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17q21 asthma-risk variants switch CTCF binding
and regulate IL-2 production by T cells
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Asthma and autoimmune disease susceptibility has been strongly linked to genetic variants in

the 17q21 haploblock that alter the expression of ORMDL3; however, the molecular

mechanisms by which these variants perturb gene expression and the cell types in which this

effect is most prominent are unclear. We found several 17q21 variants overlapped enhancers

present mainly in primary immune cell types. CD4þ T cells showed the greatest increase

(threefold) in ORMDL3 expression in individuals carrying the asthma-risk alleles, where

ORMDL3 negatively regulated interleukin-2 production. The asthma-risk variants rs4065275

and rs12936231 switched CTCF-binding sites in the 17q21 locus, and 4C-Seq assays showed

that several distal cis-regulatory elements upstream of the disrupted ZPBP2 CTCF-binding site

interacted with the ORMDL3 promoter region in CD4þ T cells exclusively from subjects

carrying asthma-risk alleles. Overall, our results suggested that T cells are one of the most

prominent cell types affected by 17q21 variants.
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A
sthma, allergy and autoimmune diseases such as diabetes,
Crohn’s disease, ulcerative colitis, psoriasis, rheumatoid
arthritis and systemic lupus erythematosus are some of

the most common chronic diseases affecting people around the
world1–8. Strong evidence of heritability from twin studies has
prompted large-scale genome-wide association studies (GWAS)
to pinpoint the genetic risk factors that drive the pathogenesis of
these complex diseases9. Several thousand common single-
nucleotide polymorphisms (SNPs) associated with disease
susceptibility have been identified; however, the vast majority of
these SNPs are located in non-coding regions of the genome, and
thus it has been challenging to define how these SNPs are related
to the disease10. Moreover, the cell type(s) where disease risk-
associated SNPs have the most prominent effects are unknown,
thus hampering functional studies required to successfully
translate GWAS discoveries to improvements in disease
management. The vast array of immune and structural cell
types involved in disease pathogenesis further compound this
problem.

Based on recent papers from the ENCODE Project
Consortium11,12 and our own analyses13, there is now
overwhelming evidence that many disease-associated genetic
variants can perturb the functions of cis-regulatory DNA that
controls the expression of one or more neighbouring genes on the
same allele, thereby influencing gene expression and disease
outcome. In many cases these cis-regulatory regions are cell
type-specific11, such that a region and its disease-associated
genetic variants influence gene expression in just a subset of all
possible cell types in the body, and therefore, these susceptible cell
types are likely to be major drivers of the genetic risk for that
specific disease. Thus, identifying the cell type in which
cis-regulatory regions bearing disease-associated SNPs are
selectively active may indicate the precise cell types that initiate
or maintain disease pathogenesis. For example, by overlapping
enhancers of naive and memory CD4þ T-cell subsets with all
known asthma-risk SNPs, we recently showed strong enrichment
of these SNPs in enhancers of memory CD4þ T cells that
produce type 2 cytokines (TH2 cells), implying an important role
for TH2 cells in asthma pathogenesis14.

In this study, we take a similar unbiased approach to determine
the cell types that are most susceptible to the effects of SNPs
located in the 17q12-q21 genetic risk locus. Originally the 17q21
locus was strongly linked to asthma susceptibility, which was
confirmed by multiple other GWAS studies in diverse ethnic
populations15–20 and in a large study of individuals with severe
asthma21. Subsequently, various other autoimmune diseases such
as type 1 diabetes, Crohn’s disease, ulcerative colitis, psoriasis,
rheumatoid arthritis, systemic lupus erythematosus and primary
biliary cirrhosis were all found to share the same 17q21 risk locus,
suggesting its broader implication in several diseases2–8,22;
however, an important distinction is that the risk alleles for
asthma paradoxically have a protective effect for the autoimmune
diseases studied2–6,22. Despite the robustness of these associations
with asthma and other autoimmune diseases, the molecular
mechanisms by which 17q21 SNPs perturb gene expression
and/or predispose carriers to disease are unclear.

The 17q21 locus harbours a dense haploblock of 136 SNPs in
tight linkage disequilibrium that overlap six gene loci: IKZF3,
ZPBP2, GSDMB, ORMDL3, LRRC3C and GSDMA1,23, of which
the expression of two genes (ORMDL3 and GSDMB) has been
shown to be modestly affected by the asthma-risk SNPs in the
locus24–26. A recent study that linked genotype to phenotype
showed that children carrying the 17q21 asthma-risk SNP
(rs7216389) were at higher risk of developing wheeze following
rhinovirus infection (common cold), an event that is an
independent predictor of asthma development later in life26.

Although ORMDL3 expression is elevated in children with
asthma as well as in individuals with the 17q21 risk-
haploblock1,23,25,27, the biological functions of ORMDL3 that
are relevant to asthma pathogenesis are also poorly defined.

Here we systematically examine in which cell types the 17q21
risk haploblock has the most effect on ORMDL3 expression, how
that effect is mediated by disruption of cis-regulatory elements,
and how cytokine production is thereby affected in T cells. We
show that ORMDL3 expression is most perturbed by the 17q21
asthma-risk SNPs in primary T cell subsets and B cells. Assessing
H3K27ac (chromatin mark of active enhancers) enrichment levels
in the 17q21 locus revealed an active enhancer in the first intron
of ORMDL3 that displayed genotype-dependent changes in
activity. Further, we discovered that an asthma-risk SNP in this
enhancer favours the binding of CTCF (rs4065275), while in
contrast another linked SNP downstream of this site prevented
CTCF binding (rs12936231), leading to alteration of CTCF-
binding patterns in the locus. The three-dimensional (3D)
organization of the 17q21 locus in CD4þ T cells was also
modified in the asthma-risk alleles to favour recruitment of distal
cis-regulatory elements to the ORMDL3 promoter region.
Knocking down transcript levels of ORMDL3 in memory
CD4þ T cells significantly increased the production of
interleukin (IL)-2 following T-cell receptor stimulation.

