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Abstract. We introduce a model for active transport on inhomogeneous networks em-
bedded in a diffusive environment which is motivated by vesicular transport on actin
filaments. In the presence of a hard-core interaction, particle clusters are observed that
exhibit an algebraically decaying distribution in a large parameter regime, indicating
the existence of clusters on all scales. The scale free behavior can be understood by
a mechanism promoting preferential attachment of particles to large clusters. The re-
sults are compared with a diffusion limited aggregation model and active transport
on a regular network. For both models we observe aggregation of particles to clusters
which are characterized by a finite size-scale if the relevant time-scales and particle
densities are considered.

PACS. 87.16.Uv Active transport processes – 45.70.Vn Granular models of complex
systems

1 Introduction

Active transport processes play an important role
in biological and engineered systems. Examples
are road traffic or active intracellular transport
of vesicles and organelles by motor proteins that
perform directed movement along the cytoskele-
ton. In recent years stochastic systems of self-
driven particles have been applied to model in-
tracellular transport of motor proteins in a num-
ber of works [1–7]. Most of these models are vari-
ants of the totally asymmetric simple exclusion
process (TASEP) (with and without Langmuir
kinetics) which serves as a paradigmatic system
for driven non-equilibrium systems. While the
microtubules usually arrange in an ordered pat-
tern (e.g. a radial structure in most mammalian
cells, though longitudinal in neuronal axons), actin
filaments often form randomly structured undi-
rected networks. Therefore the investigation of

transport on networks arises to be an interesting
object of research.

Active transport on an undirected but regu-
lar network has been investigated by Klumpp et
al. [8] who studied the dynamic properties of dif-
fusive non-interacting particles on a lattice with
an embedded regular square network, which con-
sists of active stripes where particles perform bi-
ased motion. They showed that though move-
ment of particles remains globally diffusive on
long time-scales, the diffusion constant is enhanced
by the presence of the network.

In transport systems considering steric exclu-
sion interaction between particles, aggregation,
manifesting in the formation of jams, is a com-
mon phenomenon. Jams can form in one dimen-
sional systems with single tracks due to bound-
ary conditions (boundary induced phase transi-
tions [9]), induced by defects [10–15] or they
emerge spontaneously due to stochastic slow down
of vehicles in highway traffic [16,17]. In two di-
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mensional regular street networks, mutual inter-
ference of vehicles at intersections lead to jam-
ming [18].

Studies of transport on inhomogeneous topo-
logical networks (graphs with nodes and edges,
no distances) revealed an interesting phenomenol-
ogy. E.g. non-interacting particles performing a
random walk exhibit an inhomogeneous density
distribution on the nodes [19], while inclusion of
an attractive zero range interaction even allows
the particles to aggregate and form a conden-
sate, corresponding to nodes containing a finite
fraction of particles [20]. These results show that
the structure of a transport network strongly in-
fluences transport properties. In order to model
active transport on actin filament networks, it is
therefore necessary to consider realistic network
structures.

For many biological processes, concentration
gradients are crucial. One example is the ag-
gregation of proteins inside the cell or in the
cell membrane. Clusters of aggregated proteins
can be observed and characterized experimen-
tally for example by high resolution fluorescence
microscopy [21]. In some cases these clusters are
essential for cell functionality but they can also
lead to dysfunctions or even apoptosis. In yeast
cell membranes for example one observes the ag-
gregation of Erd2p-receptors which can promote
the internalization of toxins [22]. Most recent
works on membrane protein aggregation consid-
ered an attractive interaction between proteins
as source for (reversible) aggregation [23,21,24].
For this kind of particle dynamics, the resulting
clusters are governed by a well defined size scale.

Jamming in vesicular transport may yield an
alternative aggregation mechanism of proteins.
Vesicles, transported on different filaments can
block each other at filament crossing points, in-
ducing queuing of vesicles. The existence of a
quasi two-dimensional irregular actin filament
network beneath the membrane [25,26] suggests
jamming of vesicles prior exocytosis, resulting in
receptor clusters on the membrane surface. In
this case large scale features of cluster distri-
butions can vary from diffusion limited aggre-
gation. The limits of resolution in optical mi-
croscopy [27] do not allow to distinguish clus-
tered single receptors. By contrast the size of

larger particle aggregates can in principle be given
with relatively high precision [21]. Therefore it is
useful to relate the cluster size distribution with
microscopic transport mechanisms by means of
theoretical modelling.

In this work we propose a model for active
transport of extended hard-core particles (corre-
sponding to vesicles) on a two-dimensional ran-
domly disordered network embedded in a diffu-
sive environment. The model is motivated by in-
tracellular transport on submembranal networks,
we therefore adapt the model parameters to this
reference system. We check particle configura-
tions in order to identify the formation of clus-
ters and investigate cluster size distributions. The
results are compared with a regular network in
diffusive environment and a diffusive system with-
out network where attractive particle-particle in-
teractions promote cluster formation. The main
focus will be on robust properties of clusters that
serve as criteria to discriminate between differ-
ent microscopic aggregation dynamics.

2 Network models

In the following, we introduce stochastic models
in order to study the influence of the network
structure on dynamical properties. Our simu-
lations use stochastic dynamics in order to in-
tegrate the many-particle Master equation. At
each time step, N particles within the system of
size L are randomly chosen and updated (ran-
dom sequential update) according to the rules
given in Table 1 and 2, applying periodic bound-
ary conditions. Time steps are normalized such
that on average each free particle performs one
diffusive step per time step ∆t. Results are dis-
cussed for different particle densities ρ0

p := N/L2

which, for biological reasons, is chosen as ρ0
p =

0.04 if not stated differently (see appendix).

2.1 Regular networks

As a the first example for active transport
on networks a discrete lattice gas model with a



Philip Greulich, Ludger Santen: Active transport and cluster formation on 2D networks 3

Process Particle state(s) Description Probability

Diffusion D Detached particles move to sites randomly chosen from
the four neighbors

ωD = 1

Forward Step A Attached particles move to the next site in forward di-
rection of filament

p = 0.5

Attachment D→A Detached particles on active sites becomes bound ωa = 0.25

Detachment A→D Attached particles become detached ωd = 0.02

Blocking D Forward movement of particles adjacent to intersection
sites is inhibited if other particles occupy sites adjacent
to intersection

b = 1

Table 1. Brief prescription of the dynamic processes in the regular network model. Column 2 displays
the particle states “attached”(A) and “detached”(D). The right column displays the probability that the
respective process occurs within one time step. Numerical values given in the right column are default
values which are used if not stated else and are chosen to fit the ones in [8]. System size N = 200, mesh
size a = 10 sites.

Fig. 1. Illustration of the dynamics in a regular net-
work. Dark gray discs are particles diffusing freely
with rate ωD. Black discs represent attached par-
ticles that can only step in the preferred direction
of the active stripe they occupy (bold arrows) with
rate p. On filament sites (light gray), particles can in-
terchange between attached and detached state with
rates ωa and ωd, respectively. Crossed arrows denote
steps that are inhibited due to the exclusion princi-
ple.

square network of active stripes, similar to the
model investigated in [8], is considered. N × N
sites are arranged in a square lattice of edge
length L = N∆x where ∆x is the lattice spac-

ing. Each site can either be empty or occupied by
at most one particle. We distinguish the particle
states attached(A) and detached(D). Detached
particles always move diffusively. The system con-
tains stripes of active sites that constitute a reg-
ular square transport network. If particles are
located at an active stripe, they can attach (if
not yet attached) or detach (if attached). At-
tached particles perform a directed motion along
stripes. The orientation of stripes was chosen
randomly with equal probability. Steps that would
result in double occupation of a site are prohib-
ited.

