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Abstract The integration of scheduling workers to perform tasks with the traditional vehi-
cle routing problem gives rise to the Workforce Scheduling and Routing Problems (WSRP).
In the WSRP, a number of service technicians with different skills, and tasks at different
locations with pre-defined time windows and skill requirements are given. It is required to
find an assignment and ordering of technicians to tasks, where each task is performed within
its time window by a technician with the required skill, for which the total cost of the routing
is minimized. This paper describes an iterated local search (ILS) algorithm for the WSRP.
The performance of the proposed algorithm is evaluated on benchmark instances against an
off-the-shelf optimizer and an existing adaptive large neighbourhood search algorithm. The
proposed ILS algorithm is also applied to solve the skill vehicle routing problem, which
can be viewed as a special case of the WSRP. The computational results indicate that the
proposed algorithm can produce high-quality solutions in short computation times.
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1 Introduction

The workforce scheduling and routing problem (WSRP) and its variants are commonly
faced by many service providers, and have applications of home health care, field technician
scheduling, security personnel routing and manpower allocation.

The term WSRP is coined by Castillo-Salazar et al (2012), and refers to a class of op-
timization problems where service personnel are required to carry out tasks at different
locations. For example, nurses visiting patients at their homes, and technicians performing
maintenance jobs in different companies can each be modeled as a WSRP. As service per-
sonnel need to travel between different locations, minimizing their distances and times for
travel is usually considered as one of the objectives when making operational decisions.
This results in a routing problem of finding a set of least cost routes for a given workforce,
where each route consists of a sequence of locations. Sometimes, tasks have associated time
windows, within which service must start. This type of problem can be modeled as an exten-
sion of the vehicle routing problem with time windows (VRPTW), which is a well-known
variant of the classical vehicle routing problem (VRP).

Service personnel often specialize in different skill domains, and possess skills at dif-
ferent levels. The tasks themselves have different skill requirements. For example, in the
telecommunications industry, tasks may include maintenance, installation, construction and
repair jobs, and technicians are trained in skills that allow them to only be able to service a
subset of these tasks. Thus, skill compatibility must be taken into account to ensure that tasks
are performed only by qualified personnel. The associated scheduling problem involves the
assignment of tasks to service personnel. In some applications, tasks can be outsourced to
a third party, albeit at the expense of additional cost, if appropriate resources are not avail-
able to provide the required service, or better operational performance can be achieved. The
version of the WSRP that we consider allows for outsourcing.

Due to its complexity, most of the existing research on the WSRP has aimed at devel-
oping efficient heuristic solution algorithms. However, most of them are sophisticated and
highly problem specific. In this paper, a simple heuristic algorithm based on iterated local
search (ILS) is proposed to solve the WSRP. ILS is one of the most conceptually simple and
robust algorithms (Burke et al, 2010). The essential idea of ILS is that when the local search
is trapped at a local optimum, the ILS perturbs the previously visited local optimum instead
of generating a new initial solution, and then restarts the local search from this modified
solution (Lourenço et al, 2003). Although the ILS has a very simple framework, it has been
successfully applied to a wide variety of optimization problems including the graph color-
ing problem (Chiarandini and Stützle, 2002), the job shop scheduling problem (Lourenço,
1995) and the vehicle routing problem (Hashimoto et al, 2008; Chen et al, 2010; Walker
et al, 2012; Penna et al, 2013; Michallet et al, 2014) . However, no study has been reported
on the application of the ILS to the WSRP, which is the aim of this paper. The contribution
of the paper is a fast and simple algorithm for the WSRP with the objective of minimizing
the total travel cost and outsourcing cost. The proposed algorithm is also applied to solve
the skill vehicle routing problem (Skill VRP). To the best of our knowledge, this is also the
first ILS approach for the Skill VRP.

The remainder of the paper is organized as follows. Section 2 reviews the related liter-
ature on the WSRP. A formal definition of the problem is presented in Section 3. Section 4
gives a description of the proposed ILS. Computational results for benchmark instances are
presented in Section 5. The paper ends with some concluding remarks in Section 6.
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2 Literature Review

Recent studies on the WSRP include the work of Kovacs et al (2012). They present an adap-
tive large neighbourhood search (ALNS) algorithm to solve the service technician routing
and scheduling problem (STRSP). In this problem, tasks are associated with time windows
and skill requirements, outsourcing tasks is allowed, and team building may be required in
order to fulfill skill requirements of difficult tasks. The objective is to minimize the total
operational cost comprising the routing and outsourcing cost. The scheduling aspect of this
problem is adapted from the study of Cordeau et al (2010), which considers a technician
and task scheduling problem arising in a large telecommunications company. Cordeau et al
(2010) focus on the construction of teams and the assignment of tasks to teams without
considering routing costs between tasks. Their problem is solved by using a construction
heuristic and an ALNS algorithm. Pillac et al (2013) extend the study of Kovacs et al (2012)
by taking tools and spare parts into account, where each task must be carried out by a techni-
cian with the required skills, tools, and spare parts, and within the prescribed time window.
The problem is solved by a matheuristic consisting of a parallel version of ALNS algorithm
and a mathematical programming based post-optimization procedure.

Xu and Chiu (2001) also consider a field technician scheduling problem arising in the
telecommunications industry. The objective is to maximize the number of jobs scheduled
to technicians, while accounting for each job’s priority and skill constraints. Three different
heuristic approaches, namely, a greedy heuristic, a local search algorithm, and a greedy ran-
domized adaptive search procedure (GRASP) are proposed to solve the problem. Castillo-
Salazar et al (2015) describe a greedy heuristic to address the WSRP with five types of
time-dependent constraints, which model the relationship between tasks, e.g. one task needs
to start after the completion of another task.

A variant of the WSRP is the skill vehicle routing problem (Skill VRP), which is in-
troduced by Cappanera et al (2011). The Skill VRP differs from other problems reviewed
above in two aspects: (1) tasks do not have associated time windows, and (2) the routing
costs depend both on the traveling distance and the technician in such a way that increasing
the skill level of the technician causes an increase in costs. The use of technician-dependent
routing costs is motivated by practical applications, since high-skilled employees usually
have higher salaries than those with only basic skills. The Skill VRP is also studied by
Schwarze and Voß (2012), but their study incorporates load balancing and resource utiliza-
tion when constructing tours for service vehicles. Their motivation for proposing this model
is their finding that many Skill VRP solutions usually use only a subset of vehicles, and a
considerable number of tasks are assigned to vehicles that have higher skills than necessary.

