in between the two above lines, i.e. in regions I and III (red shaded).
Right panel: entropy as a function of the mass at constant value of the charge @/L = 0.01 and
e = 2.5. The unbounded blue line starting at A (extremality) is the RN-AdS, black hole and the
red line BC' is the hairy back hole branch that ends on the soliton C. The merger point B is the
superradiant zero-mode.

to all values of the electric and scalar charges (again, in the regime where our perturbative
results hold).

Our findings also permit robust conclusions about the endpoint of the superradiant
instability of the RN-AdSy black holes. Typically, numerical simulations are done at fixed
energy and charge. Consider starting with a RN-AdS,4 that is within the curve AB and
thus unstable to superradiance. By the second law of thermodynamics, the entropy of
the system can only increase. Assuming that there is no other black hole solution in the
spectrum of the theory besides the ones discussed so far, the system must evolve towards
the hairy black hole that has the same M and @ but higher entropy. The latter can
be pinpointed in (6.23) or in figure 1. By construction, this hairy black hole is stable
to superradiance and we have no arguments suggesting that it is unstable to any other
mechanism (see however footnote 1). Of course our findings say nothing about how the
system actually evolves in time but the endpoint of the numerical simulation that gives
this information can be tested against (6.23).%

22 Also recall that for m < e < 3/+/2 there are hairy black holes that emerge from the near-horizon
scalar condensation instability that are not captured by our “superradiant” solutions (6.23). But they can
be found as the endpoint of a time evolution simulation or by solving numerically the elliptic system of
equations (2.6)—(2.7).
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7.3 Phase diagram in the canonical ensemble

In the canonical ensemble the temperature and electric charge of the system are held
fixed. The relevant thermodynamic potential in this ensemble is the Helmholtz free energy
F = FE — TS and the preferred phase is the one with lowest free energy.

Before discussing the hairy phase and thermal competition it is convenient to review the
thermal properties of the RN-AdS, solution. These were discussed in detail in the seminal
works of [66] and [67]. The left panel of figure 2 displays the temperature of RN-AdS, as
a function of the horizon radius for four different values of the charge. This figure reveals

two key properties (the upper, brown, curve describes the Schwarzschild-AdS, solution and
N
associated to the dashed green curve. For charges above this (lower black curve) there is
only one RN-AdS, black hole for a given {Q, T} pair. However, for @ > Qcrit (second,
blue, curve from the top) we see that there is a window of 7" where {Q, T} do not uniquely
describe the RN-AdS, solution since we can have three different RN-AdS4 branches that

can be denoted as the ‘small’, ‘intermediate’ and ‘large’ black holes depending on their

is present only for reference). First, notice that there is a critical charge, Quit/L =

horizon radius (which is proportional to the square root of their entropy).?

A second property observed in the left panel of figure 2 is that 7" — 0 as we decrease
Ry towards the extremal configuration (which is absent when Q = 0). Therefore, small
horizon radius corresponds to small temperatures. However, T' = 0 is reached at a finite
minimal radius that increases with ). We will come back to this observation later when
discussing the validity regime of our perturbation theory.

We can now introduce these RN-AdS, solutions in a phase diagram for the canonical
ensemble and populate it with the novel hairy solutions. The canonical phase diagram
consists of plotting the free energy F as a function of T for a fixed Q.%*

In figure 3 we show this phase diagram F'(T") for the three relevant cases: @ =0, 0 <
Q < Quit and @ > Q¢ (left, middle and right panels). For the phases without hair we keep
the same colour code as in the left panel of figure 2. Moreover we necessarily do the plots
for specific values of () and e but they are qualitatively similar for all other values where the
perturbation results (6.23) are valid. The left panel with @) = 0 describes the Schwarzschild

ZFor reference, when @ = 0 (top brown curve in left panel of figure 2) we have not three but two black
hole branches because T" — oo as R+ — 0. These are commonly designated by the ‘small’ and ‘large’
Schwarzschild-AdSy4 black holes. For Q@ < Qrit, the first branch, that corresponds to smaller values of the

1—4/1-72Q2

horizon radius, goes from extremality to a maximum found at R4 = NG

V14+4/1-72Q2
V6
larger horizon radius. The intervals for the temperatures of the three RN-AdS4 branches are:
\/é (1 —24Q% — /T 72Q2) @ (—24Q2 + /17207 + 1)
<Ty <

3/2 =42 = 3/2
7r(1—M1—72Q2) 71'(\/1—72622—&-1)