Compared to the dynamics of non-interacting
self-driven particles qualitatively new features
arise due to the steric particle-particle interac-
tions at intersections of the network. Here we
introduce an additional parameter, the blocking
probability : If at least two particles are at sites
adjacent to an intersection site, each particle may
only access the intersection site with the proba-
bility 1−b (cf. figure 1). Particles on intersection
sites retain their moving direction.

The explicit rules for the particle dynamics
are displayed in Table 1 and illustrated in figure
1. We have chosen the default parameter values
analogous to [8] ωD = 1, p = 0.5, ωd = 0.02.
The particle density was chosen to be ρ0

p = 0.04,
analogous to the value of the inhomogeneous net-
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Process Particle state(s) Description Probability

Diffusion D Detached particles move in a random direction. Step
widths are uniformly distributed between 0 and 2lD

ωD = 1

Step A Attached particles move to adjacent subunit in (+)-
direction.

p = 0.5

Attachment D→A Particles bind to subunits if their distance is less than db,
becoming ’attached’

ωa = 0.25

Detachment A→D Particles detach ωd = 0.02

Table 2. Particle dynamics in the inhomogeneous network. A=’attached’; D=’detached’. The given values
in the right column mark default parameters chosen similar to [8]. The default particle density is ρ0

p (see
Table 4).

work, and the system size N = 200. In [8] the at-
tachment rate is equal to one, which corresponds
to an effective attachment rate ωa = 0.25 if a
particle is on an adjacent non-active site1. To be
consistent with the subsequent continuous space
model, we choose b = 1.

2.2 Inhomogeneous networks

Generalizing to continuous space and allowing
for arbitrary randomly distributed directions and
lengths of active stripes we present a continuous
model with randomly generated linear filaments
where hard-core particles can perform directed
paths along these filaments. The model is mo-
tivated by vesicular transport on actin filament
networks [25].

2.2.1 General properties of the model

The main components of our model are filaments
and particles interacting via a spherical hard-
core potential represented by a disc of radius rp.
This hard core potential is implemented by can-
celling any steps that would result in an over-
lap of discs. Filaments are represented by linear
sequences of subunits with a distance of ds in
between. They are directed with a (-)-end and
a (+)-end at which new subunits can be gener-
ated to elongate the filament. Particles can at-
tach to subunits that are within a distance less

1 In contrast to [8], we allow for crossing of active
stripes by diffusion.

than db and perform steps to adjacent subunits
in the (+)-direction of the filament. The fila-
ments are generated by a stochastic process that
yields an isotropic random distribution of fila-
ment orientations and -lengths, which is mainly
characterized by the number of subunits per area
element ρs and their length ds. The properties
of the stochastic process determine the structure
of the filament network. Our simulations were
performed on a network generated by dynamics
that mimic the growth dynamics of real actin
networks. The dynamics is discussed in the ap-
pendix (dynamics in Table 3, default parameters
in Table 4). This allows to adapt the model to
real biological systems.

2.2.2 Particle dynamics

After construction of the network particles
obeying the exclusion principle are fed into the
system at random positions (ρ0

p = 0.04 if not
stated else, see Table 4). As mentioned above,
the particle positions are updated following a
random sequential update scheme, whereby the
particle-particle as well as the interactions be-
tween particles and the generated static network
are considered . Like in the regular network model
particles can freely diffuse in the ’detached’ state
and perform directed movement in the ’attached’
state. The rules of the particle dynamics are pre-
scribed in Table 2 and illustrated in fig. 2. We
chose default parameters to fit the model in [8]
(adjusting to the altered length and time scale)
as displayed in Table 4.
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Fig. 2. Illustration of the particle dynamics in an in-
homogeneous network. Dark gray discs are free par-
ticles, black discs represent particles attached to fil-
aments stepping to adjacent subunits (distance ds)
with rate p. Particles can attach to filaments with
rate ωa if they are within the binding distance db

and detach with rate ωd. Overlapping is inhibited
due to exclusion.

3 Numerical results

3.1 Characterization of Clusters

Our aim is to relate the microscopic particle dy-
namics to the size distribution of their aggre-
gates. In this section we discuss the definition of
clusters for the different model systems.

Clusters are groups of particles that are con-
nected by overlapping neighborhoods. We there-
fore introduce the λ−neighborhood of a parti-
cle representing a disc of radius λ around the
center of the particle. A cluster is defined as a
set of particles included in a connected area of
λ−neighborhoods (cf. fig. 3). If continuous space
variables are used, there exists no natural scale
which identifies two particles as neighbors. We
therefore have to specify the value of λ. In order
to extract relevant results, we choose λ such that
qualitative results are robust on variation of λ. If
not stated differently we choose λ = 2rp, which
turns out to meet this condition (cf. fig 17).

In lattice models, static particle clusters are
usually considered as connected sets of adjacent

Fig. 3. Illustration of particle clusters. Black
discs represent particles, while gray discs are the λ-
neighborhoods of each particle. Connected gray ar-
eas are clusters; the size of a given cluster is the
number of particles on it.

particles. However, this definition is not appro-
priate in this context since clusters move by prop-
agation of vacancies. Therefore we consider par-
ticles separated by a single vacancy as belonging
to the same cluster.

Our main interest is in ensemble and time
averages of cluster size distributions (CD) and
their asymptotic behavior. CDs display the rel-
ative frequency of cluster sizes emerging in the
system. If not stated differently we averaged over
50000 time steps within individual runs, evaluat-
ing cluster distributions in distances of 500 time
steps, taking an ensemble of 100 samples.

Clustering also occurs for random particle
configurations. In fig. 4 and 5 we displayed clus-
ter size distributions of random configurations in
discrete and continuous space for different par-
ticle densities. Here the density ρ0

p is the parti-
cle number per area unit which corresponds to
(2rp)2 in continuous space and one site in the
lattice model. If densities are not too large, the
formation of large clusters is impeded resulting
in an exponentially decaying cluster size distri-
bution. For high densities one observes a small
peak at the right end. At these densities clusters
spanning the whole system emerge. In order to
rule out these kinds of random clustering we will
only consider densities below the regime of span-
ning clusters at relevant scales λ. In this work we



6 Philip Greulich, Ludger Santen: Active transport and cluster formation on 2D networks
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Fig. 4. Cluster size distributions of random particle
configurations in dependence on the particle density.
For low densities the CD decays fast with a short
size-scale. For large densities clusters on large size-
scales and even such that span the whole system
emerge (not visible in figure since on too large size-
scale).

are interested in cluster formation mechanisms
beyond random clustering.

In the following, we will focus on particle con-
figurations and cluster-size distributions in sev-
eral transport models.