Some studies have considered stochastic elements in the WSRP. For example, Wein-
traub et al (1999) study a scheduling and routing problem for service vehicles belonging to
an electric utility company in Chile, where service requests are stochastic. Pillac et al (2012)
also consider a technician routing and scheduling problem with stochastic service requests,
which is solved by a parallel adaptive large neighbourhood search (pALNS) and a multi-
ple plan approach. Binart et al (2016) solve a field service routing problem with stochastic
travel and service times using a two-stage stochastic programming model. Finally, Chen et al
(2015) describe a technician routing problem with experience-based service times, where
technicians learn over time, which results in service times being reduced as experience in-
creases.

Other problems closely related to the WSRP are the site-dependent vehicle routing prob-
lem with time windows (Cordeau and Laporte, 2001; Cordeau et al, 2004), the home health
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care scheduling problem (Blais et al, 2003; Bertels and Fahle, 2006; Akjiratikarl et al, 2007)
and the manpower allocation problem (Dohn et al, 2009).

3 Problem Definition

In this section, we first provide a formal description of the WSRP problem that we address.
We then formulate a mixed integer programming (MIP) model for our problem.

The WSRP is defined on a complete graph G = (V,A), where V = {0,1, ...,n+ 1} is
a set of vertices and A = {(i, j) : i, j ∈ V, i 6= j} is a set of arcs. The vertex 0 denotes the
depot and vertex n+ 1 is a copy of the depot, and C = V \ {0,n+ 1} represents the set of
vertices that each has a unique task. Depending on the context, we refer to a task i or a vertex
i for any i ∈ C. A set K of technicians are available to perform the tasks. Each technician
is specialized in a number of skill domains at different proficiency levels. Each task i ∈ C
has an associated service duration di, a time window [ei, li] within which service should
commence, and a skill requirement. The depot and its copy also have time windows, which
define the earliest departure time e0 and the latest return time ln+1 of any technician. Also,
the route duration of each technician must not exceed a given time D. Each arc (i, j) ∈ A has
an associated cost ci j and travel time ti j.

In the studies of Cordeau et al (2010) and Kovacs et al (2012), each technician’s skills
and each task’s skill requirements are described by skill matrices, which are used to deter-
mine if a single technician or a team of technicians would be able to perform a given task.
In this paper, we do not consider the possibility of building a team of technicians, and thus
simply define a binary parameter qk

i , where qk
i = 1 if technician k ∈ K is qualified to per-

form task i ∈ C, and qk
i = 0 otherwise. The values of qk

i can be easily computed based on
technicians’ skills and tasks’ skill requirements. Finally, any task i∈C can be outsourced by
incurring a cost oi, in the event that resources are insufficient or too expensive to undertake
all of the tasks.

The WSRP can be formulated as a mixed integer programming model that contains the
following binary variables:

xk
i j =

{
1 if arc (i, j) is traversed by technician k,
0 otherwise,

∀(i, j) ∈ A, k ∈ K;

yi =

{
1 if task i is outsourced,
0 otherwise,

∀i ∈V ;

and the continuous variable bk
i , ∀i ∈V, k ∈ K, that lies within the interval [ei, li] if technician

k does not perform task i; otherwise, it is the time at which service of task i commences, or
the leaving time and returning time of technician k from and to the depot when i = 0 and
n+1 respectively.

The mathematical model is presented as follows:

minimize ∑
k∈K

∑
(i, j)∈A

ci jxk
i j +∑

i∈C
oiyi (1)

subject to:
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∑
k∈K

∑
j∈V

xk
i j + yi = 1 ∀i ∈C (2)

∑
j∈V

xk
i j ≤ qk

i ∀k ∈ K, ∀i ∈C (3)

∑
j∈V

xk
0, j = 1 ∀k ∈ K (4)

∑
i∈V

xk
i,n+1 = 1 ∀k ∈ K (5)

∑
i∈V

xk
ih−∑

j∈V
xk

h j = 0 ∀k ∈ K, ∀h ∈C (6)

bk
i +(di + ti j)xk

i j ≤ bk
j + li(1− xk

i j) ∀k ∈ K, ∀(i, j) ∈ A (7)

ei ≤ bk
i ≤ li ∀k ∈ K, ∀i ∈V (8)

bk
n+1−bk

0 ≤ D ∀k ∈ K (9)

xk
i j ∈ {0,1} ∀k ∈ K, ∀(i, j) ∈ A (10)

yi ∈ {0,1} ∀i ∈C (11)

bk
i ≥ 0 ∀k ∈ K, ∀i ∈V (12)

The objective function (1) minimizes the total operation cost comprising routing and
outsourcing cost. Constraints (2) ensure that each task is either visited exactly once or out-
sourced, while constraints (3) guarantee that the tasks can only be performed by technicians
satisfying the skill requirements. Constraints (4) and (5) ensure that each technician departs
from the depot and returns to the copy of the depot after completing their service. Constraints
(6) are the typical flow conservation equations. Constraints (7) set the time variables bk

i ,
while constraints (8) enforce the time window restrictions. Constraints (9) guarantee that
the route duration for each technician is no more than the maximum time allowed. Con-
straints (10) and (11) represent the binary restrictions on variables xk

i j and yi, and (12) are
the non-negativity constraints on the variables bk

i .

