First passage time memory lifetimes for simple, multistate synapses
First passage time memory lifetimes for simple, multistate synapses
Memory models based on synapses with discrete and bounded strengths store new memories by forgetting old ones. Memory lifetimes in such memory systems may be defined in a variety of ways. A mean first passage time (MFPT) definition overcomes much of the arbitrariness and many of the problems associated with the more usual signal-to-noise ratio (SNR) definition. We have previously computed MFPT lifetimes for simple, binary-strength synapses that lack internal, plasticity-related states. In simulation we have also seen that for multistate synapses, optimality conditions based on SNR lifetimes are absent with MFPT lifetimes, suggesting that such conditions may be artifactual. Here we extend our earlier work by computing the entire first passage time (FPT) distribution for simple, multistate synapses, from which all statistics including the MFPT lifetime may be extracted. For this, we develop a Fokker-Planck equation using the jump moments for perceptron activation. Two models are considered that satisfy a particular eigenvector condition that this approach requires. In these models, MFPT lifetimes do not exhibit optimality conditions, while in one but not the other, SNR lifetimes do exhibit optimality. Thus, not only are such optimality conditions artifacts of the SNR approach, but they are also strongly model-dependent. By examining the variance in the FPT distribution, we may identify regions in which memory storage is subject to high variability, although MFPT lifetimes are nevertheless robustly positive. In such regions, SNR lifetimes are typically (defined to be) zero. FPT-defined memory lifetimes therefore provide an analytically superior approach and also have the virtue of being directly related to a neuron’s firing properties.
3219-3259
Elliott, Terry
b4262f0d-c295-4ea4-b5d8-3931470952f9
December 2017
Elliott, Terry
b4262f0d-c295-4ea4-b5d8-3931470952f9
Elliott, Terry
(2017)
First passage time memory lifetimes for simple, multistate synapses.
Neural Computation, 29 (12), .
(doi:10.1162/NECO_a_01016).
Abstract
Memory models based on synapses with discrete and bounded strengths store new memories by forgetting old ones. Memory lifetimes in such memory systems may be defined in a variety of ways. A mean first passage time (MFPT) definition overcomes much of the arbitrariness and many of the problems associated with the more usual signal-to-noise ratio (SNR) definition. We have previously computed MFPT lifetimes for simple, binary-strength synapses that lack internal, plasticity-related states. In simulation we have also seen that for multistate synapses, optimality conditions based on SNR lifetimes are absent with MFPT lifetimes, suggesting that such conditions may be artifactual. Here we extend our earlier work by computing the entire first passage time (FPT) distribution for simple, multistate synapses, from which all statistics including the MFPT lifetime may be extracted. For this, we develop a Fokker-Planck equation using the jump moments for perceptron activation. Two models are considered that satisfy a particular eigenvector condition that this approach requires. In these models, MFPT lifetimes do not exhibit optimality conditions, while in one but not the other, SNR lifetimes do exhibit optimality. Thus, not only are such optimality conditions artifacts of the SNR approach, but they are also strongly model-dependent. By examining the variance in the FPT distribution, we may identify regions in which memory storage is subject to high variability, although MFPT lifetimes are nevertheless robustly positive. In such regions, SNR lifetimes are typically (defined to be) zero. FPT-defined memory lifetimes therefore provide an analytically superior approach and also have the virtue of being directly related to a neuron’s firing properties.
Text
multi-fpt
- Accepted Manuscript
More information
Accepted/In Press date: 2 July 2017
e-pub ahead of print date: 28 November 2017
Published date: December 2017
Identifiers
Local EPrints ID: 412125
URI: http://eprints.soton.ac.uk/id/eprint/412125
PURE UUID: c58f9c11-69db-419f-8666-a6b5b2e29614
Catalogue record
Date deposited: 11 Jul 2017 16:31
Last modified: 16 Mar 2024 05:31
Export record
Altmetrics
Contributors
Author:
Terry Elliott
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics