A Prototype Evaluation of a Tamper-resistant High Performance
Blockchain-based Transaction Log for a Distributed Database

(short paper)

L. Aniello, R. Baldoni, E. Gaetani and F. Lombardi
Research Center of Cyber Intelligence and Information Security

Sapienza University of Rome

Abstract—As data is having an increasingly relevant role in
different business fields, ensuring integrity has become funda-
mental. Modern databases rely on transaction history written
on redo logs to allow for data restore. However, if redo logs are
(maliciously) forged, data can actually be lost or altered. Due its
strong data integrity guarantees, blockchain technology can be
employed to ensure log integrity, but its current performance
limitations hinder actual exploitations.

In previous work, we proposed a layered blockchain-based
architecture for distributed (federated) database redo logs: a
fast first layer blockchain, anchored to a secure second layer
blockchain, based on proof-of-work to achieve strong integrity.
Here, we present an implementation and an experimental
evaluation of a prototype of that architecture, which employs a
total consensus algorithm on the first layer blockchain. Finally,
to improve availability and scalability, we refine our solution
by investigating, respectively, a Byzantine Fault Tolerant con-
sensus and a Distributed Hash Table solution to shard the first
layer blockchain ledger among available nodes.

1. Introduction

As a critical component of many systems, data has an
appealing target for cyber-attacks. Tampering with data can
go undetected and drive malicious operations, e.g. data alter-
ation and deletion. Most of all, differently from availability
loss, data integrity can be hardly restored once lost. Modern
database systems use logging mechanisms to track data
changes, e.g. Write-Ahead Logging of PostgreSQIP_-] and
Redo Log of Oracleﬂ However, if such logging files are
forged, recognising an attack or a failure is awkward as data
integrity relies too intimately on the system itself. Typically,
Remote Data Auditing mitigations are employed, but they
come with high costs and rely on trusted third parties [10].

In recent years blockchain came to prominence through
the Bitcoin system [7]], and have emerged since as a powerful
technology to provide strong data integrity guarantees in
trust-less networks. Blockchain ensures integrity by means
of proof-of-work (PoW), a consensus schema based on

1. |postgresqgl.org/docs/9.1/static/wal-intro.html
2. |docs.oracle.com/cd/B19306 _ 01/server.102/b14231/onlineredo.htm

A. Margheri and V. Sassone
University of Southampton

solving a crypto-puzzles that is considered computation-
ally inviolable [4]. Blockchain also offers so-called smart
contracts, immutable programs deployed and executed on
top of a blockchain system, e.g. Ethereum [11], to realise
decentralised applications where no involved party is in
control neither of the code nor of the data.

Regardless of strong integrity guarantees, exploiting
blockchain to strengthen (distributed) database systems im-
plies coping with overwhelming performance penalties:
viz., high latency and low throughput. Indeed, preliminary
blockchain-based database solutions rationalise blockchain
features: BigchainDB [6] replaces PoW (and its security)
with a lightweight protocol; RSCoin [2]] (re)introduces cer-
tain degree of centralisation in the system.

In [3|] we proposed a blockchain-based architecture for
distributed (federated) database transaction (or redo) logs,
which permits achieving both high performance and ade-
quate integrity guarantees. Specifically, we defined a layered
architecture that makes use of a first layer blockchain assur-
ing low latency and high throughput, anchored to a second
layer blockchain featuring PoW to ensure data integrity.

In this paper, we present a prototype implementation of
that architecture, which features a total consensus algorithm
on the first layer blockchain, and its experimental evaluation.
Then, to cope with faults and Denial-of-Service (DoS) at-
tacks, we investigate a Byzantine Fault Tolerant consensus.
Finally, to improve scalability, we investigate a Distributed
Hash Table (DHT) as storage means for the first layer.