4 Iterated Local Search

This section describes our proposed iterated local search (ILS) algorithm for solving the
WSRP. The ILS consists of three main components: initial solution construction, local
search procedure and perturbation mechanism. They are combined into a multi-start frame-
work as given in Algorithm 1. At each iteration of the main loop between lines 3 to 18, an
initial feasible solution s is constructed for the ILS loop (lines 6 to 14). At each ILS iteration,
the local search procedure takes as input the solution s, and returns an improved solution s′,
which is accepted as the new best current solution if it is feasible and has a value f (s′) that
is strictly smaller than that of the incumbent solution s̄, denoted by f (s̄). Then a new start-
ing solution s for the local search procedure is generated by perturbing on the incumbent
solution s̄ (line 12). The ILS loop repeats until the maximum number of iterations without
improvement MaxItNI is met. Then the incumbent solution s̄ replaces the global best solu-
tion s∗ if f (s̄)< f (s∗). This procedure repeats until a predefined number MaxIt of iterations
have been executed.
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Algorithm 1 Iterated Local Search
1: procedure ILS
2: It← 1, f (s∗)←+∞

3: for It← 1 to MaxIt do
4: generate initial solution s
5: set s̄← s, ItNI← 0
6: while ( ItNI < MaxItNI) do
7: s′← Local Search (s)
8: if ((s′ is feasible ) and ( f (s′)< f (s̄))) then
9: s̄← s′

10: ItNI← 0
11: end if
12: s← Perturb(s̄)
13: ItNI← ItNI +1
14: end while
15: if ( f (s̄)< f (s∗)) then
16: s∗← s̄
17: end if
18: end for
19: Return s∗

20: end procedure

4.1 Search Space

A number of studies have shown that an efficient exploration of infeasible solutions can con-
tribute significantly to the performance of a heuristic (Cordeau et al, 1997; Glover and Hao,
2011; Cordeau et al, 2001; Vidal et al, 2012, 2013). We follow the same line of thought here
and allow the ILS to search infeasible, as well as feasible solutions, where the constraint
violations in the former relate to the route duration and time window constraints. However,
the skill requirement constraint is always respected, since it is concerned with the schedul-
ing aspect of the WSRP and its relaxation would enlarge the search space dramatically. A
solution s is therefore evaluated by an augmented cost function, which is defined by

f (s) = c(s)+αd(s)+βw(s), (13)

where c(s) is the total operation cost as defined in (1), and d(s) and w(s) are the total
violations of duration and time window constraints, which are weighted by parameters α

and β , respectively.
The time window violation is measured based on a method proposed by Nagata et al

(2010). If there is a late arrival to a customer i ∈ C at time ai > li, then it is assumed that
there is a penalty for the delay ai− li, and that service starts at time li. In case of an early
arrival at time ai < ei, then the technician has to wait until time ei, but the waiting time
is not penalized. The same method is used by Vidal et al (2013), who refer to the penalty
as ‘time warp’. Figure 1 illustrates the waiting time and time warp of a route with visits
involving five vertices v1, . . . ,v5. The horizontal axis corresponds to time, while the vertical
axis presents the sequence of visits. The dots on each line show the start time of each visit,
and the brackets on each line indicate the time window of the corresponding task. As seen
in Figure 1, there are no penalties associated with tasks v1, v3, and v5 as the visits are made
within the respective time windows. The bold line displays a possible schedule having a
waiting time period at vertex v2 and a time warp at vertex v4.
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Fig. 1 Illustration of waiting time and time warp

4.2 Move Evaluation

Most local search heuristics spend the largest part of the overall computational effort on
move evaluation (Vidal et al, 2015). Efficient move evaluation techniques are therefore cru-
cial for improving algorithm performance, particularly when the search space involves in-
feasible solutions.

The operation cost c(s) consists of the outsourcing cost and the total traveling distance
which can be computed in amortized O(1) time (Kindervater and Savelsbergh, 1997). How-
ever, it takes O(n) to compute the penalties d(s) and w(s) in (13).

Nagata et al (2010) propose an evaluation technique to compute the violation of time
window constraints in amortized O(1) time for most traditional neighbourhood operators
including 2-opt, inter-route swaps, and inter-route inserts. Vidal et al (2013) extend this
technique to allow the evaluation of both duration and time windows violations not only for
inter-route but also for intra-route operators. A preprocessing phase is required to develop
relevant data for their evaluation techniques, and the data must be updated once the route
under consideration has been modified. Our ILS incorporates the technique proposed by
Vidal et al (2013) to compute the violation of infeasible solutions.

4.3 Initial Solution Construction

Our procedure for constructing a feasible solution includes the following steps. The exis-
tence of a feasible solution is guaranteed due to the possibility of outsourcing. First, a task
list L1 is created as follows. The first task in the list is selected at random. The remaining en-
tries in the list are constructed by sorting the remaining tasks of C in non-decreasing order of
the angle they make with a line drawn from the depot to the randomly selected first task on
L1. Then, a technician list L2 is constructed by sorting the technicians of K in non-increasing
order of the number of tasks they are qualified to perform. We then randomly select a task
i ∈ C from the list L1 and insert it into the cheapest feasible position of the route of the
first technician on list L2. If the insertion violates feasibility, we insert i into the following
technician’s route. In the case where no feasible route can be constructed that incorporates
task i, we set i to be outsourced. The procedure repeats by inserting tasks sequentially into
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technicians’ routes following the above steps, yielding a feasible solution that consists of
technicians’ routes and a list of outsourced tasks.

4.4 Local Search Procedure

Our local search procedure consists of an inter-route search operator, an intra-route search
operator, and an update mechanism of the weight parameters α and β using in (13).

The inter-route search uses a single neighbourhood structure called Swap & Relocate
that removes two paths, each containing at most two tasks from two different routes, and then
exchanges them. One of these paths may contain zero tasks, which results in the path from
the other route being relocated. Figure 2 gives an example of this operator which removes
two successive vertices v2 and v3 from route r1 and one vertex v6 from route r2, and then
exchanges them. This neighbourhood structure is extended to allow an outsourced task to be
swapped or relocated into the route of one of the technicians. When considering new routes
created by this operator, the skill requirement constraints must be always respected, but any
violations of duration and time window constraints are allowed.

r1 v1 v2 v3 v4

swap

r2 v5 v6 v7

Fig. 2 Example of the Swap & Relocate operator

The intra-route search consists of three neighbourhood structures, namely, opt1, opt2
and 2-opt (Croes, 1958), that operate on a single route. Operator opt1 removes one task
and inserts it into another position on the same route, while operator opt2 is similar but
removes and inserts two adjacent customers on a route. Operator 2-opt reverses the order of
a sequence of successive visits on a route. Figure 3 provides an example of the 2-opt operator
which removes a path consisting of four vertices {v2,v3,v4,v5} from route r, reverses the
order of visits on this path, and then inserts the path back into the same position to form a
new route r′. The cost of r′ is evaluated by the method described in Section 4.2.

r v1 v2 v3 v4 v5 v6

reverse

r′ v1 v5 v4 v3 v2 v6

Fig. 3 Example of the 2-opt operator
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The inter-route search and the intra-route search can be combined in different ways
within the local search procedure. To test the effect of the search strategy on the performance
of the algorithm, we investigate the three following strategies:

1. Execute only the inter-route search operator;
2. Execute both the inter-route and intra-route search operators at each iteration of the local

search procedure;
3. Apply the intra-route search as a post-optimization procedure on the locally optimal

solution returned by the inter-route search.

After each iteration of the local search, the weight parameters α and β are adjusted
according to the duration violation d(s) and the time window violation w(s) of the incumbent
solution s as follows. If d(s)= 0, then the parameter α is divided by a factor 1+δ ; otherwise,
it is multiplied by 1+δ , where δ > 0 is a parameter that controls the strength of adjustment.
The same rule applies to the parameter β with respect to w(s). The initial values of α and
β are both set to 1, as suggested by a number of studies that have similar cost functions and
weight parameters (Cordeau et al, 2001, 1997; Ibaraki et al, 2008; Nagata et al, 2010).

The structure of the local search procedure is illustrated in Algorithm 2. The current best
solution s′ is set to the incumbent solution s. Then s is taken as input by the SearchStrategy
function, which applies inter-route or intra-route search depending on the search strategy
selected and returns an improved solution ŝ if such a solution exists. If f (ŝ) < f (s′), then ŝ
replaces s′ as the current best solution. Then, the duration violation d(ŝ) and time window
violation w(ŝ) are computed, and parameters α and β are adjusted accordingly by the control
mechanism described above. The pre-processed data for the routes that have been modified
at the current iteration are updated. This procedure repeats until the local search becomes
trapped at a local optimal solution.

Algorithm 2 Local Search Procedure
1: procedure LOCALSEARCH
2: input solution s
3: set α = 1 and β = 1
4: set s′ = s
5: set LocalOptimumFound = false
6: while (LocalOptimumFound = false) do
7: ŝ← SearchStrategy(s)
8: if ( f (ŝ)< f (s′)) then
9: s′← ŝ, s← ŝ

10: Compute d(ŝ) and w(ŝ), and update α and β

11: Update PreprocessData
12: else
13: set LocalOptimumFound = true
14: end if
15: end while
16: return s′

17: end procedure

4.5 Perturbation Mechanism

The perturbation mechanism uses a random cross exchange operator, which removes two
paths from two randomly selected routes and exchanges them. Figure 4 gives an example of
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the perturbation operator which removes a path of four successive visits from route r1 and
a path of two successive visits from route r2 6= r1, and then exchanges them. Violations of
duration and time window constraints are allowed, but the skill requirement constraint must
be respected. The perturbation procedure is always carried out on the best solution found
thus far, and applies the random cross exchange operator p times, where p is a positive
integer denoting the perturbation strength.

r1 v1 v2 v3 v4 v5 v6

swap

r2 v7 v8 v8 v9 v10

Fig. 4 Example of the random cross exchange

The perturbation strength p is a crucial parameter of the ILS. If p is too small, the
local search may not be able to escape from a locally optimal solution. If p is too large,
the ILS may behave similar to a random restart algorithm, making it difficult to discover
better quality solutions (Lourenço et al, 2003). In order to determine the most appropriate
value of p, we developed an adaptive mechanism, which adjusts p according to the number
of consecutive iterations without improvement, denoting by ItNI. Let γ be a trigger for the
adjustment of p. More precisely, whenever ItNI has increased by γ , the value of p will be
increased by 1 until it reaches the upper bound p̄, where p̄ is used to prevent excessively
large values of p to be chosen. For example, if γ = 10 and p̄ = 5, then p starts from 1 and
increases by 1 when ItNI ∈ {10,20,30,40}.

4.6 Reducing Outsourcing Cost

As the cost of outsourcing a task is usually higher than that of serving it by internal re-
sources, reducing the outsourcing cost is considered as an objective within the algorithm.
This is achieved by a simple mechanism embedded in the perturbation procedure of the pro-
posed ILS. At the beginning of the perturbation procedure, we check the list of outsourced
tasks. If it is not empty, we randomly select a task and insert it to the cheapest position of
the current solution, and then proceed with the perturbation procedure; otherwise, we only
apply the random cross exchange operator. The insertion of outsourced tasks and the per-
turbation procedure is likely to produce an infeasible solution, which will be improved by
the local search procedure. Infeasible solutions are evaluated by a cost function defined in
(13), and weight parameters α and β are dynamically adjusted based on the rule described
in Section 4.4. If the local search procedure cannot repair the infeasibility during the first
few iterations, the weight parameters will be adjusted to large values, such that the cost of
scheduling a task to a technician becomes greater than the cost of outsourcing it. As a con-
sequence, the local search tends to repair the infeasibility by simply outsourcing the relevant
tasks. In order to avoid the overuse of the outsourcing option, we force the local search pro-
cedure to always select improved solutions with lower outsourcing costs, even if solutions
with higher outsourcing costs but lower overall costs exist.
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5 Computational Results

This section presents results of our computational tests conducted to assess the performance
of the proposed ILS. The ILS algorithm is coded in C++, and run on a personal computer
with Intel Core i5-3570 3.40 GHz processor and 4GB Memory (RAM). The MIP model is
implemented on the same machine, and solved by the commercial solver CPLEX 12.6. Our
ILS results are compared with existing solutions of an ALNS algorithm (Kovacs et al, 2012),
where the reported ALNS results are based on the average of five runs of the algorithm. To
maintain consistency and provide a fair comparison, we also perform five random runs of
the ILS for each instance tested and report the obtained results.

5.1 Test Instances

The experiments are conducted using the technician routing and scheduling problem (TSRP)
instances introduced by Kovacs et al (2012). These instances are adapted from the Solomon’s
benchmark instances (Solomon, 1987) for the VRPTW and the test instances provided for
the ROADEF 2007 challenge. They are available online at: http://prolog.univie.ac.
at/research/STRSP/.

The set of instances of Kovacs et al (2012) are generated using 12 instances of Solomon
(1987), namely, R101, R103, R201, R203, C101, C103, C201, C203, RC101, RC103, RC201,
RC203, where R, C and RC represent the random, clustered and a mix of random and clus-
tered geographical setting, respectively. Instance sets with prefixes R1, C1 and RC1 have a
short scheduling horizon, while those with prefixes R2, C2 and RC2 have a long scheduling
horizon. The final two digits in the name of the instance indicate the time window density. In
the 01 instances, all customers are associated with time windows, while in the 03 sets, only
50% of customers have time windows. In terms of the skill requirements, Kovacs et al (2012)
generate three types of skill requirement matrices shown by 5× 4, 6× 6, and 7× 4 based
on the ROADEF data, where the rows of the matrices correspond to skill domains, and the
columns correspond to skill levels under each skill domain. The customer data of Solomon’s
instances are randomly paired with the skill data, which results in a total of 36 test instances.
All instances have 100 customers and a single depot. For each instance, Kovacs et al (2012)
define a ‘team’ and a ‘no team’ version. As our study does not consider the possibility of
team building, we only use the ‘no team’ version of instances in our experiments. For each
instance, there are two sets of technician data: one has a sufficient number of technicians
that feasibility can be achieved without outsourcing, while the other has limited technicians
such that it is impossible to service all tasks without the use of the outsourcing option. The
outsourcing cost of a task i is defined as oi = 200+ µ1.5

i , where µi measures the difficulty
of task i, and is calculated as the sum of the skill requirement for i in the skill matrix. The
outsourcing cost is always higher than the cost of assigning a task to a technician.

5.2 Parameter Setting

The ILS requires five input parameters as follows: MaxIt; MaxItNI; δ , which is the factor
used to adjust weight parameters of duration and time window violations; p̄, which is the
upper bound that is used in the perturbation mechanism; and γ is the adjustment factor of
the perturbation strength. The value of MaxItNI is defined by Penna et al (2013) as

MaxItNI = |C|+λ |K|, (14)
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where |C| is the number of customers, |K| is the number of technicians, and λ is a weight
parameter determining the influence of |K| on the value of MaxItNI. Thus, instead of finding
the most appropriate value for MaxItNI, the value of λ is examined. Extensive parameter
tuning suggests that a parameter setting shown in Table 1 performs well.

Table 1 Parameter setting for the proposed ILS

Parameter MaxIt δ p̄ γ λ

Value 5 0.5 5 20 10

5.3 Performance Measurement

The proposed ILS is evaluated against the MIP model and the ALNS (Kovacs et al, 2012) us-
ing benchmark instances. To compare the ILS and ALNS solutions, we compute the relative
percentage difference defined as

ImpS
A/I =

vS(ALNS)− vS(ILS)
vS(ALNS)

×100 (15)

where vS(ALNS) and vS(ILS) represent values of the ALNS and ILS solutions respectively,
and S = {−,∗,+} denotes the minimum, mean, and maximum values over five random runs
of the algorithm. For example, Imp−A/I represents the relative percentage difference between
the values of the best solutions found by the ALNS and ILS over five random runs. A positive
value of ImpS

A/I indicates an improvement of the ILS over ALNS; otherwise, the cost of the
ILS solution is greater or equal to that of the ALNS solution.

By replacing vS(ALNS) of the expression (15) with vS(CPLEX), we obtain the rel-
ative percentage difference between the values of the ILS solutions and the optimal val-
ues produced by CPLEX, denoted by ImpS

C/I. There is no difference between v−(CPLEX),
v∗(CPLEX) and v+(CPLEX), as they all refer to the value of the optimal solution found by
CPLEX.

In addition to the comparison of solution values, we compare the computational times
required by our ILS and the ALNS. Kovacs et al (2012) run their ALNS on a Pentium D
computer with two 3.2 GHz CPUs and 4 GB memory (the algorithm only uses one CPU),
which is different from our machine that is used to implement the ILS and MIP model.
In order to provide a fair comparison of computational speed, we scale the reported CPU
times according to the speed factors provided in the report of Dongarra (2014). The report
does not cover the two computers considered in our experiments. Thus, we use a slower but
similar computer (Pentium IV with 3.0 GHz) available in Dongarra (2014) instead of the
computer used by Kovacs et al (2012), and use a speed factor of 1573 Mflop/s (millions of
floating-point operations per second). As there is no suitable substitute available in Dongarra
(2014), we apply the same software used by Dongarra (2014) to record the speed factor of
our computer, which yields 2462 Mflop/s. Based on the speed factors, the reported CPU
times of the ALNS are adjusted by multiplying a factor of (1573/2462), when comparing
with the ILS times.
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5.4 Evaluation of Search Strategies

Results on comparing the three search strategies described in Section 4.4 are shown in Ta-
ble 2. Columns headed Avg. show the average solution values produced by the ALNS and
the ILS using three different strategies over five random runs. The corresponding relative
percentage difference between the values of the ALNS solutions and ILS solutions are re-
ported in columns titled Imp∗A/I.

Comparing Strategy 1 with Strategy 2 and Strategy 3, it can be seen that by applying
the intra-route search, the solution quality improves significantly from −0.21% to 0.54%
and 0.51%, with the average computational time increasing accordingly. The intra-route
search is seen to be especially useful on the R2, C2 and RC2 types of instances, which
are characterized by a long scheduling horizon and a low number of technicians, where
each route contains a relatively high number of tasks. Comparing Strategy 2 with Strategy
3, the difference between the average Imp∗A/I values is only 0.03%. However, the average
computational time of Strategy 2 is about 13% higher than that of Strategy 3. Therefore,
Strategy 3, which applies the intra-route search as a post-optimization procedure on the
local optimum returned by the inter-route search, is recommended based on efficiency and
effectiveness, and is used in the remainder of our tests.
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5.5 Comparison of Performance

This section presents the results of evaluating our ILS against the MIP model and the ALNS
using benchmark instances containing 25, 50, and 100 tasks. In the tables presented here-
after, the first group of columns shows the instance identifier, the number of tasks |C|, and
the maximum number of technicians |K|. Columns Opt. and Avg. show, for each instance,
the optimal solution value found by CPLEX, and the average solution values found by the
ALNS and ILS over five random runs. Columns Imp∗C/I and Imp∗A/I give the relative percent-
age difference between the values of the ILS solutions and the CPLEX solutions and the
ALNS solutions, respectively. The average number of outsourced tasks, the average num-
ber of technicians used, and the average CPU time in seconds are reported in the columns
headed |Co|, |K∗|, and CPU, respectively. Emboldening in the ILS columns is used to high-
light values that correspond to an improvement over the corresponding values of the ALNS.