Results
17q21 asthma-risk SNPs locus overlap immune cell enhancers.
The majority of SNPs (94%, 128/136) present in the 17q21
asthma-risk haploblock are located in intronic or intergenic non-
coding sequences (non-coding SNPs, ncSNPs) whose cell-specific
cis-regulatory potential has not been fully characterized
(Fig. 1a,b); as a result, the specific cell type that is most affected by
the 17q21 asthma-risk variants is largely unknown. This is
especially important for investigating the genetic basis of diseases
such as asthma where several immune and structural cells present
in the lungs have been implicated in disease pathogenesis28–30.
Here we utilized the comprehensive DNase I hypersensitivity sites
(DHS) data sets, generated by the ENCODE Project31 and NIH
Epigenomics Roadmap Consortiums32, to first define the cell
types where the 17q21 locus is selectively more active, that is,
harbour a significantly higher number of cis-regulatory elements
(DHS), as these cell types are more likely to be affected by the
ncSNPs present in the locus. A total of 462 unique DHS were
present in the 17q21 locus (Fig. 1a) and immune cell types had
significantly more DHS when compared with non-immune cell
types (Po0.001 by Student’s unpaired two-tailed t-test, and
following Bonferroni correction for multiple testing, Fig. 1c and
see Methods); this enrichment of immune cell DHS was not
observed in many of the other asthma-risk haploblocks identified
by GWAS studies (Supplementary Fig. 1a and Supplementary
Data set 2), suggesting that this effect in immune cells is not
generic for all GWAS asthma-risk haploblocks. By ordering
62 primary cell types based on the number of DHS present, we
observed that lymphocytes (T cell subsets, B cells and natural
killer (NK) cells) ranked in the top 10, harbouring well over 50
DHS (Fig. 1d), whereas monocytes, lung structural cells including
bronchial epithelial cells (BECs), fibroblasts and endothelial cells,
and other irrelevant tissue types (for example, brain) harboured
relatively fewer DHS. Among fetal tissues, the greatest number of
DHS was observed in thymus and spleen (organs rich in immune
cells) instead of lung tissue (the target organ affected in asthma)
(Supplementary Fig. 1b). Altogether, these data indicate that
the locus is highly active in several immune cell types, and
that several 17q21 cis-regulatory regions are highly immune
cell-specific (Fig. 1a,c,d).
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About 17% (23/136) of the SNPs in the 17q21 asthma-risk
haploblock directly overlap DHS in the locus (Fig. 1e).
Importantly, more than five of the DHS present in immune
cells, such as T-cell subsets, B cells and natural killer cells, directly
overlap asthma-risk SNPs, whereas DHS present in monocytes,
epithelial cells or other irrelevant tissue (brain) overlap one or no
asthma-risk SNPs (Fig. 1f). Thus, our in silico analysis of
enhancer profiles suggests that expression of 17q21 genes is most
likely to be perturbed in immune cell types.

ORMDL3 expression is most affected in primary T cells. In
10 primary immune cell types freshly isolated from peripheral
blood of 34 subjects enrolled in the La Jolla Institute for Allergy
and Immunology’s (LJI) Normal Blood Donor Program
(Supplementary Fig. 2), we assessed expression of two genes in
the 17q21 locus (ORMDL3 and GSDMB) whose expression levels
have been shown to be affected by 17q21 SNPs in previous
studies24–26. Compared with non-immune cells, such as BECs,
lung cancer cell lines (A549), and human umbilical vein
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Figure 1 | 17q21 SNPs overlap immune cell enhancers. (a) University of California Santa Cruz (UCSC) tracks showing chromosomal location and genes

present in the 17q21 locus, containing a large haplotype block of asthma-associated SNPs; the location of asthma-risk SNP rs7216389 is indicated as blue

line in the gene track. Black lines indicate SNPs’ genomic location, and red lines are SNPs that overlap peaks of DNase hypersensitivity sites (DHS) from

multiple cell types obtained from the ENCODE Encyclopedia (version 2) provided by the ENCODE Project Consortium (see Methods). Exemplary DHS

tracks, H3K27ac and H3K4me1 enrichment tracks from CD4þ T cells, CD14þ monocytes and brain tissue (from ENCODE Project and NIH Epigenomics

Roadmap Consortiums) are shown along with UCSC multispecies conservation tracks. (b) Distribution of asthma-associated 17q21 SNPs in different

genomic regions. (c) The average number of DHS in the 17q21 locus of immune versus non-immune cell types (n¼ 10 and n¼ 52, respectively) and (d) the

62 primary cell types (indicated as dots, profiled by the ENCODE Project Consortium, see Methods) ordered based on the number of DHS in the 17q21

locus. The top hits and discussed cell types are named and marked in red. (e) Overlap of DHS and 17q21 SNPs. (f) Number of DHS that directly overlap

17q21 SNPs in various cell types (full list in Supplementary Data set 2b). Error bars are mean±s.e.m.; ***Po0.001 by Student’s unpaired two-tailed t-test,

and following Bonferroni correction for multiple testing.
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endothelial cells, both genes were expressed at relatively high
levels in most primary immune cell types with the exception of
monocytes and dendritic cells (Fig. 2a). Among the 34 subjects,
expression of ORMDL3 and GSDMB genes were both correlated
between the cell types of higher transcriptional activity
(Spearman correlation value of 0.74 and 0.83, respectively,
between naive CD4þ T cells and CD8þ T cells, Fig. 2b and
Supplementary Fig. 3a). Though the expression levels of
ORMDL3 and GSDMB were variable across donors (Fig. 2a,b),
the two were positively correlated across the 34 donors
(Spearman correlation value of 0.63 in naive CD4þ T cells,
Fig. 2c), suggesting a potentially co-regulated expression of these
two genes in several cell types (Supplementary Fig. 3b).