The critical charge Qerit is the case where the maximum and the minimum of T'(R4+) coincide (inflection

. The second branch goes

from this maximum to the minimum at Ry = . And the third branch from this minimum to

0T <

<Tj < oo.

point).
*1deally we would show the 3-dimensional plot F(T, Q) but it is not very clear. The plots F(T') for fixed
Q (or F(Q) for fixed T) illustrate better the relevant conclusions.
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Figure 2. Left panel: temperature T'L of RN-AdS, black hole as a function of the horizon radius
r4 /L for four different charges. From top to bottom, the curves are for Q/L = 0 (Schwarzschild
case for reference), Q/L = 0.05, Q = Qait, and Q/L = 0.3, respectively. Right panel: canonical
ensemble phase diagram T vs @ (for e = 2.5). RN-AdS, black holes as well as ‘thermal’ solitons
exist in all regions. Regions I-IV have three (namely, ‘small’, ‘intermediate’ and ‘large’) branches
of RN-AdS, black holes. The dashed upper line is the curve described by the ‘right’ cusp of the
middle panel of figure 3, while the dashed lower line is the curve followed by the ‘top’ cusp of the
same figure (the upper and lower dashed curves merge and terminate at a value of @ not shown).
On the other hand regions V and VI have a single RN-AdS, branch. Hairy black holes exist in
regions II, IV and VI. The magenta line (above which hairy black holes exist) describes the onset
of superradiance (¢ = 0). The dotted green line signals the Hawking-Page transition (its T'L grows
as /L increases). Below this line, thermal AdS, is the dominant phase while above, the preferred
thermal phase is the large branch of RN-AdS, black holes.

(Schw-AdS,) black hole and is given here again for a familiar reference [68]. We have
the ‘large’ branch with negative specific heat (left) and the ‘small’ branch with positive
specific heat (right). The free energies of large Schw-AdS, are always lower than that
of the corresponding small Schw-AdS, with the same T. Therefore, large Schw-AdSy are
favoured over small Schw-AdSy black holes. In the phase diagram of the left panel of figure 2
the large and small Schw-AdS, branches meet at the regular cusp (where the specific heat
vanishes). This is not the whole story since there is a third phase — thermal AdSs — which
is just the Euclidean solution of global AdS, with an arbitrary period (and thus T') chosen
for the Euclidean time circle. For a temperature below the Hawking-Page Typ (defined as
F(Typ) = 0), thermal AdSs has lower free energy than both large and small Schw-AdS,
black holes. However, at temperatures above Tip, large Schw-AdS, black holes are the
preferred phase. This is the familiar Hawking-Page (HP) first-order phase transition [68].
In the AdS/CFT context, this is interpreted as a confinement/deconfinement transition in
the dual conformal field theory [69].
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Consider now the case 0 < @ < Qcrit, whose phase diagram (for Q/L = 0.05) is
plotted in the middle panel in figure 3. As explained above we have now three RN-AdSy
branches. The large branch is the natural extension to @ # 0 of the large Schw-AdSy
branch. However, the small branch now extends all the way down to the extremal, T" = 0,
solution (for @ = 0 it extends instead to 7" — o0). These two branches are connected
by a third, ‘intermediate’ branch. When they coexist small RN-AdS, black holes are
the dominant branch below a critical temperature (determined by the intersection of the
small and large branches in the middle panel). Above this critical temperature, large RN-
AdS, black holes have lower free energy than the small and intermediate branches and
thus dominate the canonical ensemble. Above Typ (defined such that F(Typ) = 0) large
RN-AdS, are the preferred phase, but below it there is a first order Hawking-Page phase
transition and thermal AdSy is the favoured phase for all T < Tygp. In particular, as T
decreases to T' = 0 and small RN-AdS4 becomes the only branch, thermal AdSy is still
the preferred phase. When @) # 0 the theory also has hairy black hole solutions. In the
perturbative regime where our results are valid,?® the hairy family bifurcates from the
branch of small RN-AdS, at the onset of superradiance and extends to larger values of the
temperature all the way up to the soliton limit (R — 0) that is reached at a finite value
of T.?5 However, the free energy of the hairy black hole (and soliton) is always larger that
the free energies of small and/or large RN-AdS, and of thermal AdS,. Therefore, hairy
black holes and the soliton are never the preferred phase in the canonical ensemble. This
is thus in sharp contrast with the situation in the microcanonical ensemble.