Table 3 gives experimental results on small instances containing 25 tasks. Compared to
CPLEX, our ILS algorithm consistently finds optimal solutions in all five random runs for
19 out of 23 instances and produces an overall average gap of −0.18% over all instances.
Moreover, the average number of outsourced tasks given by the ILS is exactly the same
as that for CPLEX. Compared to ALNS, our ILS algorithm gives better solutions for four
instances, in particular RC101 5×4 and RC101 6×6, for which the solutions found by the
ILS improve the ALNS solutions by 9.32% and 12.56% respectively. The significant im-
provement on these two instances is achieved by the reduction in the number of outsourced
tasks. To test the statistical significance between the performances of ALNS and ILS, we
conduct the two-tailed Wilcoxon test on the paired samples between the average solution
values obtained by ALNS and ILS. The test is performed at a 95% significance level, where
a p-value of less than 0.05 indicates the rejection of the null hypothesis, which says that
there is no significant difference between the results of ALNS and ILS. The p-value of the
Wilcoxon test for instances containing 25 tasks is 0.24, which suggests that the performances
of ALNS and ILS on this set of instances are similar. This can be explained by the fact that
both ALNS and ILS can solve a large majority of small instances to optimality. Perhaps the
most significant feature of ILS is the speed with which it produces good-quality solutions,
and it is significantly faster than the ALNS. With an average CPU time of 0.11 seconds, it
only requires 7% of the time used by the ALNS. Although our computer is faster, the effect
of the computer speed is negligible compared to the improvement on CPU times.

Table 4 presents results of the experiments on instances with 50 tasks. Of the 12 in-
stances, our ILS algorithm discovers optimal solutions for seven and yields an overall aver-
age deviation of −0.14% in comparison to CPLEX. The average deviation of the ILS from
the ALNS in terms of the solution values is 0.67%, and it finds better solutions for five in-
stances. The p-value of the Wilcoxon test for this set of instances is 0.06, which is very close
to the margin of significance. This suggests that when the problem size increases to 50, our
ILS tends to perform better than the ALNS. Using the computer speeds, the average compu-
tation time of the ALNS is adjusted to 4.77 seconds, which is still considerably greater than
the 1.89 seconds for ILS.

For instances with 100 tasks, a time limit of 7200 seconds is imposed on CPLEX. Tables
5 and 6 report computational results on instances with limited and unlimited technicians,
respectively. The third to fifth columns of each table are associated to the results of the
MIP model solved by CPLEX, where the columns Best and Gap present, for each instance,
the value of the optimal or best solution found by CPLEX within the time limit, and the
percentage gap of the LP bound with respect to the best solution value. In addition, we
report the minimum and maximum solution values found by the ALNS and ILS over five



16 Fulin Xie et al.

random runs in columns titled Min. and Max., and the corresponding percentage differences
between the values of ALNS and ILS solutions are presented in columns Imp−A/I and Imp+A/I
respectively. Proven optimal solutions are underlined.

Of the 36 instances with unlimited technicians, CPLEX is only able to find optimal
solutions for 9, and for the 36 instances with limited technicians, the model finds optimal
solutions for 5 instances within the required time limit. This indicates that instances with
limited technicians tend to be more difficult to solve than those with unlimited technicians,
as the former problem considers the additional set of decisions concerning the selection of
tasks to be outsourced.

A comparison of ILS and ALNS on instances with 100 tasks and limited technicians
is given in Table 5. Of the 36 instances, our ILS algorithm outperforms ALNS in 17. In
particular, for instances R101 5×4, RC101 6×6 and RC101 7×4, the solutions found by
the ILS are between 5% and 8% better in cost than those for ALNS. The significant im-
provement on these instances can be explained by the reduced use of the outsourcing option
by the ILS. The average number of outsourced tasks of the ILS solutions is 9.76, which
is about 3% less than the value of the ALNS solutions. To determine the statistical signifi-
cance between the numbers of outsourced tasks produced by the ILS and ALNS on this set
of instances, we conduct a two-tailed Wilcoxon test and a p-value of 0.004 is obtained. This
confirms that our ILS uses significantly less outsourcing option than the ALNS, and also im-
plies that the proposed mechanism of reducing outsourcing cost (described in Section 4.6)
is effective. The average percentage difference between the ILS and ALNS solution values
is 0.82%. Comparing the worst solutions found during five random runs, the ILS improves
the ALNS solutions by 1.24%, which indicates that our ILS is more stable than the ALNS
when performing multiple runs. The average computational time required by ALNS is 52.87
seconds, which is equivalent to 33.78 seconds after applying the conversion factor, and is
16.59% higher than that of ILS.

Table 6 provides a comparison of ILS and ALNS on large instances with unlimited
technicians. The average number of outsourced tasks is not reported in this table, as these
instances have enough technicians to avoid outsourcing. The ILS algorithm outperforms
ALNS in 30 out of 36 instances, and improves the best solutions for 24 instances. Of the 9
instances that are solved to optimality by CPLEX, our ILS algorithm finds optimal solutions
for 5 of them. The average percentage difference between the ILS and ALNS solution values
is 0.64%. Moreover, the ILS solutions tend to have smaller deviations within five random
runs since the overall average values of Imp−A/I and Imp+A/I are both greater than 0. In terms
of speed, ALNS requires an average solution time of 79.17 seconds, which is equivalent
to 50.58 seconds under the adjustment of computer speeds, but is still 20% higher than
the average CPU time required by ILS. Lastly, we conduct a two-tailed Wilcoxon test on the
solutions values of all large instances containing 100 tasks and a p-value of 0.02 is obtained.
This indicates that our ILS has a significantly better performance than the ALNS on the set
of large instances since the p-value is less than the chosen significance level 0.05.
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5.6 Skill VRP Instances