As a case study, we address the distributed database
underlying FaaS [8]], a recent Cloud Federation solution put
forward by the EU H2020 SUNFISH project. FaaS offers
a democratic federation of Clouds which crucially relies on
a distributed database to ensure that no federation member
can tamper with federated data. Clearly, the requirements
of the application demand not only data integrity, but also
adequate performance. The deployment of a fast and secure
blockchain-based system is indeed paramount to achieve
both performance and democracy requirements of FaaS.

Paper structure. §2] introduces the layered architecture; §3]
presents and evaluates the prototype. §4] illustrates the pro-
posed extensions. §5] concludes and discusses future work.

postgresql.org/docs/9.1/static/wal-intro.html
docs.oracle.com/cd/B19306_01/server.102/b14231/onlineredo.htm

Federation Member 2

client client

R /7
/N 2 VN LoL-E VTN
[~~= \ \ S | \
e e e B)
I} f: =y
ol " B @®
2| miner 1 Layer | miner 3 a
\ B { B .]
ol DB replica Verify \ DB replica Verify Verify DB replica 3
E £ i Manager £ ; Manager Manager t ; | §'
=N i miner2 . .
% | Isdge.r replica TErEiE Iedgs.r replica . . Iedgelr r:pllca “ %
@ Manager = Manager =
£ | (- = | W] oo R S
2\ e o i = ittty .]
Layer 1: Mining Rotation-based Blockchain o
0
Blockchain Anchoring
ledger replica ledger replica ledger replica
y] e = ' & = y 1 miner
- T e——— - R - AN —
" “*ledger replic PO > ledger replica
miner iner T miner. ‘{ T Gafies
: Layer 2: PoW-based Blockchain !

Figure 1. 2LBC architecture for a FaaS federation

2. Background

In 3] we posed some important open research questions
on the issues of employing blockchain “as-is” in database
settings, and pointed out practical research directions to-
wards its effective employment: improving performance
while ensuring data integrity. To this aim, we proposed a 2-
layer blockchain architecture (2LBC), enabling a replicated,
trustworthy redo log for a distributed (federated) database.

2LBC consists of a permissioned blockchain on the first
layer and a public permissionless blockchain on the second
layer. The first layer features a fast consensus algorithm
based on a leader rotation approach: the time is split into
rounds each of which has a designed leader (i.e., a miner)
chosen according to a deterministic fair policy. The leader
defines the ordering of transactions (txns) containing the
operations tracked in the redo log (aka ledger). Transactions
are stored, once signed with asymmetric cryptography by all
members, in each ledger replica.

Figure |1| shows the 2LBC architecture in the context
of a FaaS federation. Specifically, each federation member
contributes to 2LBC with one miner —distinguished network
nodes building the integrity of blockchain— keeping both
database and ledger replicas. The second layer features PoW
and is used to guarantee the integrity of the first layer. Peri-
odically, the hash of the first layer blockchain is here stored
via the Anchoring Manager. POW ensures the immutability
of such hashes. These hashes, so, act as forensic evidences
of the first layer: if a malicious miner maliciously tries to
alter the redo log, the first layer blockchain will result forged
as the hash stored in the second layer will be different.

3. Prototype Implementation and Evaluation

We developed the first layer blockchain in Java. Miners
join a p2p network and communicate through txns composed
by a payload (i.e., client operation, a sequence number
and a timestamp) and a certificate with miners’ signatures.
Miners trade messages either directly through JavaRMI or in
broadcast through JGroup (http://jgroups.org/). Clients can

operate on the database by issuing to all miners, through
JavaRMI, two kind of operations: (i) set(k,v) to assign
a value v to a key k (it returns to the client a boolean
confirmation); (ii) get (k) to obtain the value stored to key
k by returning the txn related to the last set toward k.