Finally we have to discuss the case @ > Qcit (7ight panel in figure 3). Recall from the
discussion associated with the left panel of figure 2 that in this case there is a single branch
of RN-AdSy black holes. Its free energy is plotted in the right panel in figure 3. As before,
the Hawking-Page phase transition is present at 7' = Txp with thermal AdSs; (RN-AdSy)
being the preferred phase at T' < Typ (T' > Txp). For Q > Q¢ there are also hairy black
hole solutions. We choose not to show them in the right plot of figure 3 because we do
not expect our perturbative results (6.23) to be valid for such large charge. To understand
the reason we go back to the left panel of figure 2. For Q > Qerit, RN-AdS4 has horizon
radius Ry 2 0.2. But our perturbative results for the hairy black holes that merge with
the RN-AdSy solution are valid for Ry < 1 so we should not expect our perturbative hairy
results to be accurate for this case, at least around the merger point.

Given that the canonical ensemble keeps the temperature T" and electric charge @ fixed,
it is also relevant to summarize the conclusions above for the thermal phases of the theory
in a phase diagram T vs ). This effectively describes a projection of the 3-dimensional plot

2®Much like in the microcanonical ensemble (see footnote 21) the first law of thermodynamics (with
dQ@ = 0) requires that the slope dF/dT is the same for the two branches at the bifurcation point (since they
have the same S). This is definitely the case in our plot. However, if we start departing from the regime of
validity of our perturbation analysis we increasingly find that the merger is not perfect and the slopes of
the two branches no longer match. This is the best criteria to identify the regime of validity of (6.23) for
the canonical ensemble.

26We can identify the Euclidean time circle of the soliton with any period so that it can have an arbitrary
temperature. However, the free energy of this ‘thermal’ soliton coincides with its mass, hence it is always
positive and the soliton is always dominated by thermal AdSs.
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Figure 3. Canonical ensemble phase diagram F' vs T at fixed @ and e = 2.5. Left panel: Q =0
case with the large and small Schwarzschild black holes, but no hairy phases. Middle panel: Q/L =
0.05 < Qcrit/L case with the blue curve representing the RN-AdS, family with its 3 branches and
the simple red curve describing the hairy black hole. Right panel: Q/L = Qeit/L + 0.1. This case
falls outside the regime of validity of our perturbation theory, hence we opt to display only the
(single) RN-AdS, branch.

F(T,Q). This is done in the right panel of figure 2, and the reader can find its discussion
in the caption of the figure.

So far we have discussed the preferred global thermodynamic phases of the canonical
phase diagram. Given that in this ensemble we keep an intensive thermodynamic quan-
tity — the temperature — fixed we can also discuss the local thermodynamic stability of
the solutions. Local thermodynamic stability in the canonical ensemble requires that the
specific heat at constant charge

a8 O*F

is non-negative. To get the second relation we used the first law, dF = —SdT + udQ. We
find that small hairy black holes have Cg < 0. Thus, they are locally thermodynamically
unstable. This is illustrated in figure 3 (for @ = 0.05 and e = 2.5): the sign of Cgp =
=T (8%F ) 0 is negative.?” Essentially, a thermal fluctuation that increases the temperature
of the small hairy black hole leads to a decrease of its entropy (horizon size).

7.4 Phase diagram in the grand-canonical ensemble

In the grand-canonical ensemble the system is kept at fixed temperature 7' and fixed
chemical potential p. The dominant thermal phase is the one that minimizes the Gibbs
free energy, G = M — TS — Q.

The discussion of the hairy solutions in this ensemble requires that we revisit first the
properties of the RN-AdSy black hole [66, 67]. Taking the RN-AdS,4 temperature (3.4) and

*"The local thermodynamic stability of the RN-AdS, branches can also be inferred from the concav-
ity /convexity of the free energy. This stability was already discussed in detail in [66] and [67] and we do not
repeat it here. Recent discussions of local thermodynamic instability can be found in [70-72] and references
therein.
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Figure 4. Left panel: temperature T'L as a function of the horizon radius r, /L for values of the
chemical potential (from top to bottom): p = 0 (brown, Schw-AdSy case), p = 3= < pic (blue),
L= pe =2 (dashed green), p = %,uc (black). Right panel: RN-AdS, chemical potential p vs
horizon radius r /L for four fixed values of T' (curves from top to bottom): 7" = 0 (dark blue),
T =02 < T, (black), T. = ¥3 (dashed green) and T = 0.3 > T.. (blue).

solving it with respect to R4 we find

Ry|, = é (47rTL +v/2\/3u% + 872(TL)? — 6> , (7.5)

which indicates that for 1 < v/2 there are two branches of RN-AdS, solutions: the ‘small’
and ‘large’ black holes described by R+L and R+} I respectively. For p > /2 only the
large branch is present. This is best illustrated in the plots and caption of figures 4 where
we display T'(R.y) for several fixed u’s (left panel) and pu(Ry) for several fixed T's (right
panel). For later use, notice that small horizon radius corresponds to large temperatures.

