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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SOCIAL, HUMAN, AND MATHEMATICAL SCIENCES

DEPARTMENT OF ECONOMICS

Doctor of Philosophy

by Stelios Kotronis

Does ambiguity a↵ect the e�ciency of information aggregation in dynamic markets? To the

present day there is a sparse and fragmented literature pointing towards an answer. This Thesis

studies dynamic markets under ambiguity and examines under what conditions information gets

aggregated. Three particular perspectives are investigated:

i) Does information gets aggregated when traders are myopic and ambiguity averse? In the first

Chapter it is proved that information gets aggregated only when a ”separable under ambiguity”

security is traded. In case the security is not ”separable under ambiguity”, then there exist

markets in which information does not get aggregated. The class of ”separable under ambiguity”

securities is proved to be non trivial. Finally, it is proved that even if the security is not ”separable

under ambiguity”, traders will reach an agreement about the price of the security.

ii) Does information gets aggregated when traders are strategic and ambiguity averse? By defin-

ing appropriately an equilibrium concept for infinite horizon games of incomplete information

in a setting with ambiguity, it is proved that in a market with a ”separable under ambiguity”

security information gets aggregated in every equilibrium in pure strategies. The second chapter

concludes by proving that when the security is not ”separable under ambiguity”, then there

exists an equilibrium in which information does not get aggregated.

iii) Are the previous theoretical predictions met in real life? In the third chapter a laboratory

experiment is included. The experimental design follows the theoretical models of the first two

chapters. The results of the experiment provide significant evidence in favor of the results of the

first two chapters.
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Chapter 1

Introduction

This chapter presents an overview of the literature which is related to information ag-

gregation. An extensive survey of theoretical and experimental results and contributions

are exhibited, which are closely related to our results. The scope of this chapter is to

indicate the aim of this doctoral thesis and to distinguish its position in the theoretical

microeconomic and experimental literature.

In more detail, Section 1.1 documents the evolution of some building blocks of the

information aggregation literature in such a way, such that, the contribution of the

thesis to be understandable. Section 1.2 proceeds by motivating the first two chapters

of the thesis and by presenting the main results. In Section 1.3 we document parts of

the experimental literature related to information aggregation. In Section 1.4 we present

the motivation for our third chapter, and its results.

1.1 The theoretical literature of information aggregation

In this section of the thesis we will report the literature of information aggregation. We

will extensively analyse and report the part which is more related to the focus of the two

first chapters of our thesis, so that our contribution to be comprehensible and positioned

easily within the literature.

1.1.1 ”Agreeing to disagree” under subjective expected utility

The concept of common knowledge was firstly formalised in the seminal result of Aumann

(1976). The result states that when the opinions of two traders are common knowledge,

which intuitively is the same as assuming that the opinions are publicly known to all

traders, then traders cannot disagree, assuming a common prior. The main argument

underlying this result is the additivity property of probability measures.

1



2 Chapter 1 Introduction

However, the result of Aumann (1976) was static. It does not explain how the common

knowledge of opinions is met. Geanakoplos & Polemarchakis (1982) are arguing that

when two traders are exchanging their opinions sequentially then, under the assumption

of a common prior and the common knowledge of their information partitions, they

will finally reach the common knowledge event. Hence, using the additivity property of

probability measures they prove that in the common knowledge event they have to agree.

While in Geanakoplos & Polemarchakis (1982) several examples are presented, there is

not formally studied the question of information aggregation but rather the question of

consensus.

Following these two results, a considerable amount of literature studies these type of

results under various modifications of the initial assumptions and setting.

Cave (1983) tries to generalise the result of Geanakoplos & Polemarchakis (1982) by

leaving the assumption of common prior, but incorporating the property of union consis-

tency. Intuitively, this is a property that mimics the additivity of probability measure,

hence allowing for similar arguments in order to conclude the agreement. Bacharach

(1985) used the same property, naming it as Sure Thing Principle, as in Geanakoplos

(1995), too.

Nielsen (1984) argues that the setting of Aumann (1976) and Geanakoplos & Polemar-

chakis (1982) is restrictive, as they both assume finite states space. In Nielsen (1984) a

result is given using sigma algebras.

However, all these contributions are referring to a setting in which traders are exchanging

opinions in the form of probability assessments of an event. In Nielsen et al. (1990) the

result of Geanakoplos & Polemarchakis (1982) is generalised. A security over a state

space is assumed and traders are exchanging opinions in the form of the expected value

of the security. Although it is more generalised setting the main argument is still the

linearity of the expected value. Similarly, Sebenius & Geanakoplos (1983) argue that

in a betting game the private information of the traders will be aggregated in such a

way that, under the assumption of common prior, the bet is not going to be mutually

beneficial.

Conceptually similar, to Sebenius & Geanakoplos (1983), results are given in Milgrom

& Stokey (1982). In this paper the seminal no trade theorem is proved, which proves

the impossibility of speculative trade. In particular, it states that when two traders

agree on an ex ante allocation, then in the presence of new information there is not

common knowledge trade. Intuitively, the result is technically based on the additivity

of the common prior probability measure, too.

The literature we presented so far, contributes in the information aggregation literature

by establishing results which try to explain how the private information of traders are

aggregated in a statistic, which is (becoming) common knowledge. However, until that



Chapter 1 Introduction 3

point none of these papers studied under what conditions the aggregate statistic reveal

information about the fundamental of a stock.

Such a result has been given in DeMarzo & Skiadas (1998) and DeMarzo & Skiadas

(1999). In particular, they studied competitive equilibria within a setting similar to that

of Nielsen et al. (1990). They proved that, as opposed to Radner (1979) (fully revealing

REE), these competitive equilibria lead to the generic existence of Common Beliefs

Equilibria in which prices, in equilibrium, do not fully aggregate traders information.

They proved that in order to fully aggregate traders’ information the security should be

a separably oriented security. Intuitively, the idea underlying this property is that when

traders reach the common knowledge event then at least one should be non-trivially

informed, unless the common knowledge event is such that as if traders pooled their

private signals.

1.1.2 From ”agreeing to disgree” to information aggregation

The literature presented in Section 1.1.1 is consisted of pure theoretical results. The

opinion games of Geanakoplos & Polemarchakis (1982) and Aumann (1976) is not met,

per se, in practice, hence leaving a gap between strong theoretical results and the lack

of their practical implications.

Hanson (2003) defined a market structure, which is more and more used in practical

applications. The market is called Market Scoring Rule. Its basic building block is a

strictly proper scoring rule. In fact, this is a function which gives incentives to agents

to reveal their true beliefs regarding an event. This is a property known as myopic

incentive compatibility.

A strictly proper soring rule, when adopted to a setting similar to Nielsen (1984) is

myopic incentive compatible, too. This result was proved, among others, in Chen et al.

(2012) and Ostrovsky (2012). This fact implies that when a trader, being privately

informed, wants to maximise his/her expected utility, then a strictly proper scoring

provides those incentives so that the maximum is achieved by the trader announcing the

expectation of the security conditional to their private information.

Hence Hanson (2003) provides a market model which, essentially generalises, hence

implying, the communication process of Geanakoplos & Polemarchakis (1982). Formally,

this is true in case we assume that traders participating in the market are myopic.

In particular, considering a setting as in Nielsen (1984), the accordingly modified Mar-

ket Scoring Rule of Hanson (2003) considers two traders participating sequentially and

repeatedly in a market. Each trader announces his/her prediction regarding the value

of the security. Therefore, given that their payments are depending on a strictly proper

scoring rule and assuming that both are trying to maximise their per period utility,
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hence they are not strategic but myopic, it is implied that at each period they announce

the expected value of the security condition to their private information. This market

is compelling because this sequential announcement of prediction can be interpreted as

buying or selling the security to an automated market maker.

This model is formally built in Chen et al. (2012). In particular, the paper modifies the

Market Scoring Rule of Hanson (2003) according to a setting similar to Nielsen et al.

(1990). It considers a security and an information structure, over a finite state space. Its

aim is to prove that under some conditions this market not only reaches a consensus, as

it was proved in Nielsen et al. (1990), but also aggregates information. This is defined

as traders know finally the true value of the security. The information aggregation

result is achieved by restricting to a class of securities, with similar properties as in

DeMarzo & Skiadas (1998) and DeMarzo & Skiadas (1999). This class was defined

in Ostrovsky (2012) and the securities belonging to it are called separable. In this

thesis, from this point and onwards, we will use, instead, the term separable under

SEU (subjective expected utility). The intuition of the argument, which concludes

information aggregation, in Chen et al. (2012), is that when the agreement is reached,

hence no trader holds private information not revealed in the market, then the properties

of separable under SEU securities imply that the common knowledge event is consisted

of exactly those states which value the security the same as the realised state does. In

addition, Chen et al. (2012) proves that this result holds even if multiple securities are

traded in the market. A similar result of information aggregation was given in McKelvey

& Page (1986a), under the assumption that securities are belonging to a subclass of

separable under SEU securities.

In Ostrovsky (2012) two market models are used. The first one is Kyle (1985) and the

other is Hanson (2003). The model of Hanson (2003) is similar to the respective model

of Chen et al. (2012). The main contribution of Ostrovsky (2012) is that it is proven

that the myopic result of information aggregation under separable under SEU securities

still holds when traders are strategic. In particular, it is proved that in every Nash

equilibrium in a Market Scoring Rule with a separable under SEU security information

gets aggregated.

Grossman (1976) was, among the firsts, to establish results related to information aggre-

gation in markets, without providing results for case when traders are strategically large

compared to the market. The same applies for Radner (1979), where the Rational Ex-

pectations Equilibrium is introduced. Several results for models of decentralised trading

studied the convergence to REE, Golosov et al. (2014), Dubey et al. (1987), Wolinsky

(1990) to name a few. However, in these papers, each trader’s behavior e↵ect on how the

trading is processed is not taken into account. Hence restricting the strategic behavior.

On the other hand, Ostrovsky (2012) considers a finite number of traders, who are large

and a↵ect the evolution of trading process.
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Furthermore, strategic interactions and their e↵ects on information aggregation was

studied in models as formalised in Hanson (2003), hence simplifying the setting of Nielsen

(1984). In particular, Chen et al. (2010) undiscounted finite games are considered. The

games are based on a logarithmic strictly proper scoring rule. Their result states that

when traders hold private signals which are independent conditional on the value of the

security, then it is an equilibrium for each trader to predict their conditional beliefs, or

in other words myopically.

On the other hand, Dimitrov & Sami (2008) similar games were considered. In contrast

to Chen et al. (2010) the games here are infinite. In addition, traders’ signals are

independent. Their results suggest that, in the Market Scoring Rule the game with

no discounting, predicting their conditional beliefs is not, in principle, an equilibrium.

They provided a simple Market Scoring Rule game with discounting, and showed that

information gets aggregated, when we assume that the complementarity bound of the

security is positive.

1.1.3 ”Agreeing to disagree” under ambiguity

The result of Aumann (1976) has triggered a line of research trying to generalise it in

many ways. Among other dimensions, in this subsection we will report results that refer

to a setting with ambiguity.

Kajii & Ui (2005) and Kajii & Ui (2009) are establishing a version of Aumann (1976),

under the assumption of Gilboa & Schmeidler (1989). Although the scope of these papers

is not exclusively to study agreement in a setting with ambiguity, they both provide

conceptually the same agreement result. They argue that the agreement under ambiguity

means each traders’ ”opinion” sets, they have a set of opinions because they assume the

multiple priors model of Gilboa & Schmeidler (1989), have no empty intersection.

Similar perspective is followed in Carvajal & Correia-da Silva (2010). In fact, this paper

tries to reformulate the results Kajii & Ui (2005) and Kajii & Ui (2009). In Carvajal

& Correia-da Silva (2010) it is argued that the assumption of common set of priors,

existing in Kajii & Ui (2005), can be dropped. It is proved that in order traders not

agree to disagree the non emptiness of the traders set of priors is su�cient. However,

this observation was made in Kajii & Ui (2009), but by restricting the sets to be convex

and compact. However, in Carvajal & Correia-da Silva (2010) it is proved that only the

connectedness of the sets of priors is enough to prevent disagreement. Finally, Carvajal

& Correia-da Silva (2010) provides the results considering both prior by prior Bayesian

and the maximum likelihood update rule, Pires (2002).

On the other hand, results, for a setting with ambiguity, were given under the concept of

agreement as defined in the classical literature presented in Section 1.1.1. In particular,

in Dominiak & Lefort (2015) the agreement theorem is proved for capacities, as defined
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in Schmeidler (1989). In fact, it tries to generalise the result of both Aumann (1976) and

Nielsen (1984), by establishing results both for the agreement in beliefs and in conditional

expectation given a security. The main idea underlying Dominiak & Lefort (2015) is

conceptually similar to the property of union consistency, Cave (1983) and Bacharach

(1985), which in turn is the same with the Sure Thing Principle of Geanakoplos (1995).

In more detail, as we have mentioned in Section 1.1.1, the additivity of the common prior

probability measure was the main argument to conclude the agreement. However, under

ambiguity this property does not hold, as in Cave (1983) and Bacharach (1985), hence,

assuming union consistency in order to ”mimic” the additivity property. By doing so

agreement is implied. Finally, in Dominiak & Lefort (2015), the union consistency is

related to the definition of unambiguous events, Dominiak & Lefort (2011).

In Dominiak & Lefort (2013) the agreement theorem is studied by focusing on neo-

additive capacities, Chateauneuf et al. (2007). Firstly, it is proved that agreement is not

possible when their posterior capacities are common knowledge in some event. Secondly,

it characterises the updating rule so that the agreement theorem to hold.

1.1.4 Concepts of equilibrium under ambiguity

Two lines of research can be identified within the literature of games under ambiguity.

Firstly, a big class of games that are studied are those in which ambiguity is about the

type space, or the state space. The second class of games are those in which the states

are unambiguously determined, but there exists ambiguity regarding the strategies of

the opponents. The game defined in this thesis belong to the first class.

In Bose & Renou (2011) and Bose & Daripa (2009) the e↵ect of ambiguity aversion is

studied in a mechanism design framework. The games of these papers are very closely

related to our approach. However, their games are of finite horizon. The equilibrium

concept defined is the consistent planning equilibrium. According to it, traders are

optimising over one stage deviations, given that afterwards they follow their equilibrium

strategies. In Bose & Renou (2011) and Bose & Daripa (2009) the o↵ equilibrium

beliefs are left unconstrained, which in fact makes it conceptually more similar to the

Weak Perfect Bayesian Equilibrium and not Perfect Bayesian Equilibrium. A similar

equilibrium concept is used in Mele & Sangiorgi (2015).

In Hanany et al. (n.d.) a more abstract approach is taken. The paper suggests two

equilibrium concepts, namely Sequential Equilibrium with Ambiguity and Perfect Equi-

librium with Ambiguity, and existence results are given. However, the games have finite

horizon. The idea underlying these equilibrium concepts is to have a component of se-

quential rationality (as in the standard subjective expected utility case) and a second

component that determines the way that beliefs are updated. Although this is not in

general feasible when consequentialist updating rules are used, here the updating rule
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follows the results of Hanany & Klibano↵ (2009), hence dynamic consistency holds.

Therefore the sequential rationality is well defined. As a result of the updating rule, it is

proved that the rationality component is equivalent to the one-shot-deviation principle,

relating it, in that sense, to the consistent planning equilibrium.

Furthermore, dynamic games are studied as well in Eichberger & Kelsey (2004) and

Dominiak & Lee (n.d.), providing applications to signaling games. The models in these

papers allow for both environmental and strategic ambiguity. The novelty of their paper

is that the Dempster - Shafer updating rule, which they suggest, can be used to update

the beliefs even after deviations.

In Azrieli & Teper (2011), a result relating the existence of equilibrium and the direction

of aversion, ambiguity aversion or ambiguity loving, is established. In particular, it is

proven that for an equilibrium to exist, players should be ambiguity averse. However,

no results are given for a dynamic game. In fact, the union consistency is proposed as

a potential way to overcome the dynamic inconsistency in the dynamic case.

Finally, in Sass 2013 ambiguity is introduced with regards to the opponents’ strategies.

By defining the Ellsberg strategies, which intuitively are mixed strategies but using an

Ellsberg urn for the randomisation, they derive a form of the Kuhn theorem.

1.1.5 Discussion

In the two subsections that follow we discuss the gaps of the related literature. The

ultimate aim is to signify how Chapter 2 and Chapter 3 contribute and improve the

literature, and how they fit within it.

1.1.5.1 From ”agreeing to disagree” under ambiguity to information aggre-

gation?

Comparing Section 1.1.3 with Section 1.1.1 we can observe that there exists a gap in

the literature of information aggregation under ambiguity. Although it followed and

generalised, in some extent, the classical results of ”agreeing to disagree”, there are no

results directly related to how and under what conditions information gets aggregated

in a market setting like Hanson (2003).

In particular, results are lacking in the direction of generalising Chen et al. (2012) and

Ostrovsky (2012) under ambiguity. These results would generalise, as a consequence,

the literature related to Geanakoplos & Polemarchakis (1982) and Nielsen et al. (1990),

too.
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1.1.5.2 Equilibrium concept for infinite horizon incomplete information in-

formation games

The literature of games under ambiguity does not provide an equilibrium concept for

infinite horizon incomplete information games, when prior by prior updating, hence

a consequentialist updating rule, is used, which refines, as well, consistent planning

concept.

In our case consistent planning is not enough in order to conclude our strategic result in

Chapter 3. Hence a stronger equilibrium concept should be defined and used. By doing

so we indeed can have results similar to Ostrovsky (2012).

1.2 Our theoretical contribution

The aim of section is to signify, in detail, the main focus of Chapter 2 and Chapter 3

of this doctoral thesis. The importance of our contribution will be clarified in Section

1.2.1. In addition the model will be reported, intuitively, indicating its position in the

literature.

1.2.1 Motivation

When traders are participating in a market, they usually hold some private information

about the traded security. The price of the security, as a↵ected by the competition,

might reveal to some traders the private information of the others. The fact that price

acts as a statistic which aggregate the private information of decentralised traders, has

been emphasized and extensively studied in economics, with Hayek (1945) to be the first

one.

In other words, if information is dispersed among all traders, will their trading behavior

lead the market to aggregate information, pricing the securities as if their information

was pooled? The main intuition of information aggregation is arbitrage. Informed

traders will correct potential mispricings, hence moving security’s price to the correct

one. This is an attractive intuition when traders are fully informed. Results have

been given regarding the case in which traders are partially informed, or even for finite

number of large strategic partially informed traders. But what if, in addition, traders

are ambiguity averse? Does ambiguity a↵ect the e�ciency of information aggregation?

While financial markets have, in general, several other important properties, there are

some particular models of financial markets that are trying to leverage their information

aggregation property. These markets are also known as information markets or predic-

tion markets. In fact, in these markets a security, contingent to an event, is traded.
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Through the revelation of information, due to trading, traders’ signals are pooled into

the price. Hence, by correctly pricing the security, a forecast for the event is implied,

too.

Many firms and institutions are using prediction markets as a forecasting tool for several

issues, such as political events or the release of new products. Among them, several

Internet based predictions markets exist.1 Among several ways to implement a prediction

market, Market Scoring Rule (MSR) is used, more and more, in practice as corporate

governance tools. These markers are fairly general as they can be reinterpreted in

order to correspond to the classic approach with an inventory based market maker who

continuously adjusts the price of the securities, as traders buy from him and sell to him.2

In Ostrovsky (2012) and Chen et al. (2012) results are given regarding the conditions

under which information is aggregated, in an MSR environment with expected utility

and common priors. In particular, the class of separable under SEU securities is defined.

When such a security is traded, among either strategic or non-strategic myopic traders

with common prior, then the information revealed in the market is such that as if traders

have pooled their private signals. An example of a separable under SEU security is the

Arrow-Debreu security, which takes the value 1 for a particular state of the world and 0

otherwise.

The intuition of these results can be understood by the following example. Consider an

institution setting up a prediction market in order to forecast whether the referendum

will take place, and if so its outcome.3 Consider security X which takes the value 1

when Brexit happens, and 0 otherwise, when the UK continues being a member of the

EU or when the UK government cancels the referendum. Two experts are participating

in that market, each announcing his expected utility of X, with private signals as shown

in Figure 1.1.

Figure 1.1: Private signals.

The signals represent the information that the experts hold depending on the realised

state of the world. In particular, when the realised state is Brexit, Expert 1 knows

1Many firms have organised internal prediction markets using models similar to the one we follow in
this paper. Google, Ford and General Electric, HP among others run internal prediction markets as a
corporate governance and predictions tool. Cultivate Labs, Inkling Markets, Consensus Point, Crowdcast
and Iowa Electronic Markets are, among others, some examples of real life prediction markets.

2See in Appendix C for more details.
3For simplicity we do not assume a prediction made by the market maker, while we assume it in

our model. However, even with that version of MSR our results remain robust. In fact, by considering
the logarithmic market scoring rule and myopic traders we can conclude that information does not get
aggregated for the case that Brexit is the realised state.
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that the referendum will not be canceled. Similarly, Expert 2 knows that either Brexit

will happen or the referendum will be canceled. Under that information structure,

information aggregation means both knowing, finally, the value of the security.

Suppose that Brexit is the realised state and that experts hold a common prior which

assigns non zero probability to the event that Brexit happens. Then, by announcing

sequentially each other their expectations about the value of security X, each can realise

what private signal the other expert holds. In the first round, the announcement of

Expert 1 will be non zero, hence Expert 2 knows that the private signal of Expert 1

should be that the referendum will not be canceled. In the second round, Expert 2, by

combining the extra information with his own private signal, realises that Brexit will

happen and announces 1. In the third round, Expert 1 realises, as well, that Brexit is

the realised state, hence the prediction market aggregates information.

As it is apparent from the intuition, the result above depends on the fact that there is

a common prior between the experts. However, no historical data exist regarding the

event to be predicted, hence making the event under consideration not to be quantifiable

probabilistically but ambiguous.

In fact, we can observe that this market does not necessarily aggregate information

when traders hold ambiguous beliefs, even if they are common. Indeed, suppose the

multiple prior model of Gilboa & Schmeidler (1989), according to which a decision

maker would act as if having multiple priors, over the states, and chooses the prediction

that maximizes the minimum expected utility over these priors. Assuming that at least

one prior (but not all) assigns zero probability to Brexit, the expected value of the

security with respect to that prior is 0. Therefore, the initial announcement of Expert 1,

who is ambiguity averse, is his most pessimistic, and because he holds a prior assigning

0 to Brexit, his announcement is 0. Hence the next trader cannot infer whether the

private signal of expert 2 is that referendum is canceled or not. In other words, Expert

2 does not hold more information than his private signal, and his announcement is, for

a similar reason, 0. In turn, Expert 1 announces 0, as well, and as a result, market fails

to aggregate information, because no one learns that Brexit will happen, hence no one

learns that the true value of the security is 1.

On the other hand, if we change appropriately the security of the market, information

is aggregated. Consider, the security whose value is 3 when Brexit happens, 2 when

No Brexit happens and 1 in case the referendum is canceled. In that case, Expert 1

announcement cannot be the same as in the case that the referendum is canceled. This

is true because 1 cannot be given as a convex combination of 3 and 2. Hence, these two

values being di↵erent implies that in the next round Expert 2 can infer that Expert’s 1

signal cannot be that the referendum is canceled. Combining this piece of information

with his own signal, Expert 2 concludes that Brexit should be the realised state, hence
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announcing 1. In the next round, Expert 1 can infer as well that Expert 2 knows that

Brexit should happen, therefore information gets aggregated.

In addition, evidence about the di↵erence, on the degree of information aggregation,

between a prediction market with and without ambiguity, has been found in the exper-

iment of Chapter 5, with the experiment structure being the same with the example’s.

In fact, significantly worse predictions have been found for ambiguous markets with

the example’s Arrow-Debreu security, and no significant di↵erences when we changed it

appropriately.4

The intuitive di↵erence among the two securities of the example is that the first one

is informative for both ”subjective expected utility” experts, but not for a ”maxmin

expected utility” one. This is true because aversion in ambiguity creates, in addition

to partial information, an extra layer that precludes information revelation. However,

when we increase the diversification of security’s values over Expert’s 1 information

structure, then we can observe that this is a su�cient condition to have the information

aggregated.

There is a wide variety of examples, similar to the previous one, in which information

does not get aggregated under ambiguity, even if the security is separable under SEU.

In particular, the set of beliefs do not have to assign zero probability to some state and

the traders do not have to be only two.5

The main results of Chapter 2 and Chapter 3 generalise the intuition given in the

example. In particular, we define a class of securities, namely separable under ambiguity

securities, that aggregate information, under ambiguity, for both myopic and strategic

traders (in every converging strategies equilibrium). It turns out that separable under

ambiguity securities are separable under SEU and the inclusion is strict. In addition,

when the security is not separable under ambiguity, then, for both myopic and strategic

traders, information does not get aggregated always.

Finally, our model di↵ers in significant ways from the model of Ostrovsky (2012) and

Chen et al. (2012). In the case that traders are myopic, under subjective expected utility

assumptions their predictions depend only on the acquired information, however under

ambiguity this is not the case. Due to the aversion in ambiguity the current prediction

depends on the previous one. In the case that traders are strategic, an equilibrium

concept should be defined in order to be compatible with the possible failure of dynamic

consistency, whereas this is not needed in the Ostrovsky (2012) and Chen et al. (2012).

