A catalog of visual-like morphologies in the 5 CANDELS fields using deep-learning
A catalog of visual-like morphologies in the 5 CANDELS fields using deep-learning
 
  We present a catalog of visual-like H-band morphologies of ∼50.000 galaxies (Hf160w < 24.5) in the 5 CANDELS fields (GOODS-N, GOODS-S, UDS, EGS, and COSMOS). Morphologies are estimated using Convolutional Neural Networks (ConvNets). The median redshift of the sample is The algorithm is trained on GOODS-S, for which visual classifications are publicly available, and then applied to the other 4 fields. Following the CANDELS main morphology classification scheme, our model retrieves for each galaxy the probabilities of having a spheroid or a disk, presenting an irregularity, being compact or a point source, and being unclassifiable. ConvNets are able to predict the fractions of votes given to a galaxy image with zero bias and ∼10% scatter. The fraction of mis-classifications is less than 1%. Our classification scheme represents a major improvement with respect to Concentration-Asymmetry-Smoothness-based methods, which hit a 20%-30% contamination limit at high z. The catalog is released with the present paper via the Rainbow database (http://rainbowx.fis.ucm.es/Rainbow-navigator-public/). 
  
  
  
    
      Huertas-Company, Marc
      
        6fe27f7c-356c-448b-bcb6-c21a84bab91a
      
     
  
    
      Gravet, R
      
        2d6b070b-f604-4ada-81e8-f37a12d16ab9
      
     
  
    
      Cabrera-Vives, G.
      
        3fe91739-5d26-40d4-bff4-ec6603769818
      
     
  
    
      Pérez-González, Pablo G.
      
        c43284b8-27ac-4aa2-8bbd-f6ffce88c81c
      
     
  
    
      Kartaltepe, J.S.
      
        bb2fd241-a35f-4ab1-a241-4827334dbc1b
      
     
  
    
      Barro, G.
      
        647a35bc-b2ae-4ccd-8646-2522af2aaca2
      
     
  
    
      Bernardi, M.
      
        51f0929c-ba65-4d9c-a814-673442f48d75
      
     
  
    
      Mei, S.
      
        2a1ef2b5-81a2-4648-86b7-6033de92512d
      
     
  
    
      Shankar, F
      
        b10c91e4-85cd-4394-a18a-d4f049fd9cdb
      
     
  
    
      Dimauro, P.
      
        ae378304-0ca5-4d62-86f5-4864bbc5561b
      
     
  
    
      Bell, E. F.
      
        786aa251-a2f9-4d0a-9584-5828c6be24af
      
     
  
    
      Kocevski, D.
      
        da188b73-a56c-4476-9682-bbe03e0aa612
      
     
  
    
      Koo, D. C.
      
        69cafbe5-31d7-4546-818f-db8ffc7e4830
      
     
  
    
      Faber, S. M.
      
        8d0813b8-c41b-4959-9ed6-13052693683b
      
     
  
    
      Mcintosh, D. H.
      
        38e9099f-6739-497f-ad5f-149d7eae78d1
      
     
  
  
   
  
  
    
    
  
    
    
  
    
      26 October 2015
    
    
  
  
    
      Huertas-Company, Marc
      
        6fe27f7c-356c-448b-bcb6-c21a84bab91a
      
     
  
    
      Gravet, R
      
        2d6b070b-f604-4ada-81e8-f37a12d16ab9
      
     
  
    
      Cabrera-Vives, G.
      
        3fe91739-5d26-40d4-bff4-ec6603769818
      
     
  
    
      Pérez-González, Pablo G.
      
        c43284b8-27ac-4aa2-8bbd-f6ffce88c81c
      
     
  
    
      Kartaltepe, J.S.
      
        bb2fd241-a35f-4ab1-a241-4827334dbc1b
      
     
  
    
      Barro, G.
      
        647a35bc-b2ae-4ccd-8646-2522af2aaca2
      
     
  
    
      Bernardi, M.
      
        51f0929c-ba65-4d9c-a814-673442f48d75
      
     
  
    
      Mei, S.
      
        2a1ef2b5-81a2-4648-86b7-6033de92512d
      
     
  
    
      Shankar, F
      
        b10c91e4-85cd-4394-a18a-d4f049fd9cdb
      
     
  
    
      Dimauro, P.
      
        ae378304-0ca5-4d62-86f5-4864bbc5561b
      
     
  
    
      Bell, E. F.
      
        786aa251-a2f9-4d0a-9584-5828c6be24af
      
     
  
    
      Kocevski, D.
      
        da188b73-a56c-4476-9682-bbe03e0aa612
      
     
  
    
      Koo, D. C.
      