In the grand-canonical ensemble, the appropriate phase diagram to describe the ther-
mal phases of the theory is G(u,T"). To make the presentation clear, in figure 5 we plot
the G of the RN-AdSy black hole as a function of pu for several fixed temperatures. At
extremality (left panel), the RN-AdSy black hole dominates over thermal AdS4. Above ex-
tremality, large black holes always have lower G than small RN-AdSy black holes whenever
they co-exist (G of small black holes is always non-negative). For 0 < T < T, = % ~ 0.32,
large black holes have G > 0 for u < pgp but G < 0 for p > upp (see middle and right
panels). So thermal-AdS, is preferred over RN-AdS, for p < ppp, and a Hawking-Page
phase transition occurs at u = upp, with large black holes becoming the dominant phase.
However, for ' > T,, = % (not shown in this figure; case represented in the left panel
of figure 6), there is no Hawking-Page phase transition since large RN-AdS, black holes
always have G < 0 and dominate the ensemble.

We can now add the hairy thermal phases to the grand-canonical phase diagram. Our
perturbative analysis describes hairy black holes that bifurcate, at the onset of superra-
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Figure 5. Gibbs free energy G vs chemical potential p of the RN-AdS, black hole for: T'= 0 (left
panel), T = 0.2 < T, (middle panel) and T = 0.3 > T, (right panel). For T, = 2—‘/3 ~ 0.28 the cusp
seen in the middle panel plot hits g = 0. The upper (lower) curve describes small (large) RN-AdS,
black holes. The vertical dashed line is at = v/2 (see also figure 4). For 0 < T < T,, = 1 ~ 0.32,
the Hawking-Page phase transition occurs when large black holes attain G(upgp) = 0 (see middle
and right panels). However, for T > T, = % (not shown in this figure; case represented in the left
panel of figure 6), large black holes always have G < 0 and thus there is no Hawking-Page phase
transition.

diance, from small R, RN-AdS, black holes. It follows from figures 4 that our pertur-
bative computation is valid for large temperatures 7" > T, = g and chemical potential
@ < /2 ~ 1.41. Therefore, as an illustrative example, in the left panel of figure 6 we fix
the temperature to be T' =5 > T;, > T, and the scalar field charge to be e = 2.5, and we
show all the thermal phases (small and large RN-AdSy, thermal AdS,, thermal soliton and
hairy black hole) in the phase diagram G vs p. In the main plot we find the large RN-AdSy
black hole branch which exists for any p and — since we are at T > T,, — always has
G < 0. We also display the small RN-AdS, that has G > 0 and exists for p < V2. The
magenta point in this small RN-AdS, branch signals the zero-mode of superradiance, with
small RN-AdS, to the right of this point being unstable. The inset plot then zooms the
phase diagram to capture the region where the small RN-AdSy black holes are unstable. It
also shows the hairy black hole branch (red curve) that bifurcates from the small RN-AdSy
at the onset of superradiance. These black holes have lower G, and are thus preferred,
than small RN-AdS, black holes, whenever the two phases coexist. For sufficiently large
i, the hairy black holes also have lower G than thermal AdSs (which, recall, has G = 0).
However, hairy black holes always have higher GG than large RN-AdS,4 black holes, when
they co-exist. Thermal solitons (black curve) have G < 0.2

These qualitative properties extend to all other values of T' (and e) where our per-
turbative analysis is valid. Therefore, we conclude that in the perturbative regime where
our hairy results hold and the solutions co-exist, large RN-AdSy black holes are always the
preferred thermal phase over the hairy solutions in the grand-canonical ensemble.