4Another example of the e↵ect of ambiguity in real life prediction markets can be observed in the mar-
ket opened by Cultivate Labs, trying to predict whether UK will vote leave or remain. The market failed
to predict the outcome of the referendum, and its closing prediction was that the probability of voting
Brexit is 20%. The market can be found in https://alphacast.cultivateforecasts.com/questions/1311-
will-the-uk-vote-to-leave-the-eu-in-the-june-2016-referendum.

5See in Appendix B for more details.
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1.2.2 Market Microstructure

There are many approaches to model dynamic markets. The no trade theorems (Milgrom

& Stokey (1982), Sebenius & Geanakoplos (1983)) imply that in dynamic markets, in

which a common prior is assumed, a source to subsidize trading should exist. This is

the reason why, on the one hand, the existence of noise traders is usually assumed in

models of financial markets and on the other hand heterogeneous priors. In this paper

the dynamic market follows the MSR of Hanson (2003) and it is similar to Ostrovsky

(2012), Chen et al. (2012) and Dimitrov & Sami (2008). Whereas the assumption of

common prior holds, instead of noise traders there is an automated market maker who

admits to have bounded losses. A crucial di↵erence of our setup is that instead of a

single common prior, traders hold a common set of multiple priors according to Gilboa

& Schmeidler (1989).

The dynamic trading mechanism in our model starts with an initial public announcement

about the value of the security by the market maker, which is made in order to open

the market, and with nature choosing, ambiguously, the true state. Then, each trader

sequentially announces, in public, their predictions and after every announcement all

traders refine their information and beliefs accordingly. A score of each prediction,

interpreted as the first part of trader’s per period utility, is calculated after the whole

uncertainty about the true state is revealed and it is based on a strictly proper scoring

rule. In particular, the whole per period utility of a trader is calculated by subtracting

from the score of her prediction the score of the prediction made by the previous trader.

This can be interpreted as if each time traders make a prediction, they ”buy out” the

previous one. The scores are derived by a strictly proper scoring rule.

In fact, according to the market mechanism described, and assuming that traders are

myopic, it is implied that a trader announces the price of the security that maximises his

t-period payo↵ which is the expected value of the security according to some posterior

belief, out of the whole set of beliefs, conditioned to the, possibly refined, informa-

tion partition.6 Therefore, we can conclude that the trading procedure generalises the

communication process of Geanakoplos & Polemarchakis (1982). However, in the MSR

model, ambiguity aversion complicates this process considerably, as it implies that each

prediction depends on the previous one. Hence, the decision function of each trader is

di↵erent round by round.

When traders are strategic, the trading procedure is an infinite horizon game with incom-

plete information. Given that the traders are ambiguity averse, they might potentially

be dynamically inconsistent: their optimal continuation strategy at time t might not be

optimal at a later time. This is a feature of our model that does not exist in Ostrovsky

(2012).

6That is because the market scoring rule is incentive compatible as a static mechanism for myopic
traders.
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A widely used equilibrium concept for dynamically inconsistent players is called Con-

sistent Planning, axiomatised in Siniscalchi (2006). According to it, at each time t the

corresponding player optimises the continuation payo↵ over deviations from the current

round equilibrium action subject to following the equilibrium afterwards. We use a

stronger equilibrium concept than that, called Revision Proof Equilibrium. It was de-

fined in Ales & Sleet (2014), but here we generalise it for incomplete information. The

stronger part of this concept is that it allows the equilibrium strategy to be checked

over multiple stage deviations. Intuitively, revision proof equilibrium can be thought as

follows: when you are at time t
0

and considering revising your strategy from that time

onwards, you cannot achieve the alternative continuation profile making you better o↵

at every future time t
0

+ t
0
, with strictly preference for at least one of them.

1.2.3 Results

The results of our theoretical contribution are divided into two Chapters. The results

about myopic traders are included in Chapter 2 and the results about strategic traders

in Chapter 3.

1.2.3.1 Results for myopic traders

The main result for myopic traders is Theorem 2.7.

It characterises information aggregation in terms of separable under ambiguity securities.

In particular, when a separable under ambiguity security is traded, then information

gets aggregated in market with myopic trades. Conversely, when a non separable under

ambiguity security is traded then there are markets in which information does not get

aggregated.

This result is the analogue of Chen et al. (2012) for myopic and ambiguity averse traders,

hence completing the literature of information aggregation in that respect.

However, the proof of our theorem indicates an approach of generalising Geanakoplos &

Polemarchakis (1982) in the presence of ambiguity.

More precisely, the proof of our theorem can be separated into two parts. The first

one is the part which proves the agreement. The second one is the part that uses the

properties of separable under ambiguity securities in order to conclude the information

aggregation.

For the first part, we use the convexity of the myopic decision function in order to

understand the dynamics of traders’ announcements in the evolution of the trading

process. Comparing our arguments with the arguments Chen et al. (2012), we do not

use the martingale property to conclude the agreement. This is because the martingale
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property is based on the common prior assumption hence is not applicable to our setting.

However, we do not use the union consistency either, as it is the case in Dominiak &

Lefort (2015), hence drawing a di↵erence with the existing agreement under ambiguity

literature.

For the second part, properties of the separable under ambiguity securities are applied,

similarly to Chen et al. (2012). We depart, however, in a substantial way in order to

adjust the arguments to the prior by prior updating rule.

1.2.3.2 Results for strategic traders

The main result for strategic traders is Theorem 3.6 and characterises information ag-

gregation in terms of a separable under ambiguity security, dropping the assumption of

myopic trades and assuming that traders are stategic.

The theorem, from an intuitive perspective, states that when a separable under ambigu-

ity security is traded in the market and players are in a pure revision proof equilibrium,

then information gets aggregated. Conversely, when the security is non separable under

ambiguity then there exists a pure revision proof equilibrium at which information does

not get aggregated.

This result extends the result of Ostrovsky (2012) when there is ambiguity over the state

space. It is the complement of the result with myopic traders, as it allows traders to be

strategically large and e↵ect the market with their behavior.

In addition, the strategic result is interesting from a game theoretic point of view. The

MSR game is an extensive form game with incomplete information with infinite horizon.

The literature does not provide an equilibrium concept, similar to Perfect Bayesian

Equilibrium, for such games. We define the Revision Proof equilibrium, Ales & Sleet

(2014), for games of incomplete information and finite horizon.

The proof of the theorem is considerably more complicated and di↵erent compared

to Ostrovsky (2012). The respective arguments of Ostrovsky (2012) are based on the

instant opportunity. In short, this is the action that a myopic trader would play. By

having this concept, the proof is following by exploiting heavily the property that there

is a common prior, hence the instant opportunity of each trader is independent of the

prediction of the previous one.

In our setting such an argument cannot be made. The intuition of our approach can be

described in five steps. The first step is to prove that, for every trader, every continuation

game, on equilibrium path, is non negative. This is concluded by appropriately defining

a deviation strategy which turns out to be a revision that the trader is willing to make,

hence we get a contradiction. The second step is to prove that in the limit traders’

continuation payo↵s are zero. This is proved by using the MSR properties. The third
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step is to prove that in the limit traders are myopic. This is concluded by similar

arguments as the first step. Having that conclusion, in the fourth step, we prove that in

the limit traders agree. Finally, the fifth step is to use the assumption that the security

is separable under ambiguity and hence get the result of information aggregation.

The inverse of the theorem is proved by appropriately defining a revision proof equilib-

rium. We use the fact that the security is non-separable under ambiguity in order to

satisfy the definition of revision proof equilibrium. Then it is shown that information

does not get aggregated on equilibrium, hence concluding.

In addition, two other interesting results are given, in particular Theorem 3.7 and Theo-

rem 3.8. These results are in the same spirit as some of the results in Chen et al. (2010)

and Dimitrov & Sami (2008). In particular, we provide some su�cient conditions which

imply that traders playing in a revision proof equilibrium are essentially myopic on

equilibrium path. In other words, for any player and at any time that she announces

a prediction (i.e. information set), assuming no one deviated before, her equilibrium

prediction is the same as her myopic prediction at that point.

1.3 The experimental literature of information aggrega-

tion

In this section of the thesis we will report a part of the literature of experiments on

information aggregation. We will analyse and report, mostly, the relevant, to our third

chapter, papers.

A large number of experiments have been conducted to measure the e�ciency of in-

formation aggregation in financial markets and prediction markets. Most of them have

studied either double-auctions or parimutuel markets.

In Plott & Sunder (1988) an experimental double-auction is studied in order to test

the theoretical predictions of REE. The results documented in the paper are mixed. In

some treatments the markets do not reach REE, whereas in some other they reach the

equilibrium.

An explanation of the mixed results in Plott & Sunder (1988) was given in Forsythe &

Lundholm (1990). The aim of the paper was to give su�cient conditions that are needed

to be satisfied in order REE market’s model to predict correctly the equilibrium. As it

turned out, common knowledge of payo↵s along with experience are giving a positive

result. That explained the mixed results of Plott & Sunder (1988), as none of these

assumptions was satisfied.
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In Plott et al. (2003) the question of information aggregation is set in the context

of a parimutuel market. The results indicate that the more we are moving to more

complex environments, the less information gets aggregated. Analysing the weak degree

of information aggregation it is concluded that traders are blu�ng and they participate in

a waiting trading behavior, which both a↵ect negatively the aggregation of information.

Our experimental design is also related to Hanson et al. (2006). This paper documents

findings regarding manipulation in prediction markets. The information structure given

in that paper is similar to ours. In fact, the private information is given by letting

traders know, at each round, which state is not realised.

However our work di↵ers in a main dimension from all these studies. They are using

either double auctions or parimutuel markets. On the other hand we use the MSR.

In McKelvey & Page (1990) the theoretical prediction of McKelvey & Page (1986b) are

tested in a market similar to MSR. In fact, the participants are incentivised by using

a proper scoring rule,. This is a communication process very similar to Chen et al.

(2012) and Ostrovsky (2012). The results suggest that there is a clear evidence that

the information is not pooled in the marker, on the contrary of what theory predicts.

However, there is also clear evidence that the public information that is revealed in the

market augment each private information.

Finally, another closely related paper is Jian & Sami (2012). It provides results regarding

information aggregation of the MSR of Hanson (2003), under various hypotheses. For

example, it is tested whether the trading order, the trading mechanism and the signal

distributions a↵ect the e�ciency of information aggregation. They test as well if there

exist evidence for results like Chen et al. (2012) and Dimitrov & Sami (2008). In

particular, it is tested whether the signal structure is related to myopic or blu�ng

trading.

1.4 Our experimental contribution

In this section we will motivate the third chapter of this thesis, positioning it within the

literature of Section 1.3.

1.4.1 Motivation

A key question regarding the design of financial markets is whether they have the ability

to aggregate and reveal dispersed information. In particular, if information is dispersed

among all traders, will their trading behavior lead the market to aggregate information,

pricing the securities as if their information was pooled?
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Prediction markets are an example of financial markets created to take advantage of

the information aggregation property of securities prices. In these markets the various

information pieces of the traders are aggregated in the price, through the buying and

selling order of the traders. Hence price is interpreted as an aggregate statistic. In fact,

it implicitly implies a prediction with regards to a future event.

The are several ways to implement such a market. Among others, double-auctions and

Market Scoring Rules (MSR) are used more and more in practice. Continuous price

auctions are well known markets, in terms of format, hence more familiar to traders.

However, they are complex for the analyst and the traders to understand its dynamics.

However, the MSR are used more and more as an alternative mechanism. Their ad-

vantage over the continuous price auction is that they do not depend highly on market

liquidity (the market maker admits to have bounded losses) and are more easy to anal-

yse them. In addition, they are similar to double-auctions in terms of format, with the

di↵erence that the market maker accepts every bet, without requiring another trader to

accept it.

The particular market implementation of MSR can vary. On the one hand, the most

intuitive is the probability based market, Hanson (2003), Dimitrov & Sami (2008) and

Chen et al. (2010) among others. Traders just announce directly their beliefs regarding

an event. On the other hand it is the security based market Ostrovsky (2012), Chen

et al. (2012), Chapter 2, Chapter 3, among others. Similar to the former format, in

these markets the predictions regarding the value of a specific security are announced.

Our ultimate aim, is to use the controlled environment of the experimental laboratory

to draw conclusion with regards to the security based model.

Under the subjective expected utility assumption for the fundamentals of the security

Ostrovsky (2012) and Chen et al. (2012) defined the class of separable under SEU se-

curities. It was proved that when such securities are traded in the market, information

gets aggregated, even if traders are strategic. By relaxing the assumption of subjective

expected utility and allowing for ambiguity aversion in Chapter 2 and Chapter 3 the

class of separable under ambiguity securities was defined. It was proved that when such

securities are traded in the market then information gets aggregated. It was proved, as

well, that it is not, in general, true, in a setting with ambiguity, that with separable

under SEU securities information gets aggregated.

In fact, Arrow-Debreu securities, which belong to the class of separable under SEU ones,

do not always aggregate information in a setting with ambiguity, as opposed to the case

of subjective expected utility. However, a modification of an Arrow-Debreu security can

aggregate information either with or without the presence of ambiguity.

The main scope of this paper is to experimentally test these theoretical predictions.

In particular, to test the hypothesis that ambiguity a↵ects the degree of information
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aggregation for a separable under SEU security but not for a separable under ambiguity

security.

1.4.2 Results

Two main hypothesis tests are conducted. These tests aim to test the theoretical pre-

diction of the two first chapters the thesis.

Firstly, we are testing the di↵erence, in terms of information aggregation, between a

market without ambiguity and a market with ambiguity when a separable under SEU

security is traded.

Secondly, we are undertaking a similar test but replacing the separable under SEU

security with a separable under ambiguity one.

Chapter 5 concludes in favor of our theoretical results. In particular, as far as the

first hypothesis test is concerned, evidence was given that the degree of information

aggregation is significantly worse in the market with ambiguity. However, when replacing

the separable under SEU security with a separable under ambiguity one evidence was

given that the degree of information aggregation is indistinguishable statistically.

Most results are significant at 5%, hence giving a fairly strong evidence in favor of the

corresponding theoretical results.



Chapter 2

Information Aggregation with

Myopic Traders

This paper studies information aggregation in a dynamic trading model under ambiguity

with finite, partially informed and ambiguity averse traders. Instead of the commonly

used assumption of common prior, here we assume that traders share a common set

of multiple priors. By defining the class of separable under ambiguity securities, we

show that they characterise information aggregation for every set of priors that myopic

traders share. Comparing to the class of separable under SEU securities, which provide

a similar characterisation with the standard subjective expected utility assumptions, our

class is more restrictive and in particular it is included strictly in the class of separable

under SEU securities. In fact, Arrow-Debreu securities do not belong to the class of

separable under ambiguity securities, whereas they are separable under SEU. Hence it is

concluded that information aggregation is not always possible when myopic traders are

ambiguity averse, even if information aggregation is the case under subjective expected

utility assumptions.

2.1 Introduction

A key question regarding the design of financial markets is whether they have the ability

to aggregate and reveal dispersed information. In particular, if information is dispersed

among all traders, will their trading behavior lead the market to aggregate information,

pricing the securities as if their information was pooled?

Having traders fully informed about the price of a security would imply that whenever

the security is mispriced, they would buy or sell it accordingly and hence its price would

move towards the correct one. However, traders are not always fully informed about the

true prices of the securities. In contrast, they are rather partially informed and, even

19
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worse, the complexity of the financial system and the inherent post crisis uncertainty

makes traders ambiguous regarding the true values of the securities.

In other words, traders in many cases believe that the price of a security in the future

will be a certain amount, but the probability that they give for the correct accuracy of

this prediction is a whole set of probabilities P and not unique. For example, consider a

firm investing on a project, whose cash flows depend on the future temperature levels,

and a derivative security paying o↵ in case the price of firm’s stock will go up until a

certain date in the future and paying nothing in case it will go down. However, the

phenomenon of global warming cannot be compared with similar phenomena observed

in previous centuries. Hence the cycles of the temperature di↵er significantly from those

observed in the past. Therefore, one could argue that traders, in addition to their partial

information, cannot quantify the event under consideration with a unique probability

and hence they hold ambiguous beliefs about the true price of the stock.7

In particular, this can be of substantial importance in markets where an asset about a

future uncertain event is traded, as described above. Prediction markets are an exam-

ple of such markets. In prediction markets securities, contingent to a particular future

event, are bought and sold in order to aggregate traders’ information. The type of secu-

rities range from securities regarding financial events to securities regarding geopolitical

and sport events. As the previous example illustrated, and because of the nature of

these markets, the events on which the securities depend are of high uncertainty by

themselves: events about terrorist attacks, geopolitical issues, technological innovations

and environmental issues along with the events about financial issues are inherently

ambiguous.

Many firms have organised internal prediction markets. Google, Ford and General Elec-

tric, HP among others run internal prediction markets as a corporate governance and

predictions tool. In addition, Inkling Markets, Consensus Point, Crowdcast are some of

the public prediction markets.

Therefore, a number of interesting questions arise. What happens in terms of information

aggregation for such markets for ambiguous events? Do the prices of the securities get

priced as if all traders’ information was pooled? Does the aggregation depend on the type

of the security? What new restrictions does ambiguity create to the securities, compared

to the subjective expected utility assumptions, in order information aggregation to be

guaranteed no matter what traders’ beliefs are? The main focus of this paper is to study

and answer these questions for a fairly general class of dynamic markets by defining the

class of securities that aggregate information for myopic traders, relaxing the assumption

of subjective expected utility and allowing for ambiguity aversion. In the standard model

with subjective expected utility and common prior, the class of securities that achieve

7More formally, we could equivalently assume, instead, that because of the huge number of variables
that a↵ect the direction of the stock price and cannot be observed, the probability over the states is
ambiguously determined by a multidimensional Ellsberg urn.
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full information aggregation has been characterised, both in the strategic (Ostrovsky

(2012)) and in the non-strategic case (Chen et al. (2012)). Such securities are called

separable under SEU.

The contribution of this paper is therefore threefold. Firstly, assuming ambiguity means

that many useful properties that are inherent to subjective expected utility, like dynamic

consistency, value of information and unique prior, do not hold. The paper studies

information aggregation in MSR markets when such properties do not hold. The solution

is given by defining a particular class of ”well behaved” securities, namely the separable

under ambiguity securities, and showing that these securities aggregate information for

any set of priors. Secondly, we show that the class of separable under ambiguity securities

is strictly contained in the class of separable under SEU ones, hence implying that

aggregation of information is harder under ambiguity. In fact, among several examples

of separable under SEU securities that do not aggregate information are examples in

which Arrow-Debreu securities do not aggregate information. Finally, the MSR within

subjective expected utility assumptions is essentially the, so called, opinion game and in

Geanakoplos & Polemarchakis (1982) it is proven that in the opinion game finally the

agents agree. We provide here the same result for the opinion game under ambiguity.

There are many approaches to model dynamic markets. The no trade theorems (Milgrom

& Stokey (1982), Sebenius & Geanakoplos (1983)) imply that in dynamic markets, in

which a common prior is assumed, it should exist a source to subsidize trading. This

is the reason why, on the one hand the existence of noise traders is usually assumed in

models of financial markets and on the other hand heterogeneous priors. In this paper

the dynamic market follows the Market Scoring Rule (MSR) of Hanson (2003) and it is

similar to Ostrovsky (2012) and Dimitrov & Sami (2008). Instead of noise traders there

is an automated market maker who admits to have losses. The only di↵erence of our

setup is that instead of a single common prior, traders hold a common set of multiple

priors according to Gilboa & Schmeidler (1989).

The dynamic trading mechanism in our model starts with an initial public announcement

about the value of the security by the market maker, which is done in order to open

the market, and with nature choosing, ambiguously, the true state. Then, each trader

sequentially announces, in public, their predictions and after every announcement all

traders refine their information and beliefs accordingly. The score of each prediction,

interpreted as, the first component of, trader’s per period utility, is calculated after the

whole uncertainty about the true state is revealed and it is based on a strictly proper

scoring rule. In particular, the whole per period utility of a trader is calculated by

subtracting from the score of her prediction the score of the prediction made by the

previous trader. This can be interpreted as if each time traders make a prediction, they

”buy out” the previous one.
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In fact, according to the market mechanism as described, and assuming that traders are

myopic it is implied that a trader announces the price of the security that maximises his

t-period payo↵ which is the expected value of the security according to some posterior

belief, out of the whole set of beliefs, conditioned to the, possibly refined, information

partition.8 Therefore, we can conclude that the trading procedure generalises the com-

munication process of Geanakoplos & Polemarchakis (1982) by allowing traders to hold

many beliefs at each round, due to ambiguity. However, ambiguity aversion complicates

this process considerably, as it implies that each prediction depends on the previous

one. That means, the decision function of each trader is di↵erent and also is, poten-

tially, sensitive to other market specific components. Because of the trader-and-market

specific utility function traders can in principle agree to disagree and not have the same

finest information set that determine their utilities in the sense of Geanakoplos (1995).9

However, at the end, if the announcement of each trader converge to some real number,

then the traders cannot disagree forever.

A natural question that comes out, is why one would want to study information aggre-

gation in MSR type markets under ambiguity? Firstly, the reason is that these type of

markets are becoming more and more popular in real life prediction markets, many of

which we mentioned before. Secondly, even if it appears to lack the process under which

securities are bought and sold, essentially the MSR can be reinterpreted in order to

correspond to the classic approach with an automated market maker who continuously

adjusts the price of the securities as traders buy from and sell to him.10 Thirdly, as it

was mentioned before as one of the main intuitions that this paper contributes to the

existing literature, the Arrow-Debreu securities does not always aggregate information

when the traders are ambiguity averse. However, Arrow-Debreu securities, and other

similar simple securities, are very popular and convenient to use in prediction markets

designed for corporate governance and predictions. Hence, ambiguity might substan-

tially and practically complex or even fail such markets when ambiguity averse traders

are participating.

2.1.1 Literature Review

A lot of work has been evolved related to information aggregation and information

revelation in dynamic markets, with Hayek (1945) to begin with. Grossman (1976)

proved that in equilibrium the price aggregates information. Radner (1979) introduced

the concept of Rational Expectations Equilibrium (REE) and proved that generically

the prices aggregate information dispersed among traders (fully revealing REE). Several

8That is because the market scoring rule is incentive compatible as a static mechanism for myopic
traders.

9However, if we assume the union consistency property for the decisions function we can conclude
that the common information set across traders exists, and we can prove the agreement as well. See the
literature review part for more discussion.

10See in Appendix C for more details.
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results have been proven regarding the convergence in REE in dynamic settings: Hellwig

(1982), Dubey et al. (1987), Wolinsky (1990), Golosov et al. (2014), McKelvey & Page

(1986a), Nielsen et al. (1990), Nielsen (1984) among others.

In Aumann (1976), Geanakoplos & Polemarchakis (1982), Cave (1983), Sebenius &

Geanakoplos (1983), Nielsen (1984), Nielsen et al. (1990) information communication

is studied either in an opinion game and a trading procedure for posterior beliefs or

other aggregate statistics. These papers however do not fully characterise under what

conditions the consensus yields the true posterior or expectation of the security. De-

Marzo & Skiadas (1998), DeMarzo & Skiadas (1999) go beyond the consensus result of

the former papers finding necessary and su�cient condition for information aggregation.

Furthermore, Chen et al. (2012), Ostrovsky (2012) are dealing with information aggre-

gation of myopic and strategic traders, under a similar assumption for the securities as

DeMarzo & Skiadas (1998), DeMarzo & Skiadas (1999), and prove that this assumption

is both necessary and su�cient for information aggregation either for a single security

or when many securities are traded. In Chen et al. (2012), Ostrovsky (2012) the models

are based on MSR 11 and thus their results, even fairly general, are particularly related

to prediction markets as well. Similar approaches can be found in Chen et al. (2010),

Dimitrov & Sami (2008) where the focus is on considering undiscounted games based

on a particular scoring rule, the logarithmic.

In addition, there are several results attempting to study the e↵ect of ambiguity on

information revelation. In particular, Dominiak & Lefort (2015), Dominiak & Lefort

(2013), Carvajal & Correia-da Silva (2010), Kajii & Ui (2005) and Kajii & Ui (2009),

among others, are related mostly to the seminal cannot agreeing on disagree type result

of Aumann (1976). In fact, they study a consensus result in the presence of ambiguity

averse traders (Kajii & Ui (2005), Kajii & Ui (2009)) and Carvajal & Correia-da Silva

(2010) or with CEU and neo-additive capacities (Dominiak & Lefort (2015), Dominiak

& Lefort (2013)). Finally, within a REE setting expanded in order to include prefer-

ences that display ambiguity aversion, the existence and robustness of partially-revealing

rational expectations equilibria (REE) is proved in Condie & Ganguli (2011).

Our contribution on the literature is, therefore, twofold. On the one hand, our result

for myopic trades contributes to the literature of the e↵ect of ambiguity on information

revelation. In fact, we prove that myopic, partially informed ambiguity averse traders

with a common set of priors cannot disagree forever in an MSR market. On the other

hand we contribute to the literature of information aggregation by defining a class of

securities which characterises information aggregation, for both myopic and strategic

traders, in the presence of ambiguity.