        69cafbe5-31d7-4546-818f-db8ffc7e4830
      
     
  
    
      Faber, S. M.
      
        8d0813b8-c41b-4959-9ed6-13052693683b
      
     
  
    
      Mcintosh, D. H.
      
        38e9099f-6739-497f-ad5f-149d7eae78d1
      
     
  
       
    
 
  
    
      
  
  
  
  
  
  
    Huertas-Company, Marc, Gravet, R, Cabrera-Vives, G., Pérez-González, Pablo G., Kartaltepe, J.S., Barro, G., Bernardi, M., Mei, S., Shankar, F, Dimauro, P., Bell, E. F., Kocevski, D., Koo, D. C., Faber, S. M. and Mcintosh, D. H.
  
  
  
  
   
    (2015)
  
  
    
    A catalog of visual-like morphologies in the 5 CANDELS fields using deep-learning.
  
  
  
  
    The Astrophysical Journal Supplement Series, 221 (1), [8].
  
   (doi:10.1088/0067-0049/221/1/8). 
  
  
   
  
  
  
  
  
   
  
    
    
      
        
          Abstract
          We present a catalog of visual-like H-band morphologies of ∼50.000 galaxies (Hf160w < 24.5) in the 5 CANDELS fields (GOODS-N, GOODS-S, UDS, EGS, and COSMOS). Morphologies are estimated using Convolutional Neural Networks (ConvNets). The median redshift of the sample is The algorithm is trained on GOODS-S, for which visual classifications are publicly available, and then applied to the other 4 fields. Following the CANDELS main morphology classification scheme, our model retrieves for each galaxy the probabilities of having a spheroid or a disk, presenting an irregularity, being compact or a point source, and being unclassifiable. ConvNets are able to predict the fractions of votes given to a galaxy image with zero bias and ∼10% scatter. The fraction of mis-classifications is less than 1%. Our classification scheme represents a major improvement with respect to Concentration-Asymmetry-Smoothness-based methods, which hit a 20%-30% contamination limit at high z. The catalog is released with the present paper via the Rainbow database (http://rainbowx.fis.ucm.es/Rainbow-navigator-public/). 
         
      
      
        
          
            
  
    Text
 A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP-LEARNING
     - Accepted Manuscript
   
  
  
 
          
            
          
            
           
            
           
        
        
       
    
   
  
  
  More information
  
    
      Accepted/In Press date: 4 September 2015
 
    
      e-pub ahead of print date: 26 October 2015
 
    
      Published date: 26 October 2015
 
    
  
  
    
  
    
     
        Additional Information:
        Arxiv copy 1509.05429 Author Shankar confirmed AM copy
      
    
  
    
  
    
  
    
  
    
  
    
     
        Organisations:
        Astronomy Group
      
    
  
    
  
  
  
    
  
  
        Identifiers
        Local EPrints ID: 411931
        URI: http://eprints.soton.ac.uk/id/eprint/411931
        
          
        
        
        
          ISSN: 0067-0049
        
        
          PURE UUID: 349e9caf-2760-4424-82df-edd3c5835633
        
  
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
            
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
        
          
        
    
  
  Catalogue record
  Date deposited: 30 Jun 2017 16:30
  Last modified: 15 Mar 2024 14:56
  Export record
  
  
   Altmetrics
   
   
  
 
 
  
    
    
      Contributors
      
          
          Author:
          
            
            
              Marc Huertas-Company
            
          
        
      
          
          Author:
          
            
            
              R Gravet
            
          
        
      
          
          Author:
          
            
            
              G. Cabrera-Vives
            
          
        
      
          
          Author:
          
            
            
              Pablo G. Pérez-González
            
          
        
      
          
          Author:
          
            
            
              J.S. Kartaltepe
            
          
        
      
          
          Author:
          
            
            
              G. Barro
            
          
        
      
          
          Author:
          
            
            
              M. Bernardi
            
          
        
      
          
          Author:
          
            
            
              S. Mei
            
          
        
      
        
      
          
          Author:
          
            
            
              P. Dimauro
            
          
        
      
          
          Author:
          
            
            
              E. F. Bell
            
          
        
      
          
          Author:
          
            
            
              D. Kocevski
            
          
        
      
          
          Author:
          
            
            
              D. C. Koo
            
          
        
      
          
          Author:
          
            
            
              S. M. Faber
            
          
        
      
          
          Author:
          
            
            
              D. H. Mcintosh
            
          
        
      
      
      
    
  
   
  
    Download statistics
    
      Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
      
      View more statistics