The proposed ILS algorithm is also applied to solve a set of Skill VRP instances, which
are generated based on the benchmark instances of Solomon (1987) and the skill pattern
introduced by Cappanera et al (2011). As the Skill VRP does not involve time window and
capacity constraints, we use only the geographical information of Solomon’s instances to
generate three types of geographical data for Skill VRP instances, namely, R, C and RC,
which represent the random, clustered and a mixed of random and clustered geographical
setting, respectively. Similar to Cappanera et al (2011) and Schwarze and Voß (2012), we
consider a skill set with three levels 1, 2 and 3, where skill 1 denotes the lowest level, and
skill 3 the highest. Each task i∈C is associated with a skill requirement si ∈ {1,2,3}, which
must be fulfilled by a technician k ∈ K having a skill level ŝk ≥ si, where ŝk ∈ {1,2,3}. The
skill data is randomly generated according to the four patterns introduced by Cappanera et al
(2011), as given in the Table 7, where each row of values represent a pattern that indicates the
distribution of skill requirements over tasks. For example, the first pattern {50,10,40} indi-
cates that a task i has a skill requirement si = 1 with probability 0.5, si = 2 with probability
0.1 and si = 3 with probability 0.4. For each combination of skill pattern and geographical
data, we generated three random instances, which results in a total of 36 instances. All the
instances have two sizes, where one has 20 tasks and the other has 30 tasks. Each instance
has a set of three technicians K = {1,2,3}, where each technician k ∈ K is specialised at a
different skill level ŝk ∈ S; for example, ŝ1 = 1, ŝ2 = 2 and ŝ3 = 3.

Table 7 Distribution of skill requirements over tasks

Skill

Pattern 1 (%) 2 (%) 3 (%)

1 50 10 40
2 50 20 30
3 40 40 20
4 30 30 40

In the Skill VRP, the routing costs depend on both the traveling distance and the techni-
cian, such that the increasing skill level of the technician causes increasing costs. Thus, for
each arc (i, j) ∈ A and each technician k ∈ K, we follow the approach of Schwarze and Voß
(2012) by defining a skill dependent routing cost ck

i j by

ck
i j = ci jθ ŝk, (16)

where ci j is the traveling distance of arc (i, j) ∈ A, and θ is a weight parameter of the skill
level ŝk of the technician k ∈ K. Following the suggestion of Schwarze and Voß (2012), we
set θ = 1 in our experiments.

5.7 Results for Skill VRP Instances

The above Skill VRP instances are solved by using our ILS, and the results are compared
with the solutions obtained from a basic MIP model of Cappanera et al (2011) that is solved
by using CPLEX 12.6. A time limit of 7200 seconds is imposed on CPLEX, and for instances
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Table 8 The comparison of exact and ILS solutions on Skill VRP instances with 20 tasks

CPLEX ILS

Instance Best Gap |K∗| CPU Avg. Imp∗C/I |K∗| CPU

C 1 1 370.93 0.00 1.00 122.82 370.93 0.00 1.00 0.07
C 1 2 367.55 4.79 2.00 7200.00 367.55 0.00 2.00 0.12
C 1 3 367.55 8.85 2.00 7200.00 367.55 0.00 2.00 0.09
C 2 1 370.93 0.00 1.00 353.27 370.93 0.00 1.00 0.06
C 2 2 367.55 11.36 2.00 7200.00 367.55 0.00 2.00 0.17
C 2 3 367.55 9.63 2.00 7200.00 367.55 0.00 2.00 0.08
C 3 1 370.93 0.00 1.00 239.05 370.93 0.00 1.00 0.06
C 3 2 367.55 4.38 2.00 7200.00 367.55 0.00 2.00 0.15
C 3 3 367.55 0.00 2.00 2742.05 367.55 0.00 2.00 0.17
C 4 1 370.93 0.00 1.00 28.27 370.93 0.00 1.00 0.09
C 4 2 367.55 0.00 2.00 1307.39 367.55 0.00 2.00 0.13
C 4 3 370.93 0.00 1.00 1648.17 370.93 0.00 1.00 0.06

R 1 1 781.09 0.00 2.00 8.78 781.09 0.00 2.00 0.07
R 1 2 772.50 0.00 2.00 73.35 772.50 0.00 2.00 0.10
R 1 3 710.16 0.00 2.00 18.66 710.16 0.00 2.00 0.04
R 2 1 781.09 0.00 2.00 33.40 781.09 0.00 2.00 0.11
R 2 2 729.12 0.00 2.00 76.47 729.12 0.00 2.00 0.06
R 2 3 710.16 0.00 2.00 68.49 710.16 0.00 2.00 0.09
R 3 1 777.40 0.00 3.00 191.36 777.40 0.00 3.00 0.04
R 3 2 702.26 0.00 2.00 143.98 702.26 0.00 2.00 0.09
R 3 3 748.90 0.00 2.00 323.30 748.90 0.00 2.00 0.14
R 4 1 787.01 0.00 1.00 6.76 787.01 0.00 1.00 0.08
R 4 2 787.01 0.00 1.00 15.46 787.01 0.00 1.00 0.09
R 4 3 755.20 0.00 2.00 56.62 755.20 0.00 2.00 0.07

RC 1 1 658.21 0.00 1.00 27.38 658.21 0.00 1.00 0.05
RC 1 2 658.21 1.89 1.00 7200.00 658.21 0.00 1.00 0.03
RC 1 3 570.00 0.00 2.00 2034.46 570.00 0.00 2.00 0.03
RC 2 1 658.21 0.00 1.00 83.90 658.21 0.00 1.00 0.03
RC 2 2 658.21 8.77 1.00 7200.00 658.21 0.00 1.00 0.04
RC 2 3 570.00 4.21 2.00 7200.00 570.00 0.00 2.00 0.03
RC 3 1 658.21 0.00 1.00 786.79 658.21 0.00 1.00 0.06
RC 3 2 658.21 13.29 1.00 7200.00 658.21 0.00 1.00 0.04
RC 3 3 570.00 0.00 2.00 893.34 570.00 0.00 2.00 0.03
RC 4 1 658.21 0.00 1.00 26.89 658.21 0.00 1.00 0.05
RC 4 2 658.21 0.00 1.00 3180.79 658.21 0.00 1.00 0.03
RC 4 3 658.21 0.00 1.00 3042.84 658.21 0.00 1.00 0.03

Average 586.20 1.87 1.58 2287.06 586.20 0.00 1.58 0.08

not solved to optimality, we report the best values of the solutions found within this time
limit.