Based on genotype at rs7216389 (see Supplementary Data
set 3)1, located in the gene body of GSDMB, subjects were
classified into three groups: (i) homozygous for the asthma-risk
allele (TT genotype, n¼ 9), (ii) homozygous for the non-risk
allele (CC genotype, n¼ 9) and (iii) carrying heterozygous alleles
(TC genotype, n¼ 16). Previous studies have reported a modest
increase (B1.3 to 1.8-fold in peripheral blood mononuclear cells
(PBMCs) and lymphoblastoid cell lines)1,24,26,27 in the expression
of ORMDL3 and GSDMB transcripts in subjects carrying the
asthma-risk alleles. In comparison, we found a much greater
increase in purified primary immune cell types, with some cell
types such as naive CD4þ T cells and B cells displaying a nearly
threefold increase in ORMDL3 expression (Fig. 2d, left panel and
Fig. 2e). In sharp contrast, monocytes and dendritic cells showed
no genotype-dependent effect on gene expression (Fig. 2d, right
panel), implying that the effect of the 17q21 asthma-risk variants
is cell-specific and restricted to some primary immune cell types.
These findings concur with our prediction based on overlap
of 17q21 asthma-risk variants with cell-specific cis-regulatory
elements (Fig. 1f).

We noted that the effect of asthma-risk variants on ORMDL3
expression was completely lost when primary naive CD4þ T cells
were expanded in culture for a few days (Fig. 2f), suggesting
in vitro expansion per se may dampen the effects of the 17q21
variants. Recent studies have shown that 17q21 risk variants have
only modest effects on ORMDL3 expression in in vitro expanded
human lymphoblastoid cell lines1,27, and in the case of primary
BECs these variants exert no effect33. Such divergent effects of the
asthma-risk variants among cell types indicate that the upstream
pathway positively regulating the ORMDL3 locus is sensitive to
the effects of genetic variants only in certain cell types; therefore,
the functional consequences of the underlying genetic risk are
likely to be best observed in the cell types most sensitive to the
effects of asthma-risk variants, in this case T cell subsets. Since
CD4þ T cells have a central role in orchestrating asthma
pathogenesis34, we focused our functional studies on this subset
of T cells.

17q21 SNPs affect function of ORMDL3 intronic enhancer. We
next wanted to predict the cis-regulatory elements (enhancers)
that are affected by asthma-risk variants present in the 17q21
locus. Among the 23 SNPs that directly overlap 21 DHS in the
17q21 locus (shown in Fig. 1e), we focused our analysis on two
groups of SNPs: (i) those that overlap cis-regulatory elements
(DHS) selectively enriched in immune cell types where ORMDL3
expression is affected (Fig. 3a, green highlighted boxes), and (ii)
those that overlap DHS present in immune cell types as well as a
wide range of other primary cell types (Fig. 3a, orange highlighted
boxes). The latter SNPs could impact the function of multiple
other cell types potentially involved in disease pathogenesis.

Three asthma-risk SNPs (rs4065275, rs8076131 and
rs12603332) overlapped DHS in the first intron of ORMDL3

(Fig. 3a, top panel); this B3.0 kb intronic region was also highly
enriched for the H3K27ac mark, suggestive of active enhancer
activity, in CD4þ T cells but not monocytes (Fig. 3a, bottom
panel). Next, we asked if the activity of this ORDML3 intronic
enhancer, as judged by enrichment levels of H3K27ac, was
modified by the asthma-risk alleles. We utilized a large data set of
H3K27ac ChIP-Seq assays in memory CD4þ T cells to assess
effects of asthma-risk genotype on enhancer activity. An increase
(B1.44 fold) in H3K27ac enrichment was observed in subjects
carrying the asthma-risk allele when compared with those
carrying the non-risk allele (Fig. 3b), suggesting that the activity
of this enhancer is altered by asthma-risk SNPs.

In addition to the ORMDL3 intronic enhancer, two other DHS
regions that overlap asthma-risk SNPs were also present in
25–60% of the cell types analysed, that is were not strictly
cell-type specific (Fig. 3a, top panel). These regions included the
ZPBP2 intronic region that overlaps rs12936231 and the
intergenic region that is 25 kb downstream of ORMDL3
intergenic region overlapping ncSNP (rs4795408).

The three DHS sites that were selectively enriched in
lymphocytes were present near the IKZF3 gene, some located
well over 100 kb away from the ORMDL3 promoter. The distal
IKZF3 intergenic region overlaps ncSNP (rs12946510) and
similar to the ORMDL3 intronic enhancer, this region showed
increased activity (H3K27ac enrichment) in subjects carrying the
asthma-risk allele (Fig. 3b,c). The other two regions were (50)
proximal and intronic IKZF3 regions, which overlap the ncSNPs
rs2313430 and rs4795397, respectively (Fig. 3b,c). Overall, our
observations point to several potentially important enhancer
elements in the 17q21 locus, especially the ORMDL3 intronic
enhancer, whose function is affected by asthma-risk variants.

17q21 asthma-risk SNPs switch CTCF-binding sites. We
performed an in silico analysis to identify the transcription factors
whose binding to the cis-regulatory regions described above is
perturbed by asthma-risk SNPs. Our evaluation pointed to
perturbation of two CTCF-binding motifs as well as motifs of sev-
eral other transcription factors such as IRF1, PAX4, TCF3 (Fig. 4a
and Supplementary Data set 5). We focused on CTCF binding
because it directly overlaps the ORMDL3 intronic enhancer region
(Fig. 4a), and CTFC protein has been shown to play an important
role in enhancer–promoter interactions and as an insulator pro-
tein35. The first CTCF-binding motif was altered by an asthma-risk
SNP (rs4065275) in the ORMDL3 intronic region causing an A-to-G
change in the motif, which is predicted to enhance the binding of
CTCF (Fig. 4a and Supplementary Data set 5). We experimentally
confirmed that CTCF binding in the ORMDL3 intronic region was
significantly enriched in both expanded and primary T cells from
subjects carrying the risk allele (Fig. 4b). As a control region, we
selected a well-known invariant CTCF binding site B50 kb
proximal to ORMDL3 (near the GSDMA gene), which did not
harbour any motif-disrupting asthma-risk SNP; this region did not
show any significant change in CTCF binding (Supplementary
Fig. 4a). In heterozygous subjects, we performed allele-specific
analysis of CTCF-bound DNA and found strong preference for the
risk allele (Fig. 4c and Supplementary Fig. 4b). Thus, we confirmed
that the presence of asthma-risk SNP (rs4065275) introduces a
CTCF-binding site in the ORMDL3 intronic region that harbours an
active enhancer.

The second CTCF-binding motif was altered by asthma-risk
SNP (rs12936231) in the ZPBP2 intronic region causing a G-to-C
change in the CTCF motif, which was predicted in our in silico
analysis and previously shown to impair CTCF binding27. We
confirmed in CD4þ and CD8þ T cells that CTCF binding was
almost completely lost in the ZPBP2 intronic region from subjects
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carrying the asthma-risk SNP, and this finding was true at the
allele-specific level (Fig. 4b,c). Thus, the asthma-risk haploblock
harbours linked SNPs that switch the binding site of CTCF from
the ZPBP2 to the ORMDL3 intronic region (Fig. 4d).

17q21 SNPs modify ORMDL3 promoter–enhancer interactions.
Since CTCF has a major role in long-range interactions of
cis-regulatory elements to cognate promoter regions36–39, we
hypothesized that the switching of CTCF-binding sites may affect
the 3D architecture (organization) of the 17q21 locus to favour
enhanced transcription of ORMDL3 in the asthma-risk alleles. In
order to define all the distal cis-regulatory elements that
potentially regulate ORMDL3 expression in an asthma-risk
genotype-dependent manner, we performed 4C-Seq assays
(see Methods) in primary CD4þ T cells from subjects
homozygous for the risk (n¼ 4) and non-risk alleles (n¼ 4). By
designating the ORMDL3 promoter as the bait for 4C, we detect
at a high resolution the physical interactions of any potential cis-
regulatory element in the extended 17q21 locus with the
ORMDL3 promoter region (Fig. 5a,b). The 4C-Seq assay40,41

conditions were initially optimized in a human T cell line
(HUT-78) to robustly detect long-range interactions of the
ORMDL3 promoter (Supplementary Fig. 5a and see Methods).

Genomic regions interacting with the ORMDL3 promoter
region were determined using two complementary analysis
methods for 4C data (4C-ker42 and 4Cseqpipe40, see Methods).
We first pooled data from all risk and non-risk subjects and
identified several interacting regions including the CTCF-bound
regions near ZBPB2 and ORMDL3 gene loci, the IKZF3 promoter
region and a number of other potential enhancer regions in the
IKZF3 intronic region (Fig. 5c), suggesting extensive long-range
interactions of the ORMDL3 promoter region in primary human
CD4þ T cells. Most strikingly, the IKZF3 promoter region and
other potential enhancers in the IKZF3 intronic region that were
enriched for H3K27ac and H3K4me1 marks in CD4þ T cells but
not monocytes (that is, selectively active in CD4þ T cells)
appeared to interact with the ORMDL3 promoter region
exclusively in subjects carrying the 17q21 asthma-risk allele
(Fig. 5c, red highlighted boxes; for example, region chr17:
38,022,212-38,022,898 (hg19) with an adjusted P value of
0.000736 using the 4C-ker method42, Supplementary Data set
6), whereas the ORMDL3 promoter region of non-risk alleles
interacted with the CTCF-binding site in the ZPBP2 intronic
region (Fig. 5c, blue highlighted boxes), which presumably
insulated (blocked) the interactions to the adjacent active
IKZF3 cis-regulatory elements. Though subjects in each group
showed some variability, potentially due to their genotypic
variation within this locus as we classified subjects as risk and
non-risk only based on genotype at rs7216389, rs4065275 and
rs12936231 (see Methods), the overall pattern was consistent
across most donors (Supplementary Fig. 5b and Supplementary
Data sets 6 and 7).

Our results suggest that the 3D organization of the 17q21 locus
is modified in memory CD4þ T cells from subjects with the
17q21 asthma-risk alleles to favour selective recruitment of the
IKZF3 cis-regulatory elements to the ORMDL3 promoter region
(Fig. 5d), which correlated with its increased transcriptional
activity.

ORMDL3 negatively regulates IL-2 production by CD4þ T cells.
Next, we wanted to determine the functional consequences of
altered levels of ORMDL3 transcripts in primary CD4þ T cells, as
17q21 SNPs had the greatest impact on ORMDL3 expression in
this cell type. ORMDL3 is an endoplasmic reticulum membrane
protein, and studies in cell lines and in epithelial cells have

indicated its involvement in Ca2þ signalling, sphingolipid meta-
bolism and unfolded-protein responses43–45; however, its function
in primary T cells has not been fully investigated. Here we sought
to determine the functional role of ORMDL3 in memory CD4þ

T cells with a specific focus on cytokines released following
activation. Freshly isolated human memory CD4þ T cells were
transfected with small interfering RNA (siRNA) pools targeting
the ORMDL3 transcript, cultured for 48 h to achieve adequate
gene knockdown, and then activated by T cell receptor ligation
(anti-CD3) and co-stimulation (anti-CD28) to study effects on
cytokine production (Fig. 6a and see Methods).

We achieved over 50% reduction in ORMDL3 transcript levels
without affecting cell viability due to transfection (Fig. 6b and
Supplementary Fig. 6a,c). Among the cytokines and chemokines
measured, the strongest effect (440% change) was seen for IL-2
production, which was significantly increased in the ORMDL3
siRNA-treated conditions compared to control siRNA conditions
(Fig. 6c). IL-2 production was not affected by knocking down
GSDMB or other control genes such as TBX21 and GATA3 (Fig. 6d).