11For Ostrovsky (2012) that is true only for the first model.
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2.1.2 Overview

This paper is organized as follows. The next section describes the model. In particular,

in Section 2.1.3 we describe the standard MSR trading model which is the first building

block of our model, in Section 2.1.4 we proceed with the details regarding the particular

ambiguity model and in Section 2.1.5 we describe how ambiguity is applied in the trading

model, and in particular we discuss the decision function for myopic traders. In Section

2.2 the notion of information aggregation is defined and in Section 2.3 we define the class

of separable under ambiguity securities. In Section 2.4 the main result is mentioned.

Finally we conclude in the last section. All proofs are included in Appendix A.

2.1.3 Trading Environment

The state space is assumed to be finite, denoted as ⌦ = {!
1

, ...,!l}. We assume the

powerset P(⌦) to be the sigma-algebra over the state space. We define the order with

respect to which the finite number of traders will participate in the market, call it O, as

the one to one and onto function O : {T } �! {1, ..., n}, from the set of traders to the

set {1, ..., n}. Denote the information structure under ordering O by ⇧
1

, ...,⇧n, hence

the ⇧i partition is of the O�1(i) trader, assuming that the join of all agents’ partitions

to be singleton. The security is defined as a measurable function X : ⌦ �! R and the

traders are risk neutral. We restrict attention, from here and onwards, to continuous

strictly proper scoring rules s and we assume that all predictions belong to the set

Y = [min
!2⌦

X(!),max
!2⌦

X(!)].

With the MSR, the trading starts with the market maker’s (MM) initial public an-

nouncement, about the real value of the security. Then, the first trader makes his own

prediction, which is, in turn, publicly announced. Similarly, the second player, who

observes the previous prediction, further modifies it by making his own, and so on until

the last player, after which the first player can again modify the prediction, and the

whole cycle repeats an infinite number of times.12

The infinite number of trading rounds does not mean that the trade never ends. Fol-

lowing Ostrovsky (2012), the infinite time periods that the market is open is, in fact,

a discretisation of the interval [0,1] i.e. 0 < t
1

< ... < tn < ... < t1 = 1, where in

period t1 the real value of the security is revealed and each prediction is evaluated

according to the strictly proper scoring rule s. More formally, a proper scoring rule

is defined as a function s(y,X(!)), with X(!) being the value of the random variable

X when the state is ! and y being the prediction. In addition, if there is a common

12As it will be formally more clear in Section 2.1.5, we use the notation for the order, because the MSR
is a sequential market, and ambiguity makes sensitive each prediction to the prediction of the previous
trader. Hence by using such a notation we make our results robust against that sensitivity.
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prior p, for every random variable X the expectation of s over the state space is max-

imised for y = Ep[X]. If the maximising value is unique, then it is called strictly proper

scoring rule. Examples of strictly proper scoring rules that are, in addition, continuous

are the quadratic and the logarithmic scoring rule, given by s(y, x) = �(x � y)2 and

s(y, x) = (x�a)ln(y�a)+(b�x)ln(b�y) with a < min
!2⌦

X(!), b > max
!2⌦

X(!), respectively,

(Ostrovsky (2012)).

In particular, assume that at some time t⇤ > 1 the true value X(!⇤) is revealed. Then,

the payo↵ of the trader from changing the prediction from yt�1

to yt, is of the form

�t(s(yt, X(!⇤)) � s(yt�1

, X(!⇤))), with � 2 (0, 1). Reinterpreting it, the player ”buys

out” the previous player’s prediction.

The setting, as described, is assumed common knowledge among the traders.

2.1.4 Ambiguity

While in the previous section we illustrated the general trading environment, which

is similar to the subjective expected utility case, here we give details about our main

feature of the model, which is introducing ambiguity.

A widely used way to model subjective uncertainty in economics is to use the theory of

subjective expected utility. Intuitively, an implication of such a perspective is that the

decision maker quantify with a single probability the uncertain event under considera-

tion. However, if the decision maker has imprecise knowledge of the uncertainty of the

event then his beliefs are better represented by a set of probabilities rather than a unique

one. An ambiguity averse decision maker adjusts his choice on the side of pessimism or

optimism in response to his imprecise knowledge of the uncertainty.

In this thesis agents are assumed to have ambiguity averse preferences according to

Gilboa & Schmeidler (1989) model. Therefore we assume the set of multiple priors to be

a convex and closed subset P ✓ �(⌦), common among traders, and endowed with the

weak* topology on �(⌦) (with ��algebra as specified before). Intuitively, under that

definition of ambiguity traders are having a more uncertainty that a single probability

could quantify and they optimise their behavior by considering the worst scenario under

the set of priors.

For any set of priors Q over any finite state space S, we define
S

q2Q Supp(q) = {s 2 S :

q(s) > 0 for some q 2 Q}.

Given that, in our setting we consider as states that are possible to be realised the states

of ⌦ for which there is assigned strictly positive probability for some p 2 P . Formally,

this is the subset {! 2 ⌦ : p(!) > 0 for some p 2 P} =
S

p2P Supp(p).
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2.1.5 Myopic Traders

This part is about defining formally the optimisation problems that myopic traders face.

In particular,we give details about what we mean by myopic traders and analyse their

decision function.

Let a compact and convex set of priors P over the state space ⌦, and !⇤, for which

there exists p 2 P with p(!?) > 0, to be the realised state. Consider a player i who

trades at periods ti+nk, with k 2 N, given a strictly proper scoring rule s, MM’s initial

announcement y
0

and an ordering O. A myopic strategy of the player is a sequence

yi = (yi+nk)k2N, where yi+nk : ⇧i ⇥ Y �! Y is a measurable function, for every k 2 N.

Define the set

F
1

(!⇤, y
0

) = {!0 2 F
0

(!⇤) : y
1

(⇧
1

(!
0
), y

0

) = y
1

(⇧
1

(!⇤), y
0

)}

where F
0

(!⇤) = {! 2 ⌦ : p(!) > 0 for some p 2 P}. This set can be interpreted

as the information available to a fictitious observer who holds no private information,

after the first prediction y
1

. Hence every trader i can refine her own information as

F
1

(!⇤, y
0

) \⇧i(!⇤).

Then y
2

becomes now public and the whole process is repeated for every time step t,

with traders taking turns revising their predictions.

Formalising the previous reasoning, the public information, when changing the prediction

from yi+nk to yi+1+nk, for every i, every state !⇤ that can be realised and every round

k 2 N, is given by

Fi+1+nk(!
⇤, yi+nk) = {!0 2 Fi+nk(!

⇤) : yi+1+nk(⇧i+1

(!
0
), yi+nk) = yi+1+nk(⇧i+1

(!⇤), yi+nk)}

and the corresponding private information for trader i + 2 is Fi+1+nk(!⇤, yi+nk) \
⇧i+2

(!⇤).

We define a sequence of beliefs (Pi+kn)k2N, with P
0

= P, as the beliefs of i at round k.

Definition 2.1. We define (y, (Pi+kn)i2{1,...,n},k2N), y = (y
1

, ..., yn), to be a myopic

equilibrium if for every i = 1, ..., n and every k 2 N:

(i) yi+nk(⇧i(!), yi�1+nk) = dP(⇧i(!) \ Fi�1+nk(!, yi�2+nk), yi�1+nk) =

argmax
y2Y

min
p2P

Ep|⇧i(!)\Fi�1+nk(!,yi�2+nk)

⇥
s(y,X)� s(yi�1+nk, X)

⇤
for every ! with p(!) > 0

for some p 2 P.

(ii) For every ! 2 ⌦ and for every i = 1, ..., n: there exists p
0 2 P with p

0
(⇧i(!) \

Fi�1+nk(!, yi�2+nk) > 0 if and only if for every p 2 P it is p(⇧i(!)\Fi�1+nk(!, yi�2+nk)) >

0 and i updates every prior using Bayes rule.
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We can observe that Definition 2.1 (ii), implies that the beliefs of the traders at a myopic

equilibrium are given by prior by prior updating.

Definition 2.2. A player i is myopic, if for every k 2 N it holds that yi+nk(⇧i(!⇤, yi�1

) =

dP(⇧i(!⇤) \ Fi+nk(!⇤, yi�1+nk), yi+nk), by using prior by prior updating.

From now on, when we will say that traders are myopic on a specific path or for some

specific prediction, it will be shown (or will be obvious) that prior by prior updating is

applicable wherever is needed.

In addition, in order to keep notation as simple as possible, we say that all players are

myopic, we mean that they are in a myopic equilibrium. The details of the myopic

equilibrium will be obvious form the context or explicitly specified, otherwise.

Consider a security and an information structure of the traders. Given a strictly proper

scoring rule s, an initial announcement of the MM y
0

and an ordering of traders O, we

define the set As,y0,O = {P ✓ �(⌦) : (y, (Pi+kn)i2{1,...,n},k2N) is a myopic equilibrium }.
We call that property regularity.13

We need to prove that the function dP of Definition 2.1 (i) is, indeed, well defined. We

provide below Lemma 2.3 which shows, firstly, that this is a function and, secondly, it

provides its general functional form. Note that for P = {p} we get exactly the decision

function in the subjective expected utility case (i.e. Ostrovsky (2012) and Chen et al.

(2012)).14,15

Lemma 2.3. Let s be a continuous strictly proper scoring rule on Y = [a, b], a, b 2 R.
Then, argmaxy2Y minp2PEp

⇥
s(y,X) � s(z,X)

⇤
exists, is a singleton and is equal to

the expectation of X with respect to some p 2 argminp2Pmaxy2Y Ep

⇥
s(y,X)� s(z,X)

⇤

(which might not be singleton). In particular, the unique solution to the optimisation

problem is of the form y = Ep[X], for some p 2 P.

The proof of the Lemma 2.3 can be found in Appendix A.

It is important to highlight that the dependence of the decision function in the previous

announcement, makes the myopic behavior more complex than myopic behavior under

SEU. In particular, the myopic behavior of the previous a↵ects the one of the next

player.

13We can observe that not for any set of priors a myopic equilibrium exists. For example take the
quadratic scoring rule, the information partition P1 = {{!1,!2}, {!3}} and P2 = {{!1,!3}, {!2}}, the
security X(!1) = X(!2) = 1, X(!3) = 0, the initial announcement to be y0 = 0 and the set of priors

P = conv{p1, p2} with p1 = (0,
1
3
,
1
3
,
1
3
), p2 = (

1
4
,
1
4
,
1
4
,
1
4
).

14
Lemma 2.3 is related to a result in Chambers (2008). The proofs are closely related, too.

15It is straightforward to observe that for Q = {q = p(.|⇧i(!) \ A) : p 2 P} it is dP(⇧i(!) \ A, z) =
dQ(⌦, z) = argmax

y2Y
min
q2Q

Eq

⇥
s(y,X)� s(z,X)

⇤
, where A ✓ ⌦. This explains why Lemma 2.3 refers to the

myopic decision function in the dynamic setting.
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2.2 Information Aggregation

In this part of the paper we formally define the concept of information aggregation.

In addition we compare it with the respective definition given in Ostrovsky (2012) and

Chen et al. (2012).

Definition 2.4. Information gets aggregated with respect to security X, information

partition ⇧, strictly proper scoring rule s, initial announcement y
0

, order of traders O,

and P 2 As,y0,O if the sequence of myopic predictions y
1

, ..., yk, ... converges to the true

value of the security, and the set of states that this does not hold is of zero probability

for all priors in P.

The definitions that were provided in Chen et al. (2012) and Ostrovsky (2012) were

similarly stated. However, their definition tries to accommodate mixed strategies, which

is not the case with our definition. In addition, in our setting we have a compact and

convex set of priors that, in general, is not singleton. That is the reason why we should

impose the regularity property as well.

2.3 Separability Under Ambiguity

The topic of this section is to give the properties needed to be satisfied by the securities

in order to be able to characterise information aggregation for every set of priors. The

condition is motivated by the example below.

The notion of separability under SEU, as given under subjective expected utility as-

sumptions, Chen et al. (2012) and Ostrovsky (2012), does fit in naturally, in our setting.

In particular, their definition takes the following form:

Definition 2.5. A security X is called non-separable under SEU under partition struc-

ture ⇧ if there exists p and v such that:

(i) X is not constant at {! 2 ⌦ : p(!) > 0}.

(ii) For every i = 1, ..., n and !, with p(!) > 0, it is Ep[X|⇧i(!)] = v.

We can observe that separability under SEU is a property given the security and the

information structure. Hence has nothing to do with ambiguity aversion per se.

However, this concept of separable under SEU securities is not enough to guarantee

information aggregation for every set of priors for ambiguity averse traders, when all

traders are myopic, as the following example shows.
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Example:

Consider two traders, their information partitions ⇧
1

= {{!
1

,!
2

}, {!
3

,!
4

}}, ⇧
2

=

{{!
1

,!
3

}, {!
2

,!
4

}} and the common set of priors to be P = conv{p1, p2} with p1 =

(0,
1

3
,
1

3
,
1

3
), p2 = (

1

4
,
1

4
,
1

4
,
1

4
). In addition we assume an Arrow-Debreu security with

X(!
1

) = 1, X(!
2

) = X(!
3

) = X(!
4

) = 0 and we consider the quadratic scoring rule

which gives to a prediction y, given the realisation of the random variable is x⇤, the

score s(y, x⇤) = �(y � x⇤)2.

Let the initial price of the security is y
0

= 0, set by the market maker. Assuming

the realised state to be !
1

, the correct price to be inferred is X(!
1

) = 1. Trader

1, having received a private signal according to its information partition, maximises

myopically, her utility. In fact, min
p2P

Ep|{!1,!2}[s(Ep|{!1,!2}[X], X(!)) � s(0, X(!))] =

min
p2P

[(
p(!

1

)

p({!
1

,!
2

}))
2(2� p(!

1

)

p({!
1

,!
2

}) �
p(!

2

)

p({!
1

,!
2

}))] = min
p2P

(
p(!

1

)

p({!
1

,!
2

}))
2. We then con-

clude that the solution is a probability measure that gives p(!
1

) = 0. Therefore, the

prediction of the trader 1 would be y
1

= 0. We can observe that this would be the

prediction of trader 1 in case her private signal was {!
3

,!
4

}, too.16

From trader’s 2 point of view, she does not get more information than her private signal

itself. In particular, her reasoning is as follows: if trader 1 was at {!
1

,!
2

} she indeed

would give y
1

= 0. If, on the other hand, trader 1 was at {!
3

,!
4

} then she would,

as well, give y
1

= 0. Therefore, we can conclude that trader 2 cannot obtain a finer

partition than her private signal {!
1

,!
3

}.

Based on that, trader 2 maximises, myopically, her utility. Similarly to trader 1, it is

min
p2P

Ep|{!1,!3}[s(Ep|{!1,!3}[X], X(!))�s(0, X(!))] = min
p2P

[(
p(!

1

)

p({!
1

,!
3

}))
2(2� p(!

1

)

p({!
1

,!
3

})�
p(!

3

)

p({!
1

,!
3

}))] = min
p2P

(
p(!

1

)

p({!
1

,!
3

}))
2. The solution is again , therefore, a probability mea-

sure with p(!
1

) = 0. Hence trader’s 2 prediction is y
2

= 0.

After the announcement of y
2

, trader 1 would reason that either trader 2 being at

{!
1

,!
3

} or {!
2

,!
4

}, she would predict y
2

= 0.

Finally, no trader strictly refines her initial signal at any round (which implies as well

that the regularity assumption is satisfied), therefore everyone keeps saying 0 at any

round, but the true value is 1 and hence there is no information aggregation, although

they could aggregate their information, by pooling their information partitions at state

A and realise the true price.17

In fact, the expression ”no trader strictly refines her initial signal at any round” means

that both keep believing that both states of their private information can be realised

16The argument is based on Lemma 2.3. According to it, if we find a solution p⇤ to the ”minmax”,
then we get the solution of the ”maxmin” optimisation problem as y⇤ = Ep⇤ [X].

17In Appendix B there are various examples of separable under SEU securities that are not separable
under ambiguity.
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(they keep believing that because there is at least one probability that assigns to both

states strictly positive likelihood).

In particular, this example illustrates that an Arrow-Debreu security might fail to aggre-

gate information for ambiguity averse myopic traders. In addition, although the details

are part of the following chapter, the myopic equilibrium in the previous example is a

strategic equilibrium, hence concluding that in a market with an Arrow-Debreu security

information does not get aggregated even if traders are strategic.18

Therefore, a di↵erent concept of ambiguity-related separability property is needed. In-

deed, we suggest a strengthening of the concept of separable under SEU which turns

out to be appropriate to characterise information aggregation for every set of priors for

the dynamic market we described.

In fact, the new notion of separability that we suggest tries to leave out of its class all

the securities that does not reveal information when some trader is more informed, as

in the example before.

We follow Ostrovsky (2012) and define non-separability under ambiguity, as its definition

can be interpreted more easily than the definition of separability under ambiguity.

Definition 2.6. A security X is called non-separable under ambiguity under partition

structure ⇧ and proper scoring rule s if there exists an ordering of traders O, a set

P ✓ �(⌦), which is convex compact and mutually absolute continuous with respect to

⇧i for every i = 1, ..., n 19 , and v such that:

(i) X is not constant at {! 2 ⌦ : there exists p 2 P with p(!) > 0}

(ii) For every i = 1, ..., n it is dP(⇧i(!), v) = v for every !, such that there exists p 2 P
with p(!) > 0.

A way to interpret the concept of separability under ambiguity is thinking of it as the

property that allows in its class only those non-informative securities that turn out to

be the trivial ones at
S
p2P

Supp(p), in case no information is communicated. Relating

the definition to the previous example, we can observe that the provided Arrow-Debreu

security is not separable under ambiguity under the given information partition structure

and quadratic proper scoring rule, as long as for the priors and ordering given in the

example, and for v = 0, condition (ii) in the definition is satisfied for all states, but

18When we are saying here strategic equilibrium, we mean the revision proof equilibrium of Definition
3.3. The arguments to conclude that it is indeed a revision proof equilibrium are the same as given in
the proof of Theorem 3.6 (ii), in Appendix B, for v = 0.

19We define it as follows: for every i = 1, ..., n and every ! 2 ⌦ it holds that, there exists p
0
2 P

with p
0
(⇧i(!)) > 0 if and only if p(⇧i(!)) > 0 for every p 2 P. We can observe that the concept of

mutual absolute continuity is something thats depends on the given partitions, not on whether traders
are myopic or more sophisticated (i.e. strategic).
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while !
1

can happen with strictly positive probability for some prior and X(!
1

) = 1

while in the other states it is zero, we have that the security is not constant.

In addition, compared to the definition of separable under SEU, as given in Ostrovsky

(2012) and Chen et al. (2012), we can observe that under subjective expected utility

assumptions due to linearity of the function dP(.) the definition is considerably simpler,

without depending on the proper scoring rule or the order of the traders and the function

dP is simplified by an expectation. In addition, if the security is non-separable under

SEU then for P = {p} and any ordering of the traders, it is implied that it is non-

separable under ambiguity as well. That means, the notion of non-separability under

ambiguity leaves out more securities, hence separable under ambiguity is stronger than

separable under SEU.

The class of separable under ambiguity securities is not only contained in the class of

separable under SEU securities (under the same information structure, given a proper

scoring rule), but also the inclusion is strict. This is implied by the example provided

above.20 Finally, we can notice that the class of separable under ambiguity securities

is non empty, because the constant security is always separable under ambiguity. In

addition, an example of a non trivial security which is as simple as Arrow-Debreu whereas

belonging to the class of separable under ambiguity securities is the security defined on

the state space ⌦ = {!
1

,!
2

,!
3

} as X(!
1

) = X(!
2

) = 1, X(!
3

) = 0 under the partition

structure ⇧
1

= {{!
1

,!
2

}, {!
3

, }},⇧
2

= {{!
1

,!
3

}, {!
2

}} and every continuous proper

scoring rule.

2.4 Main Result

In this section, we state our main results. Our main result characterises the properties

of the securities for which information is aggregated in a market populated by myopic

traders.

Theorem 2.7. Consider the dynamic market described above and let security X, all

traders be myopic with signal structure ⇧ and a strictly proper scoring rule s. Informa-

tion is aggregated for every initial announcement v
0

, O and P 2 As,v0,O if and only if

X is separable under ambiguity.

The proof of the Theorem 2.7 can be found in Appendix A.

In order to prove these two results a crucial lemma is needed. Lemma 2.8 adapts the

results of Geanakoplos & Polemarchakis (1982) and some results of Geanakoplos (1995)

to the setting with ambiguity averse and myopic traders.

20Notice that when the set of priors is singleton then the ordering of traders can be ignored and the
condition about the positive likelihood for every partition cell is satisfied trivially. Therefore, there is
not confusion in comparing the two classes of securities.
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Lemma 2.8. Consider the dynamic market described above, a security X and all traders

be myopic with signal structure ⇧ who are ambiguity averse. In addition, let a strictly

proper scoring rule s, initial announcement y
0

, O ordering of traders and the common

set of priors P 2 As,y0,O. Then the following are true:

(i) For every state that can be realised, the public information Ft(!, yt�1

) will not be

strictly refined from some t? and onwards. Given t?, the corresponding round is T ? =

min{t � t? : t mod n = 1}.

(ii) At each round, after the round (T ? mod n)+2, the myopic predictions of the traders

are constants, v
1

2 R, ..., vn 2 R respectively.

(iii) The traders reach an agreement, hence v
1

= ... = vn.

The proof of the Theorem 2.8 can be found in Appendix A.

This is essentially a generalisation of reaching a consensus of Geanakoplos & Polemar-

chakis (1982), Cave (1983) and Bacharach (1985) and it is, in particular, related to the

theorem about negation of asymmetric information in Geanakoplos (1995). It states

that under any true state and in some finite steps the true state’s information cell of

the agents will reach its finest form. However, even though the traders can arrive at the

common knowledge event, this does not imply that the traders, directly, agree on their

predictions. They might even change their own prediction as well, depending on what

is the previous prediction made. However, finally they will reach a consensus.

Intuitively, the di↵erence between sequential announcements, among ambiguity averse

traders, and the classic results in Geanakoplos & Polemarchakis (1982), Geanakoplos

(1995) and in Sebenius & Geanakoplos (1983) is implied by the di↵erences of their

decision functions: in our setting decision functions are not just di↵erent across traders

-this can be the case in Geanakoplos (1995), as well- but also they depend both on

private information and in the announcement of the previous trader.

Having Lemma 2.8, the intuition of the proof for Theorem 2.7 can be thought of as

consisting of two steps. Firstly, in finite rounds the information communication will

stop and hence the agreement will be reached. Secondly, we will use that given the

separability under ambiguity property of the security, this can happen only when the

security is constant in all the remaining states. Finally, we conclude, using properties of

the decision rule, that information gets aggregated.

2.5 Concluding remarks

This paper examines a dynamic market, based on MSR, with ambiguity averse traders,

in terms of information aggregation. Using Gilboa & Schmeidler (1989) MMEU the
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results indicate that trading particular classes of securities, among them are the Arrow-

Debreu securities, do not always aggregate information. Compared to similar results

under subjective expected utility assumptions, this result is new and indicates that

ambiguity creates issues in these markets.

The property of separable under ambiguity securities is easy to check, hence the results

can be tested in the experimental lab in order to confirm whether information aggrega-

tion abnormalities are indeed the case under ambiguity aversion. Taking into account

the wide range of applications of prediction markets, both the intuition of the paper and

an experimental test of them would be of substantial interest for practical purposes.

Finally, the paper leaves open some interesting questions. Is this class of securities strat-

egy proof ? What happens when new traders starts trading entering the market? If the

turn that traders predict in the market is random, does it a↵ect how information gets

aggregated ?





Chapter 3

Information Aggregation with

Strategic Traders

This paper studies information aggregation in a dynamic trading model under ambiguity

with finite, partially informed and ambiguity averse strategic traders. Instead of the

commonly used assumption of common prior over the state space, here we assume that

traders share a common set of multiple priors. We use as equilibrium the concept of

revision proof equilibrium and we prove that under a converging assumption about the

strategy profiles and restricting to pure equilibria, information gets aggregated in every

such equilibrium when the securities are separable under ambiguity. Comparing to the

class of securities that provides a similar characterisation with the standard subjective

expected utility assumptions, namely the separable under SEU securities, the new class

of securities turns out to be more restrictive and in particular, it is included in the class

of separable under SEU ones. In fact, Arrow-Debreu securities do not belong to the class

of separable under ambiguity securities, whereas they are separable under SEU. Hence

it is concluded that information aggregation for strategic traders is not always possible

under ambiguity aversion, even if information aggregation is the case under subjective

expected utility assumptions.

3.1 Introduction

Information aggregation is a crucial property of financial markets. The extent to which

it holds depends on several parameters, and of course on the strategic behaviour and

rationality of the traders.

In the context of a fairly general class of dynamic markets, in particular the Market

Scoring Rule (MSR), the answer is a�rmative, Ostrovsky (2012). However, this is

restricted by the the assumption of subjective expected utility and the assumption of a

35
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common and unique prior. However, ambiguity is inherent in these markets and hence

a similar question was posed and answered, partially, in Chapter 2. In particular, it

was restricted in the context of Gilboa & Schmeidler (1989) model of ambiguity and of

traders without strategic considerations.