3.2 Aggregation without network

As a first reference we investigate a diffusion lim-
ited aggregation model similar to the one intro-
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(b) discrete space
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Fig. 5. Cluster size distributions of random particle
configurations for different coarse graining scales. λ
is the radius of the environment as defined in section
3.1, while d represents the maximum distance (num-
ber of vacancies) allowed between two particles con-
necting a cluster. One observes that for large coarse
graining scales clusters spanning the whole system
emerge.

duced in [23]2. Omitting filaments, we can use
a variant of our model to mimic freely diffus-
ing particles with an attractive interaction. The
corresponding process can be formulated as an
equilibrium model consisting of diffusing hard-
core particles (radius rp ∼ 10nm [21]); within
the size-scale of membrane proteins) interacting
via an attractive potential. We apply the par-

2 Here however, no additional long range repulsive
force is assumed.
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Fig. 6. Configurations of particles (black discs = particle neighborhoods with radius λ = 2 rp), exhibiting
a mutual attractive interaction. Snapshots at different times for V0 = 2, dV = 3.5, ρ0

p = 0.04, L = 200, 1
timestep=̂0.025sec. One observes that already at small times clusters form and for long run times they the
number of clusters decreases, while the average size of cluster increases.

ticle dynamics discussed in sec. 2.2 but do not
consider filaments. In addition we introduce a
particle-particle interaction realized by a square
well potential of the form

V (x− x′) =
{
−V0 for |x− x′| ≤ dV
0 for |x− x′| > dV

(1)

where x,x′ are particle positions. This potential
can be implemented using a Metropolis accep-
tance probability p = min(e−β(V (xn+1)−V (xn)), 1)
for a step from xn to xn+1 (n denotes the time in-
dex). In the following we use dimensionless quan-
tities and put β = 1. The default parameters are
V0 = 2, dV = 3.5rp and particle density ρ0

p =

0.04. Assuming a diffusion constant for mem-
brane proteins D ≈0.0025µm2/s [28] we choose
a time step corresponding to ∆t = 0.02 seconds
so that one diffusive step of length rp = 10nm is
performed per time step ∆t.

In fig. 6 typical particle configurations at sev-
eral runtimes are displayed, while in fig. 7 en-
semble averages of cluster size distributions are
shown. Initial clustering already occurs on a rather
small time-scale. Regarding the particle config-
urations we see that the number of clusters de-
creases with increasing runtime while the aver-
age size of remaining clusters increases. This is
due to diffusion and merging of existing clus-
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Fig. 7. Cluster distributions in dependence on the
runtime in a system without network but attrac-
tive square well interaction potential. Parameters are
V0 = 3, dV = 3.5, ρ0

p = 0.04, L = 200 rp, average
over 200 runs. A maximum establishes, that moves
slowly towards larger scales.

ters after long times. Movement of large clus-
ters is strongly suppressed, so that merging oc-
curs quite slowly. The coarsening process can
also be observed in the cluster size distribution.
We observe a characteristic scale for larger clus-
ters, manifesting in the emergence of a maxi-
mum, indicating a characteristic scale for cluster
sizes. The dominant clusters always are within
the same size-scale which increases with time.

Since the cell membrane changes its struc-
ture steadily, patterns arising at time-scales cor-
responding to a finite fraction of a cell cycle can-
not be assumed to be in a stationary state. Com-
puting time averages we therefore focus on in-
termediate times and fix the averaging interval
starting at 20000 time steps (corresponding to
∼7 minutes in real time) after random initializa-
tion of particles and ending at 30000 time steps.
The time interval lies in the transient regime for
default parameters. Within this interval we com-
puted cluster size distributions (time and ensem-
ble averages, 200 samples) for different parame-
ter regimes and displayed them in figure 8. One
observes that for weak interaction no significant
clustering occurs manifesting in an exponentially
decaying CD, while for strong interaction V0,
including the default parameters, a maximum
emerges hallmarking the formation of clusters.
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Fig. 8. Plots of cluster distributions in the at-
tractive particles model at intermediate times (t =
20000− 30000 time steps) in dependence on the po-
tential depth V0 (a), the potential width dV (b) and
particle density ρ0

p (c). One observes the transition
from an exponential decay (non clustering phase) to
the formation of a maximum, corresponding to clus-
ters at this size-scale (condensation). Default param-
eters are given in the text.
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One has to emphasize that for this kind of
dynamics, clustering is reversible, i.e. in general
particles can detach from a cluster due to ther-
mal fluctuations and move to another one, such
that non-vanishing particle currents between clus-
ters may be present. This is in contrast to the ir-
reversible clustering process discussed by Meakin
and Family [29] where a power law distribution
of clusters was found at transient times3. The
interaction mechanism proposed in [24] however
indicates a finite strength of protein-protein at-
traction so that thermal fluctuations allow de-
tachment of particles. Destainville introduced an
aggregation model claiming an additional long
range repulsive force that stabilizes clusters such
that a stationary state with a characteristic clus-
ter size scale is reached [23]. Here we see that at
transient times, that might be more relevant for
cell membrane dynamics, this intrinsic size scale
is present even without a long range repulsive
force

3.3 Directed transport on regular networks

In this section we examine features of particle
configurations and cluster distributions in the
model introduced in section 2.1, i.e. a regular
network of active stripes. As in the last section
we start time averaging after ts = 20000 time
steps. We carefully checked that a stationary state
has been reached at this point. (cf. fig. 10). As
time averaging interval we choose 50000 time
steps. In fig. 9 particle configurations for mod-
erate and high densities are displayed. For par-
ticle density ρ0

p = 0.04 one observes small L-
shaped clusters centering at intersections. For
higher densities it appears that clusters are be-
coming larger and merge with each other to form
large mesh-shaped clusters (cf. fig 9(b)). How-
ever, in this case clusters are hardly distinguish-
able and not well separated which results in sen-
sitive dependence on the coarse graining scale
(cf. fig. 12). In fig. 11 we plotted the cluster size
distributions averaged over time and 100 individ-
ual runs. Examining the cluster size distributions

3 The stationary state of irreversible clustering is
a single cluster if phase space is not separated.

(a) ρ0
p = 0.04

(b) ρ0
p = 0.15

Fig. 9. Particle configurations in a regular square
network with system lengthN = 100 sites. The black
discs represent particle neighborhoods with radius
1.1 sites so that discs of particles with one vacancy or
less in between overlap. One observes the formation
of small L-shaped clusters at intersection points for
moderate densities (a). For large densities clusters
merge, forming cluster meshes on all size-scales (b).

in fig. 11, one observes similar to random clus-
tering an exponential decay for densities which
are biologically relevant (see also the configura-
tion in figure 9(a)). However, here they are over-
lapped by one or more bulges which appear to
be in the size scale of the L-shaped clusters at
intersections. A more detailed discussion of these
profiles will be explicated in sec. 4.
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Fig. 11. Cluster distributions in a lattice gas model with exclusion interaction and a regular square
network of active stripes in dependence on particle density ρ0

p, logarithmic plot (a), double logarithmic plot
(b), blocking rate b (c) and mesh size a (d). One observes that cluster size distributions decay exponentially
for moderate densities resulting in a finite size-scale of clusters, while at small densities, bulges emerge. For
very large densities decay is algebraic indicating the emergence of clusters on all size-scales (see also fig. 9).
Default parameters: see Table 3.

For large densities (& 0.1) the decay of the
cluster size distribution becomes algebraic, indi-
cating that clusters on all size-scales exist. These
large clusters correspond to the ones generated
by merged small clusters as displayed in fig. 9(b).