At the transcriptional level, we observed similar effects on
activation-induced expression of IL2 transcripts following
ORMDL3 knockdown (Fig. 6e). Notably, we observed significant
effects at very early (3, 6 h) and late (18 h) time points following
stimulation, suggesting sustained effects of ORMDL3 knockdown
(Fig. 6e, right panel). We also confirmed these effects at the
protein level using fluorescence-activated cell sorting (FACS)-
based intracellular cytokine detection assay (Fig. 6f). We next
asked if the negative regulatory effect on IL2 transcription was
also observed in unmanipulated T cells from subjects with
varying levels of ORMDL3 expression. As expected, we found a
striking correlation between baseline ORMDL3 expression and
the levels of IL2 transcripts produced following brief ex vivo
stimulation of memory CD4þ T cells with phorbol myristate
acetate (PMA) and Ionomycin (Fig. 6g), suggesting that this
correlation may also hold in vivo. Altogether, our results provide
strong evidence that ORMDL3 negatively regulates IL-2 produc-
tion in CD4þ T cells, and that overexpression of ORMDL3 in
subjects carrying the asthma-risk alleles is likely to reduce IL-2
production in vivo, which in turn may have important functional
effects that contribute to the development of asthma46.

ORMDL3 knockdown also led to modest changes in the
production of other cytokines such as interferon-g (IFN-g), IL-10
and IL-13, suggesting that ORMDL3 is likely to have a broader
spectrum of functions in T cells. Knocking down GSDMB led to
modest changes in the production of TNF, IL-13 and IL-16
(Fig. 6h), suggesting that the product of this gene is also likely to
affect the function of T cells. Overall, our results suggest that
physiological alteration in the levels of ORMDL3 and GSMDB
induced by the asthma-risk allele may be sufficient to modulate
the functional capacity of T cells.

Discussion
The overwhelming majority of the sequence variants (SNPs)
associated with disease-risk haplotypes in GWAS studies do not
change protein coding, implying that a proportion of them may
be located in regulatory regions which act in cis to alter gene
expression1,16,20,47. Since in many instances cis-regulatory
regions are highly cell type-specific, the effects of SNPs that
affect their function are also likely to be more pronounced in
just a few cell types. The failure to link non-coding risk SNPs to
the cell types in which they affect function has significantly
hampered the progress of functional studies aimed at identifying
biological effects of GWAS SNPs. In this study, we attempted to
solve this problem by taking a comprehensive approach to
predict and test the effects of 17q21 asthma-risk SNPs on
expression of ORMDL3 in various cell types. We show that
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primary immune cell types, with the exception of monocytes
and dendritic cells, but not lung structural cells such as BECs,
are most sensitive to the effects of 17q21 SNPs. Notably, this
approach allowed us to narrow down the cell types in which
ORMDL3 potentially influences disease outcomes, and,
therefore, perform detailed functional studies in a relevant cell
type (primary human CD4þ T cells) and show that ORMDL3
negatively regulates the transcription of IL2. Given the

pleotropic role of IL-2 in modulating the differentiation and
function of TH cell subsets, it is likely that this effect on IL-2
production could be pivotal for driving genetic risk for asthma
and autoimmunity.

Previous studies have examined the function of the conserved
ORM family proteins in yeast48,49 (which includes ORMDL3 in
humans), as well as ORMDL3 itself in various mammalian cell
lines and in primary cell types relevant to asthma pathogenesis
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such as epithelial cells, eosinophils, mast cells and whole
PBMCs23,43–45,50–54. ORM family proteins were originally
shown to mediate sphingolipid metabolism in yeast48,49, which
was subsequently confirmed in mammalian cells44. As an
endoplasmic reticulum membrane protein, ORMDL3 has been

shown to be involved in endoplasmic reticulum-mediated Ca2þ

homeostasis by depleting Ca2þ stores of the endoplasmic
reticulum through an interaction with the SERCA pump in the
endoplasmic reticulum43,50. In this context, ORMDL3 was shown
to diminish the translocation of the nuclear factor of activated
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T cells (NFAT) in Jurkat cell lines and modestly reduce cytokine
release after stimulation50. Therefore, it is likely that the negative
regulatory effects of ORMDL3 on IL-2 production in primary T
cells are also due to perturbation of Ca2þ signalling and NFAT
function following T cell activation.

Overexpression of ORMDL3 in BECs has been shown to activate
components of endoplasmic reticulum stress or unfolded protein
response, resulting in increased expression of several
pro-inflammatory molecules involved in airway remodelling and
inflammation45,51. Recent studies in murine primary eosinophils
and mast cells have revealed opposing functions in these cell types;
in eosinophils ORMDL3 positively regulates its activation and
function by influencing cell shape change, adhesion and
recruitment to sites of inflammation in vivo, while in mast cells
ORMDL3 negatively regulates activation-induced expression of
pro-inflammatory mediators and chemotactic responses51,53. Thus,
it appears that the function of ORMDL3 may vary considerably
depending on the cell type, and, therefore, it will be important to
first know whether the 17q21 asthma-risk SNPs in fact affect the
expression of ORMDL3 in these cell types; this information will
allow determination of whether these cell types are the dominant
factors driving the 17q21-related genetic risk of asthma.

While all SNPs in genetic linkage may be statistically
significantly associated with asthma, only a subset will be
functionally relevant. For instance, the 17q21 locus has a dense
haploblock of 136 SNPs linked to asthma risk, a number too large
to allow exploration of each SNP’s potential function. In
determining which SNPs are likely to influence pathophysiology,
our basic assumption is that a significant fraction of ncSNPs that
are deemed to be functional in asthma act on cis-regulatory
elements that are important for controlling the expression of
17q21 genes. Therefore, to identify functional SNPs in the 17q21
haploblock, we first focused on SNPs that overlap cis-regulatory
regions that are active in several cell types, especially those
(for example, CD4þ T cells) in which expression of ORMDL3 is
affected by the 17q21 SNPs, and then tested whether the presence
of these SNPs alters epigenetic profiles, that is, activity at relevant
cis-regulatory DNA regions. We identified an enhancer region in
the first intron of the ORMDL3 gene that overlapped three 17q21
asthma-risk SNPs (rs4065275, rs8076131, and rs12603332), and
this region showed increased activity in subjects carrying the
asthma-risk allele. The rs4065275 variant introduced a binding
site for the multi-functional zinc finger protein CTCF, whereas
the linked rs12936231 variant, about 55 kb downstream of
ORMDL3, disrupted a second CTCF-binding site, which together
results in interchanging of two CTCF sites in the vicinity of the
ORMDL3 gene locus.