In particular, the crucial question of examining whether the class of separable under

ambiguity securities, as defined in Chapter 2, is strategy proof is still not answered. For

separable securities under SEU that property holds, and in this chapter we are going to

look towards deriving a similar result for the separable under ambiguity securities.

In Appendix B several examples are given illustrating that there are separable under

SEU securities which when traded in a market, populated by myopic traders, information

does not get aggregated. Using a particular equilibrium concept, we can see that the

myopic behavior in those examples is, in fact, an equilibrium. In other words, we can

conclude that when traders are strategic there exist separable under SEU securities that

do not aggregate information. Among others, an example of a separable under SEU

security with that property is the Arrow-Debreu security.

Furthermore, there is a lot of debate whether in prediction markets traders are myopic

or strategic and therefore being the set of separable under ambiguity securities strategy

proof has strong implication for the accuracy of these markets.

The first contribution of that chapter is to provide such a result. Intuitively, our result

states that in Market Scoring Rule (MSR) markets with separable under ambiguity

securities information gets aggregated, in pure converging strategies.

The compelling part of providing such a result in a setting under ambiguity is that in

an extensive form game, which is the case for prediction markets, it is implied that

time inconsistent decision should be taken, due the violation of dynamic consistency.

This is because we assume Bayesian updating prior by prior. That makes considerably

more complex to analyse a game. In particular, among others, two intuitive equilibrium

concepts exist to model such a strategic interaction. The most widely used is the consis-

tent planning approach, according to which each player optimises given both the other

players’ strategies and the future actions of her. An interpretation of such a concept

is to consider the future actions of each player as di↵erent selves of the same player.

The second one is the naive way which lets the decision maker to optimise the current

payo↵ knowing that the actions might change in the next period. Finally, by providing

an equilibrium concept for infinite incomplete information games under ambiguity is a

second crucial contribution of our paper.

Consistent planning has been behaviorally characterised in Siniscalchi (2006) and is

dominant in applications. However, it allows to optimise for one period deviations,

leaving in that way a lot of deviation strategies without consideration. In particular,

given a consistent planning equilibrium, it might be the case that there is an alternative
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strategy profile for a trader which, by changing her future actions, and not only current

period’s, can provide weakly better payo↵ to every future player’s self, and strictly better

payo↵ for at least one future self. In other words, there might be a profitable revision

for the player, and her future selves, to make. In fact, we define an equilibrium concept

in which these revision are taken into account. In the complete information setup this

equilibrium was analysed in Ales & Sleet (2014) and here we suggest a generalisation of

the concept for settings with incomplete information.

A crucial issue with the incomplete information version of that equilibrium concept

is how the beliefs should be updated especially at o↵ equilibrium information sets. In

particular, on the path of a revision proof equilibrium the beliefs are updated with Bayes

rule prior by prior. In the same spirit, when a player finds herself in an information set

o↵ equilibrium path then we assume that beliefs are updated prior by prior whenever

possible. Essentially, we follow Fudenberg & Tirole (1991) in order to address this issue.

In contrast to Ostrovsky (2012), for our result to hold, the o↵ equilibrium beliefs are

crucial in order to prove the result and this is because of the lack of properties of the

myopic decision function under ambiguity.

Therefore, the main contributions of this paper are two. On the one hand, we suggest as

equilibrium concept the revision proof equilibrium generalising it for incomplete infor-

mation and infinite horizon games and restricting minimally the beliefs at o↵ equilibrium

information sets. We then apply this concept in order to prove the strategy proofness

property of the separable under ambiguity class of securities, which is the main result

of the paper.

The perspective that we take in this paper is to apply the equilibrium concept in the

MSR game in order to study if information gets aggregated.

3.1.1 Literature Review

The literature of games under ambiguity can be thought as being divided in two parts.

The first one consists of papers that are studying ambiguity about opponents’ strategies

or in other words about strategic ambiguity. The second one is games with ambiguity

regarding the states of the world, namely environmental ambiguity. This paper belongs

to the second class of papers.

The literature of dynamic games under ambiguity is fast growing as these structures

are met in many economic applications. In particular, in Bose & Renou (2011) Bose

& Daripa (2009) the e↵ect of ambiguity aversion is studied in a mechanism design

framework. The games in these papers are similar to the one it his paper but having

finite time periods. The notion of equilibrium used is the consistent planning equilibrium

with leaving unconstrained the o↵ equilibrium beliefs, which is more similar to the
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Weak Perfect Bayesian Equilibrium and not Perfect Bayesian Equibrium. A similar

equilibrium concept is used in Mele & Sangiorgi (2015).

In Hanany et al. (n.d.) a more abstract approach is taken. The paper suggests two

equilibrium concepts, namely Sequential Equilibrium with Ambiguity and Perfect Equi-

librium with Ambiguity and proves some existence results. The existence refers to finite

horizon. These equilibrium concepts are defined to have a component of sequential ra-

tionality (as in the standard subjective expected utility case) and a second component

that involves the way that the beliefs are updated. The latter uses the results of Hanany

& Klibano↵ (2009) in order dynamic consistency to hold and therefore the sequential

rationality to be well defined. As a result of the updating rule, it is proved that the

rationality component is equivalent to the one-shot-deviation principle, relating in that

sense to the consistent planning equilibrium as well.

Furthermore, dynamic games are studied as well in Eichberger & Kelsey (2004) and

Dominiak & Lee (n.d.) and their applications to signaling game. The models in these

papers allow for both environmental and strategic ambiguity and one novelty of their

paper is that the DempsterShafer updating rule, which they suggest, can be used to

update the beliefs even after deviations.

Some additional papers that have analyzed incomplete information games with ambi-

guity sensitive preferences are Kellner & Thordal-Le Quement (n.d.), Wolitzky (2014),

Azrieli & Teper (2011), Battigalli et al. (2015), Lopomo et al. (2009) and Sass 2013.

3.1.2 Overview

The paper is organised as follows. In Section 3.2 we are referring to the details of the

trading model and the details about the introduction of ambiguity. In Section 3.2.1 we

provide the details of the equilibrium concept, in Section 3.3 the notion of information

aggregation and in Section 3.4 the properties of the new class of securities. Finally in

Section 3.5 we provide our main result. All proofs are contained in Appendix C and

Appendix D.

3.2 Model

The model and the setting of this Chapter is the same with the one of Chapter 2. In

particular, the trading environment is as in Section 2.1.3. The ambiguity and the myopic

behavior are the same as defined in Section 2.1.4 and Section 2.1.5 respectively.
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3.2.1 Equilibrium Concept

This part is about defining formally the optimisation problems that strategic traders

face. In particular, firstly, we give details about the decision function of myopic traders.

Then, we define the equilibrium concept for the strategic traders.

3.2.1.1 Equilibrium

In this part of the paper the concept of equilibrium is discussed. Before we proceed with

the details it is crucial to highlight here a considerable di↵erence between Ostrovsky

(2012) and our setting, regarding the information aggregation of strategic players. As

it will be obvious in the proof of Theorem 3.6, when players are ambiguity averse then

the o↵ equilibrium behavior is important, as opposed to the setting under subjective

expected utility assumptions. The reason for that is, on the one hand, the dependence of

the decision function on the previous announcement, as it was highlighted in subsection

?? and, on the other hand, because dynamic consistency in Ostrovsky (2012) allows

to check for deviation with all strategies in every continuation game (i.e. sequential

rationality). Therefore on equilibrium path arguments like in Ostrovsky (2012) cannot

be applied.

We begin first by defining the game and the notation that will be used latter. Next, we

define the equilibrium concept that is used for the main result of the paper.

Consider a player i who trades at periods ti+nk, with k 2 N, given a strictly proper

scoring rule s, MM’s initial announcement y
0

, an ordering O and a initial set of priors

P 2 As,y0,O. A pure strategy of the player is a sequence yi = (yi+nk)k2N, where yi+nk :

⇧i ⇥ Y i�1+nk �! Y is a measurable function, for every k 2 N. Therefore, strategies

depend on the element of partition and on the history of predictions until time ti�1+nk

(i.e. previous prediction).

We denote by H i�1+nt(!) the information set of player i which is met when the realised

state is ! and the history is H i�1+nt. In particular:

H i�1+nt(!) = {(H i�1+nt,!
0
) : !

0 2 ⇧i(!)}.

Therefore, the set of priors corresponding to that information set are essentially a set of

priors over the ⇧i(!).21

For two historiesHn = (y
1

, ..., yn) andHm = (y
0
1

, ..., y
0
m) we denoteH[H 0

= (y
1

, ..., yn, y
0
1

, ..., y
0
m) =

Hn+m, meaning the whole history consisted of the two components. In particular, the

indices n and m are denoting the actions, y
1

, ..., yn and y
0
1

, ..., y
0
m included in each his-

tory respectively. By H i�1+nk [H i�1+nk
i�1+nt (y(!)), for some H i�1+nk 2 Y i�1+nk, we mean

21We will explicitly define the properties of the set of priors in Definition 3.3.
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the history, from (i � 1 + nt)-th until (i � 1 + nk)-th announcement (excluding the

(i� 1 + nt)-th announcement), created by the profile strategy y when the true state is

! and given H i�1+nk. In addition, it is H [ Ht
t = H for every t 2 N and history H.

When the starting point for the history is the announcement of the market maker we

just write H i�1+nk(y(!)). Finally, denote by H = {H 2 Y m : m 2 N} the set of all

histories. Hence H(!) the set of information sets when the realised state is !.

Furthermore, we denote

FHi�1+nk
t0

(y(!)) = {!0 2 ⇧i(!) : H
i�1+nk
t0

(y(!)) = H i�1+nk
t0

(y(!
0
))}

with t
0

2 N, t
0

 i� 1 + nk and given some history until t
0

. This can be interpreted as

the public information created, given the history until t
0

, by following strategy’s path

from time t
0

until ti�1+nk, when the realised state is !. Given a set of priors P then by

P|E is the set of prior by prior conditional priors conditional on the event E, assuming

that every two priors in the set P are mutually absolute continuous with respect to E.

The equilibrium concept that is used is related to revision-proof equilibrium of Ales &

Sleet (2014). Due to time inconsistency of agents’ preferences through out the time

horizon (which applies to our setting because of the potential failure of dynamic con-

sistency) a usual approach in the literature is to use the consistent planning approach.

The idea behind the revision-proof equilibrium is to strengthen the concept of consistent

planning in order to exclude some implausible equilibria. For example, it is plausible

the consistent planning equilibrium to be such that there is no player, realised state, an

alternative strategy for the player and a history such that every player’s ”self” after that

history is weakly better payo↵ and strictly better at least one time. This is essentially

defined as the revision-proof property.

However, in Ales & Sleet (2014) revision proof equilibrium is referred to complete in-

formation setting, hence for our purposes we need to generalise this concept for in-

complete information. Following the idea of Perfect Bayesian Equilibrium, the equi-

librium will be an assessment (y⇤,P), where the y⇤ is the strategy profile and the

P = (PH(!))!2⌦,H(!)2H(!) a system of convex and compact set of priors for each in-

formation set. In short, instead of the idea of ”sequential rationality” here we have the

revision proof concept, with the expectation of the continuation games being based on

the MMEU. In addition to that, we will assume that the beliefs are updated prior by

prior whenever possible. In particular the definition of the equilibrium concept is given

below in Definition 3.3.

Firstly, we will give the definition of consistent planning equilibirum, that is often met

in the literature, and elaborating on some issues regarding that concept in our setting,

we then define our main equilibrium concept. In the formulation of the following defi-

nition we are based on the the definition of sub game perfection of Ales & Sleet (2014),

generalising it for incomplete information. In the formulation of our notion of consistent
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planning we wanted to include the idea of one shot deviation. In Bose & Renou (2011)

and Hanany et al. (n.d.), among others, consistent planning is defined based on that

one shot deviation, hence making these definitions, from that point of view, consider-

ably similar to ours. However, di↵erences on how beliefs are updated exist with Hanany

et al. (n.d.), and in terms of the infinite horizon with both of them.

Definition 3.1. If the state chosen by nature is !, the strategy of players is y =

(y1, ..., yn) and the history is H i�1+nt then the continuation payo↵ of player i at round

t, given profile y�i, is given by

Vi+nt(H i�1+nt, (yi, y�i),!) = min
p2PHi�1+nt(!)

Ep

"
P1

k=t �
nk�nt

✓
s
⇣
yi+nk

�
⇧i(!), H i�1+nt [

H i�1+nk
i�1+nt (y(!

0
))
�
, X

⌘
�s

⇣
yi�1+nk

�
⇧i�1

(!
0
), H i�2+nt [H i�2+nk

i�2+nt (y(!
0
))
�
, X

⌘◆#
.22

Definition 3.2. For 0 < � < 1 we define the assessment (y⇤,P), y⇤ = (y⇤
1
, ..., y⇤

n
) to

be a pure Consistent Planning equilibrium:

If there is no i, !, such that there exists p 2 P with p(!) > 0, t 2 N, history of predic-

tions H i�1+nt 2 Y i�1+nt and alternative action a 2 Y such that:

(i) Given the �i equilibrium strategies it is Vi+nt(H i�1+nt [ {a}, (y⇤i , y⇤�i
),!) >

Vi+nt(H i�1+nt, (y⇤
i
, y⇤

�i
),!).

and

(ii) Let state !, i 2 {1, ..., n}, k 2 N and history H i�1+nk. It holds that for every !
0 2

SuppPHi�1+nk
(!) every two priors in PHi�1+nk

(!) are mutually absolute continuous with

respect to F
Hi�1+nk[{a}[Hi�1+(n+1)k

i+nk (y⇤(!0
))

\SuppPHi�1+nk
(!) and P

Hi�1+nk[{a}[Hi�1+(n+1)k
i+nk (y⇤(!0

))(!)
=

PHi�1+(n+1)k
(!)|F

Hi�1+nk[{a}[H
i�1+(n+1)k
i+nk

(y⇤(!0
))
\SuppP

Hi�1+nk(!)

for every a 2 Y .

Condition (ii) of Definition 3.2 states that prior by prior updating should be used

whenever possible. In particular, it states that prior by prior updating is used on

equilibrium path. This is because if the a is the respective equilibrium action of i

then the mutual absolute continuity with respect to F
Hi�1+nk[{a}[Hi�1+(n+1)k

i+nk (y⇤(!0
))

\
SuppPHi�1+nk

(!)
23 means that prior by prior updating is well defined. Then by requiring

P
Hi�1+nk[{a}[Hi�1+(n+1)k

i+nk (y⇤(!0
))(!)

= PHi�1+(n+1)k
(!)|F

H
i�1+(n+1)k
i+nk

(y⇤(!0
))
\SuppP

Hi�1+nk(!)

we

state essentially that indeed the system of beliefs for that information set agrees with

the prior by prior updating.

On the other hand, (ii) of Definition 3.2 clarifies the issue of the ”whenever possible”,

met in the literature of Perfect Bayesian Equilibrium, Bonanno (2013) among others. In

particular, when a is not necessarily the equilibrium action of i, the (ii) of Definition 3.2

clarifies when we assume the beliefs to be updated prior by prior. Indeed, in our case the

22We are referring to continuation payo↵ at time i + nt, by meaning the continuation payo↵ divided
by �i+nt.

23The definition of support is given in Section 2.1.4.
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game is sequential, hence if player i deviates at time i+nt, then player i knows that she

deviated. Therefore, given that �i follow their equilibrium strategies, (ii) of Definition

3.2 urges player i to update like a Bayesian prior by prior at her next information set.

Regarding (i) of Definition 3.2 we can observe that the optimisation of each player

considers only deviations from the equilibrium action of the current round (that is the

alternative a 2 Y in the Definition 3.2).

However, even under subjective expected utility assumptions, in Ostrovsky (2012), one

of the most crucial arguments for proving the information aggregation result in the MSR

model lies in the property of sequential rationality, meaning that players can optimise

across any alternative action at any round. Given that, it is implied that players are

optimising against the alternative strategy of playing whatever the previous prediction

was. This is a a deviation that in our equilibrium concept we would like to take into

account, as it is a crucial property of the MSR model. In particular, it can be interpreted

as an opt-out strategy.

In Definition 3.3 we define our notion of equilibrium. It has a common part with Defi-

nition 3.2, which is part (iii) and (ii), respectively. However, (i) and (ii) of Definition

3.3 are replacing the weaker (i) of Definition 3.2.

In particular, revision proofness allows for checking across all possible deviations. Intu-

itively, revision proofness states that even if a future self arbitarily close to infinity does

not find a deviation optimal, then that deviation is blocked even in the case that previous

players were better o↵ under the deviation. On the other hand, according to consistent

planning equilibrium each self is isolated and she plays a game against all others, hence

from that point of view it is plausible to assume that only one shot deviations should

be considered.

In short, the essential di↵erence between these two concepts is that in a revision proof

equilibrium players are willing to coordinate their actions in case everyone is better o↵

by that, whereas in consistent planning equilibrium coordination is not considered.

Definition 3.3. For 0 < � < 1 we define the assessment (y⇤,P), y⇤ = (y⇤
1
, ..., y⇤

n
), to

be a pure Revision-Proof equilibrium if there is no i, !, such that there exists p 2 P
with p(!) > 0, history of predictions H i�1+nt 2 Y i�1+nt for some t 2 N, and alternative

strategy yi = (yi+nk)k2N such that:

(i) For all r 2 N, Hnr 2 Y rn and given that �i play their equilibrium strategies it is

Vi+nt+nr(H i�1+nt+nr, (yi, y⇤
�i
),!) � Vi+nt+nr(H i�1+nt+nr, (y⇤

i
, y⇤

�i
),!)

(ii) The inequality is strict for at least one history Hnr 2 Y nr

and

(iii) Let a state !, i 2 {1, ..., n}, k 2 N and history H i�1+nk. It holds that for every !
0 2

SuppPHi�1+nk
(!) every two priors in PHi�1+nk

(!) are mutually absolute continuous with
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respect to F
Hi�1+nk[{a}[Hi�1+(n+1)k

i+nk (y⇤(!0
))

\SuppPHi�1+nk
(!) and P

Hi�1+nk[{a}[Hi�1+(n+1)k
i+nk (y⇤(!0

))(!)
=

PHi�1+(n+1)k
(!)|F

Hi�1+nk[{a}[H
i�1+(n+1)k
i+nk

(y⇤(!0
))
\SuppP

Hi�1+nk(!)

for every a 2 Y .

We can observe that if a strategy profile is not consistent planning equilibrium then there

exists player i, !⇤ that can be realised as true state, a round t and history H i�1+nt such

that for some deviation a the equality of Definition 3.2 in (i) holds. Define a deviation

strategy for player i which is the same as her equilibrium for every ! that can be realized

and any history, except for the history H i�1+nt when !⇤ is realized, in which case it

prescribes playing a. Under this new strategy everyone is getting the same payo↵ under

any history and true state, but for !⇤ and history H i�1+nt the player i get a strictly

better payo↵. Therefore, the strategy is not revision proof.

For the results about strategic traders we restrict to pure revision proof equilibrium that

satisfies a certain assumption. Intuitively, the assumption states that the on equilibrium

path strategic predictions of the traders should converge to a real number. However,

we do not assume that the real number is the same for every trader. We name such an

equilibrium as converging strategies equilibrium.

It is out of the scope of this paper to study the equilibrium existence in MSR games

with ambiguity. Therefore, we can think of two classes of potential equilibria: the first

one is when the strategic prediction of the traders are converging, on equilibrium path,

to a real number (the limit is, potentially, di↵erent among traders) and the second one

is when the predictions are not converging for at least one trader and state. In this

paper we want to restrict attention to the first class, as in the second class of equilibria,

obviously, information cannot get aggregated.

In Ostrovsky (2012), there was no separation between those two classes. In that way,

the information aggregation result for separable under SEU securities that was proven,

essentially implies a necessary condition for the existence of equilibrium in MSR games

under subjective expected utility. In fact, the necessary condition is that those equilibria

not only belong to the fist class but also the real number that strategic predictions are

converging are the same for all traders (and essentially the true value of the security).

In our case, we will restrict to the first class of equilibria. The reason for making such

an assumption is the lack of properties that hold under subjective expected utility. In

particular, the arguments about instant opportunity and arbitrage in Ostrovsky (2012)

use heavily properties inherent to subjective expected utility and that can bypass the

issue whether in he equilibrium the predictions for each trader converge somewhere.24

The assumption in our case takes the following form.

24Although the question is out of the scope of the thesis, my conjecture of existence of equilibrium
it is not quite strict. The particular structure of the model (for example strictly proper scoring rule)
provides potentially strong properties to use in a relevant proof.
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Assumption (converging strategies):

Let y⇤ = (y⇤
1
, ..., y⇤

n
) be an equilibrium strategy profile for the players. For every

i = 1, ..., n and every ! 2 ⌦, for which there exists p 2 P with p(!) > 0, there exists

measurable function y⇤i,1 : ⇧i⇥Y N �! Y such that lim
k
y⇤i+nk

�
⇧i(!), H i�1+nk(y⇤(!))

�
=

y⇤i,1
�
⇧i(!), H1(y⇤(!))

�
.

3.3 Information Aggregation

In this part of the paper we formally define the concept of information aggregation.

In addition we compare it with the respective definition given in Ostrovsky (2012) and

Chen et al. (2012).

Definition 3.4. Information gets aggregated with respect to security X, information

partition ⇧, strictly proper scoring rule s, initial announcement y
0

, order of traders

O, P 2 As,y0,O and pure equilibrium profile of strategies if the sequence of equilibrium

predictions y
1

, ..., yk, ... converges to the true value of the security, and the set of states

that this does not hold is of zero probability for all priors in P.

The definitions that were provided in Chen et al. (2012) and Ostrovsky (2012) were

similarly stated. However, their definition tries to accommodate mixed strategies, which

is not the case with our definition. In addition, in our setting we have a compact and

convex set of priors that, in general, is not singleton. That is the reason why we should

impose the regularity property as well.

3.4 Separability Under Ambiguity

The topic of this section is to give the properties needed to be satisfied by the securities

in order to be able to characterise information aggregation for every set of priors. The

condition is motivated by the example below.

The notion of separability under SEU, as given under subjective expected utility assump-

tions, Chen et al. (2012) and Ostrovsky (2012), has already been given in Definition 2.5.

However, this concept of separable under SEU securities is not enough to guarantee

information aggregation for every set of priors for ambiguity averse traders, when they

are myopic, as illustrated in the Example of section 2.3.

In particular, this example illustrates that an Arrow-Debreu security might fail to ag-

gregate information for ambiguity averse myopic traders. In addition, we can observe

that the myopic behavior in the previous example is a revision proof equilibium, hence
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concluding that in a market with an Arrow-Debreu security information does not get

aggregated even if traders are strategic.25

In fact, the new notion of separability that we suggest here in order to achieve informa-

tion aggregation for strategic traders is the same as Definition 2.6, and for completeness

purposes it is defined again below.

Definition 3.5. A security X is called non-separable under ambiguity under partition

structure ⇧ and proper scoring rule s if there exists an ordering of traders O, a set

P ✓ �(⌦), which is convex compact and mutually absolute continuous with respect to

⇧i for every i = 1, ..., n , and v such that:

(i) X is not constant at {! 2 ⌦ : there exists p 2 P with p(!) > 0}

(ii) For every i = 1, ..., n it is dP(⇧i(!), v) = v for every !, such that there exists p 2 P
with p(!) > 0.

3.5 Main Result

In this section, we state our main results. The first result completely characterises the

properties of the securities that can aggregate the information in a market populated by

myopic or strategic traders.

Theorem 3.6. Consider the dynamic market as described above and let security X,

partition structure ⇧, proper scoring rule s and discount factor � 2 (0, 1):

(i) If security X is separable under ambiguity, then for every initial announcement v
0

, O,

P 2 As,v0,O and in any pure converging strategies revision proof equilibrium information

gets aggregated.

(ii) If security X is not separable under ambiguity, then there exists announcement v
0

,

O, P 2 As,v0,O and a pure converging strategies revision proof equilibrium such that

information does not get aggregated.

The proof of Theorem 3.6 is in Appendix C.

In order to prove these two results a crucial lemma is needed. Lemma 2.8 adapts the

results of Geanakoplos & Polemarchakis (1982) and some results of Geanakoplos (1995)

to the setting with ambiguity averse and myopic traders. Although it is referred to

myopic traders, in the proof of Theorem 3.6, we use the same arguments in order to

have a result similar to (i) for strategic players.

25The arguments to conclude that it is indeed a revision proof equilibrium are the same as given in
the proof of Theorem 3.6 (ii), in Appendix C, for v = 0.
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The proof of Theorem 3.6 is involved and proceeds in three steps. Firstly, we will

conclude that in a revision proof equilibrium the continuation games for each player

i, at every realised true state and after any history that the player trades (which is

interpreted as a separate self of i) should be a non negative real number. Then, using

the fact that the strategies converge and properties of the MSR we conclude that the

continuation payo↵s should converge to zero. Finally, we conclude that in the limit the

revision proof predictions are the myopic ones and then by separability under ambiguity

we can show that information gets aggregated.