3.4 Inhomogeneous networks

The filament growth dynamics described in the
appendix generate a network where single fila-
ments have random length and direction. Parti-
cle configurations and cluster size distributions

were obtained, applying steric interactions, which
are shown in figures 13-17. The time evolution
of the cluster size distribution (Fig. 14) shows
that a stationary state is reached after 10000
time steps. Starting time averaging after 20000
time steps (averaging interval=50000 time steps)
therefore captures the steady state dynamics.
For low ωd however, the transient time might be
significantly prolonged. Therefore we use a much
larger time of 400000∆t for starting cluster eval-
uation. After that time we did not observe time
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Fig. 10. Cluster size distributions in a regular net-
work for different runtimes (given in time steps). For
a given runtime, we chose the last 100 steps to per-
form the measurement, taking 100 samples. The CD
does not change after 1000 time steps, indicating
that the system is in a stationary state.
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Fig. 12. Cluster size distributions in the regular
network obtained by using different definitions of
the coarse graining scales. d is the distance allowed
between two particles to connect a cluster. One ob-
serves that while variations are small for moderate
density, there is a significant influence on the scale
for larger densities, indicating that clusters are not
well separated.

dependence of CDs even for the smallest consid-
ered value of ωd.

The configuration for default density ρ0
p =

0.04 (Fig. 13) shows that well separated compact
clusters exhibiting different sizes emerge (see also
scaling in Fig. 17). In a large parameter regime
including the biological relevant default param-

Fig. 13. Particle configurations (black discs =
neighborhoods with λ = 2 rp) for default parameters
and ρ0

p = 0.04 and system size L = 200 rp. One ob-
serves big and small clusters. This general picture is
predominant for a large parameter regime and mod-
erate densities.

1 10 100
cluster size

1e-05

0.0001

0.001

0.01

0.1

re
la

tiv
e 

fr
eq

ue
nc

y

number of MCS=100
number of MCS=1000
number of MCS=10000
number of MCS=100000

Fig. 14. Cluster size distributions for different run-
times. For 10000 time steps a stationary state is
reached.

eters (Table 4), the asymptotic decay of the CD
is algebraic in contrast to the predominant expo-
nential behavior on a regular network. For inter-
mediate cluster sizes m, the CD follows a power
law, P (m) ∼ m−γ , while at larger scales, there
appears to be a crossover to a decreased expo-
nent γ̃ < γ. The exponent γ depends explicitly
on system parameters. It decreases with particle
density ρ0

p and increases with the actin density
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Fig. 16. Cluster size distributions in a diffusive system with a inhomogeneous active transport network,
single parameters varied: (a) particle density ρ0

p for small detachment rate ωd = 0.002, (b) detachment rate
ωd, (c) actin density (∼ network density ρs) ρ0

act, (d) attachment rate ωa. The exponent of the algebraic fit
mainly depends only on ρ0

p and ρ0
act. The dependence on ωd and ωa is weak, as long as ωd � ωa. Default

parameters: see Table 4

ρ0
act which mainly determines the network den-

sity ρs ≈ ρ0
act (see appendix). The dependence

on ρ0
p indicates a behavior in form of (γ − 2) ∝

1/ρ0
p, which is consistent with analytical results

in Sec. 4 (see Fig. 19 and Eq. (17)). The depen-
dence on other parameters like ωa and ωd ap-
pears to be weak for default parameters. How-
ever, for lower ρ0

p, or a larger value of ωd/ωa, the
dependence on these parameters becomes more
relevant, while varying other parameters does
not lead to qualitative changes except in extreme
regimes. In Fig. 18 cluster size distributions of
a regular and inhomogeneous network are com-

pared4. One observes that clustering is signifi-
cantly enhanced in the inhomogeneous network.

Due to the finite number of particles there
is a cut-off at the upper end (e.g. in Fig. 17).
Fig. 15 shows that for increasing system size L
the cut off regime tends to larger values, indi-
cating that this indeed is a finite size effect and
asymptotically algebraic behavior prevails in the
thermodynamic limit. Though the exponent γ of

4 Differences in effective rates due to the different
spatial character of the system (discrete and contin-
uous) are not significant since dependence on these
parameters is weak.
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Fig. 15. Cluster size distributions in dependence
on the systems size. The cluster distribution decays
algebraically in a large regime indicating the absence
of a intrinsic size-scale. Fitting the curves, one ob-
serves a crossover from exponent γ to a larger expo-
nent γ′ for large cluster sizes. This crossover is well
approximated by the formula γ′ = γ/2 + 0.5 (18) .
Default parameters: see Table 4

1 10 100 1000
cluster size

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

re
la

tiv
e 

fr
eq

ue
nc

y λ=2 r
p
, ρ=0.004

λ=4 r
p
,  ρ=0.004

λ=2 r
p
, ρ=0.04

λ=4 r
p
, ρ=0.04

Fig. 17. Cluster size distributions in the inhomo-
geneous network for different coarse graining scales.
λ is the radius of the neighborhood as defined in sec-
tion 3.1. As well in the regime where large clusters
emerge and in the non-clustering regime, the depen-
dence on the coarse graining scale is weak indicating
well separated clusters.

the algebraic decay varies for different particle
densities, the algebraic form is a robust feature.
This indicates that in the thermodynamic limit
clusters on all size-scales exist. In contrast to reg-
ular networks, scale free clustering occurs even
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p

dis. network, λ=4 r
p

Fig. 18. Comparison of regular and inhomogeneous
network displaying cluster size distributions for par-
ticle density ρ0

p = 0.04. While the CD decays ex-
ponentially in the regular network, its slope is alge-
braic in the inhomogeneous one, demonstrating sig-
nificant enhancement of clustering by the inhomoge-
neous network structure (see fig. 12 for definition of
d).

for moderate densities (ρ0
p ≈ 0.01) exhibiting a

pattern of well separated clusters.

4 Phenomenological description of
Cluster Formation in Inhomogeneous
Networks

In order to understand the distribution of cluster
sizes m in the inhomogeneous network theoreti-
cally, we analyze the capacity of intersections of
the irregular network. Thereby we consider dy-
namics of cluster initialization and stability of
the cluster distribution in the stationary state.

4.1 Single queues

A necessary condition for cluster formation is
that two particles moving along a filament en-
counter each other at an intersection. Then the
two particles may block each other due to steric
interactions and form a cluster seed. Therafter
other particles can attach to the filament mov-
ing towards the initial two-particle cluster and
form a queue.
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Fig. 19. Dependence of the exponent γ of the clus-
ter size distribution p(m) on the particle density ρ0

p

for ωd = 0.002. One observes a linear dependence
on the value 1/(γ − 2) up to ρ ≈ 0.045 which yields
δ := γ − 2 ∝ 1/ρ0

p as predicted by the phenomeno-
logical analysis in Sec. 4 (Eq. (17)). The exponents
were obtained by power law regressions in the range
m ∈ [30, 80] for ρ < 0.04 and m ∈ [30, 100] for
ρ > 0.04. Error bars (obtained by varying fitting
range) increase for γ approaching the singular value
2.

Studying the queuing mechanism, we regard
a single filament with an intersection occupied by
a cluster seed. The filament can be considered as
a one dimensional discrete system coupled to a
reservoir of particles with density ρp−ρb, i.e. the
density of unbound particle (where ρp denotes
the global particle density and ρb the density of
bound particles).

The effective attachment rate of a particle
is the attachment rate ωa times the fraction of
area that allows binding and the probability that
there is space on the filament, i.e.

ω̃a ≈ ωa2dbdsρs

(
1− ρp

ρs
ns

)
5. (2)

Here ns is the number of binding sites that are
not accessible if a particle occupies a filament

5 The binding area of a filament in continuous
space is approximated by a rectangular shape since
ds < db. In the regular network ds = 1, db = 1/2 and
binding area = active tracks.

and ρs is the total density of filament subunits
of length ds in the system, i.e. ρs = ρ0

act − ρact.
We assume ρp � ρs which is the case for default
parameters. In a regular discrete network ns =
1, while in the inhomogeneous one ns = 5 for
ds = 0.36 lu, rp = 0.5 lu, since the distance of
two particles must be at least 2rp6.