CTCF binds insulator regions in the genome55–57, where it
forms gene boundaries by blocking interactions between distal
enhancers and promoters; when present in introns, it influences
the efficiency of pre-mRNA splicing at weak splice sites by

altering the processivity of RNA polymerase II (pol II)35;
however, we did not observe any changes in splicing of
ORMDL3 transcripts (data not shown). More recently, genome-
wide analysis of CTCF-binding patterns coupled with long-range
chromatin interaction studies (ChIA-PET) have shown that
CTCF has a pivotal role in promoting interaction of multiple
enhancers to cognate gene promoters58. Therefore, we
hypothesized that the switching of CTCF sites by asthma-risk
SNPs may alter the three-dimensional structure of chromatin in
the 17q21 locus and promote the interaction of active enhancer
regions with their cognate promoter (ORMDL3), thereby
increasing ORMDL3 expression in carriers of the asthma-risk
SNPs. Experimentally, we confirmed genotype-dependent
differential looping (altered 3D organization) in the 17q21
locus that resulted in the recruitment of active cell-specific
cis-regulatory elements (for example, of the 50 IKZF3 proximal
region which overlaps the asthma-risk SNP rs4795397) to the
ORMDL3 promoter in asthma-risk alleles. Depending on the
composition of the haploblock for a given donor (combination of
SNPs), the differential looping may also recruit enhancer regions
that themselves are affected by SNPs and thus creating variable
and donor-specific reorganization of the 17q21 locus. These
mechanisms may contribute to the exquisite cell type-specific
effects of 17q21 SNPs on gene expression in people with various
genotypes.

The discovery of new drug targets in a human disease requires
identification of the pathogenic cell type(s) as well as the
molecular factors and pathways that contribute to the disease.
Our current knowledge of these points is incomplete for many
diseases. The approach we have taken to improve our under-
standing of the genetic basis of asthma and autoimmunity aims to
address some of these issues and may be applied to various other
disease-associated genetic loci to unravel disease-relevant cell
types and molecular pathways.

Methods
Study subjects and sample processing. Blood samples from 34 donors were
obtained from LJI’s Normal Blood Donor Program after written informed consent.
Ethical approval for the use of this material was obtained from the Institutional
Review Board (IRB) of the LJI. Only for the data shown in Fig. 3b,c, additional
samples were obtained from another cohort of 38 donors (only subjects homo-
zygous for either the asthma risk- or non-risk variant at rs7216389), after written
informed consent. The genotyping of the 17q21 SNPs rs7216389, rs12936231 and
rs4065275 was performed using the automated Sanger DNA sequencing platform
(GENEWIZ, Inc.) with the primers listed in Supplementary Table 1. Details of the
genotype of 17q21 SNPs, age and gender of study subjects are provided in
Supplementary Data set 3.

For isolating immune subtypes from peripheral blood samples, PBMCs were
first separated into a CD4þ memory cell fraction and remaining cells by use of the
Memory CD4þ T Cell Isolation Kit (Miltenyi Biotec). Both populations were
stained with cocktails of fluorescently conjugated antibodies (see Supplementary
Table 2) and sorted on a FACSAria-II (Becton Dickinson) using the gating strategy
shown in Supplementary Fig. 2. Sorted cells were washed, and directly lysed in

Figure 6 | ORMDL3 negatively regulates IL-2 production by CD4þ T cells. (a) Experimental design used for assessing effects of knocking down genes of

interest in memory CD4þ T cells. (b) Real-time PCR quantification of ORMDL3 and GSDMB transcript levels (relative to the housekeeping gene YWHAZ) in

memory CD4þ T cells 48 h after knock down with control siRNA pools, ORMDL3 or GSDMB siRNA pools (n¼ 12 donors). (c) Effects of ORMDL3

knockdown on cytokine release by memory CD4þ T cells activated for 48 h with antibodies to CD3 and CD28; data are expressed as fold change (FC)

relative to control siRNA-treated conditions; error bars indicate mean±s.e.m. (d) Absolute values of IL-2 protein levels in culture supernatants from cells

treated with the indicated siRNA pools. Data are presented as means of biological duplicates. (e) Time course of IL2 mRNA expression in activated memory

CD4þ T cells (n¼ 24) following treatment with ORMDL3 (open circles) or control siRNA pools (closed circle); data from each donor for different time

points after stimulation is shown in the right panel. (f) Representative FACS plots showing intracellular staining of IL-2 in memory CD4þ T cells activated

for 6 or 18 h (after knockdown with siRNA pool for ORMDL3 or control siRNA); percentage of IL-2 producing cells in each donor is shown to the right

(n¼ 18). (g) Correlation of the levels of ORMDL3 transcripts (measured at baseline) and IL2 transcripts produced following ex vivo stimulation of memory

CD4þ T cells (n¼ 36) with phorbol myristate acetate (PMA) and Ionomycin for 4 h. (h) Effects of GSDMB knockdown on cytokine release by memory

CD4þ T cells, as described in c. Each dot represents data from a single donor. r, Spearman correlation coefficient; *Po0.05, **Po0.01, and ***Po0.001 by

Student’s paired two-tailed t-test, and following Bonferroni correction for multiple testing in c,d and h (see Methods).
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TRIzol solution (Invitrogen) for subsequent isolation of total RNA or fixed for
ChIP assays as described previously14.

Gene expression studies. Total RNA was extracted using the miRNeasy Micro
Kit (Qiagen); complementary DNA was reverse-transcribed with the SuperScript
III First-Strand Synthesis System (Life Technologies). Real-time PCR employed the
Fast Start Universal SYBR Green Master Mix (Roche); see Supplementary Table 1
for primer sequences. Data were acquired on the StepOnePlus Real-Time PCR
System (Applied Biosystems); all results are presented in arbitrary units relative to
expression of the housekeeping gene YWHAZ59.