3.5.1 Myopic Behavior can be Revision-Proof

In this part of the paper two results are given, which relate the myopic behavior with

a pure revision equilibrium, when a separable under ambiguity security is traded. In

particular, we will prove that when, for every state that can be realised, the finest

public information -while player are on equilibrium path- is achieved at the end of the

first round, then on equilibrium path players are myopic, when the discounting factor

� 2 (0, (1
3

)1/n), where n is the number of players. The second result is a generalisation

of the previous and states that after achieving the finest public information set -while

players are on equilibrium path- they are myopic, when � 2 (0, (1
3

)1/n).

Theorem 3.7. Let X be a separable under ambiguity security. Consider a pure strat-

egy revision proof equilibrium, satisfying converging strategies assumption, and � 2
(0, (1

3

)1/n). Then players are myopic on equilibrium path, from the time the finest infor-

mation is reached (for all) and onwards.

Theorem 3.8. Let X be a separable under ambiguity security. Consider a pure strategy

revision proof equilibrium, satisfying converging strategies assumption, � 2 (0, (1
3

)1/n)

and assume for every state that can be realised, public information reaches its finest

refinement in the first round. Then players are myopic on equilibrium path.

The proofs of the theorems above are contained in Appendix D.

3.6 Concluding remarks

The main scope of this paper is to study a dynamic market, based on MSR, with ambi-

guity averse and partially informed traders in terms of information aggregation. Using

Gilboa & Schmeidler (1989) model, the results indicate that when either myopic or

strategic traders are participating in the market, information does not always get ag-

gregated, unless the security of the market is separable under ambiguity. Compared

to similar results under subjective expected utility assumptions, this result is new and
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indicates that ambiguity aversion creates an extra layer that precludes information ag-

gregation.

Finally, the paper leaves open some interesting questions. For example, can the assump-

tion of converging strategies be avoided, hence more technical arguments should be used

in the proof for strategic traders? What happens, in terms of information aggregation,

when the players do not play in fixed turn but randomly? Finally, does an MSR game

have an equilibrium?





Chapter 4

Experiment

This paper studies information aggregation in a dynamic market under ambiguity.

Studying the e↵ect of ambiguity on information aggregation when a ”separable un-

der SEU” security, in particular an Arrow-Debreu security, is traded in the market, we

find evidence that its price is significantly less accurate in case the fundamentals of the

security are ambiguous. On the contrary, when introducing in the market a ”separable

under ambiguity” security, in fact a modification of the Arrow-Debreu security making

insider one of the two traders, we find evidence that ambiguity about the fundamen-

tals does not a↵ect market’s degree of information aggregation. These results confirm

theoretical predictions given in Chapter 2 and Chapter 3.

4.1 Introduction

A key question regarding the design of financial markets is whether they have the ability

to aggregate and reveal dispersed information. In particular, if information is dispersed

among all traders, will their trading behavior lead the market to aggregate information,

pricing the securities as if their information was pooled?

There are financial markets being created for taking advantage of the information aggre-

gation property of securities prices. These markets are usually called prediction markets.

In these markets bets are sold and bought hence moving the prices to their true value.

Hence, the price can be interpreted as a forecast for a particular future event.

The particular form of the bets depend on the market model implemented. In fact,

among others, two well knows market formats are more usual. Firstly, the continuous

price auction which are commonly met in practice, but although it is a familiar market

format, it is complex for the analyst and the traders to understand its dynamics and

analyse it. Secondly, the Market Scoring Rule (MSR) is implemented more and more

as an alternative market model used in practice. Its advantage over the continuous

49
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price auction is that it does not depend crucially on market liquidity (the market maker

admits to have bounded losses) and are more tractable in terms of analysis.

The particular market implementation of MSR can vary. On the one hand, it is the

probability based market Hanson (2003), Dimitrov & Sami (2008) and Chen et al. (2010)

among others. On the other hand is the security based market Ostrovsky (2012), Chen

et al. (2012), which is the model of Chapter 2 and Chapter 3. The di↵erence between

those markets is that in the latter predictions about the value of a specific security are

announced, while in the former the beliefs of each trader. In this Chapter, we use the

control environment of the experimental laboratory to draw conclusion with regards to

the security based model.

Restricted to that specific class of dynamic markets and to subjective expected utility

assumptions for the fundamentals of the security, Ostrovsky (2012) and Chen et al.

(2012) defined the class of separable under SEU securities. It was proved that when

such securities are traded in the market, information gets aggregated. By relaxing the

assumption of subjective expected utility and allowing for ambiguity aversion, the class

of separable under ambiguity securities was defined in Chapter 2 and Chapter 3. It

was proved that when such securities are traded in the market then information gets

aggregated. It was proved, as well, that it is not, in general, true, in a setting with

ambiguity, that with separable under SEU securities information gets aggregated.

In fact, Arrow-Debreu securities, which are separable under SEU, do not always ag-

gregate information in a setting with ambiguity, as opposed to the case of subjective

expected utility. However, a modification of an Arrow-Debreu security can aggregate in-

formation either with or without the presence of ambiguity. In particular, the experiment

will be based on a model of three states of the world ⌦ = {!
1

,!
2

,!
3

}. The modification

of the Arrow-Debreu security that we use is a security of the type Y = (1, 1, 0). We

consider it as a modification of the Arrow-Debreu security X = (1, 0, 0) because it gives

an extra payo↵ of 1 for the state !
2

.

The main scope of this Chapter is to experimentally test these theoretical predictions.

In other words, the ultimate scope is to test the hypothesis that ambiguity a↵ects the

degree of information aggregation for a separable under SEU security but not for a

separable under ambiguity security.

4.2 Literature Review

A large number of experiments have been conducted to measure the e�ciency of in-

formation aggregation in financial markets and prediction markets. Most of them have

studied either double-auctions or parimutuel markets.
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Firstly, Plott & Sunder (1988) studies and experimental double-auction, in order to test

the theoretical predictions of REE. The results documented in the paper are mixed. In

some treatments the markets do not reach REE. However, other treatments reach the

equilibrium.

In Forsythe & Lundholm (1990) an explanation of Plott & Sunder (1988) mixed results

was given.. The main result of that paper was to give su�cient conditions which are

needed to be satisfied in order REE market’s model to predict correctly the equilibrium.

The results indicated that common knowledge of payo↵s along with experience are giving

a positive result.

In Plott et al. (2003) the question of information aggregation is set in the context

of a parimutuel market. The results indicate that the more we are moving to more

complex environments, the less information gets aggregated. Analysing the weak degree

of information aggregation it is concluded that traders are blu�ng and they participate in

a waiting trading behavior, which both a↵ect negatively the aggregation of information.

Our experimental design is also related to Hanson et al. (2006). This paper documents

findings regarding manipulation in prediction markets. The information structure given

in that paper is similar to ours. In fact, the private information is given by letting

traders know, at each round, which state is not realised.

However our work di↵ers in a main dimension from all these studies. They are using

either double auctions or parimutuel markets. On the other hand we use the MSR.

In McKelvey & Page (1990) the theoretical prediction of McKelvey & Page (1986b) are

tested in a market similar to MSR. In fact, the participants are incentivised by using

a proper scoring rule,. This is a communication process very similar to Chen et al.

(2012) and Ostrovsky (2012). The results suggest that there is a clear evidence that

the information is not pooled in the marker, on the contrary of what theory predicts.

However, there is also clear evidence that the public information that is revealed in the

market augment each private information.

Finally, another closely related paper is Jian & Sami (2012). It provides results regarding

information aggregation of the MSR of Hanson (2003), under various hypotheses. For

example, it is tested whether the trading order, the trading mechanism and the signal

distributions a↵ect the e�ciency of information aggregation. They test as well if there

exist evidence for results like Chen et al. (2012) and Dimitrov & Sami (2008). In

particular, it is tested whether the signal structure is related to myopic or blu�ng

trading.



52 Chapter 4 Experiment

4.3 Experimental Design

For our experiment we recruited 124 subjects who were all students at the University of

Southampton. Each student participated only in one treatment. Instructions were read

publicly before the experiment. The instructions included details about the payo↵s, the

information structure according to the treatment and the software’s computer interface.

After the instructions, a paper based quiz was delivered to all subjects and the exper-

imenter checked each subject’s answers in person. Finally, trial rounds were given so

that subjects can be fully familiar with the software before the main experiment starts.

Communication among the subjects was strictly forbidden throughout the experiment.

The experiment was programmed and conducted with the software z-Tree Fischbacher

(2007).26

Our design and approach is similar to Jian & Sami (2012), although the hypotheses are

di↵erent. Our hypotheses are more similar to McKelvey & Page (1990). Our experiment

consists of 4 treatments, shown in the table below. In each session, which consisted of

5 trials and 20 rounds, 16 subjects participated. They were divided into 2 groups,

which remained the same throughout the session. By doing so we got two independent

observations at each session. For each treatment two sessions were ran.

Figure 4.1: Treatments.

At the beginning of the experiments subjects were informed that they were endowed with

40 units of experiment currency and that the exchange rate was 100 units of experimental

currency to 1 GBP.

At the beginning of each treatment, the sixteen subjects were randomly grouped into

two groups, with eight subjects each. At the beginning of each round the eight subjects

were randomly paired, without been told with whom they were matched or whether

they had been paired before. In each pair, one subject was randomly assigned as trader

1 and the other as trader 2.27

At the beginning of each round a ball was drawn from a box, which included 90 balls

in total.28 The colours of the balls contained in the box are red, green or yellow. For

26The instructions can be found in Appendix E.
27In the third session we used 12 instead of 16 subjects. The subjects were divided into two pairs of

6 subjects each.
28Following Jian & Sami (2012) the drawn ball was selected before the experiment, in order to control

for di↵erences in learning e↵ects across treatments. We used the random.org pseudo-random number
generator and we tested, against several other seeds, the number sequence that was used using the
Kolmogorov-Smirnov.
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the treatment of ambiguity less information was disclosed to the traders regarding the

composition of the box, as opposed to the expected utility treatment. We will refer to

the box in the treatment of ambiguity as ambiguous box and to the box in the treatment

of expected utility as risky box, separating in that way the di↵erence in the information

disclosed.

Two securities have been used, security X and Y . Security X takes the following values:

X(red) = 100, X(green) = 0 and X(yellow) = 0. On the other hand, security Y takes

the following ones: Y (red) = 100, Y (green) = 100 and Y (yellow) = 0. Security X

belongs to the class of separable under SEU securities (for any strictly proper scoring

rule, hence for the quadratic we use in the experiment), defined in Ostrovsky (2012),

while security Y belongs to the class of separable under ambiguity securities (given the

quadratic strictly proper scoring rule use in he experiment), defined in Chapter 2 and

Chapter 3, but it is not separable under SEU.

The market model followed the Market Scoring Rule (MSR) as illustrated in Ostrovsky

(2012) and Chapter 2 and Chapter 3. The traders in each pair were called to, sequen-

tially, submit their prediction (a number between 0 and 100) regarding the true value

of the security, according to the ball drawn, for several times. Depending on whether

the subject was trader 1 or trader 2 some private information was given to him/her, as

shown in Figure 2. Similar information can be found in Hanson et al. (2006), among

others. We can observe that by pooling together the private information of trader 1 and

of trader 2, we know the colour of the drawn ball.

Figure 4.2: Information structure.

At each round, the subjects were predicting at least 3 times each. That guaranteed that

we would have enough observations for our purposes. However, in order to accommodate

the infinite horizon model used in Ostrovsky (2012) and Chapter 2 and Chapter 3 we

followed the design of Fréchette & Yuksel (2013), Cabral et al. (2014) and Vespa (2011).

In particular, for the first 6 periods each trader had an explicit discounting in trader’s

payo↵. For the rest of the periods the payo↵s were not discounted explicitly, but the

participants were informed about the probability of moving to these stages. The Figure

3 below illustrates the details.

4.3.1 Risk Vs Ambiguous Box with Security X

For the treatment with the risky box, the proportions of the balls included in it were

given. In fact, it was disclosed that 30 red, 30 green and 30 yellow balls were included
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Figure 4.3: Discounting.

in the box. On the other hand, for the ambiguous box the exact proportions were

unknown. On the contrary, the participants were informed that there were between 0

and 30 red balls, between 20 and 70 green balls and between 20 and 70 yellow balls when

the security X was used, and between 1 and 30 red balls, between 19 and 70 green balls

and between 19 and 70 yellow balls when the security Y was used.29

As it was proved in Chapter 2 and Chapter 3 when the market, with the ambiguous box,

starts with the announcement 0 (which is always the case in our experiment) and traders

are ambiguity averse, as in Gilboa & Schmeidler (1989), market cannot aggregate their

private information in case the drawn ball is red. Whenever the ball is either green or

yellow, though, information gets aggregated.

However, with the risky box it is known, for example by Ostrovsky (2012) and many oth-

ers, that market aggregates the private information of each trader, therefore information

aggregation does take place for any colour of the drawn ball.

Therefore based on the theoretical results we expected that the predictions of the treat-

ments with the ambiguous box would be significantly less accurate compared to the

predictions of the treatments with the risky box in case the ball is red, but similar in

case the ball is either green or yellow.

4.3.2 Risk Vs Ambiguous Box with Security Y

The underlying idea of these two treatments is the same as the one explained in Section

4.3.1, but using a di↵erent security Y . The only di↵erence is that in the treatment with

security Y and ambiguity di↵erent information was disclosed. In particular, in order to

be consistent with the theoretical model, which assumes prior by prior updating, the

participants were told that there are between 1 and 30 red balls, between 19 and 70

green balls and between 19 and 70 yellow balls.

According to Chapter 2 and Chapter 3, there should not be significant evidence on the

di↵erence between the market with the risky and the ambiguous box. In fact, irrespective

29The di↵erence between the ambiguous boxes is explained in Section 4.3.2.
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of the drawn ball’s colour, information, in theory, gets aggregated. Hence we expected

that the predictions would be the same either being predictions from the sessions with

the risky treatment or not.

4.4 Analysis Metrics and Hypotheses

We define the true value of the security, depending on the realised colour of the ball, as

the best prediction a trader could submit. We can easily observe that given the informa-

tion structure used in our experiment, by pooling their private information traders can

find out the colour of he drawn ball. In theory such a MSR market would converge to-

wards the true value under some conditions, Chapter 2, Chapter 3 and Ostrovsky (2012).

Given that, we will use the true value of the security as a benchmark for measuring how

accurate predictions are. In particular, the accuracy of a prediction is measured as the

Absolute Distance (AD) of the prediction from the true value of the security. Similar

metric, the mean squared error, was used in Jian & Sami (2012).

Having asmarket benchmark the market with risk, we analyse the market with ambiguity

using the metric of the AD. If the AD in market with ambiguity is larger than the

corresponding of the risky market, then we conclude that the degree of information

aggregation is better in the risky market.

Having defined the metric of the analysis we can now define the hypotheses of our ex-

periment formally. The main idea is to test whether ambiguity has an e↵ect on the

accuracy of the predictions. In addition, we test whether the design of separable under

ambiguity securities is robust enough in order to overcome that e↵ect.

HYPOTHESIS 1. When the drawn all is Red then the market with ambiguity and secu-

rity X does not aggregate information as e↵ectively as the market with risk. However,

the degree of information aggregation is the same when the drawn ball is either Green

or Yellow.

HYPOTHESIS 2. When the security is Y then the two markets aggregate information

at the same degree, for any colour of the drawn ball.

In the following section, we report the results of our experiment. Our experimental

design implies four independent observations for each treatment. Hence we use permu-

tation test, which is a type of nonparametric test, in order to conduct the comparisons

of markets’ performances. Permutation tests do not make any assumption regarding the

independent data points and it can be easily verified that having four data points for

each of our treatment, the lowest p-value possible is 0.014.
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4.5 Experimental Results

In the following subsections we report and discuss the results of the experiment. We

begin with an overview of the performance of the e↵ects on the treatments and then we

proceed with the results of the statistical tests with regards to the hypotheses.

4.5.1 Results without Learning E↵ects

Our experimental design implies that each round the same colour of the ball is drawn

across sessions. Hence, two approaches are employed in order to analyse the data.

Firstly, for each colour we are focusing on the final rounds in order to analyse the results,

hence avoid incorporating the noise while the subjects are learning the game and the

software. Secondly, we explicitly take into account learning e↵ects, and undertake the

statistical analysis accordingly.

In particular, for the red balls we are focusing on the last four rounds, for the green to

the last 3 and for the yellow balls on the last 3 rounds. In addition, we create a column

with the average AD, per session, over the number of rounds we want to focus at each

time. Finally, we combine all these average columns into one, by taking their average.

We refer to these data as the average data. The data structure, as explained, can be

found in Appendix E.

In Figure 4.4 the box plots for the two treatments are shown, when the security is X. We

can observe that when the drawn ball is red then the average, the last two rounds, the

last three rounds and mostly the final round in the ambiguity treatment with security

X are yielding higher absolute distances, as compared to the expected utility treatment

with security X. In relation to our first hypothesis, that would mean that when the ball

is red the market with ambiguity is performing significantly worse that the market with

risk.

On the other hand, the rest markets do not seem to di↵erentiate significantly with

regards to the existence of ambiguity or not. In fact, we can see more mixed e↵ects and

hence suggesting the for green and yellow balls the two markets are not significantly

di↵erent.

Figure 4.4: Box plots for treatments with security X.
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Similarly, in Figure 4.5 the box plots for the two treatments are shown, when the security

is Y . There is no evidence for significant di↵erences among markets. Hence, suggesting

that our second hypothesis could be plausible as well.

Figure 4.5: Box plots for treatments with security Y.

4.5.1.1 Ambiguity Vs Risk for Security X

In this subsection we report the results of treatments with the ambiguous and risky box

when the X is the traded security. In Figure 4.6 the p-values are illustrated. We used

permutation tests in order to test the null hypothesis that the di↵erences are due to

chance.

Figure 4.6: Permutation tests for treatments with security X.

When the ball is red the AD in the ambiguous market is higher than in the respective

risky market. We can observe that focusing on the later rounds the di↵erence is getting

more and more significant, and the average data suggest significance at 5 % level. In

fact, for the final round we get the most significance we can, given the constraint that

we only have four independent observations.

The analysis for green ball is unambiguous too. They suggest that there is no significant

di↵erence, for either focusing on the 3 final rounds or the latter ones. Finally, when

the ball is yellow, the result indicate strong insignificant di↵erence for the 3 and 2 last

rounds. Therefore, although the final round the result turns to be less insignificant it is

still in the right direction.

The results suggest that ambiguity has an e↵ect on information aggregation when the

security is X. In other words, ambiguity aversion potentially is an extra layer that
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complicates for a trader to incorporate the signal of the other trader’s prediction, in

case of security X. All in all, these results confirm the theoretical results of Chapter 2

and Chapter 3 for all treatments and in particular our first hypothesis.

4.5.1.2 Ambiguity Vs Risk for Security Y

In this subsection we report the results of permutation tests for the treatments with

security Y . In particular, they are shown in Figure 4.7.

We can conclude that we get strong evidence that there is no significant di↵erence among

the two markets. In fact, two markets are very similar in terms of the accurateness of

traders’ predictions. The only significant di↵erence that we observe is for red balls when

re restrict to the last two rounds. As it is shown in Appendix A, Figure 14, in the

treatment with ambiguity and security Y in the round before the last round in which a

red ball was drawn, the prediction are getting unevenly accurate. However, given that

this is observed only on that round and given how easily our results are a↵ected even for

small mistakes by participants (due to the small number of independent observations),

we can conclude that significantly there is not di↵erence between the two markets.

Figure 4.7: Permutation tests for treatments with security Y.

These results suggest that, as opposed to security X, security Y is robust enough in

order traders to be able to interactively update their beliefs, concluding the realised

state. Hence, information aggregation is not a↵ected by ambiguity, therefore confirming

the results in Chapter 2 and Chapter 3, hence our second hypothesis.

4.5.2 Results with Learning E↵ects

In this subsection the e↵ects of learning, through the course of the periods, are analysed.

In particular, for each treatment, we take the average AD, across all sessions, for each

round. Then, we group appropriately the average data for each round in which the same

colour has been drawn. In fact, for each colour, we create a subgroup containing the

final two rounds’ average data, and a second subgroup with the rest. For robustness

purposes, we use a modified protocol to group the average data. In particular, the first



Chapter 4 Experiment 59

subgroup contains the final three rounds’ average data and the second subgroup contains

the rest.

For each case, we test for the existence of learning e↵ects by running permutation test

using the data of the two groups. We test the null hypothesis that the two groups have

the same AD. Figure 4.8 illustrates the results of the tests for security X.

Figure 4.8: Learning patterns for treatments with security X.

We can observe that for the risk treatment with security X there is a consistent trend of

learning across the various realised states. The final 3 rounds are significantly di↵erent

than the previous. Given that, in our main statistical analysis we will use the data of the

final 3 rounds only. On the other hand, in the treatment with ambiguity only for green

ball we can observe a significant e↵ect of learning. Hence, for the ambiguity treatment

with security X, in case the ball is green we will use the data of the final three rounds,

while in case the ball is red or yellow we will use the data of all rounds.

We report the respective analysis for security Y in the Figure 4.9. No significant patterns

of learning exist, except in the ambiguity treatment when ball is red. As before, in our

main statistical analysis we will use the final two periods’ average data for the red ball

case.

Figure 4.9: Learning patterns for treatments with security X.

In Figure 4.10, the boxplots are given across treatments and colours. We can observe

that except for the treatments with security X when the ball is red, in which we can

observe a clear di↵erence, the rest boxplots do not suggest significant di↵erences.

4.5.2.1 Ambiguity Vs Risk for Security X

In Figure 4.11, the results of the permutation tests, for the treatment with security

X, are reported. The only case that we can significantly, at 5% level, reject the null
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Figure 4.10: Box plots incorporating learning e↵ects.

hypothesis in favor of the alternative is when the ball is red. The other two cases do not

suggest statistically significant di↵erences between the market with ambiguity and risk.

These results are consistent with the respective in Section 4.5.1.1 hence suggesting more

evidence in our first hypothesis.

Figure 4.11: Permutation tests for treatments with security X.

4.5.2.2 Ambiguity Vs Risk for Security Y

In Figure 4.12, the results of the permutation tests for the treatment with security

Y . We can observe that the results do not suggest significant di↵erences between the

markets with ambiguity and risk. On the contrary to section 4.5.2.1, there is evidence

that security Y overcomes the e↵ect of ambiguity, which provides more evidence for our

second hypothesis.

Figure 4.12: Permutation tests for treatments with security X.

We can observe that the p-value when the ball is red is not large enough, although

suggesting insignificance. This is because the learning e↵ect indicated that we need to

restrict to data of the final two rounds only. Taking into consideration the p-value in

Figure 4.7 when the ball is red and when we restrict to the last two rounds, and the rest

p-values when the ball is red, we can conclude that the round before the last one (when

the ball is red) the predictions in ambiguity treatment are sharply more accurate. Hence

we can interpret the p-value of Figure 4.12 when the ball is red as the one based on the
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most accurate predictions given by trades in the ambiguity treatment. This perspective

argues, in turn, that the result is robust.

4.6 Conclusion

This chapter studies information aggregation in a dynamic market under ambiguity. We

find evidence in favor of the theoretical results of Chapter 2 and 3.

In particular, when an Arrow-Debreu security, is traded in the market, we find evidence

that its price is significantly less accurate in case the fundamentals of the security are

ambiguous. On the contrary, when introducing in the market a ”separable under ambi-

guity” security, making insider one of the two traders, we find evidence that ambiguity

about the fundamentals does not a↵ect market’s degree of information aggregation.

This chapter leaves out some interesting questions for future research. In fact, robustness

checks should be carried out in order to understand fully the dynamics of the ambiguity

e↵ect. Finally, more session can be ran in order to have more independent observations.





Chapter 5

Conclussion

This Thesis contributes to the theoretical and experimental literature on information

aggregation. By relaxing the subjective expected utility assumption in MSR markets, it

studies the e↵ect of ambiguity on the e�ciency of information aggregation.

In Chapter 2, the class of separable under ambiguity securities was defined. It was proved

that it is a strict subset of separable under SEU securities, which is the class that

characterises information aggregation under subjective expected utility assumptions.

Through counterexamples, it was observed that under ambiguity separable under SEU

securities do not characterise information aggregation. Hence, a new result was provided,

restricting to myopic traders, which characterises information aggregation in terms of

the class of separable under ambiguity securities.

In Chapter 3, the assumption of myopic traders was relaxed, allowing for strategic in-

teractions. Hence, a new equilibrium concept was defined. This concept accommodates

time inconsistency, infinite horizon and incomplete information. The main result stated

that in every pure equilibrium information gets aggregated if and only if the security of

the market is separable under ambiguity. This chapter contributes both to the literature

of game theory under ambiguity and information aggregation under ambiguity. In ad-

dition, two results were provided stating the conditions under which strategic behavior

is myopic.

Finally, Chapter 5 applies the theoretical model to a laboratory experiment. Two main

hypotheses were tested, providing evidence in favor of the theoretical predictions of

Chapter 2 and Chapter 3. On the one hand, ambiguity distorted the information revela-

tion within the participants. On the other hand, the design of separable under ambiguity

precluded these distortions and allowed information to be communicated smoothly in

the market.