Consensus. In the case of set, miners have to achieve
consensus to give confirmation to the client. The consensus
is based on a three-phase commit protocol [9]]. Practically,
a client broadcasts a set; operation to all miners which
verify its correctness through a Verify Manager and add it
to a queue. Once the current leader (who is in charge of
ordering txns) proposes txn; related to set;, other miners
remove it from their queue and broadcast their signatures
to build the corresponding certificate. When the certificate
contains all the signatures, all miners commit the txn in their
ledger replica and trigger the update in the database replica.

In the case of get, every miner answers to the client
with the last set(k,v) stored txn for the key k, so the
client can obtain the value v from the received txn having
the more recent timestamp and verify the correctness with
the miners’ signatures.

Anchoring. When the round time of a leader terminates,
it triggers a leader change, which amounts to stores a
special txn, and the anchoring procedure. Specifically, the
abdicating leader computes the SHA-1 hash of the first layer
blockchain and sends a witness txn to a dedicated witness
smart-contract on the second layer blockchairﬂ

Evaluation. We evaluated our prototype on a private cluster
composed by N = 6 Ubuntu 16.04 Virtual Machines (VMs)
each one running a miner process, deployed on 4 blade
servers IBM HS22, equipped with 2 Quad-Core Intel Xeon
X5560 2.28 GHz CPUs and 24 GB RAM.

Network latency between miners is simulated according
to a Poisson distribution in the range 5-20 ms. Operations
set and get on random keys are injected with different
rates via 2 multi-thread clients deployed on 2 further VMs.
To evaluate 2LBC performances, we measured throughput
and response time of the operations over time.

For set operations, Figure 2(a) (resp., [2(b)) reports
throughput (resp., latency) results that, as expected, are
much higher (resp., lower) than Ethereum. Above 240 Op/s,
they become unstable for resource saturation due to high
number of messages exchanged; indeed, the total consensus
algorithm needs that miners trade all their signatures for
each operation. Additionally, leader rotation introduces an
overhead on the enqueued operations during leader changes;
we refer to transient state as the transitory period where
latency exceeds 50% of the average latency. As shown in
Figure 3| increasing the round time makes the transient state
shorter. On the contrary, frequent leader changes increase
such overhead.

For get operations, Figures and [2(d)| report through-
put and latency results. Notably, as there is no transient state
for get (i.e., miners just send their last local value regardless
leader changes), the results are comparable both with and
without leader rotation.

3. The smart contract is implemented for Ethereum.

http://jgroups.org/

__ 1000

w

q

o

o I S e e I P R R

~ 100

>

o

<

2

o 10

= 0 50 100 150 200 250 300
Time (s)

Input Rate = 80 Op/s
Input Rate = 205 Op/s
—— Ethereum average thr.

Input Rate = 160 Op/s
Input Rate = 240 Op/s

(a) Throughput of set operations for different input rates

650
»
= 600
o
5
a 550
-y
o0
>
© 500
£
=

450

0 50 100 150 200 250 300
Time (s)
No Leader's Change Round 30s

(c) Throughput for get operations while injecting ~ 500 op/s
without changing leader and with 30s leader round time

= 10

Q

£ ! Van = —<

= 0,1

g —)

2 0,01 S - - I -

IS)

2 0,001

& 0 50 100 150 200 250 300
Time (s)

Input Rate = 80 Op/s
Input Rate = 205 Op/s
—— Ethereum average r.t.

Input Rate = 160 Op/s
Input Rate = 240 Op/s

(b) Response Time of set operations for different input rates

0,008
=
o 0,007
=
=
» 0,006
(%]
c
(]
2 0,005
(]
o

0,004

0 50 100 150 200 250
Time (s)

Round 30s

No Leader's change

(d) Response Time for get operations while injecting = 500
op/s without changing leader and with 30s leader round time

Figure 2. Throughput and Response Time evaluation of 2LBC for set and get operations

40
[
w© 35
&
30
=
c un
L T 25
w
§ 220
M~ (T
= 515 .
v A
Eéa e \
[
5
z ° ° °
0
10 30 50
Round Time (s)
@— Input Rate = 80 Op/s @ Input Rate = 160 Op/s

—— Input Rate = 205 Op/s —&— Input Rate = 240 Op/s

Figure 3. Analysis of the relation between round time (x axis) and transient
state duration (y axis) for different input rates

Security Analysis. We modelled three possible kinds of
attack: Al tampering, if miner tries to modify the log; A2
forgering, if miner tries to send a fake txn, i.e. by forging
a client operation; A3 DoS, either a miner does not sign a
txn or a leader does not broadcast a txn.