Micro-scaled ChIP-Seq for H3K27ac and bioinformatics analysis. Samples
from an independent cohort of 38 donors (as described above) were utilized for this
analysis (Supplementary Data set 3). A total of 43 ChIP-Seq assays (including
5 technical replicates) were performed as described previously14,60. Briefly, purified
chromatin from 1� 105 TH2 cell enriched CD4þ memory subset (CD3þCD4þ

CD25�CD45RA�CCR4þ ) was immunoprecipitated with a polyclonal anti-
H3K27ac antibody (Lot #GR184333-1; ab4729; Abcam). Chromatin was incubated
with 0.5 mg antibody pre-coated to 5 ml of protein A-coated magnetic beads
(Invitrogen). Immunocomplexes were captured, washed and eluted; DNA was
purified and used for whole-genome amplification as described previously14. The
samples then underwent library preparation using the Illumina TruSeq Nano DNA
Library Prep Kit following the manufacturer’s instructions. Libraries were
sequenced on an Illumina HiSeq 2500 sequencer to obtain 410 million uniquely
mapped 50-bp single-end reads.

ChIP-Seq data was processed as described14. To generate the H3K27ac tracks
shown in Fig. 3b, sequencing coverage was calculated for the six regions (þ /� 1 kb
around the SNP site of interest) at 50 bp windows after extending each read to a
length of 250 bp along the sequencing direction using MEDIPS v.1.10.0
(extend¼ 250, uniq¼ F, window_size¼ 50, BSgenome¼ ‘BSgenome.Hsapiens.UCSC.
hg19’), and the resulting coverage profiles (normalized reads counts, RPKM) were
presented. Further, to calculate fold change in H3K27ac enrichment levels between
carriers of risk and non-risk allele at genomic regions harbouring the SNPs of
interest (shown in Fig. 3c), we used the MEDIPS bioinformatics pipeline (as above)
to obtain normalized reads counts for a 200 bp region around the SNP site
(see Supplementary Data set 4). Genome-wide analysis of this entire data set will be
reported in a separate manuscript (under preparation).

CTCF-ChIP and analysis of allele-specific binding. Purified chromatin from
10� 106 polarized TH1 and TH2 cells (31 samples from 11 donors) and 1� 106

primary CD8þ T cells (13 samples from 9 donors) were immunoprecipitated with
a polyclonal anti-CTCF antibody (Lot #2142232; 07-729; EMD Millipore), resulting
in a total of 44 assays (including 13 technical duplicates). Chromatin was incubated
with 10 ml or 5 ml antibody solution (for 10� 106 cells or 1� 106 cells ChIP,
respectively), pre-coated with protein A-coated magnetic beads (Invitrogen).
Immunocomplexes were captured, washed, and eluted and DNA was purified as
described above. DNA sequences from control and target sites were quantified by
real-time PCR (see Supplementary Table 1) to assess enrichment due to CTCF
binding. Data are presented as fold enrichment over control region, which has
previously been shown to not bind CTCF61. The donors were categorized (into
homozygous risk, heterozygous and homozygous non-risk) based on allelic status
of SNP overlapping the respective CTCF motif as shown in Fig. 4a and
Supplementary Data set 3.

For allele-specific analysis, purified chromatin from input and CTCF-ChIP
samples were amplified by PCR using primers that cover the CTCF-binding site
overlapping SNPs rs12936231 (G/C; ZPBP2 site) and rs4065275 (A/G; ORMDL3
site), and analysed using the Sanger sequencing. Using MacVector, chromatogram
traces of donors heterozygous for asthma risk SNPs (as above) were analysed to
determine allele-preference for CTCF. The ratio of each allele was calculated using
the signal intensity of each base at the position of the respective SNP. Data are
shown as percentage of DNA sequences containing the risk and non-risk SNPs at
rs12936231 (ZPBP2 site) or rs4065275 (ORMDL3 site).

Analyses of DHS and overlap with 17q21 SNPs. To define the collection of
17q21 asthma-risk SNPs, we first downloaded all asthma-associated SNPs from the
databases of GWAS Integrator62 and HaploReg v3 (ref. 63) (August 2015), yielding
a total of 96 significant lead SNPs (Po1.0� 10� 5) distributed over 75 loci (with 6
lead SNPs in the 17q21 locus). SNPs in tight genetic linkage (r240.8) were
retrieved based on data from the Phase I of the 1,000 genome project using
European (EUR) as reference population64 (calculations performed using
HaploReg v3, Supplementary Data set 1). Among the total of 3,502 asthma-
associated SNPs (lead SNPsþ linked SNPs), 136 SNPs were identified in the
asthma-susceptibility locus on chromosome 17 (17q21).

To determine the number of DHS in the asthma loci, we downloaded genomic
annotations of DHS from 64 primary cells types, 21 fetal tissues and 28 cell lines
provided by the ENCODE Project Consortium (ENCODE Encyclopedia, version 2;
http://www.encodeproject.org)31 and the NIH Epigenomics Roadmap Consortium
(http://www.roadmapepigenomics.org)32, and generated by the labs of
Stamatoyannopoulos (University of Washington) and Crawford (Duke University).

We utilized processed data provided by the ENOCDE project; here the Stam lab
merged all DNase peak data from the Stam and Crawford labs. This merging
process formed one combined DNase-Seq data set with non-overlapping DHS.
The Stam lab then identified the ‘master’ peak in each region, defined as the
peak in the region with highest peak height/z-score. Utilizing this data set, loci were
defined by the location of the respective SNPs extended for 10 kb at each end.
We found a total of 462 unique DHS in the 17q21 asthma-risk locus (chr17:
37,899,254–38,139,253 (hg19); 240 kb).