Each chapter leaves some interesting question to be answered in future work. In this

thesis we have not analysed what happens when new traders starts trading entering
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the market randomly. In addition, if the turn that traders predict in the market is

random, does it a↵ect how information gets aggregated ? Moreover, can the assumption

of converging strategies be avoided? Does an MSR game have an equilibrium? Finally,

robustness checks should be carried out in order to understand fully the dynamics of

the ambiguity e↵ect in our experimental paper and more sessions can be ran in order to

have more independent observations.
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Here is the proof of Lemma 2.3: Where convenient we use the notation s(y)(.) ⌘
s(y,X(.)), where X is the security.

Proof. Let’s first prove, that the argmax
y2Y

min
p2P

Ep

⇥
s(y)� s(y�1

)
⇤
does, in fact, exist. This

is true because s is continuous function, therefore min
p2P

Ep

⇥
s(y) � s(y�1

)
⇤
is upper semi

continuous (as infimum of continuous functions) as a function of y. As Y is compact

we get that its maximum exists, therefore the set argmax
y2Y

min
p2P

Ep

⇥
s(y) � s(y�1

)
⇤
is not

empty.

Next, we define Z to be the convex hull of {s(y)}y2Y . The set {s(y)}y2Y is compact in

Rl because s is continuous in y and Y is compact, hence Z is compact. Consider the

function G : P ⇥ Z �! R defined by G(p, z) = Ep[z � s(y�1

)]. The function is linear

in p and a�ne in z. Moreover, it is continuous both in p and in z. The first is because

of the definition of weak⇤ convergence and the second applying Lebesgue’s dominated

convergence theorem.

Then by Sion minimax Theorem, in Berge (1963) (p. 210), there exists p⇤ 2 P and

z⇤ 2 Z such that for all (p, z) 2 P ⇥ Z it is:

Ep⇤
⇥
z � s(y�1

)
⇤
 Ep⇤

⇥
z⇤ � s(y�1

)
⇤
 Ep

⇥
z⇤ � s(y�1

)
⇤
.

Then we get that

min
p2P

max
z2Z

Ep

⇥
z � s(y�1

)
⇤
= max

z2Z
min
p2P

Ep

⇥
z � s(y�1

)
⇤

and it is achieved at p = p⇤, z = z⇤.

For a fixed p, and because G(p, z) is a�ne in z, the unique maximiser of Ep

⇥
z� s(y�1

)
⇤

over z is s(Ep[X]) ( as s is a proper scoring rule, by definition of Z), so that z⇤ =
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s(Ep⇤ [X]). Hence we may conclude

min
p2P

max
y2Y

Ep

⇥
s(y)� s(y�1

)
⇤
= max

y2Y
min
p2P

Ep

⇥
s(y)� s(y�1

)
⇤

and it is achieved at p = p⇤, y = Ep⇤ [X].

We claim that y = Ep⇤ [X] is a unique element of argmax
y2Y

min
p2P

Ep

⇥
s(y,X(!))�s(y�1

, X(!))
⇤
.

To see that, let y
0 6= Ep⇤ [X]. Then:

min
p2P

Ep

⇥
s(y

0
, X(!))� s(y�1

, X(!))
⇤


Ep⇤
⇥
s(y

0
, X(!))� s(y�1

, X(!))
⇤
<

Ep⇤
⇥
s(Ep⇤ [X], X(!))� s(y�1

, X(!))
⇤
=

max
y2Y

min
p2P

Ep

⇥
s(y,X(!))� s(y�1

, X(!))
⇤

.

Hence, the maximiser is unique.

Now we proceed with two technical results which we need for later steps.

Lemma A.1. Let P ✓ �(⌦) be a set of priors and a subset A ✓ ⌦ with p(A) > 0 for

all p 2 P. Define C⇤ = {c(·) = p(·|A) : p 2 P}. Then dP(⇧i(!)\A, z) = dC⇤(⇧i(!), z),

for every trader i and every given prediction z 2 R.

Proof. We can notice that for every y 2 Y it is

min
p2P

Ep|A\⇧i(!)

⇥
s(y,X)� s(z,X)

⇤
= E

p
0
|A\⇧i(!)

⇥
s(y,X)� s(z,X)

⇤
=

E
c
0
|⇧i(!)

⇥
s(y,X)� s(z,X)

⇤
� min

c2C⇤
Ec|⇧i(!)

⇥
s(y,X)� s(z,X)

⇤
.

Similarly, for every y 2 Y it is

min
c2C⇤

Ec|⇧i(!)

⇥
s(y,X)� s(z,X)

⇤
= E

c
00
|⇧i(!)

⇥
s(y,X)� s(z,X)

⇤
=

E
p
00
|A\⇧i(!)

⇥
s(y,X)� s(z,X)

⇤
� min

p2P
Ep|A\⇧i(!)

⇥
s(y,X)� s(z,X)

⇤
.

Hence we get the result.
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Here is the proof of Lemma 2.8:

Proof. (i) Consider P ✓ �(⌦) convex and compact set of priors over ⌦ and y
0

the initial

prediction of the market maker. Every trader knows that everybody knows that... ⇧i

is each trader’s partition and all the public announcements made in the market. Let

⇧i,t(!) be the partition cell of trader i at time t, before the t� th announcement made

in the market.

At t = 1, trader 1 makes a myopic prediction, hence her announcement is y
1

=

dP(⇧1

(!), y
0

). The outside observer whose information cell, when true state is !, was

initially F
0

(!) = {!0 2 ⌦ : p(!
0
) > 0 for some p 2 P}, after the first prediction it is

F
1

(!, y
0

) = {!0 2 F
0

(!) : dP(⇧1

(!
0
), y

0

) = y
1

}.

Then each trader refines her own information as well, hence at time t the prediction of

t mod n trader is

yt = dP(⇧tmodn(!) \ Ft�1

(!, yt�2

), yt�1

)

with Ft(!, yt�1

) = {!0 2 Ft�1

(!, yt�2

) : dP(⇧tmodn(!
0
) \ Ft�1

(!, yt�2

), yt�1

) = yt}.

It is obvious that F
0

(!) ◆ F
1

(!, v
0

) ◆ ... ◆ Ft(!, yt�1

). Because ⌦ is finite, there exists

t? such that Ft(!, yt�1

) = Ft?(!, yt?�1

) for every t � t?. Let assume, without loss in

generality that t? is the time of the first player in round T ?.

(ii) Fix z 2 R, interpreted as the previous trader’s prediction. Firstly, we can observe

that the function �(p) = Ep[s(Ep[X], X) � s(z,X)], with p 2 �(⌦) is convex in p, for

any z 2 [a, b], with a = min{Ep[X] : p 2 �(⌦)} and b = max{Ep[X] : p 2 �(⌦)}. Define

the function g(Ep[X]) = �(p). We can see that g is convex in {Ep[X] : p 2 �(⌦)} and

hence because has a unique minimiser which turns out to be z we get that g is decreasing

at [a, z] and increasing at [z, b].30 We can observe that the myopic announcement of

trader i, when the previous is z, is given by dPFt(!)
(⇧i(!), z) = Ep⇤ [X] for some p⇤ 2

PFt(!)\(⇧i(!)) ✓ �(⌦), hence

dPFt(!)
(⇧i(!), z) = arg min

x2{Ep[X]:p2PFt(!)\(⇧i(!))}
g(x)

.

In fact, if z < x for every x 2 {Ep[X] : p 2 PFt(!)\(⇧i(!))} then the lowest extreme point

of the interval {Ep[X] : p 2 PFt(!)\(⇧i(!))} is the minimising value, and the greatest

extreme point in case z > x for every x 2 {Ep[X] : p 2 PFt(!)\(⇧i(!))} (because of the

30We can observe that there exists p 2 �(⌦) such that Ep[X] = z. In addition, the set {Ep[X] : p 2 P}
is interval, as convex and closed set of the real numbers.
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convexity of �, hence of g and the fact that z is global minimum).31

Step 1:

Define Ai
!0 = {Ep[X|⇧i(!

0
)] : p 2 PFt? (!,yt?�1)

} for every i = 1, ..., n and !
0 2

Ft?(!, yt?�1

) = {!k1 , ...,!kl}. Because, by (i), the public information, Ft?(!, yt?�1

),

has reached its finest form, there is no information revelation in the market

Ai = \
!02Ft? (!,yt?�1)

Ai
!0 6= ;

for every i = 1, ..., n.

To prove that claim, assume there exists i such that Ai = ;. Define

k� = min{ki : \
!02{!k1

,...,!ki
}
Ai

!0 6= ;}.

Because Ai
!k�

and \
!02{!k1

,...,!k��1}
Ai

! have empty intersection, by definition of k�, and

both are intervals assume, without loss in generality, that for every a 2 Ai
!�

and ev-

ery a
0 2 \

!02{!k1
,...,!k��1}

Ai
! it is a < a

0
. We can observe, as well, that the small-

est extreme point of \
!02{!k1

,...,!k��1}
Ai

!0 is the smallest extreme point of Ai
!k

for some

!k 2 {!k1 , ...,!k��1

}. Therefore, for any announcement of (i � 1)-th trader, the candi-

date predictions, of trader i, at state !k� and !k are di↵erent, hence there should be

information revelation. And hence we get a contradiction.

Similarly, we can conclude that in order no information to be revealed, the announce-

ment of each trader i (which is the same for every state in Ft?(!, yt?�1

)) should lie

in the interval Ai (which we know it is non empty by the previous claim). To prove

it, assume again that the announcement y /2 Ai for some trader i, and in particular,

without loss in generality we assume y < b for every b 2 Ai. Hence, as before, there

is !m 2 Ft?(!, yt?�1

) such that the smallest extreme point of Ai
!m

is the same as the

smallest extreme point of Ai, and therefore the announcement of i at !m is di↵erent than

y (for any announcement of (i� 1)-th trader). Hence we have revelation of information

and hence we get the contradiction.

Step 2:

Case \
j2{1,...,n}

Aj = ;

Define i
0

= min{i : \
j2{1,...,i}

Aj = ;}. Therefore, Ai0 has empty intersection with

31The definition of extreme point that we use here is the following: An extreme point of a convex set,
C, is a point x1 2 C, with the property that if x1 = kx2 + (1� k)x3 with x2, x3 2 C and k 2 [0, 1], then
x1 = x2 and/or x1 = x3
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\
j2{1,...,i0�1}

Aj , and without loss in generality we assume that for every d 2 Ai0 and

every d
0 2 \

j2{1,...,i0�1}
Aj it is d < d

0
. Because \

j2{1,...,i0�1}
Aj is an interval we can con-

clude that there are Ai1 and Ai2 such that one of them defines the smallest extreme

point of the interval and the other one greatest extreme point.

We can observe that for any value that yt0�1

might have, either trader i
1

or i
2

(or both)

gives a prediction belonging in the set \
j2{1,...,i0�1}

Aj . By the definition of the function

g we get that from trader max{i
1

, i
2

} until trader i
0

� 1 the corresponding prediction

belongs, as well, to \
j2{1,...,i0�1}

Aj . Hence, always the prediction of i
0

is the greatest ex-

treme point of Ai0 , and let’s denote it by vi0 . We denote the announcements of traders

j = i
0

+ 1, ..., n with vj .

For the next round, the vn potentially triggers di↵erent announcements for traders

j = 1, ..., i
0

(compared to their announcements of the previous period) and denote them

by vj . But, with exactly the same argument as before, the announcement of i
0

�1 should

belong to \
j2{1,...,i0�1}

Aj . Hence, the announcements of traders i
0

, ..., n remain vi0 , ..., vn,

and hence the v
1

, ..., vn remain the same for any later round. Hence we get the conclusion.

Case \
j2{1,...,n}

Aj 6= ;

As before, there are Ai1 and Ai2 such that one of them defines the smallest extreme

point of the interval and the other one the greatest extreme point. Hence for any value

of the yt0�1

either trader i
1

or i
2

(and in particular trader i
3

= max{i
1

, i
2

}) gives a

prediction belonging in the set \
j2{1,...,n}

Aj . We denote the corresponding announcement

with vi3 . By definition of g we conclude that for j = i
3

, ..., n their announcements are

vi3 . Because vi3 2 \
j2{1,...,n}

Aj we conclude that at the next round the announcement of

each trader 1, ..., i
3

� 1 is vi3 , too. Hence we get v
1

= ... = vn = vi3 .

(iii) Denote, for simplicity, Ft?(!, yt?�1

) = FT ? . By (ii) it is

min
p2P

Ep|FT?\⇧i(!
0
)

⇥
s(vi, X)� s(vi�1

, X)
⇤
� 0

for every !
0 2 FT ? , for every i = 1, ..., n.32

Therefore, for every p 2 P it is

p(FT ? \⇧i(!
0
))Ep|FT?\⇧i(!

0
)

⇥
s(vi, X)� s(vi�1

, X)
⇤
� 0

32By v0 we denote, when appropriate, the vn.
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and p(FT ? \⇧i(!
0
)) > 0, for every !

0 2 FT ? .33 Summing over Ci = {⇧i(!) : ! 2 FT ?}
we get

p(FT ?)Ep|FT?

⇥
s(vi, X)� s(vi�1

, X)
⇤
� 0

, for every i = 1, ..., n.

Then we sum over i, ignoring p(FT ?):

Ep|FT?

⇥
s(v

1

, X)�s(vn, X)
⇤
+Ep|FT?

⇥
s(v

2

, X)�s(v
1

, X)
⇤
+...++Ep|FT?

⇥
s(vn, X)�s(vn�1

, X)
⇤
= 0.

Because each term is non negative for every p 2 P it should be

Ep|FT?

⇥
s(vi, X)� s(vi�1

, X)
⇤
= 0

for every i = 1, ..., n. For the same reason,

Ep|FT?\⇧i(!
0
)

⇥
s(v

1

, X)� s(vn, X)
⇤
= 0

for every !
0 2 FT ? and for every p 2 P.

Therefore, for every i = 1, ..., n it is

min
p2P

Ep|FT?\⇧i(!
0
)

⇥
s(vi, X)� s(vi�1

, X)
⇤
= 0

for every !
0 2 FT ? . Hence,

Ep⇤|FT?\⇧i(!⇤
)

⇥
s(Ep⇤|FT? (!)\⇧i(!⇤

)

[X], X)� s(vi�1

, X)
⇤
= 0

for every !
0 2 FT ? , where Ep⇤|FT?\⇧i(!⇤

)

[X] = dP(⇧i(!
0
) \ FT ? , vi�1

) = vi. Because s

is strictly proper scoring rule, we get

vi�1

= Ep⇤|FT?\⇧i(!
0
)

[X] = dPFT?
(⇧i(!

0
), vi�1

) = vi

for every !
0 2 FT ? and every i = 1, ..., n. Hence the agreement is concluded.

Here is the proof of Theorem 2.7:

Proof. (()

Suppose X is separable under ambiguity. By Lemma 2.8, we know that there exists time

t? such that Ft(!, yt�1

) = Ft?(!, yt?�1

) for every t � t?. We denote this set by Ft? .

33It is p(FT? \ ⇧i(!
0
)) > 0 for every p 2 P. This is because for every !

0
2 FT? there exists p 2 P

with p(!
0
) > 0, by its definition. We assumed the regularity property in Section ?? hence for every

p 2 P it is p(FT? \⇧i(!
0
)).
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Moreover, by Lemma 2.8 (ii) and (iii) traders reach an agreement (at most within three

rounds after t?), hence there exists v 2 R such that for every i = 1, ..., n it is

dP(⇧i(!) \ Ft? , v) = v

for every ! 2 Ft? , with p(!|Ft?) > 0 for some p 2 P (this last property is trivially

satisfied by construction of Ft(!, yt�1

)). By defining PFt?
= {p(·|Ft?) : p 2 P}, we can

observe, by Lemma A.1, that for every i = 1, ..., n it is dPFt?
(⇧i(!), v) = v for every

! 2 ⌦, with q(!) > 0 for some q 2 PFt?
.

By the definition of separability under ambiguity, with traders’ ordering as selected,

the set of priors PFt?
, which is convex compact and mutually absolute continuous with

respect to ⇧i for every i = 1, ..., n, and the v we observe that (ii) is satisfied hence (i)

should be violated. Therefore, we get that X(!) = k for some k 2 R for every ! 2 ⌦,

with q(!) > 0 for some q 2 PFt?
.34 Hence, information gets aggregated, because as

soon as the security is constant for all states, for which at least one (updated) belief

gives it strictly positive probability, and because by Lemma 1 the myopic prediction

is an expectation using the appropriate (updated) belief, we conclude that the myopic

predictions, which all are v, are just the constant value of the security.

())

Suppose information is aggregated for a given continuous strictly proper scoring rule s,

and every y
0

, traders’ ordering O and P 2 As,y0,O. This means:

yt(!) = dP(⇧tmodn(!) \ Ft�1

(!, yt�2

), yt�1

) �! X(!)

, for every ! 2 ⌦ with p(!) > 0 for some p 2 P.

Following Chen et al. (2012), assume that hypothesis (ii) of Definition 2.6 is satisfied

and we will show that (i) is violated.35 Hence let P ✓ �(⌦), convex, compact and

mutually absolute continuous with respect to ⇧i, for every i = 1, ..., n, let O ordering

and v 2 R and assume that for every i = 1, ..., n it is dP(⇧i(!), v) = v, every !, with

p(!) > 0 for some p 2 P. We can now observe the following:

Pick for initial announcement v 2 R. We can observe that the predictions yt(!), t =

0, 1, ..., are constant across !, with p(!) > 0 for some p 2 P, and in particular will be v

always.

34The absolute continuity is true because for an arbitrary ! 2 ⌦ and i 2 {1, ..., n} the ⇧i(!) \ Ft?

is either an empty set or not. If it is empty, by definition of the set of priors, we get that all priors in
PFt?

give zero probability. If it is not empty and if !
0
2 ⇧i(!) \ Ft? , then (by the definition of Ft?)

it can be realised as true state and because !
0
2 Ft? every prediction would be the same hence it is

Ft? = Ft?(!
0
, yt?�1) and hence by the regularity assumption we get that the finest information set of

the trader, Ft? \ ⇧i(!
0
), has strictly positive probability for every prior, and hence the likelihood of

⇧i(!) = ⇧i(!
0
) is strictly positive for every prior.

35Assuming (i) is satisfied and (ii) is violated is an equivalent way to prove the theorem.
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Therefore, we can conclude that

Fm(!, ym�1

) = {! 2 ⌦ : p(!) > 0 for some p 2 P}

for every t = 1, 2, .... Hence, from the information aggregation assumption, for the

selections made before and for v to be the initial announcement and observing that

P 2 As,v,O, we have that

yt = v = dP(⇧t mod n(!) \ Ft�1

(!, v), v) = dP(⇧t mod n(!), v) �! X(!)

for every ! 2 ⌦, with p(!) > 0 for some p 2 P.36 But as we observed, we have that

for every t = 1, 2, ... the prediction yt is the same for all ! 2 ⌦, with p(!) > 0 for some

p 2 P. Therefore, from the uniqueness of the limit, X(!) = k for every ! 2 ⌦ (for some

real number k), with p(!) > 0 for some p 2 P . Hence the security is separable under

ambiguity.

36Information aggregation is (by definition) allowed not to hold only for a set of states that is of zero
probability for all p 2 P. This implies that information should be aggregated at least for those states
for which there exists a prior which gives the state strictly positive probability.
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In this part we give a number of examples in order to illustrate the robustness of issues

that are encountered when a MSR market is populated by ambiguity averse traders and

therefore the extent to which our results are useful.

In the first example we will illustrate how the MSR model can be interpreted as an

inventory based market maker. In addition, we will show that in the inventory based

interpretation information does not get aggregated always in the presence of ambiguity

averse traders. The example is interesting because the interface of real markets might

not be a sequential market as MSR, but rather designed with an interface of selling

and buying securities (inventory based MM e.g. Inkling Markets) and therefore it is

crucial to see if these markets do not aggregate information for some separable under

SEU securities when the traders are ambiguity averse.

The second example illustrates a particular case of a separable under SEU security which

does not aggregate information when the announcement is in the middle of the value

range and for a particular set of priors. The novelty here is that for every prior, belong-

ing in set of priors, its support is the whole state space.

Example 1:

Consider the state space ⌦ = {!
1

,!
2

,!
3

,!
4

}, the price function to be the q(z) = e�z

where z is the market maker’s net inventory. The security is given by X(!
1

) = 2,

X(!
2

) = X(!
3

) = X(!
4

) = 1 and the information structure is ⇧
1

= {{!
1

,!
2

}, {!
3

,!
4

}}
and⇧

2

= {{!
1

,!
3

}, {!
2

,!
4

}}. The set of priors is the P = conv{(0, 1
3
,
1

3
,
1

3
), (

1

4
,
1

4
,
1

4
,
1

4
)}.

Consider that initially the market maker holds zero inventory of the security (i.e. z=0).

Firstly, trader 1 makes a myopic decision about how much shares of the security to buy

or sell. We assume, for consistency, that the amount of shares belong to Z = p�1(Y ),

which is compact. Thus it is implied that (for the true state to be either !
1

or !
2

) trader

solves:

max
z2Z

min
p2P

Ep[

Z z

0

q(z)�X(!)dz] = min
p2P

max
z2Z

Ep[

Z z

0

q(z)�X(!)dz]
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.

We have the equality by applying the same argument as in the proof of Lemma 2.3.37

As in Ostrovsky (2012), given the price function we can define the strictly proper scoring

rule s(X(!), y) =
R q�1

(y)
0

q(z) � X(!)dz. We have that the price function p is 1-1

continuous with continuous inverse function. Therefore we can conclude that in the

MSR market, based on that strictly proper scoring rule, the trader solves:

max
y2Y

min
p2P

Ep[

Z q�1
(y)

0

q(z)�X(!)dz] = min
p2P

max
y2Y

Ep[

Z q�1
(y)

0

q(z)�X(!)dz]

.38

We shall show that if z⇤ solves the first optimisation problem and y⇤ the second one,

then it is p(z⇤) = y⇤ and that the revenue or losses are the same:

max
z2Z

min
p2P

Ep[

Z z

0

q(z)�X(!)dz] = max
y2Y

min
p2P

Ep[

Z q�1
(y)

0

q(z)�X(!)dz]

.

The conclusion is that the purchase of the optimal amount of shares and the announce-

ment of the myopic prediction are related with a one to one relation using the pricing

function and that the two markets are equivalent in terms of revenues and losses.

We can observe that for every p 2 P the amount z
0
p that solves the max

z2Z
Ep[

R z
0

q(z) �

X(!)dz] is unique and such that p(z
0
p) = Ep[X]. Similarly, for every p 2 P the prediction

y
0
p that solves the max

y2Y
Ep[

R q�1
(y)

0

q(z)�X(!)dz] is the y
0
p = Ep[X], hence q�1(y

0
p) = z

0
p.

Therefore, for every p 2 P we have that:

Ep[

Z z
0
p

0

q(z)�X(!)dz] = Ep[

Z q�1
(y

0
p)

0

q(z)�X(!)dz]

.

We can conclude that:

min
p2P

Ep[

Z z
0
p

0

q(z)�X(!)dz] = min
p2P

Ep[

Z q�1
(y

0
p)

0

q(z)�X(!)dz]

and it is achieved in the same p⇤.

37We use that F (z) =
R z

0
q(z)�X(!)dz is continuous and we follow the arguments of Lemma 2.3.

38Similarly, we follow the arguments of Lemma 2.3 with the continuous function F (y) =
R q�1(y)

0
q(z)�

X(!)dz.
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We conclude that the optimal quantity of shares z⇤ for the ambiguity averse trader is

such that q(z⇤) = Ep⇤ [X] and the optimal prediction y⇤ is such that y⇤ = Ep⇤ [X] and

thus we get the conclusion.39

Finally, the first trader finds the belief that achieves the minimum gives at state !
1

zero

probability. From the previous paragraph we conclude that the optimal amount to pur-

chase, z⇤, is such that p(z⇤) = 0⇤2+1⇤1 = 1 or equivalently (as long as p is 1-1) z⇤ = 0.

Hence she neither buy or sell any shares (equivalently she would have announced 1 as

her prediction, i.e. the price). It is easy to see that the same would happen for every

state in the partition {!
3

,!
4

} and for the trader 2 for symmetry reasons. The conclusion

is that both traders does not purchase shares from the market maker and no one can

infer the true state, even if that would be the case if they pooled their information.

Example 2

Consider the state space ⌦ = {!
1

, ...,!
6

} and the partition structure⇧
1

= {{!
1

,!
3

}, {!
2

,!
4

},
{!

5

,!
6

}}, ⇧
2

= {{!
1

,!
2

,!
6

}, {!
3

,!
4

,!
5

}}, ⇧
3

= {{!
1

,!
2

}, {!
3

,!
5

}, {!
4

,!
6

}} and the

security X(!
1

) = X(!
5

) = 0, X(!
2

) = X(!
6

) = 2, X(!
3

) = 1 and X(!
4

) = �1.

We will prove, firstly, that this security is separable under SEU.

Claim

For every v 2 R and every prior p over the state space, if for every i = 1, ..., n and every

!, with p(!) > 0, it is Ep[X|⇧i(!)] = v then for every !, with p(!) > 0, it is X(!) = v.

Proof. Let v 2 R and p a prior over the state space ⌦.

Case 1 : There exists ! 2 ⌦ and i 2 {1, ..., n} such that p(⇧i(!)) = 0. For every

i 2 {1, ..., n} define Ai to the the maximal set of i’s information cells such that p(⇡) > 0

for every ⇡ 2 Ai.