Complete Detachment occurs with an effec-
tive rate ω̃d, comprising detachment and diffus-
ing away, such that there is free space for parti-
cles behind to move on the filament. Therefore a
detached particle may not reattach immediately
and a subsequent diffusive step must be lateral
to the filament. Diffusing can also be inhibited
by a high density of free particles. We therefore
write ω̃d = ωd(1 − ωa∆t)(1 − ρpπr

2
p∆t)C1(D)

where the phenomenological factor C1 < 1 re-
flects the inhibition of a diffusing step by other
attached particles on the filament. This factor
represents the angle sector that allows free dif-
fusion and is assumed only to depend increas-
ingly on the diffusion constant D = l2D/2∆t.
A one dimensional system of this kind corre-
sponds to the totally asymmetric simple exclu-
sion process with Langmuir kinetics[1]. In this
system phase coexistence with a high and a low
density domain, separated by a stationary do-
main wall (shock) is observed, if inflow of parti-
cles J1

in is larger than outflow J1
out of the ini-

tial cluster seed. High density domains corre-
spond to queues, i.e. one dimensional clusters.
On long filaments the density of attached par-
ticles quickly approaches the stationary density
ρb = ρpω̃a/(ω̃a + ωd) (cf. [8]). Therefore the in-
flow on a single filament queue can be approxi-
mated by J1

in = p ρb/ρs(1− ρb/ρs) ≈ p ω̃a/(ωd +
ω̃a) ρp/ρs, neglecting (ρb/ρs)2. Outflow by de-
taching particles is J1

out = ω̃dl where l is the
number of particles in the queue. The condition
that a stationary queue of length l establishes
is J1

in = J1
out if a two-particle cluster has estab-

lished. Hence we have ρpp/(ρs(ω̃a + ωd)) = ω̃dl

ρp(l) ≈
ω̃dlρs
p

(
1 +

ωd
ω̃a

)
(3)

6 For default parameters, ω̃a takes the value ω̃a ≈
2/3ωa
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If the queue does not cross other filaments, a
finite queue of length l0 establishes, while the
shock, i.e. the end of the queue performs fluctu-
ations around the mean value l0 [2].

4.2 Cluster branching

If a queue spans over intersections connecting
the filament with other ones, it acts as an ob-
stacle for particles moving along crossing fila-
ments. This obstacle serves as a nucleation seed
for other queues on respective filaments in a same
manner like at the initial two-particle cluster
seed. It leads to a branching of the queue and
can initialize a cascade of queues that consti-
tute a large connected cluster. At first glance,
we neglect freely diffusing particles in the neigh-
borhood of the queues which can also be part of
clusters by the definition in sec. 3.1, since their
effect on cluster in- and outflow can be treated
by the local particle density ρp and effective de-
tachment rate ω̃d. Then the full cluster is con-
stituted by the connected set of these individual
queues, m =

∑
i li where the index i runs over

all filaments covered by the cluster.
The intersections not only initialize new clus-

ter branches, but also serve as defects for particle
hopping, since at these points the hopping rate
p is effectively lowered. This affects the struc-
ture of the queues. The TASEP with Langmuir
kinetics and defect sites, which corresponds to
this problem is treated in [13]. If inflow is larger
than the transport capacity of a defect, as in the
pure system a macroscopic high density domain
emerges limited by a stationary shock. Though
at defects, small diluted regions after defect sites
occur, we can assume the queues to be connected
on a coarse graining scale λ > rp and by par-
ticles diffusing in the neighborhood of the fila-
ment7. If ρp < ρ∗(a) so that queues do not span
other intersections, clusters consist of two queues
each on one of the filaments at the cluster seed’s
intersection. Since the length of the queues in

7 The considerations in [13] are for large systems
where attachment and detachment rates scale like
ωa,d ∼ 1/L. However, qualitative results do not
change while relative fluctuations of shockpositions
and boundary layers increase for small systems.

Fig. 20. Illustration of the mechanism that leads
to the formation of clusters in a inhomogeneous net-
work. If the density of intersections is high, existing
clusters serve as additional obstacles for particles on
other filaments, enhancing cluster formation.

TASEP-LK models is always finite, there is a fi-
nite mean value l̄. Therefore the total cluster size
can be estimated by

m ≈ nF l̄ , (4)

where nF is the number of filaments it covers.
The considerations of this and the last sub-

section apply in an analogue way to a regular
network if db is replaced by 1/2 lu and ds = 1 lu.
In the following subsections, however, the ex-
plicit statistics of the inhomogeneous network
are considered.

4.3 Graph approximation

The above considerations show that the statis-
tics of filament crossings appear to be crucial
for cluster dynamics if the network is disordered.
In the following we want to introduce a coarse
graining (length-) scale ξ and study the distri-
bution of filaments on this scale. This provides
the basis for a coarse graining procedure where
the filament network is approximated by a graph
where dynamics of particles are approximated
by effective transition rates between nodes of a
topological network.

In the following considerations on inhomoge-
neous networks we assume that filament lengths
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LF are large compared to the scale ξ of the tar-
get area we consider.

The probability that a given filament with
arbitrary orientation, position and length LF �
ξ intersects an area of diameter ξ is

p ≈ ξ

L

LF
L

(5)

The average length of filaments is 〈LF 〉 = ρsL
2ds/NF

and NF is the number of filaments. Averaging
over filament lengths, one obtains

p =
ξρsds
NF

. (6)

Obviously the probability that nF filaments cross
an area of diameter ξ is equivalent to the prob-
ability distribution of a Poisson process with in-
dividual hit probability p.

P (nF ) =
σnF

nF !
e−σ (7)

with expectation value and standard deviation
σ = pNF = ξρsds. Therefore the average num-
ber of intersecting filaments grows linearly with
the diameter of the considered area and one can
define a linear filament density ρF = 〈nF 〉/ξ =
ρsds. The average subunit density is related to
the actin density by ρs = ρ0

act − ρact ≈ ρ0
act (for

ωs/ωg � ρ0
act, cf. sec. 2.2). In uncorrelated fil-

ament networks, the average distance between
nodes, i.e. the mesh size a = 2/(πρsds) [30],
i.e. the dependence on the actin density is a ∼
1/ρ0

actds. Since the structure of the clusters is
one dimensional, its linear scale is ξ ∝ mrp.
Therefore the number of filaments a cluster cov-
ers is nF ∼ mrp/a. On the other hand we have
nF ≈ m/l̄. Therefore the average queue length
scales like the mesh size, i.e. l̄ ∼ a/rp.

In order to describe particle dynamics on a
coarse grained level, we approximate the fila-
ment network by a topological network (graph)
consisting of nodes connected by links, repre-
senting the filaments. On the topological net-
work the particle dynamics is described by hop-
ping from node to node with given rates, assum-
ing that particle transport is dominated by ac-
tive transport. In this approximation we assume
that most particles are bound to filaments, i.e.

ρb = ρp 1/(1 + ωd/ω̃a) ≈ ρp, which is justified
for ωd � 2ωaρsdsdb 8. This marks the limit of
the graph approximation. Diffusive phases are as-
sumed to be short but can lead to a change of
the filament, i.e. changing travel direction.