Given that in the grand-canonical ensemble we keep the temperature 7" and chemical
potential u fixed, it is instructive to summarize the conclusions above for the thermal

phases of the theory in a phase diagram T vs pu, or 5 = 1/T vs p. This effectively describes

BFor T < T., ~ 0.32, solitons can be the overall preferred phase for small p over %
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Figure 6. Left panel: Grand-canonical ensemble phase diagram G vs p for TL =5 and e = 2.5. In
the main plot, the upper (lower) curve describes small (large) RN-AdS, black holes. The vertical
dashed line is at ;1 = /2. The magenta point signals the onset of superradiance. The inset plot,
is a zoom around the superradiant onset. It now also includes the hairy black hole (red curve)
that branches-off from the small RN-AdS, black hole at the onset of superradiance, as well as
the thermal soliton (black curve) that starts at 4 = 0,G = 0 and extends to negative values of
G. The dashed horizontal line describes the Giggs free energy of thermal AdS,. The dominant
thermal phase has the lowest Gibbs free energy. Right panel: phase diagram § = % vs p of the
grand-canonical ensemble (shown for e = 2.5). This is discussed in the text.

a projection of the 3-dimensional plot G(7T', ). This phase diagram is given in the right
panel of figure 6 (for e = 2.5). Recall that the perturbative results are valid for large values
of the temperature, i.e. small 3 = 1/T (say 8 < 3) and p < v/2. Consider first the main
plot in the right panel of figure 6. This is for 4 < v/2 ~ 1.4 and regions A, B and C' are
populated both by small and large RN-AdS, black holes. The onset curve of superradiance
is the magenta boundary of regions B and C. Small RN-AdS, black holes to the right of
this curve are unstable to superradiance. Hairy black holes with lower free energy than
the small RN-AdS, solutions exist in region C'. Thermal solitons exist in regions B and C
and have lower G than thermal AdS4, small RN-AdSy and hairy black holes. However, the
solution with lowest Gibbs free energy in all regions A, B and C'is the large RN-AdS, that
always dominates the grand-canonical ensemble for 8 < 8., = m. Consider now the inset
plot. This extends the main plot to values of 8 higher than (., = 7 (the horizontal dashed
line) and p > /2, but does not include information about the hairy solutions. It allows
to identify clearly the Hawking-Page phase transition (the main plot is a subset of region
IV). Regions I — VI describe the domain of existence of thermal AdS,. Small RN-AdS,
black holes exist on regions I1, I1I and IV i.e for u < /2 (vertical dashed line), while
large RN-AdSy black holes exist in regions I1 — VI. The boundary between regions I and
11 corresponds to the cusp in the middle panel of figure 5. The green dashed curve is the
Hawking-Page phase transition curve. Below it, large RN-AdS, black holes dominate the

grand-canonical ensemble.
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So far we have found that small hairy black holes are never the preferred global ther-
modynamic phase of the grand-canonical phase diagram. However, they still dominate over
small RN-AdS, black holes so, for completeness, we can discuss their local thermodynamic
stability. In the grand-canonical we keep the intensive variables 7" and p fixed. Therefore,
the local thermodynamic stability condition in this ensemble requires that the inverse of
the Weinhold Hessian matrix, namely [66, 67, 70, 71]

wo_ G _

g = — _ ﬁou n
W Yy Oy

n €r

) Yu = (T, ,u), (76)

is positive definite. Here, G is the Gibbs free energy, and C), and er are, respectively, the
specific heat at constant chemical potential and the isothermal permittivity (i.e. capaci-
tance) and given by

0*G aS 0*G o0Q
er(58) (), (),
K orz ), or), opu? ) o )

where we used the first law dG = —SdT — Qdu to rewrite C,, and er in terms of first
derivative quantities. Finally, the off-diagonal term is n = (g—g) = (%)T. The equality
of these two expressions is a Maxwell relation that follows frgm the symmetry of the
Hessian matrix. The Hessian matrix (7.6) can be written in the new basis (dT,du) —
(dT,dp + ex'ndT), where it diagonalizes as diag{3C,,, er}. We find that small hairy black
holes have ', > 0 and ey < 0. That is, C,, and er have opposite signs, and thus the Hessian
has a negative eigenvalue. Small hairy black holes are thus locally unstable in the grand-
canonical ensemble. Essentially, this is because they have e < 0 and are thus electrically
unstable: our theory has charged scalar field quanta and a small electric fluctuation that
increases the charge of the black hole reduces its chemical potential.
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A Coefficients of the superradiant expansion

A.1 Far region

Here, we give the coefficients of the far region expansion (3.23). The integration con-
stants and frequency coefficients w; and wy have already been determined by the boundary
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conditions and matching conditions as described in section 3.4.

e*'i(p,ef?)) arctan R

¢out R) =
0 ( ) (R2 N 1)3/2
—i(pe—3) arctan R R2
out e 2 <02
= 1) —24 2 —3)1 —_

— 48R arctan R(3u® — 2ue — 2iwy + 6) — 4R(3R* + 12i7 + 17)w; + 3(R* 4 6R?