If the prior is such that, for every i 2 {1, ..., n} it is Ep[X|⇧i(!)] = v for every

! 2 ⌦, with p(!) > 0, equivalently the prior is such that for every i 2 {1, ..., n} it

is
P

!02⇧i(!)

X(!
0
)p(!

0
) = v · p(⇧i(!)) for every ! 2 ⌦, with p(!) > 0. Name this set of

equations (⇤).

Then we can conclude that the prior is such that for every i 2 {1, ..., n} it is
P

!02⇧i(!)

X(!
0
)p(!

0
) =

v · p(⇧i(!)) for every ! 2 ⌦, name this set of equations (⇤⇤). This is true because if

39By using the saddle point inequality and the uniqueness of the optimal quantity and prediction
(given the belief p⇤).
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there exists ! such that ⇧i(!) /2 Ai then p(⇧i(!)) = 0 therefore p(!
0
) = 0 for every

!
0 2 ⇧i(!) and hence

P

!02⇧i(!)

X(!
0
)p(!

0
) = v · p(⇧i(!)) = 0.

Therefore, if p solves (⇤) then should solve (⇤⇤), too. We will prove that (⇤⇤) has

solutions that all of them satisfy the claim.

Analytically, the equations (⇤⇤), denoting p = (p
1

, ..., p
6

), are the followings:

2p
2

+ 2p
6

= vp
1

+ vp
2

+ vp
6

(B.1)

p
3

� p
4

= vp
3

+ vp
4

+ vp
5

(B.2)

p
3

= vp
1

+ vp
3

(B.3)

2p
2

� p
4

= vp
2

+ vp
4

(B.4)

2p
6

= vp
5

+ vp
6

(B.5)

2p
2

= vp
1

+ vp
2

(B.6)

p
3

= vp
3

+ vp
5

(B.7)

2p
6

� p
4

= vp
4

+ vp
6

(B.8)

If v 6= 0, 1,�1, 2 then the system of equations has a unique solution the p = (0, ..., 0).

Because we want p to be a prior we conclude that there is not such solution in our

setting.

If v = 0 then the solutions are infinite and of the form p = (a, 0, 0, 0, b, 0) with a+ b = 1.

We have that X(!
1

) = X(!
5

) = 0 and hence the definition of separability under SEU is

satisfied.

If v = 1 then the system has s unique solution the p = (0, 0, 1, 0, 0, 0). Again the

definition of separability under SEU is satisfied for this prior (because X(!
3

) = 1).

If v = �1 then the system has a unique solution the p = (0, 0, 0, 1, 0, 0). Again the

definition of separability under SEU is satisfied for this prior (because X(!
4

) = �1).

If v = 2 then the system has infinite solutions of the form p = (0, a, 0, 0, 0, b) with

a + b = 1. Again the definition of separability under SEU is satisfied for this prior

(because X(!
2

) = X(!
6

) = 2).

Case 2 : For every ! 2 ⌦ and for every i 2 {1, ..., n} it is p(⇧i(!)) > 0. We can proceed

exactly as before, concluding that there is not a prior satisfying Case 2 and the hypoth-

esis of the claim.
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Hence we conclude that the security is separable under SEU.

On the other hand, the security is not separable under ambiguity.

To see that, let’s take the MM initial announcement to be, say, y
0

= 0.5 (which is

the middle of the price range) and any strictly proper scoring rule, say the quadratic,

and, given the y
0

, any compact and convex set of priors that includes the priors p =

(
1

8
,
1

8
,
1

8
,
1

8
,
3

8
,
1

8
), p

0
= (

6

18
,
1

18
,
7

18
,
2

18
,
1

18
,
1

18
) and p

00
= (

3

8
,
1

8
,
1

8
,
1

8
,
1

8
,
1

8
). Then we

can see that both condition (ii) and condition (i) of the Definition 2.6 is satisfied, hence

the security is not separable under ambiguity (which implies that there is no state in

which information gets aggregated).
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Before we proceed to the main proof, we state a result that will be helpful in order to

prove the Theorem 3.6.

Lemma C.1. Consider a convex and compact set of priors P ✓ �(⌦), a player i 2
{1, ..., n}, !⇤, for which there exists p 2 P with p(!⇤) > 0 and 0 < � < 1. The function

f : Y N⇥Y N �! R with f
�
(xn)N, (yn)N

�
= min

p2P

P1
k=0

�kEp|⇧i(!⇤
)


s
⇣
xk, X

⌘
�s

⇣
yk, X

⌘�

is continuous in
�
(xn)N, (yn)N

�
.

Proof. As a first step, consider the function f
1

: Y N⇥Y N �! Y N⇥Y N with h
�
(xn)N, (yn)N

�
=⇣�

s(xn, X(!))
�
N,

�
s(yn, X(!))

�
N

⌘
, which is obviously continuous with the product topol-

ogy for every ! 2 ⌦.40

In addition, consider the function f
2

: Y N⇥Y N �! R with f
2

�
(xn)N, (yn)N

�
=

P1
k=0

�k
⇥
xk�

yk
⇤
. We prove below that this function is continuous in

�
(xn)N, (yn)N

�
. Given that, the

function f
2

� f
1

is, then, continuous for every ! 2 ⌦.

In order to prove the continuity we use sequences. Hence, consider
�
(xn)N

�m �!m (xn)N

and
�
(yn)N

�m �!m (yn)N. Then we can observe the following:

|
1X

k=0

�k(xmk � ymk )�
1X

k=0

�k(xk � yk)| =

|
1X

k=0

�k
�
(xmk � xk) + (yk � ymk )

�
| 

1X

k=0

�k
⇥
|xmk � xk|+ |yk � ymk |

⇤
=

1X

k=0

�k|xmk � xk|+
1X

k=0

�k|yk � ymk | =

40We assume the metric d
�
(xn)N, (yn)N

�
=

P1
k=0 �

k
⇥
dk(xn, yn)

⇤
, where � 2 (0, 1) is the discounting

factor and dk is the euclidean distance at each coordinate. The topology implied by this metric is
equivalent to the product topology in Y N.
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d
⇣�

(xn)N
�m

, (xn)N
⌘
+ d

⇣�
(yn)N

�m
, (yn)N

⌘
.

Hence we get the continuity.

Next, consider the set P ✓ �(⌦) with the weak* topology and finally the set Y N ⇥
Y N ⇥ P with the product topology. Consider the function h : Y N ⇥ Y N ⇥ P �! R,
with h

�
(xn)N, (yn)N, p

�
=

P1
k=0

�kEp|⇧i(!
⇤)

⇥
s(xk, X) � s(yk, X)

⇤
. We will prove that

this function is continuous in
�
(xn)N, (yn)N, p

�
.

Firstly, we can observe that

h
�
(xn)N, (yn

�
N, p

�
=

1X

k=0

�kEp|⇧i(!
⇤)

h
s(xk, X)� s(yk, X)

i
=

Ep|⇧i(!
⇤)

h 1X

k=0

�k
�
s(xk, X)� s(yk, X)

�i
=

X

!2⇧i(!⇤
)

p(!)

p(⇧i(!⇤))

h 1X

k=0

�k
�
s(xk, X)� s(yk, X)

�i

where the first equality is because of the Beppo-Levi theorem.

Take a sequence
⇣�

(xn)N
�j
,
�
(yn)N

�j
, pj

⌘

j2N
2 Y N ⇥ Y N ⇥ P such that

⇣�
(xn)N

�j
,
�
(yn)N

�j
, pj

⌘
�!j

�
(xn)N, (yn)N, p

�
.

Then:

h
⇣�

(xn)N
�j
,
�
(yn)N

�j
, pj

⌘
=

X

!2⇧i(!⇤
)

pj(!)
h 1X

k=0

�k
�
s(xjk, X(!))� s(yjk, X(!))

�i
.

For every ! 2 ⇧i(!⇤) we have that
P1

k=0

�k
⇥
s(xk, X(!)) � s(yk, X(!))

⇤
is continuous

in
�
(xn)N, (yn)N

�
, as long as it is the function f

2

� f
1

. In addition, pj �! p in the weak*

topology if and only if pj(!) �!j p(!), for every ! 2 ⌦. Therefore, we conclude:

h
⇣�

(xn)N
�j
,
�
(yn)N

�j
, pj

⌘
=

X

!2⇧i(!⇤
)

pj(!)

pj(⇧i(!⇤))

h 1X

k=0

�k
�
s(xjk, X)� s(yjk, X)

�i
�!
j

X

!2⇧i(!⇤
)

p(!)

p(⇧i(!⇤))

h 1X

k=0

�k
�
s(xk, X)� s(yk, X)

�i
=

h
�
(xn)N, (yn)N, p

�
.

Hence we can conclude that the function h is continuous in
�
(xn)N, (yn)N, p

�
.
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The next step is to apply appropriately the maximum theorem. First observe that we

can see P as a metric space, because ⌦ is separable under SEU. In addition, consider

the compact valued correspondence C : Y N ⇥ Y N �! P with C
�
(xn)N, (yn)N

�
= P

for every
�
(xn)N, (yn)N

�
2 Y N ⇥ Y N, which is both upper and lower hemicontinuous,

as it is constant correspondence. Therefore, by the maximum theorem we get that

min
p2P

h
�
(xn)N, (yn)N, p

�
is continuous in

�
(xn)N, (yn)N

�
, hence we get the result of the

theorem.

Next we proceed to the proof of Theorem 3.6 (i).

Proof. The proof proceeds in three steps. Firstly, we will conclude that on equilibrium

path the continuation games for each player i, at every realised true state and at every

time that she trades (i.e. in every i’s self) should converge to some non negative real

number. Then, using the fact that the strategies converge and properties of the MSR

we conclude that the continuation payo↵s should converge to zero. Finally, we conclude

that in the limit the revision proof predictions are the myopic ones and then by separa-

bility under SEU under ambiguity we can show that information gets aggregated.

Step 1:

Let assume that there exists player i, state !⇤, for which there exists p 2 P with

p(!⇤) > 0, such that Vi+nt(H i�1+nt(y⇤(!⇤)), (y⇤
i
, y⇤

�i
),!⇤) converges (in t) to some

c
⇧i(!

⇤
)

i < 0.

Consider the tail of the sequence from H i�1+nt(y⇤(!⇤)) and onwards, such that t > T

where T is the round that the public information reaches its finest set. In other words,

H i�1+nt(y⇤(!)) is the on equilibrium path history until i � 1 + nt prediction, and the

public information Fy⇤

T (!⇤) is the finest set of states that are considered possible to have

been realised (with respect to the history).

We observe that:

Vi+nt(H
i�1+nt(y⇤(!⇤)), (y⇤

i
, y⇤

�i
),!⇤) =

min
p2P

Fy⇤
T

(!⇤)\⇧i(!
⇤)

1X

k=0

�nkEp


s
⇣
y⇤i+nk+nt

�
⇧i(!

⇤), H i�1+nk+nt(y⇤(!
0
))
�
, X

⌘
�

s
⇣
y⇤i�1+nk+nt

�
⇧i�1

(!
0
), H i�2+nk+nt(y⇤(!

0
))
�
, X

⌘�
.

Therefore, because Fy⇤

T (!⇤) is the finest set of states that are considered possible to have

been realised, for t > T , for every i = 1, ..., n and k 2 N we have that

y⇤i+nk+nt

�
⇧i(!

⇤), H i�1+nk+nt(y⇤(!⇤))
�
= y⇤i+nk+nt

�
⇧i(!), H

i�1+nk+nt(y⇤(!))
�
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for every ! 2 Fy⇤

T (!⇤), for which there exists p 2 P with p(!) > 0 (otherwise more

information would be revealed).

This in turn implies that for t > T , for every i = 1, ..., n and k 2 N it is

H i�1+nk+nt(y⇤(!⇤)) = H i�1+nk+nt(y⇤(!))

for every ! 2 Fy⇤

T (!⇤), for which there exists p 2 P with p(!) > 0.

Hence, considering the sequences

�
(xk)k2N

�t
=

✓⇣
y⇤i+nk+nt

�
⇧i(!

⇤), H i�1+nk+nt(y⇤(!⇤))
�⌘

k2N

◆t

and ✓
(yk)k2N

◆t

=

✓⇣
y⇤i�1+nk+nt

�
⇧i�1

(!⇤), H i�2+nk+nt
y⇤ (!⇤)

�⌘

k2N

◆t

we conclude that for every i = 1, ..., n:

✓⇣
y⇤i+nk+nt

�
⇧i(!

⇤), H i�1+nk+nt(y⇤(!⇤))
�⌘

k2N

◆t

�!
t

✓
y⇤i,1

�
⇧i(!

⇤), H1(y⇤(!⇤))
�◆

k2N

and

✓⇣
y⇤i�1+nk+nt

�
⇧i�1

(!⇤), H i�2+nk+nt(y⇤(!⇤))
�
k2N

⌘◆t

�!
t

✓
y⇤i�1,1

�
⇧i�1

(!⇤), H1(y⇤(!⇤))
�◆

k2N
.41

This is because the convergence of the sequences is in the product topology and for

every k 2 N it is y⇤i+nk+nt

�
⇧i(!⇤), H i�1+nk+nt(y⇤(!))

�
�!t y

⇤
i,1

�
⇧i(!⇤), H1(y⇤(!⇤))

�

for every i (by the converging assumption).

Using Lemma C.1 we conclude that the limit of the tail exists and it is:

min
p2P

Fy⇤
T

(!⇤)\⇧i(!
⇤)

Ep


s
⇣
y⇤i,1

�
⇧i(!⇤), H1(y⇤(!

0
))
�
, X

⌘
� s

⇣
y⇤i�1,1

�
⇧i�1

(!
0
), H1(y⇤(!

0
))
�
, X

⌘�

1� �n
.

Name the limit c⇧i(!
⇤
). Then finally it should be the case that there exists t

0

2 N such

that for every t � t
0

>> T it is

Vi+nt(H
i�1+nt(y⇤(!⇤)), (y⇤

i
, y⇤

�i
),!⇤) =

min
p2Py⇤

FT
(!⇤

)\⇧i(!⇤
)

1X

k=t

�nk�ntEp


s
⇣
y⇤i+nk

�
⇧i(!

⇤), H i�1+nk(y⇤(!
0
))
�
, X

⌘
�

41Because we are after the time the finest information for every player is achieved the states ! 2
⇧i(!

⇤) \ Fy⇤

T (!) so not reveal information about as the strategic predictions over them are constant.
Hence, we select to represent that constant value by using the realised state !⇤. However, when need to
have an expectation we turn to the normal notation.
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s
⇣
y⇤i�1+nk

�
⇧i�1

(!
0
), H i�2+nk(y⇤(!

0
))
�
, X

⌘�
< 0.42

Consider round t
0

, the equilibrium history H i+nt0�1(y⇤(!⇤)) and the implied public

information Fy⇤

i+nt0�1

(!⇤). The set of states that the player thinks possible to have

been realised is ⇧i(!⇤) \ Fy⇤

i+nt0�1

(!⇤).43 According to the assumption made in this

step, if player i follows his equilibrium strategy then the continuation payo↵ is negative.

However, we can define the following deviation strategy, assuming that �i follow their

equilibrium strategies:

(i) Define y
0
i+nt0

�
⇧i(!⇤), H i+nt0�1(y⇤(!⇤))

�
to be whatever the previous player pre-

dicted. The set ⇧i(!⇤) \ Fy⇤

i+nt0�1

(!⇤) can be partitioned in the following way:

For ! 2 ⇧i(!⇤) \ Fy⇤

i+nt0�1

(!⇤), with p(!) > 0 for some p 2 P, the equilibrium play of

�i after the deviation y
0
i+nt0

�
⇧i+nt0 , H

i+nt0�1(y⇤(!⇤))
�
, let’s denote that path with H!,

leads to i’s information set

{H i+nt0�1

y⇤ (!⇤) [ (y
0
i+nt0

�
⇧i(!

⇤), H i+nt0�1(y⇤(!⇤))
�
[H!,!

0
) : !

0 2 ⇧i(!) = ⇧i(!
⇤)}.

According to Definition 3.3 (iii), the states that are considered to have been realised in

this information set are the ones consistent with the path and the beliefs are derived by

prior by prior updating. Consider as one member of the partition that set, and apply

the same reasoning for every ! 2 ⇧i(!⇤)\Fy⇤

i+nt0�1

(!⇤), with p(!) > 0 for some p 2 P.

To sum up, we conclude a partition of

⇧i(!
⇤) \ F⇤

i+nt0�1

(!⇤) =
m[

j=1

�
⇧i(!

⇤) \ Fy
0
,j

i+nt0+n�1

�

and let’s denoteH1

y0
, ..., Hm

y0
the path of �i that leads to⇧i(!⇤)\Fy

0
,1

i+nt0+n�1

, ...,⇧i(!⇤)\

Fy
0
,m

i+nt0+n�1

respectively.44

(ii) In each of those sets, let assume without loss in generality that it is after the Hj
m

for some 1  j  n, we define the deviation strategy as follows:

(a) If Vi+nt0+n(H i+nt0�1(y⇤(!⇤))[{y0
i+nt0

�
⇧i(!⇤), H i+nt0�1(y⇤(!⇤))

�
}[Hj

m, (y⇤
i
, y⇤

�i
),!⇤)

is non negative, then the deviation strategy coincides with the equilibrium at every suc-

ceeding information set (including the one at round t
0

+ 1).

(b) If not, then define the deviation action

y
0
i+nt0+n(⇧i(!⇤), H i+nt0�1(y⇤(!⇤)) [ {y0

i+nt0

�
⇧i(!⇤), H i+nt0�1(y⇤(!⇤))

�
} [Hj

m)

to be the same with what the previous player predicted.

42Notice here that we can interchange the sum with the expectation using Beppo-Levi theorem.
43Although it is Fy⇤

i+nt0�1(!
⇤) = Fy⇤

T (!⇤), we use the more analytic notation in order to make clear
the information set after the deviation, in which case it is not always true in general that no more
information communication occurs.

44Of course it can be the case that the partition is trivial, in the sense that it contains the initial set
as its only element. We assumed a more general occasion in order to have the arguments in their more
general form.
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If (b) happens, then for the corresponding information set and the history until it is

reached, we repeat the same reasoning as in (i) and (ii).

(iii) We define the deviation strategy to be the same with he equilibrium strategy ev-

erywhere else that is not defined by the previous procedure.

Having defined the deviation strategy, we can observe now that estimating the utility of

the deviation strategy at time i+nt
0

, when the history until that point is the equilibrium

path and �i follow their equilibrium strategies, we have that it is:

Vi+nt0(H
i+nt0�1(y⇤(!⇤)), (y

0i
, y⇤

�i
),!⇤) =

min
p2P

Fy⇤
i+nt0�1(!

⇤)\⇧i(!
⇤)

P1
k=t0+1

�nk�nt0Ep


s
⇣
y
0
i+nk

�
⇧i(!⇤), H i�1+nt0(y⇤(!⇤))[

{y0
i+nt0

�
⇧i(!⇤), H i�1+nt0(y⇤(!⇤))

�
}[H i�1+nk

i+nt0
((y

0i
, y⇤

�i
)(!

0
))
�
, X

⌘
�s

⇣
y⇤i�1+nk

�
⇧i�1

(!
0
), H i�1+nt0(y⇤(!⇤))[

{y0
i+nt0

�
⇧i(!⇤), H i�1+nt0(y⇤(!⇤))

�
} [H i�2+nk

i+nt0
((y

0i
, y⇤

�i
)(!

0
))
�
, X

⌘�
.

For t � t
0

define:

ft(!) =

"
P1

k=t �
nk�nt0

✓
s
⇣
y
0
i+nk

�
⇧i(!), H i+nt0�1(y⇤(!⇤))[H i+nk�1

i+nt0�1

((y
0i
, y⇤

�i
)(!))

�
, X

⌘
�

s
⇣
y⇤i�1+nk

�
⇧i�1

(!), H i�2+nt(y⇤(!⇤))[H i+nk�2

i+nt0�2

((y
0i
, y⇤

�i
)(!))

�
, X

⌘◆#
, therefore we have

that:

Vi+nt0(H
i+nt0�1(y⇤(!⇤)), (y

0i
, y⇤

�i
),!⇤) =

min
p2P

Fy⇤
i+nt0�1(!

⇤)\⇧i(!
⇤)

Ep[ft0 ].

Define the set:

Ac = {! 2 Fy⇤

i+nt0�1

(!⇤)\⇧i(!⇤) : Vi+nt0+nk(H i+nt0�1(y⇤(!⇤))[H i+nt0+kn�1

i+nt0�1

((y
0 i
, y⇤�i)(!)), (y⇤

i
, y⇤

�i
),!⇤) <

0 for every k � 0}. Then for every ! 2 Ac we have ft0(!) = 0, by definition of y
0 i
.

For every ! 2 A define:

k! = min{k : Vi+nt0+nk(H
i+nt0�1(y⇤(!⇤))[H i+nt0+kn�1

i+nt0�1

((y
0 i
, y⇤�i)(!)), (y⇤

i
, y⇤

�i
),!⇤) � 0}.

We know that the minimum is well defined by the definition of A.

By the definition of y
0 i
we have that for every ! 2 Fy⇤

T (!⇤) \⇧i(!⇤):

Vi+nt0+nk!(H
i+nt0�1(y⇤(!⇤)) [H i+nt0+k!n�1

i+nt0�1

((y
0 i
, y⇤�i)(!)), (y

0i
, y⇤

�i
),!⇤) =
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Vi+nt0+nk!(H
i+nt0�1(y⇤(!⇤)) [H i+nt0+k!n�1

i+nt0�1

((y
0 i
, y⇤�i)(!)), (y⇤

i
, y⇤

�i
),!⇤) � 0

and for the preceding information sets at rounds t
0

, ..., t
0

+ k! the deviation action of i

is playing whatever the previous.

For every ! 2 A set

A! = {!0 2 A : H i+nt0�1(y⇤(!⇤)) [H i�1+nt0+nk!
i�1+nt0

((y
0 i
, y⇤�i)(!

0
)) = H i+nt0�1(y⇤(!⇤)) [

H i�1+nt0+nk!
i�1+nt0

((y
0 i
, y⇤�i)(!))}.

Intuitively, this is the set of states that i thinks are possible to happen, when the realised

state is !⇤, the round is (t
0

+k!) and the history isH i+nt0�1(y⇤(!⇤))[H i�1+nt0+nk!
i�1+nt0

((y
0 i
, y⇤�i)(!)).

In fact, these sets form a partition of the set A.Here we use Definition 3.3 (iii). Name

the partition A!1 , ..., A!m . Essentially, it is the joint information between the public

information created by the corresponding history and i’s private signal.

Next, we can observe that:

Vi+nt0(H
i+nt0�1(y⇤(!⇤)), (y

0 i
, y⇤�i),!⇤) =

Ep⇤ [ft0 ] =
X

!2A
ft0(!)p

⇤(!)

for some p⇤ 2 PFy⇤
i+nt0�1(!

⇤
)\⇧i(!⇤

)

.

But X

!2A
ft0(!)p

⇤(!) =

p⇤(A!1)
X

!2A!1

�nk!1ft0+k!1(!)
p⇤(!)

p⇤(A!1)
+...+p⇤(A!m)

X

!2A!m

�nk!mft0+k!m(!)
p⇤(!)

p⇤(A!m)
.45

In addition, for every !
1

, ...,!m it holds that:

X

!2A!j

�nk!j ft0+k!j
(!)

p⇤(!)

p⇤(A!j )
�

�nk!jVi+nt0+nk!j
(H i+nt0�1(y⇤(!⇤)) [H

i+nt0+k!jn�1

i+nt0�1

((y
0 i
, y⇤�i)(!j)), (y

0i
, y⇤

�i
),!⇤) =

�nk!jVi+nt0+nk!j
(H i+nt0�1(y⇤(!⇤)) [H i+nt0+k!n�1

i+nt0�1

((y
0 i
, y⇤�i)(!j)), (y

⇤i , y⇤
�i
),!⇤) � 0.

Hence

Vi+nt0(H
i+nt0�1(y⇤(!⇤)), (y

0 i
, y⇤�i),!⇤) � 0.46

Assume now that we are on deviation strategy’s path at round, say t
0

+ �. If for

every ! 2 Fy⇤

i+n(t0+�)�1

(!⇤) \ ⇧i(!⇤) with k!  t
0

+ � then the deviation strategy

45In this argument we use Definition 3.3 (iii): the deviator (i.e. trader i) updates prior by prior.
46In this argument we use Definition 3.3 (iii): the deviator (i.e. trader i) updates prior by prior.
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in the continuation is the same as the equilibrium’s one.47 Otherwise, we can apply

the previous reasoning for the new information set (essentially the only change in the

arguments above is that instead of having history H i+nt0�1(y⇤(!⇤)) we would have

H i+nt0�1(y⇤(!⇤)) [H
i+nt0+(k+�)n�1

i+nt0�1

((y
0 i
, y⇤�i)(!) ).

In addition, outside the deviation path we have that the payo↵s are the same, by its

definition, too. Hence, we get a contradiction, because y⇤ is revision proof.

Hence we conclude that c
⇧i(!

⇤
)

i � 0, for every i and !⇤, for which p(!⇤) > 0 for some

p 2 P.