Similar to the considerations above, the net-
work structure is coarse grained by virtually sub-
dividing filaments into segments of length ξ rep-
resenting the nodes of the network. Segments
from different filaments that overlap at intersec-
tions are treated as one node. A filament hosting
segments of two nodes i and j directed from i to
j corresponds to a link from i to j. It mediates
a net particle drift from i to j. The full network
can then be represented by the adjacency matrix
A whose components Aij denotes the number of
links between i and j. Note that in this view two
nodes can be connected by more than one link.
We denote the number of outgoing links from a
node i by Kout

i =
∑
j Aij and the number of in-

going links by Kin
i =

∑
j Aji (out-degree and

in-degree respectively). Each filament crossing
a node without ending inside provides exactly
one link in and one out of the node. If filament
lengths are large compared to the length scale ξ
as assumed above, we can neglect filament ends
inside a node. Therefore the number of incom-
ing links is approximately equal to the number
of outgoing links. Their number is given by the
number of filaments, i.e. Kin

i ≈ Kout
i = nF .

In [19] it has been shown that for noninter-
acting particles performing a random walk on a
topological network with undirected links and at
most one link between two nodes, the density of
particles in the stationary state is proportional
to the number of links

ρi = Ki/N (8)

where the normalization factor N =
∑
iKi is

the total number of links. However, it is easy to
show that this is also valid for directed networks
as long as Kin

i = Kout
i for all i. If any parti-

cle moves within one time interval τ from one
node to an adjacent node via a link, the master
equation yields

ρi(t+ τ) =
∑
j

Aji
Kout
j

ρj(t) (9)

8 For default parameters ωd/2ωaρsdsds ≈ 0.12
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9 Inserting (8) and applying Ki = Kin
i = Kout

i ,
one obtains

ρi(t+ τ) =
∑
j

Aji
Kout
j

Kout
j

N
=

=Ki︷ ︸︸ ︷∑
jAji

N
= ρi(t)

(10)
therefore (8) is a stationary state also for this
network structure.

We can transfer the results from topological
networks to this one and can state that the den-
sity of free particles ρfp inside a node, i.e. parti-
cles that are not associated to a cluster, is pro-
portional to the number of links which is given
by the number of filaments nF crossing it. The
spatial distribution of (local) free particle den-
sity therefore is proportional to the distribution
of filaments ρfp = ρ̄fpnF /〈nF 〉, where nF is the
number of filaments in a node and ρ̄fp is the
average free particle density. This distribution
however is scale dependent and the selection of
the appropriate scale must be justified by other
means.

In the graph approximation the system is
modelled by a hopping of particles from one node
to another. This introduces a time scale τ which
is the time, a particle needs to travel from one
node to another. If we use the average distance
between intersections (mesh size of the network)
a as the length scale, the effective hopping time
can be related to the node distance by a = pdsτb,
where τb denotes the time a particle is bound to
a filament, i.e. τb = τ/(1 +ωd/ω̃d) (see sec. 4.1).
Hence τ = a/pds(1 + ωd/ω̃d). For this coarse
graining scale nodes in the corresponding graph
are connected on average by two filaments with
adjacent nodes, i.e. 〈nF 〉 = 2 and the distribu-
tion of links (and therefore local densities) is gov-
erned by a Poisson distribution with mean value
σ = 4. If queues branch, queue cascades consti-
tute a large cluster that covers a number of fila-
ments nF proportional to its size m. The struc-
ture of the graph must hence be adjusted since
large clusters are able to span over more than one
node as defined above. In order to treat clusters
as single objects we consider all nodes a cluster
covers as a single one. Then the network con-

9 The outflow term cancels since it is exactly ρi(t).

sists of cluster-nodesand free nodes where there
are no stable clusters. We denote the number
of cluster nodes by Ncl and the cluster density
ρcl = Ncl/(L/a)2.

The free particle density ρi in (8) corresponds
to the probability that after long times a parti-
cle inserted anywhere will be at node i. Since
the size mi of a cluster i is proportional to the
number of filaments nF it covers, it is propor-
tional to its connectivity Ki and therefore ρi.
The probability of new inserted particles to end
up in cluster i is hence proportional to its size,
i.e. the growth rate of a cluster is proportional
to its size m.

4.4 Cluster size distributions

Due to particle conservation, the total inflow of
particles in clusters Jin must balance outflow
Jout in the stationary state. In the following we
denote the total portion of particles associated to
clusters by Ñ and free particles by Nf = N−Ñ .
The outflow can be expressed by Jout = ωeffd Ñ ,
where the effective rate ωeffd comprises the rate
of particle detachment from a filament and at-
tachment to another one in order to be moved to
a free node. We can write ωeffd = ω̃dC. The fac-
tor C < 1 denotes the inference by interactions
with particles on other queues of the cluster and
other filaments directed into the cluster that al-
low reattachment to the cluster. The factor C
is a mean value and depends explicitly on the
structure of the clusters, but not explicitly on
system parameters10. It becomes small if very
large clusters are present that can confine par-
ticles within their structure (see paragraph on
large clusters below). The flow of particles into
clusters is given by Jin ≈ Nf ρcl 〈nF 〉/τ . The
stationarity condition is Jout = Jin and with

10 At least in the network approximation where
particles are assumed to be attached to filaments
most of the time. For higher values of ωd/ωa an ex-
plicit dependence on ωa is assumed.
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Ñ = Ncl〈m〉, 〈nF 〉 = 〈m〉/l̄ we obtain

ω̃dCNcl〈m〉 ≈ Nf
Ncl

(L/a)2

〈m〉
l̄
/τ (11)

⇔ ρ̄fp = Nf/L
2 =

ω̃dC l̄

apds

(
1 +

ωd
ω̃a

)
The corresponding number of particles associ-
ated to a cluster is Ñ = N − Nf . For large
ωeffd this quantity could reach zero so that there
are no clusters left. This suggests a condensation
transition between a free phase and a phase ex-
hibiting clusters. However, we have to be careful
since on the one hand the graph approximation
does not work for large ωd and on the other hand
we neglected aster-like configurations of nodes
where filament ends are arranged to point only
into a node. These configurations can become
relevant in this situation and allow clusters even
for lower particle densities. We therefore assume
that for L → ∞ large clusters can be present
even for small densities. However since we have
seen in the last sections that most particles are
in clusters for default parameters, we can assume
that ωeffd � a2ρ0

p/(τ l̄) which suggests C1C � 1.
In order to determine the probability distri-

bution of cluster sizes P (m), we apply an expan-
sion of the system size. Assume the system to
be in the stationary state. Increasing the system
size by a small area ∆A, while always remain-
ing in the stationary state, ∆N = ρ0

p∆A new
particles are inserted. The portion of cluster-
associated particles hence is

∆Ñ = ∆N −∆Nf ≈ ∆A(ρ0
p− ω̃dCτ l̄/a2) (12)

which is the number of particles that are effec-
tively added to the clusters. However, not only
particles are added to the clusters but also∆Ncl =
ρcl∆A/a

2 new clusters emerge within the new
area ∆A. Thus for each new cluster that emerges
∆Ñ/∆Ncl = 〈m〉 = a2(ρ0

p−ω̃dCτ l̄)/ρcl new par-
ticles are distributed among the clusters, while
the probability that a particle is associated to a
given cluster is proportional to its size m as ar-
gued above. This process corresponds to a gen-
eralized Yule process, where between two cluster
initialization events, 〈m〉 objects are distributed
among the clusters (see e.g. the review [31]). The

stationary state of the Yule process exhibits a
distribution which approaches for largem asymp-
totically a power law distribution P (m) ∼ m−γ

with an exponent γ = 2 + m0
〈m〉 where m0 is the

initialization value of the clusters. Hence the ex-
ponent yields

γ = 2 + δ (13)