In our approach a valid txn must contain a certificate
with all miners’ signatures. This avoids miners from ma-
liciously update values without informing other members
(A1), and from creating fake txns (A2) (unless it can obtain
the private keys of all other miners). Moreover, hashes stored
in the second layer blockchain are immutable, hence, though
the attacker is able to compromise the first layer by stealing

all miners’ keys, A2 might be detected by comparing the
hash of the first layer with the hash evidence stored on the
second layer; to compromise also hashes in the second layer
the attacker should obtain a significant, unfeasible compu-
tational power [4]. Furthermore, the leader cannot forward
fake txns (A2), because miners sign only txns related to
operations that they enqueued. Specifically, miners verify
the correctness of txn fields being sure that are not forged.
Our approach is instead vulnerable to DoS attacks (A3):
a single malicious miner can block set operations not
sending its signature or a malicious leader (during its leading
periods) can avoid to forward a txn. This cannot happen with
get operations, as miners return their response indepen-
dently. Indeed, if there is at least one honest miner, a client
can obtain the value by its corresponding txn and verify the
signatures in the certificate to prove the authenticity.

4. Improving Availability and Scalability

The main limitations of the current 2LBC prototype are
related to availability issues (as explained in last section)
and scalability. Indeed, overall system performance does
not scale adding new nodes, as the used total consensus
algorithm has lower performance with additional nodes. In
this section we propose the solutions to cope with them.
Availability. To mitigate such limitations, we propose a
Byzantine Fault Tolerant solution based on PBFT [1]. To
tolerate up to f Byzantine miners it requires 3f + 1 miners
to provide both safety and liveness. This leads to higher

Key K

member 1

h
i
I
1
\
\

member 3‘
X

\.

member 1

Figure 4. Example of the DHT-based ledger solution to achieve total
replication in the SUNFISH scenario. The federation is composed by M = 3
members (each one marked with a proper color), each one exposing N = 2
miners (identified by a proper letter). Miners are disposed on the ring so
as each member has all keys of the database sharded between its miners.
The single miners keep only a subset proportional to the replication factor.
In the example, the replication factor is M = 3 and each miner maintains
only 1/N = 1/2 of database keys.

availability level as honest miners need to wait just f + 1
valid signatures to commit a txn. We can so tolerate up to
f silent miners at the cost of weaker integrity guarantees;
indeed data corruption is possible with just f + 1 compro-
mised miners, rather than all N when total consensus is
used. Anyway, the integrity of txns already witnessed in the
second layer is still ensured thanks to the PoW.

Scalability. To improve scalability, we propose a data shard-
ing solution for permissioned (federated) blockchain, similar
to [|5]] for permissionless blockchain. Specifically, we intro-
duce a DHT-based ledger in which each miner, on the base
of a keyspace partitioning, only handles txns for specific
subsets of keys. This approach permits tuning txn loads on
miners and, consequently, makes the system more scalable.
Furthermore, each key range has a configurable replication
factor to enable fault tolerance. In our solution, contrarily
to common DHT implementations, the miners involved in
a set operation must achieve consensus before writing the
operation in the local replica (hence in the local keyspace)
of the redo log. This permits achieving strong consistency,
hence avoiding consistency issues which mar well known
DHT-based NoSQL databases, such as DynamoDBE] and
Cassandréﬂ Clearly, this comes at the cost of performance
penalties, whose quantification depends on the technology
and is beyond our scope here.