—3)w1 (Qi log(R — i) —ilog(4 + (R —i)?) + 2tan™! <R2 >> > + 24(—ipleR

—1

+3u?(=1+ R(mR* = 2R+ i+ 7)) — 2ue(—2 + R(7R?> — 2R+ i + 7))

+6(—1+R(7TR2—2R+i+7T)))], (A1)

1 3 1
t Py o 2 2 -1
S (R) =% (— TR + 16032 ( — 256i(3u” — 4pe + 6)“(2tanh™ " (2) — log(3))

+ 327 (3% — 4pe + 6) (9 e(2tanh 1 (2) — log(3)) — 3u%(52 — 91og(3)
+ 18tanh™1(2)) + 2ue(88 — 9log(3) + 18 tanh™*(2)) — 6(52 — 9log(3)
+ 18tanh™1(2))) + 973(27u" — 264u3e + 41%(56€* 4 117) — 528ue + 108)

+ 288im? (TpP e — i (4e* + 21) + 32u’e — 4p(2€2 + 15) + 52ue — 84))) +O(R")

Due to the length of the expression, we only show the leading term of the small R expansion
of ¢$"*(R) that is needed to determine ws.

A.2 Near region

Here we present the coefficients of the near region expansion (3.23). The integration con-
stants have already been determined by the boundary conditions and by the matching
conditions, as described in section 3.4.

0(y) =1,
2

o (y) = 36% (97T2(—2€M+3/L2+6)— 64ep—18im(u?+2)(eu—3)(log <y — l;) +log(Ry))

— Bim(ep(3u” +38) + 12y (e — 3) — 33(u +2)) +48(u" + 2>>7 (A.2)
¢12n(y) :y2 <_;(32M2 + 3ep — 6) + 36% ((i(97r2(262u2 _ 36(M2 F A+ 9(,112 +2)

+ 3im(e*(3u® + 38)p* — 6e(Tp® + 36)u + 144(p” + 2)) + 16ep(dep — 3(4? +2)))
— 187 (p” + 2)(ep — 3)* log(R,) — 187 (1* + 2) (eps — 3)? log(y))> +0(y°) .
Due to the length of the expression, we only show the large y expansion of ¢1'(y)

needed to determine wp. However, note that the next order contributions to ¢i'(y) and
#3"(R) are required to fix a remaining integration constant.
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B Coefficients of the soliton expansion

In this appendix we give the final coefficients of the soliton expansion (4.1). The integration
constants have already been fixed by the boundary conditions as described in section 4.

fo(R) =R* +1,
3 (3R2 + 5) 9arctan R
f2(R)__8(R2—|—1)2 - SR )
2092 2
Fi(R) = — 31574 (2e* — 9)(R* + 1) (B.1)

1024
1

* 12800R2(R2 + 1)5
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+ 4447R*+1887R? 4 159)) + 30(R? + 1) arctan R(—4(e*—9)R(R*+1)? arctan R

+ €?(T0R® + 210R® 4 200R* + 54R? + 2) — 9R*((35(R? + 3)R? + 93)R* + 15)))
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+ R? (45071’2(62 —9)(3R? +5)(R* 4 1) + ¢*(31500R™° + 163485 R® + 340630R®
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+ 76232R* + 35821 R + 5751))),
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The expression for ¢5(R) is too long and not illuminating. We note that the inte-
gration constants arising from its equation of motion are determined by imposing that
o5(R) n = O(R™). Also, imposing regularity at R = 0 directly gives the expression

— 00

for pg in (4.2).

C Coefficients of the hairy black hole expansion

C.1 Far region expansion

Below, we give the coefficients of the hairy black hole far region expansion (6.2). The inte-
gration constants have already been fixed by the boundary conditions and by the matching
with the near region as discussed in section 6.

00 (R) =R> + 1,
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SU(R), 93¢ (R) and ¢25(R) have large expressions. We only display the small R expansion
that is needed for the matching with the near region.

C.2 Near region expansion

Next, we present the coefficients of the hairy black hole near region expansion (6.4). The
integration constants have already been determined by the boundary conditions and by
the matching with the far region as described in section 6.
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