Next, to determine the average number of DHS in all loci for each cell type, we
merged replicates from cell types of similar origin (see details in Supplementary
Data set 2a). Of note, merged tracks of mixed or parental populations (for example
data sets on ‘CD3 cells’ or ‘CD4 primary cells’) were excluded when data on subsets
(such as ‘CD4 naive cells’, ‘TH1 cells’ and ‘CD8 cells’) were available. Our merged
data set was used to determine the number of DHS within each cell type or tissue
group (shown in Fig. 1d and Supplementary Fig. 1b) and to identify DHS that
intersect directly with 17q21 SNPs (shown in Fig. 1e,f). The full list of merged
DHS, including the number of single tracks for each cell type or tissue group, and
the distribution of DHS in all asthma-associated loci (each defined by the location
of the respective SNPs extended for 10 kb at each end) are provided in
Supplementary Data set 2.

To predict the functional SNPs in the 17q21 locus, we performed motif scan
analysis for the genomics regions highlighted in Fig. 3a using FIMO at the default
parameters (Po1� 10� 4), implementing the motif models from the JASPAR
database65 (see details Supplementary Data set 5).

4C-Seq assay and analysis. The 4C-Seq assay was used to determine regions
interacting with the ORMDL3 promoter region40,41. Briefly, naive CD4þ T cells
(or HUT-78 cells) were cross-linked and flash frozen. Cells were lysed, chromatin
was digested using the 4-base cutter DpnII and restricted ends re-ligated in situ as
described36. The chromatin was de-crosslinked and digested using the 4-base cutter
MseI (or NlaIII) in order to produce small products40. Following a second ligation
step in a large reaction volume (to minimize inter-molecular ligations), DNA
sequences containing the ORMDL3 promoter region (anchor point/bait) were
amplified by PCR (see Supplementary Table 1) and sequenced to generate 1–2
million 150 bp single-end reads per sample. Conditions were initially optimized in
HUT-78 cells using five different baits located in the ORMDL3 promoter region
(baits A-E), and bait D, which showed most interactions, was chosen to perform
the 4C-Seq assay in primary CD4þ T cells.

Raw fastq files were filtered to remove reads that do not contain the expected
bait sequence. From the remaining reads, the bait sequence was removed and reads
were mapped against the genomic sequence (hg19) using either Bowtie 1.1.2
(4C-ker42) or the custom 4Cseqpipe40 mapper (perl 4cseqpipe.pl -map). Number
of reads per each restriction enzyme fragment was computed using coverageBed
(bedtools) on the fragmented genome (Supplementary Data set 7). Regions with
significant interactions were calculated using 4C-ker (near-cis function with K¼ 5).
Differentially interacting regions at an adjusted P value of 0.1 were called using the
differential analysis function of the 4C-ker tool (Supplementary Data set 6). All
domainograms (for example, Fig. 5c) were generated using the 4Cseqpipe tool
(near-cis parameter; trend resolution of 5,000; using mean as the statistics).

Cell culture and stimulation. For siRNA knockdown studies memory CD4þ

T cells were cultured in Iscove’s Modified Dulbecco’s Medium (Invitrogen)
supplemented with 5% (vol/vol) heat-inactivated fetal bovine serum and 2%
(vol/vol) human AB serum (CellGro) with recombinant human IL-7 (5 ng ml� 1;
Miltenyi Biotec). For in vitro differentiation of naive cells into TH1 or TH2 cells,
FACS-sorted naive CD4þ T cells were cultured with Human T-Activator
CD3/CD28 Dynabeads (Invitrogen) at a bead-to-cell ratio of 1:1 in the presence
of recombinant human IL-12 (rhIL-12; 5 ng ml� 1) and anti-IL-4 antibody
(5 mg ml� 1), or recombinant human IL-4 (rhIL-4; 10 ng ml� 1) and anti-
IFN-g antibody (10mg ml� 1), respectively. Recombinant IL-4, IL-12 and
anti-IL-4 antibody were from R&D Systems; the anti-IFN-g antibody was obtained
from BD Pharmingen. After 48 h of culture, the anti-CD3/CD28 Dynabeads were
removed and the cells were expanded in culture with recombinant human IL-2
(rhIL-2; 100 IU ml� 1; National Cancer Institute). After 6 days, cells were washed
and analysed for gene expression by real-time PCR. Memory CD4þ T cells were
intracellularly stained for cytokine detection after stimulation with anti-CD3/CD28
Dynabeads for 6 and 18 h. Brefeldin A (5 mg ml� 1; Sigma-Aldrich) was added for
the final 2 h of culture. The intracellular staining assay was performed as previously
described60. Data were acquired on a LSR-II (Becton Dickinson) and analysed
using FlowJo software (Tree Star).

siRNA knockdown studies. Memory CD4þ T cells were transiently transfected
with 0.5 nmol (per 1� 106 cells) of siRNA pools specific for ORMDL3, GSDMB,
TBX21, and GATA3 or non-targeting siRNA (all ON-TARGETplus SMARTpools
from Dharmacon) using the Neon Transfection System (Invitrogen) according to
the manufacturer’s protocol (settings: 2,200 V, 10 ms, 3 pulses). All siRNA
sequences are provided in Supplementary Table 3. Knockdown efficiency was
analysed 48 h after transfection by real-time PCR for transcript levels, and by
intracellular FACS assay for protein levels when specific and good antibodies were
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available for ORMDL (ab107639) as previously described45, T-bet (4B10) and
GATA3 (L50-823) (Fig. 6b and Supplementary Fig. 6a,b); we also verified the
effects of ORMDL3 and GSDMB siRNA pools by using the four independent
siRNAs in the SMARTpool and the corresponding C911 mismatch control
siRNAs66, where the nucleotide sequence is altered at bases 9–11, the seed sequence
needed for specific targeting (Supplementary Fig. 6e,f and Supplementary Table 3).
Viability of cells was analysed 48 h after transfection by using FACS-based
Annexin-V and 40 ,6-diamidino-2-phenylindole (DAPI) staining. Subsequently, the
memory CD4þ T cells were stimulated with anti-CD3/CD28 Dynabeads and
cytokine production was analysed by real-time PCR and intracellular FACS at
various time points. Cytokine secretion after 48 h of stimulation was measured with
V-PLEX Validated Assay Kits (Meso Scale Discovery) following the manufacturer’s
instructions. All data are presented as mean of biological duplicates.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper (and its supplementary information files).
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