The solution to the SUNFISH scenario can e.g. change
as follow: let M be the number of federation members, each
providing N (rather than a single) miners. The DHT ring
includes M - N nodes, the replication factor is set to M, and
miners can be placed over the ring so that the miners of each
federation member collectively manage all the keys. Figure[d]
shows an example of a SUNFISH federation composed by
M = 3 members, each exposing N = 2 miners.

4. aws.amazon.com/dynamodb/faqs/
5. wiki.apache.org/cassandra/ArchitectureOverview

5. Conclusion

We evaluated a prototype of 2LBC, a 2-layered archi-
tecture for a blockchain-based database able to provide both
high performance and strong data integrity guarantees in
a totally decentralised environment. We proposed also a
solution to cope with current availability issues and a DHT-
based ledger to shard data and make the system scalable.

In the future we will continue developing and evaluating
our prototype by introducing the solutions based on PBFT
and DHT. In order to compare alternative solutions, we plan
to develop a metric for data integrity based on the effort
required for an attacker to tamper with data without being
noticed. This metric will allow us to define and evaluate
varying tradeoff levels between system availability, integrity
and performance with a different number of miners partici-
pating the consensus protocol. Finally, we aim to evaluate a
scenario where each member can expose a different number
of miners.

Acknowledgment

This work has been supported by the EU H2020 SUN-
FISH project, grant N.644666.

References

[1] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, volume 99, pages 173-186, 1999.

[2] George Danezis and Sarah Meiklejohn. Centrally Banked Cryptocur-
rencies. In 23rd Annual Network and Distributed System Security
Symposium, NDSS, 2016.

[3] Edoardo Gaetani, Leonardo Aniello, Roberto Baldoni, Federico Lom-
bardi, Andrea Margheri, and Vladimiro Sassone. Blockchain-based
database to ensure data integrity in cloud computing environments.
ITA-SEC. CEUR-WS.org, 2017.

[4] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bit-
coin Backbone Protocol: Analysis and Applications, pages 281-310.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[5] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth
Gilbert, and Prateek Saxena. A secure sharding protocol for open
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 17-30. ACM, 2016.

[6] Trent McConaghy, Rodolphe Marques, Andreas Miiller, Dimitri
De Jonghe, Troy McConaghy, Greg McMullen, Ryan Henderson,
Sylvain Bellemare, and Alberto Granzotto. BigchainDB: A Scalable
Blockchain Database. 2016.

[71 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
2008. Available at https://bitcoin.org/bitcoin.pdf,

[8] Francesco Paolo Schiavo, Vladimiro Sassone, Luca Nicoletti, and An-
drea Margheri (Eds.). FaaS: Federation-as-a-Service, 2016. Technical
Report. Available at https://arxiv.org/abs/1612.03937,

[9] Dale Skeen and Michael Stonebraker. A formal model of crash
recovery in a distributed system. [EEE Transactions on Software
Engineering, (3):219-228, 1983.

[10] Mehdi Sookhak, Abdullah Gani, Hamid Talebian, Adnan Akhunzada,
Samee U. Khan, Rajkumar Buyya, and Albert Y. Zomaya. Remote

Data Auditing in Cloud Computing Environments: A Survey, Taxon-
omy, and Open Issues. ACM Comput. Surv., 47(4):65:1-65:34, 2015.

[11] Gavin Wood. Ethereum: A secure decentralised generalised transac-
tion ledger. Ethereum Project Yellow Paper, 2014.

aws.amazon.com/dynamodb/faqs/
wiki.apache.org/cassandra/ArchitectureOverview
https://bitcoin.org/bitcoin.pdf
https://arxiv.org/abs/1612.03937

	Introduction
	Background
	Prototype Implementation and Evaluation
	Improving Availability and Scalability
	Conclusion
	References