δ ≈ m0ρcl
ρ0
p − ω̃dCτ l̄/a2

If distances between clusters are large, the clus-
ter density ρcl, i.e the number of clusters per
area unit ξ2 ≈ a2, corresponds to the proba-
bility Pcl that cluster seed nucleates at an in-
tersection. In order to maintain a stable queue
with at least one particle on a filament (i.e. a
initial two-particle cluster), according to (3) the
line density of particles on the filament must be
ρ1
p = ρ̄fpnF /〈nF 〉 > ω̃dρs/p(1+ωd/ω̃a). Inserting

(11) and ρs = 2/(π ads), this yields a condition
on the local filament density

nF
〈nF 〉

=
2
πl̄C

∼ 1
aC
∼ ρs rp ds (14)

where the fact that l̄ scales like a/rp was used.
Since we are only interested in the dependence
on system parameters, we neglect any prefactors
that do not depend explicitly on them, like C.
Since the filaments are Poisson-distributed with
mean value 2, this probability can be given by
the cumulative Poisson distribution with mean
σ = 2:

Pcl = P

(
nF >

2
Cl̄

)
∼ Γ (2/Cl̄ + 1, 2)

Γ (2/Cl̄)
(15)

and the dependence of γ = 2 + δ is given by

δ ∼ Pcl(ρact)ρ2
act

ρ0
p

(
1− πω̃d l̄Cρs

2pρ0p

) (16)

by inserting a = 2/(πρsds) ∼ 1/ρact, considering
rp and ds to be fixed by biological reasons. As
argued above, we assume C1C � 1, hence the
term πω̃d l̄Cρs/2pρ0

p can be neglected for small
ωd, and one can further simplify:

γ − 2 = δ ∼ Pcl(ρact)ρ2
act

ρ0
p

. (17)
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Actin density

Numerator of delta

Fig. 21. Sketch of the dependence of δ on the net-
work density.

The dependence of δ = γ − 2 on ρ0
p appears

to be a quite good approximation as can be seen
in fig. 19. In fig. 16, one observes only a weak
monotonic dependence on ωd as long as ωd is
small, though this dependence becomes stronger
for large ωd as expected. The numerator depends
only on ρact and has the form as displayed in fig.
21 (the scale is not defined, since the prefactor is
not given). However, only for small values of ρact
the cluster density can be approximated by the
probability Pcl. For large network densities, if
clusters on average cover many intersections, the
effective cluster number is smaller since clusters
nucleating on different intersections can merge.
Therefore we assume that the the relevant values
are restricted to the lower branch which attains
a monotonic growth. This appears to be valid as
is shown in Fig. 16.

Summarizing, we can say that for small ωd
relative to ω̃a and mean particle density ρ0

p, δ is
proportional to 1/ρ0

p (Fig. 16) and depends in-
creasingly on ρact (though not linear in general).
In these limits there is no dependence on other
system parameters (see fig. 16). For larger ωd,
the influence of ωd, ωa, lD and p becomes rele-
vant.

So far, we neglected free particles that also
contribute to clusters. This approximation yields
good results for low particles densities and if
clusters are not too large. Then cluster structure
is mainly one dimensional, made up by queues
and only some free particles in their neighbor-
hood whose influence on detachment can be com-
prised in ω̃d. Large clusters however rather have
a two- than a one dimensional structure since

detaching particles can completely fill the cav-
ities engulfed by queues. Then the full cluster
size is m̃ ∼ m2. Cluster attachment and detach-
ment are still determined by the one dimensional
fraction m constituted by the queues, thus argu-
ments from above remain valid. Hence the dis-
tribution of 2D-clusters yields

P (m̃) = P (m)|m=m̃1/2

∂m

∂m̃
∼ m̃−γ

′
(18)

with γ′ = γ/2 + 1/2. The distribution is also de-
scribed by a power law but with a decreased ex-
ponent γ′. This result is consistent with simula-
tion results in fig. 16(a). Note that high filament
densities suppress this effect since no big cavities
between filaments are present (cf. 16(d)). High
ωd / low ωa enhance the effect, since due to a
large number of unbound particles their contri-
bution to clusters is enhanced.

In principle the above considerations are also
valid for a regular network, while in those sys-
tems the particle density is homogeneously dis-
tributed and a = const. If the density for clus-
ter initialization (l=1) is exceeded, clusters can
emerge anywhere in the system. As long as the
density is lower than the critical density ρ∗(a)
to form queues of length a, only small L-shaped
clusters, consisting of two queues, emerge (see
configuration in fig. 9(a)). These are character-
ized by a centered distribution Pm0 exhibiting
fluctuations around a mean value m0, while no
cluster branching occurs. Since the scale of queue
lengths is in the same order of magnitude as
random clustering (cf. fig. 3(b)), the exponen-
tial background of free particles must be added,
hence P (m) ∼ Pm0(m)+1/mr exp(−m/mr) where
mr is the scale of random clusters11. This be-
havior corresponds to fig. 11 where a bulge over
an exponential is exhibited. However, if ρ∗(a) is
exceeded the critical density is exceeded cluster
cascades can develop. However, due to the homo-
geneous density clusters can branch at any inter-
section and due to the high cluster density, they

11 Note that due to the attractive interaction of fil-
aments a lateral aggregation of particles is induce
that locally increases the density compared to the
average density ρ0

p. This leads to an increased size
scale of random clusters
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merge forming a mesh shaped structure. This
leads to a percolative behavior yielding a scale
free distribution, while clusters are not well sep-
arated (cf. fig. 9(b)), thus the cluster size distri-
bution depends sensitively on the coarse graining
scale. Hence cluster distributions do not follow
the same scheme as disordered networks.

While scale free clustering in regular networks
only emerges for ρ0

p > ρ∗, in inhomogeneous
networks this can occur also for small densities
ρ � ρ∗ since the distribution of the particle
density and filament distances determining the
critical density is wide. Only few regions where
the critical density is exceeded are needed for
scale free clustering. This corresponds to a Grif-
fith phase where only locally critical values are
exceeded exhibiting an ordered structure, in con-
trast to the case when the full system is clus-
tered12. Therefore clusters are well separated and
do not depend significantly on the coarse grain-
ing scale.

5 Discussion

We examined transport of hard core particles
(discs) on regular and inhomogeneous networks
embedded in a two dimensional diffusive envi-
ronment. The models consist of regions where
particles perform diffusive motion and one di-
mensional stripes (filaments) to which particles
can attach and perform directed motion. In most
parameter regimes clusters are observed. As a
reference for clustering without transport net-
works we examined cluster features of a model
with attractive interaction of particles.

A detailed analysis of cluster size distribu-
tions (CDs) shows that there are qualitative dif-
ferences between the regular and inhomogeneous
network structure. On regular networks one typ-
ically observes a typical size-scale to the clus-
ters at low densities. Algebraic CDs are only
observed at large densities when single clusters
merge to form large mesh-shaped cluster com-

12 Note that this does not imply percolation. There
are dilute regions behind intersections emerging that
can tear clusters apart, if there are only few free
particles.

plexes. In this case, however, clusters are not well
separated.