Step 2:

Because of Step 1, in the limit we have that for every !⇤, such that there exists p 2 P
with p(!⇤) > 0, it is:

min
p2P

Fy⇤
T

(!⇤)\⇧i(!
⇤)

Ep


s
⇣
y⇤i,1

�
⇧i(!⇤), H1(y⇤(!

0
))
�
, X

⌘
� s

⇣
y⇤i�1,1

�
⇧i�1

(!
0
), H1(y⇤(!

0
))
�
, X

⌘�

1� �n
� 0.

Therefore, for every p 2 P it is:

E
p|⇧i(!⇤

)\Fy⇤
T (!⇤

)


s
⇣
y⇤i,1

�
⇧i(!

⇤), H1(y⇤(!
0
))
�
, X

⌘
�s

⇣
y⇤i�1,1

�
⇧i�1

(!
0
), H1(y⇤(!

0
))
�
, X

⌘�
� 0

and hence it is:

p
�
⇧i(!

⇤)\Fy⇤

T (!⇤)
�
E

p|⇧i(!⇤
)\Fy⇤

T (!⇤
)


s
⇣
y⇤i,1

�
⇧i(!

⇤), H1(y⇤(!
0
))
�
, X

⌘
�s

⇣
y⇤i�1,1

�
⇧i�1

(!
0
), H1(y⇤(!

0
))
�
, X

⌘�
� 0

.48

We have that Fy⇤

T (!⇤) = Fy⇤

T (!) for every ! 2 Fy⇤

T (!⇤). Summing over Ci = {⇧i(!) :

! 2 Fy⇤

T (!⇤)} and for every p 2 P it is:

X

⇧i(!)2Ci

p
�
⇧i(!) \ Fy⇤

T (!⇤)
�
E

p|⇧i(!)\Fy⇤
T (!⇤

)


s
⇣
y⇤i,1

�
⇧i(!), H

1(y⇤(!
0
))
�
, X

⌘
�

47Notice here that if there exists ! 2 Fy⇤

i+n(t0+�)�1(!
⇤)\⇧i(!

⇤) it is k!  t0+� then the same applies

for every ! 2 Fy⇤

i+n(t0+�)�1(!
⇤) \⇧i(!

⇤).
48We have that p(⇧i(!

⇤) \ Fy⇤

T (!⇤) > 0 for every p 2 P: this is because we know that there exists
p0 2 P with p0(!

⇤) > 0 which implies, by the prior by prior updating on equilibrium path according to

(iii) of Definition 3.3, that p0(⇧i(!
⇤)\Fy⇤

T (!⇤)) and hence, again by (iii) of Definition 3.3, we get that

for every p 2 P it is p(⇧i(!
⇤) \ Fy⇤

T (!⇤)).
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s
⇣
y⇤i�1,1

�
⇧i�1

(!
0
), H1(y⇤(!

0
))
�
, X

⌘�
=

X

!2Fy⇤
T (!⇤

)

p(!)


s
⇣
y⇤i,1

�
⇧i(!

0
), H1(y⇤(!

0
))
�
, X

⌘
�s

⇣
y⇤i�1,1

�
⇧i(!

0
), H1(y⇤(!

0
))
�
, X

⌘�
=

= p
�
Fy⇤

T (!⇤)
�
E

p|Fy⇤
T (!⇤

)


s
⇣
y⇤i,1

�
⇧i(!

0
), H1(y⇤(!

0
))
�
, X

⌘
�s

⇣
y⇤i�1,1

�
⇧i�1

(!
0
), H1(y⇤(!

0
))
�
, X

⌘�
� 0.

Summing for all i we get that on the one hand the sum is zero and on the other hand

that every term of the summation is more than or equal to zero. Hence every term of

the summation should be zero.

For a similar reason, we conclude that c
⇧1(!⇤

)

1

= ... = c
⇧n(!⇤

)

n = 0 for every !⇤, such

that there exists p 2 P with p(!) > 0.

Step 3:

Let assume i and !⇤, such that there exists p 2 P with p(!⇤) > 0, with

min
p2P

Fy⇤
T

(!⇤)\⇧i(!
⇤)

Ep


s
⇣
dP

Fy⇤
T

(!⇤)
(⇧i(!

⇤), y⇤i�1,1
�
⇧i(!

0
), H1(y⇤(!

0
))
�
), X

⌘
�

s
⇣
y⇤i�1,1

�
⇧i�1

(!
0
), H1(y⇤(!

0
))
�
, X

⌘�
> ⌘

for some ⌘ > 0.

Then that is true for all final periods t >> T :

min
p2P

Fy⇤
T

(!⇤)\⇧i(!
⇤)

Ep[s(dP
�
Fy⇤

T (!⇤) \⇧i(!
⇤), y⇤i�1+nt(⇧i(!

0
), H i�2+nt(y⇤(!

0
)))

�
, X)�

s(y⇤i�1+nt

�
⇧i�1

(!
0
), H i�2+nt(y⇤(!

0
))
�
, X)] > ⌘.

Fix such t
0

, for which in the same time the continuation game is less than ⌘ > 0. We

can do that, because the continuations are converging to zero, as we noticed in Step 2.

We can observe that with the same reasoning as in Step 1, but with the only di↵erence to

deviate at time i+nt
0

by playing dP
�
Fy⇤

T (!⇤)\⇧i(!⇤), y⇤i+nt0�1

�
⇧i�1

(!⇤), H i+nt0�2(y⇤(!⇤))
��
,

which deviation will give for this round utility at least ⌘, and exactly with the same way

as in Step 1 after that, we define an alternative strategy.

In addition, we define Ac = {! 2 Fy⇤

i+nt0�1

(!⇤) \⇧i(!⇤) : Vi+nt0+nk(H i+nt0�1(y⇤(!⇤)) [
H i+nt0+kn�1

i+nt0�1

((y
0 i
, y⇤�i)(!)), (y⇤

i
, y⇤

�i
),!⇤) < 0 for every k � 1}. Then for every ! 2 Ac

we have ft0+1

(!) = 0, by definition of y
0 i
.
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For every ! 2 A take:

k! = min{k � 1 : Vi+nt0+nk(H i+nt0�1(y⇤(!⇤))[H i+nt0+kn�1

i+nt0�1

((y
0 i
, y⇤�i)(!)), (y⇤

i
, y⇤

�i
),!⇤) �

0}. We know that the minimum is well defined by the definition of A.

By the definition of y
0 i
we have that for every ! 2 Fy⇤

T (!⇤) \⇧i(!⇤):

Vi+nt0+nk!(H
i+nt0�1(y⇤(!⇤)) [H i+nt0+k!n�1

i+nt0�1

((y
0 i
, y⇤�i)(!)), (y

0i
, y⇤

�i
),!⇤) =

Vi+nt0+nk!(H
i+nt0�1(y⇤(!⇤)) [H i+nt0+k!n�1

i+nt0�1

((y
0 i
, y⇤�i)(!)), (y⇤

i
, y⇤

�i
),!⇤) � 0

and for the preceding information sets at rounds t
0

+1, ..., t
0

+k! the deviation action of

i is playing whatever the previous, but for round t
0

where trader is playing dP
�
Fy⇤

T (!⇤)\
⇧i(!⇤), y⇤i+nt0�1

�
⇧i�1

(!⇤), H i+nt0�2(y⇤(!⇤))
��
.

For every ! 2 A set:

A! = {!0 2 A : H i+nt0�1(y⇤(!⇤)) [H i�1+nt0+nk!
i�1+nt0

((y
0 i
, y⇤�i)(!

0
)) = H i+nt0�1(y⇤(!⇤)) [

H i�1+nt0+nk!
i�1+nt0

((y
0 i
, y⇤�i)(!))}.

Intuitively, this is the set of states that i thinks are possible to happen, when the realised

state is !⇤, the round is (t
0

+k!) and the history isH i+nt0�1(y⇤(!⇤))[H i�1+nt0+nk!
i�1+nt0

((y
0 i
, y⇤�i)(!)).

In fact, these sets form a partition of the set A. Name the partition A!1 , ..., A!m .

Essentially, it is the joint information between the public information created by the

corresponding history and i’s private signal.

Next, we can observe that:

Vi+nt0(H
i+nt0�1(y⇤(!⇤)), (y

0 i
, y⇤�i),!⇤) =

Ep⇤ [ft0 ] =

Ep⇤


s
⇣
dP

�
Fy⇤

T (!⇤) \⇧i(!
⇤), y⇤i+nt0�1

�
⇧i�1

(!⇤), H i+nt0�2(y⇤(!⇤))
��
, X

⌘
�

s
⇣
y⇤i�1+nt(⇧i�1

(!
0
), H i�2+nt(y⇤(!

0
))), X

⌘�
+

X

!2A
�nft0+1

(!)p⇤(!)

for some p⇤ 2 PFy⇤
i+nt0�1(!

⇤
)\⇧i(!⇤

)

.49

But X

!2A
�nft0+1

(!)p⇤(!) =

49Here we should have written Ep⇤


s
⇣
dP

�
Fy⇤

T (!⇤)\⇧i(!
⇤), y⇤

i+nt0�1

�
⇧i�1(!

⇤), Hi+nt0�2(y⇤(!⇤))
��
, X

⌘
�

s
⇣
y⇤
i�1+nt(⇧i�1(!

0
), Hi�2+nt(y⇤(!⇤))), X

⌘�
instead of Ep⇤


s
⇣
dP

�
Fy⇤

T (!⇤) \

⇧i(!
⇤), y⇤

i+nt0�1

�
⇧i�1(!

⇤), Hi+nt0�2(y⇤(!⇤))
��
, X

⌘
� s

⇣
y⇤
i�1+nt(⇧i�1(!

0
), Hi�2+nt(y⇤(!

0
))), X

⌘�
.

However, we can do that because for every !
0

2 Fy⇤

T (!⇤) \ ⇧i(!
⇤) and t >> T it is

Hi�2+nt(y⇤(!
0
)) = Hi�2+nt(y⇤(!⇤)), , by the definition of Fy⇤

T (!⇤).
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p⇤(A!1)
X

!2A!1

�nk!1ft0+k!1(!)
p⇤(!)

p⇤(A!1)
+ ...+ p⇤(A!m)

X

!2A!m

�nk!mft0+k!m(!)
p⇤(!)

p⇤(A!m)
.

In addition, for every !
1

, ...,!m it holds that:

X

!2A!j

�nk!j ft0+k!j
(!)

p⇤(!)

p⇤(A!j )
�

�nk!jVi+nt0+nk!j
(H i+nt0�1(y⇤(!⇤)) [H

i+nt0+k!jn�1

i+nt0�1

((y
0 i
, y⇤�i)(!j)), (y

0i
, y⇤

�i
),!⇤) =

�nk!jVi+nt0+nk!j
(H i+nt0�1(y⇤(!⇤)) [H i+nt0+k!n�1

i+nt0�1

((y
0 i
, y⇤�i)(!j)), (y

⇤i , y⇤
�i
),!⇤) � 0.

Hence

Vi+nt0(H
i+nt0�1(y⇤(!⇤)), (y

0 i
, y⇤�i),!⇤) � ⌘.50

Assume now that we are on deviation strategy’s path at round, say t
0

+ �, with � � 1.

If for every ! 2 Fy⇤

i+n(t0+�)�1

(!⇤) \⇧i(!⇤) it is k!  t
0

+ � then the deviation strategy

in the continuation is the same as the equilibrium’s one.51 Otherwise, we can apply

exactly the reasoning of Step 1 for the corresponding information set.

In addition, outside the deviation path we have that the payo↵s are the same, by its

definition, too. Hence, we get a contradiction, because y⇤ is revision proof.

We can conclude a contradiction because y⇤i is revision proof equilibrium.

Therefore, it should be the case that for every i and every !⇤, for which there exists

p 2 P with p(!⇤) > 0, it is:

min
p2P

Fy⇤
T

(!⇤)\⇧i(!
⇤)

Ep


s
⇣
dP

Fy⇤
T

(!⇤)
(⇧i(!

⇤), y⇤i�1,1
�
⇧i(!

0
), H1(y⇤(!

0
))
�
), X

⌘
�

s
⇣
y⇤i�1,1

�
⇧i�1

(!
0
), H1(y⇤(!

0
))
�
, X

⌘�
= 0.

For every i the limit strategies are constant over Fy⇤

T (!⇤) and hence

y⇤i,1
�
⇧i(!

⇤), H1(y⇤(!⇤))
�
= y⇤i,1

�
⇧i(!

0
), H1(y⇤(!

0
))
�

for every !
0 2 Fy⇤

T (!⇤) with p(!
0
) > 0 for some p 2 P.

50In this argument we use Definition 3.3 (iii): the deviator (i.e. i trader) updates prior by prior.
51Notice here that if there exists ! 2 Fy⇤

i+n(t0+�)�1(!
⇤)\⇧i(!

⇤) it is k!  t0+� then the same applies

for every ! 2 Fy⇤

i+n(t0+�)�1(!
⇤) \⇧i(!

⇤).
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Therefore, for every !⇤, for which there exists p 2 P with p(!⇤) > 0, it is:

(1) dP
Fy⇤
T

(!⇤)

⇣
⇧i(!⇤), y⇤i�1,1

�
⇧i�1

(!⇤), H1(y⇤(!⇤))
�⌘

= y⇤i�1,1
�
⇧i�1

(!⇤), H1(y⇤(!⇤))
�
.

(2) c⇧i(!
⇤
)

i = 0, as well, and hence by the uniqueness of the

argmax
y2Y

min
p2P

Fy⇤
T

(!⇤)\⇧i(!
⇤)

Ep


s
⇣
y,X(!)

⌘
�s

⇣
y⇤i�1,1(⇧i�1

(!
0
), H1�

y⇤(!
0
))
�
, X(!)

⌘�
(us-

ing arguments of Lemma 2.3) it should be the case that for every i it is y⇤i,1
�
⇧i(!⇤), H1(y⇤(!⇤))

�
=

dP
Fy⇤
T

(!⇤)
(⇧i(!⇤), y⇤i�1,1

�
⇧i(!⇤), H1(y⇤(!⇤))

�
).

Then defining Vi = {y⇤i,1(⇧i(!⇤), H1(y⇤(!⇤)))} and using the assumption of X being

separable under ambiguity, for PFy⇤
T (!⇤

)

, we conclude that information gets aggregated.52

Here we prove Theorem 3.6 (ii):

Proof. Take a non-separable under ambiguity security under ⇧ and s. Then there exists

P ✓ �(⌦) convex and compact whose every prior gives positive probability in each

element of ⇧, and O and v 2 R such that:

for every i = 1, ..., n and for every !, such that there exists p 2 P with p(!) > 0, it is

dP(⇧i(!), v) = v.

We will show that if MM announcement is v then there exists a converging revision

proof equilibrium in which information does not get aggregated.

Define the assessment (y⇤,P), where y⇤ is the following strategy profile:

every player i predicts v after any history.53

As far as the beliefs are concerned, on equilibrium path the prior by prior updating is

used and for the rest o↵ equilibrium information sets the beliefs are given by P over the

information set with prior by prior updating whenever possible.

Given that initially the MM announces v, the strategic traders are essentially playing

their myopic strategy because for every i and for every !, such that there exists p 2 P
with p(!) > 0, it is dP(⇧i(!), v) = v or in other words their strategic actions solves the

max
y2Y

min
p2P

Ep|⇧1(!⇤
)

⇥
s(y,X(!))� s(v,X(!))

⇤
.

52By Lemma A.1 and Definition 3.3 (iii) we know that the priors of the set PFy⇤
T

(!⇤)
are mutually

absolute continuous with respect to ⇧i, for i = 1, ..., n.
53We observe that the equilibrium profile defined satisfies the converging strategies assumption.
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Next we can observe that the maximum continuation payo↵ for an agent i after history

Ht, given that �i follow the y⇤, is54:

min
p2PHt

Ep|⇧i(!⇤
)

 1X

k=t

�nk�nt
⇣
s(Ep|⇧i(!⇤

)

, X(!))� s(v,X(!))
⌘�

=

= min
p2PHt

Ep|⇧i(!)

⇥
s(Ep|⇧i(!⇤

)

, X(!))� s(v,X(!))
⇤

1� �n
=

= min
p2PHt

max
y2Y

Ep|⇧i(!)

⇥
s(y,X(!))� s(v,X(!))

⇤

1� �n
.

However, by the arguments of Lemma 2.3, we have that

min
p2PHt

max
y2Y

Ep|⇧i(!)

⇥
s(y,X(!))�s(v,X(!))

⇤
= max

y2Y
min
p2PHt

Ep|⇧i(!)

⇥
s(y,X(!))�s(v,X(!))

⇤
.

In addition, by definition of y⇤ we have PHt = P (i.e. no essential information refinement

ever happens). Therefore, it cannot be alternative strategy profile that gives at some

round and under some history strictly better payo↵ than y⇤, and hence we conclude that

it is revision proof equilibrium.

54In order to understand the maximum continuation payo↵ for agent i we need firstly to ob-
serve that because the equilibrium actions of the other agents are v whatever the history or
the state is, then the strategy for agent i can be written as, for every k � t and !

0
2 ⇧i(!),

yi+nk

⇣
⇧i(!), H

i�1+nt [ Hi�1+nk
i�1+nt

�
(yi, y

⇤
�i)(!

0
)
�⌘

= yi+nk

⇣
⇧i(!), H

i�1+nt [ Hi�1+nk
i�1+nt

�
(yi, y

⇤
�i)(!)

�⌘

which we can denote for simplicity by yi+nk because ! can be thought as given.

Secondly, we claim that max
(yi+nk)k2Y N

min
p2PHt(!)

Ep

P1
k=t �

nk�nt
⇣
s(yi+nk, X) � s(v,X)

⌘�


max
y2Y

min
p2PHt(!)

Ep

P1
k=t �

nk�nt
⇣
s(y,X) � s(v,X)

⌘�
. Indeed, by Lemma 2.3 we can see that

max
y2Y

min
p2PHt(!)

Ep

P1
k=t �

nk�nt
⇣
s(y,X) � s(v,X)

⌘�
= Ep⇤

P1
k=t �

nk�nt
⇣
s(Ep⇤ [X], X) � s(v,X)

⌘�
for

some p⇤ 2 PHt(!). Denote by (yi+nk)k a solution of the left hand side ”maxmin” problem. Then

min
p2PHt(!)

Ep

P1
k=t �

nk�nt
⇣
s(yi+nk, X) � s(v,X)

⌘�
 Ep⇤

P1
k=t �

nk�nt
⇣
s(yi+nk, X) � s(v,X)

⌘�


Ep⇤

P1
k=t �

nk�nt
⇣
s(Ep⇤ [X], X)� s(v,X)

⌘�
. In other words, what it have just proved is that in order

to maximise your continuation expected payo↵, given that the other players are playing at any case v,
you need to consider only those continuation profiles that prescribe the same action for every future
information set.
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Below we prove Theorem 3.7.

Proof. Let X to be the separable under ambiguity security and y⇤ the equilibrium profile.

By Theorem 3.6 we know that for every state !⇤ that can be realised there exists some

time T such that Fy⇤

T (!⇤) is the finest public information and for every ! 2 Fy⇤

T (!⇤)

it is X(!) = X(!⇤). Therefore, we can conclude that if traders are myopic, for a

round latter than T , then they should announce X(!⇤). In addition, by Theorem 3.5

again we know that information gets aggregated and thus y⇤t �!t>T X(!⇤), where

y⇤t = y⇤
(tmodn)+n(t�1)

�
⇧

(tmodn)(!
⇤), Ht�1(y⇤(!⇤))

�
. In addition, s⇤t = s(y⇤t , X(!⇤)) �!

s⇤ = s(X(!⇤), X(!⇤).

Assume that there exists y⇤t , for t > T , such that y⇤t 6= X(!⇤). Hence it is s⇤t 6= s⇤. Then

we can define

t
0

= min{m : for every k � m it is |s⇤k � s⇤|  ✏}

with 0 < ✏ < |s⇤ � s⇤t | = s⇤ � s⇤t .
55 We have that t

0

� 1 � t > T .

Without loss in generality, assume that y⇤t0�1

is actually the y⇤i+nt1
which in turn corre-

sponds to s⇤i+nt1
. By its definition |s⇤ � s⇤t0�1

| = |s⇤ � s⇤i+nt1
| = s⇤ � s⇤i+nt1

> ✏.

By definition of t
0

we have that for every k > t
1

it is |s⇤i+nk � s⇤i�1+nk|  2✏. Hence for

�n < 1

3

we get that:

�n
1X

k=t1+1

�n(k�t1�1)(s⇤i+nk � s⇤i�1+nk) 

�n
1X

k=t1+1

�n(k�t1�1)|s⇤i+nk � s⇤i�1+nk| 

�n

1� �n
2✏  ✏.

55This is because s⇤ is the score for the true state when the prediction is the true state, and X(!) 6= y⇤
t .
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Therefore:

s⇤i+nt1 � s⇤i�1+nt1 + �n
1X

k=t1+1

�n(k�t1�1)(s⇤i+nk � s⇤i�1+nk) 

s⇤i+nt1 � s⇤i�1+nt1 + ✏ < s⇤ � s⇤i+nt1 + s⇤i+nt1 � s⇤i�1+nt1 = s⇤ � s⇤i�1+nt1 .

By definition of F⇤
T (!

⇤) and because X(!) = X(!⇤) for every ! 2 F⇤
T (!

⇤) we have:

Vi+nt1(H
i�1+nt1(y⇤(!⇤)), y⇤,!⇤) =

s⇤i+nt1 � s⇤i�1+nt1 + �n
1X

k=t1+1

�n(k�t1�1)(s⇤i+nk � s⇤i�1+nk)

and

min
p2P

Fy⇤
T

(!⇤)\⇧i(!
⇤)

Ep[s(dP
Fy⇤
T

(!⇤)

�
⇧i(!

⇤), y⇤i�1+nt1(⇧i(!
0
), H i�2+nt2(y⇤(!

0
)))

�
, X)�

s(y⇤i�1+nt1

�
⇧i(!

0
), H i�2+nt2(y⇤(!

0
))
�
, X)] =

s⇤ � s⇤i�1+nt1 .

Therefore by the first argument in Step 3 of Theorem 3.6 we get a contradiction with

y⇤ being revision proof.

Next we prove Theorem 3.8:

Proof. By Theorem 3.6 we know that for every state !⇤ that can be realised it is X(!) =

X(!⇤) for every ! 2 Fy⇤
n (!⇤).

From Theorem 3.7 we know that after n + 1-th announcement (including n + 1) every

trader plays myopically, hence for every state !⇤ that can be realised and every i = 1, ..., n

they predict y⇤i+kn

�
⇧i(!⇤), H i�1+kn(y⇤(!⇤))

�
= X(!⇤), for every k = 1, 2, ....

The utility of trader i = 1, ..., n, divided by �i, at their information set when k = 0 is

as follows:

min
p2P

Fy⇤
i�1(!

⇤)\⇧i(!)

Ep[

✓
s
⇣
y⇤i
�
⇧i(!

⇤), H i�1(y⇤(!
0
))
�
, X

⌘
�s

⇣
y⇤i�1

�
⇧i�1

(!
0
), H i�2(y⇤(!

0
))
�
, X

⌘◆
+

1X

k=1

�nk

✓
s
⇣
y⇤i+nk

�
⇧i(!

⇤), H i�1+nk(y⇤(!
0
))
�
, X

⌘
�s

⇣
y⇤i�1+nk

�
⇧i�1

(!
0
), H i�2+nk(y⇤(!

0
))
�
, X

⌘◆
].
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Therefore, for every i = 2, ..., n the utility turns out to be:

min
p2P

Fy⇤
i�1(!

⇤)\⇧i(!)

Ep[

✓
s
⇣
y⇤i
�
⇧i(!

⇤), H i�1(y⇤(!
0
))
�
, X

⌘
�s

⇣
y⇤i�1

�
⇧i�1

(!
0
), H i�2(y⇤(!

0
))
�
, X

⌘◆
].

This is because for every state !⇤ that can be realised it is y⇤i+kn

�
⇧i(!⇤), H i�1+kn(y⇤(!⇤))

�
=

X(!⇤) for every i = 1, ..., n, for every k = 1, 2, ....

If there exists a trader i 2 {2, ..., n} that in his first round action does not play myopically,

then if she would have played myopically her utility when k = 0 would be higher than

the utility from her continuation game (on equilibrium path). Hence, with the same

argument as in Step 3 of Theorem 3.6 we get a contradiction with y⇤ being revision

proof. Hence, every i 2 {2, ..., n} plays myopically for every state that can be realised.

The same applies for i = 1 as well. However we need the result of the previous paragraph

and the following argument to conclude it: for every !⇤, with p(!⇤) > 0 for some

p 2 P , we have that for every ! 2 Fy⇤

n+1

(!⇤) it is X(!) = X(!⇤) and that Fy⇤
n (!⇤) ◆

⇧n(!⇤) \ Fy⇤

n�1

(!⇤) therefore X(!) = X(!⇤) for every ! 2 ⇧n(!⇤) \ Fy⇤

n�1

(!⇤) (hence

n-th trader’s myopic prediction is essentially X(!⇤), therefore trader’s 1 continuation is

zero).





Appendix E

The following tables illustrate the experimental data as used in the permutation tests.

Figure E.1: Experimental Data for Security X.

Figure E.2: Experimental Data for Security Y.
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