In contrast disordered networks, where fila-
ment lengths and orientations are randomly dis-
tributed, exhibit algebraic cluster size distribu-
tions in a wide range of the parameter space,
indicating that clusters on all size-scales exist.
It is important to notice that the algebraic CDs
are observed one order of magnitude below the
respective densities in reference systems. In the
disordered network, clusters are well separated
exhibiting a compact structure. The transport
driven clustering on disordered networks there-
fore appears to be an alternative mechanism to
generate scale free cluster size distributions com-
pared to e.g. the one studied in [29] which is
driven by irreversible cluster-cluster-attachment.
In contrast to that model, however, here the dis-
tribution is even scale free in the stationary state.

Clusters are assumed to nucleate if two par-
ticles encountering at an intersection of two fil-
aments block each other such that they cannot
move, while other particles running towards the
intersection form queues. Below a critical local
particle density, queues remain small, exhibit-
ing fluctuations around the mean length. How-
ever, if the particle density exceeds a critical
density ρ∗, queues covering multiple filaments
induce branching of queues into large clusters,
while each branch contributes to cluster inflow.
Since the number of filaments a cluster covers
is proportional to its size, the growth rate of a
cluster is proportional to its size. Dynamics of
this kind can be described by a Yule process (see
e.g. [31]) which yields a power law distribution
P (m) ∼ m−γ with an exponent depending on
the microscopic parameters (see also preferential
attachment in scale free networks [32]). A thor-
ough investigation shows that for small detach-
ment rate and moderate network densities, the
exponent merely depends on the particle density
ρ0
p and the network density represented by ρact,

while dependence on other parameters is weak.
In regular networks, the mesh size a and par-

ticle density ρ0
p are homogeneous. If the parti-

cle density is smaller than the critical density ρ∗
no clusterbranching occurs and only small clus-
ters, each consisting of two queues emerge. For
ρ0
p > ρ∗(a) there are large clusters distributed
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on all scales. In latter case clusters can emerge
at any point of the system such that they are
crowded and not well separated. In contrast in
disordered networks the inhomogeneous distri-
bution of filaments leads to an inhomogeneous
particle- and mesh size distribution. Even for
ρ0
p � ρ∗, locally, the critical value can be ex-

ceeded, to induce cluster branching. These clus-
ters are well separated for moderate densities
and exhibit the scale free distribution explicated
above. The regime 0 < ρ0

p < ρ∗ corresponds to
a Griffith phase where only small parts of the
disordered system are in the cluster phase.

The analysis of cluster size distributions in
the system of diffusive particles with attractive
interaction shows clustering on a finite size-scale
and a maximum in the cluster size distribution.
The size scale itself increases with time. In con-
trast to the diffusion driven irreversible aggre-
gation modelled in [29] which exhibits scale free
distributions at transient states, this model ex-
hibits reversible clustering, which appears more
realistic for interactions of membrane proteins
[24].

In summary, we have found that the micro-
scopic particle dynamics as well as the network
structure have significant influence on the quali-
tative form of the cluster distribution. From our
point of view this observation is of great impor-
tance for the analysis of biological systems since
it is often not possible to identify the underly-
ing microscopic mechanisms leading to exper-
imentally observed aggregation. In these cases
the analysis of the cluster distribution on larger
scales may answer the question whether observed
patterns are the result of active transport or of
aggregation due to attractive interactions.

We thank M. Schmitt, A. Schadschneider, O. Pulkki-
nen, S. Dmitrieff and O. Markova for fruitful dis-
cussions and the German Science Foundation under
grant number DFG GK 1276/1 for financial support.

Appendix A: Filament dynamics and
default parameters

While we assume that the qualitative properties
of the system only require randomness in fila-

Fig. 22. Illustration of the filament dynamics. Fil-
aments are implemented as sequences of subunits
(small dots, corresponding to actin monomers) sep-
arated by a distance ds (short bars). Filament sub-
units are polarized, with a (+)-end where subunits
are created to elongate, and a (-)-end where subunits
dissociate causing shrinking.
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Fig. 23. Density of free actin ρact in dependence
on time. After 5000 time steps a stationary state is
reached.

ment directions- and lengths, the explicit algo-
rithm of network generation must be explicated.
In order to be comparable to real biological sit-
uations, we generated the networks structure by
stochastic processes that mimic the growth dy-
namics of real actin networks [25]. Therefore we
implemented dynamics as described in Table 3,
which is illustrated in Fig. 22.

The quantity ρARP introduced in Table 3
represents the density of free ARP2/3-complexes
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Process Description Probability

Nucleation Initialization of filaments with arbitrary direction at an
arbitrary point in the system. The (-)-end receives a cap
inhibiting shrinking.

ωn ρact ρARP

Branching New filaments are initialized at an existing one (not nec-
essarily the (+)-end; angle between parent filament and
branch=70o[33].

ωb ρ
2
act ρARP

Growth New subunits are generated at the (+)-ends of filaments. ωgρact

Shrinking Subunits are removed at the (-)-end of filaments if the
end is not capped.

ωs

Uncapping Caps are removed. ωu

Table 3. Dynamics of the filament network.

that serve as nucleation and branching seeds for
filaments, while the actin density ρact corresponds
to the density of free actin subunits constitut-
ing the filaments. Their initial values are ρ0

ARP
and ρ0

act which corresponds to the case that all
monomers are dissociated. The densities decrease
with the growing filament network as shown in
fig. 23. After 5000 steps the actin density at-
tains a stationary value. We therefore stop net-
work dynamics at this point. Since in the station-
ary state association and dissociation of subunits
must balance, ωgρact ≈ ωs ⇒ ρact ≈ ωs/ωg
13 (cf. [25] for actin networks). The density of
filament-subunits hence is ρs = ρ0

act−ρact ≈ ρ0
act

for ωs � ωg, therefore the network density is
mainly determined by ρ0

act. In order to keep dy-
namics simple but retaining the crucial features
of disordered networks, branching and the dy-
namics of ARP2/3 were neglected in Sec. 3.4 to
obtain a network of uncorrelated filament ori-
entations. However, we resume these dynamics
appendix B.

Although we do not consider a particular bi-
ological system, we choose parameters to fit the
typical order of magnitude in real vesicular trans-
port. If not stated differently, we will use default
parameters displayed in table 4 for our simu-
lations. The referenced works used experimen-
tal and modeling techniques to obtain the data
given in the third column. For particle dynamics,
we choose the parameters to be consistent with

13 The contribution of filament nucleation can be
neglected for average filament lengths � 1

the discrete model introduced in the last section
relying on the model in [8].

Appendix B: Networks with branching
filaments

In actin networks, branching of filaments takes
place quite frequently, resulting in a dendritic
network structure. In Sec. 3.4 branching of fil-
aments was neglected in order to avoid correla-
tions of filament orientations. If one is interested
in the dynamics of vesicle transport on submem-
branal actin networks, one has to consider this
process as well. We checked CDs in a system
with finite branching rate ωb (here: branching
probability ωb∆t = 0.0035) including the de-
pendence of growth dynamics on the ARP2/3-
density ρARP (cf. section 2.2). In this system,
filament orientations are highly correlated.

In fig. 24 we display cluster size distributions
for different particle densities ρ0

p. As in the more
basic case of uncorrelated filaments, ωb = 0, one
observes an algebraic decay as well. This indi-
cates that the scale free behavior of the clusters
is a robust feature of inhomogeneous transport
networks and active particles exhibiting mutual
steric interaction.
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