Table 8 presents results of the experiments for instances with 20 tasks. Of the 36 in-
stances tested, CPLEX finds optimal solutions for 27 and exceeds the time limit for 9 in-
stances. The solutions produced by our ILS algorithm are exactly the same as the optimal
or best solutions found by CPLEX for all instances. The average computational time of our
ILS is 0.08 seconds, which is negligible compared to the time used by CPLEX.

Table 9 shows results of the experiments on instances with 30 tasks. For this size of
instances, CPLEX is only able to find optimal solutions for 10 out of 36 instances. Among
these 10 instances, our ILS can produce optimal solutions for 9, with the exception being
instance R 4 1 for which our ILS found slightly worse solutions that have an average gap of
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Table 9 The comparison of exact and ILS solutions on Skill VRP instances with 30 tasks

CPLEX ILS

Instance Best Gap |K∗| CPU Avg. Imp∗C/I |K∗| CPU

C 1 1 439.45 2.87 1.00 7200.00 439.45 0.00 1.00 0.33
C 1 2 432.86 25.93 1.00 7200.00 432.86 0.00 2.00 0.11
C 1 3 429.52 31.50 2.00 7200.00 429.52 0.00 2.00 0.37
C 2 1 439.45 11.92 1.00 7200.00 439.45 0.00 1.00 0.40
C 2 2 432.86 26.22 2.00 7200.00 432.86 0.00 2.00 0.12
C 2 3 429.52 32.25 2.00 7200.00 429.52 0.00 2.00 0.39
C 3 1 439.45 23.09 2.00 7200.00 439.45 0.00 1.00 0.41
C 3 2 440.30 28.08 2.00 7200.00 439.45 0.19 1.00 0.42
C 3 3 449.16 32.15 2.00 7200.00 439.45 2.16 1.00 0.49
C 4 1 439.45 0.00 1.00 530.36 439.45 0.00 1.00 0.23
C 4 2 475.39 28.19 2.00 7200.00 439.45 7.56 1.00 0.51
C 4 3 505.33 32.30 2.00 7200.00 439.46 13.03 1.00 0.56

R 1 1 956.66 0.00 2.00 122.79 956.66 0.00 2.00 0.57
R 1 2 912.68 0.00 2.00 1319.63 912.68 0.00 2.00 0.60
R 1 3 812.97 0.00 2.00 797.14 812.97 0.00 2.00 0.56
R 2 1 956.66 0.00 2.00 766.26 956.66 0.00 2.00 0.67
R 2 2 921.17 7.18 3.00 7200.00 912.68 0.92 2.00 0.71
R 2 3 812.97 0.00 2.00 6507.53 812.97 0.00 2.00 0.57
R 3 1 964.61 0.28 3.00 7200.00 964.61 0.00 3.00 0.82
R 3 2 896.06 4.19 2.00 7200.00 896.06 0.00 2.00 0.71
R 3 3 890.27 4.01 2.00 7200.00 890.27 0.00 2.00 0.71
R 4 1 973.72 0.00 2.00 25.01 980.11 −0.66 2.00 0.74
R 4 2 981.64 0.00 1.00 3549.01 981.64 0.00 1.00 0.43
R 4 3 919.09 0.00 2.00 7036.77 919.09 0.00 2.00 0.73

RC 1 1 928.31 6.57 1.00 7200.00 928.31 0.00 1.00 0.40
RC 1 2 928.31 37.44 1.00 7200.00 928.31 0.00 1.00 0.34
RC 1 3 773.66 30.98 2.00 7200.00 773.66 0.00 2.00 0.47
RC 2 1 928.31 23.40 1.00 7200.00 928.31 0.00 1.00 0.48
RC 2 2 928.31 21.32 2.00 7200.00 928.31 0.00 1.00 0.34
RC 2 3 773.66 34.10 2.00 7200.00 773.66 0.00 2.00 0.46
RC 3 1 920.74 25.82 2.00 7200.00 920.74 0.00 2.00 0.50
RC 3 2 928.31 39.12 1.00 7200.00 928.31 0.00 1.00 0.37
RC 3 3 842.32 33.62 2.00 7200.00 842.32 0.00 2.00 0.52
RC 4 1 928.31 0.00 1.00 1429.17 928.31 0.00 1.00 0.43
RC 4 2 928.31 17.15 1.00 7200.00 928.31 0.00 1.00 0.33
RC 4 3 953.07 26.58 2.00 7200.00 920.74 3.39 2.00 0.48

Average 753.14 16.29 1.75 5813.44 749.06 0.74 1.58 0.48

−0.66% to that of CPLEX. Of the remaining instances that are not solved to optimality by
CPLEX, our ILS produces better solutions for 6 and equal cost solutions for 20 compared
to the best solutions found by CPLEX within the time limit. The average percentage differ-
ence between the values of our ILS solutions and CPLEX solutions is 0.74%. The average
computational time required by our ILS is 0.48 seconds, which is also negligible compared
to the time used by CPLEX.

6 Conclusion

This paper presents an iterated local search (ILS) algorithm for solving the workforce schedul-
ing and routing problem (WSRP). We have examined different combinations of neighbour-
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hood structures, and results show that the strategy of apply the intra-route search as a post-
optimization procedure for the inter-route search provides effective and efficient perfor-
mance. The proposed ILS is evaluated against a mixed integer programming (MIP) model
and an adaptive larger neighbourhood search (ALNS) algorithm (Kovacs et al, 2012) on
benchmark instances with up to 100 tasks. Computational experiments indicate that the pro-
posed algorithm can produce solutions that are within an average gap of 1% to the optimal
values in at most 40 seconds on average for all instances tested here. Compared to other
heuristic approaches (Kovacs et al, 2012; Castillo-Salazar et al, 2015) for the similar prob-
lems, the proposed ILS has a relatively simple structure and a small number of parameters.

The proposed ILS algorithm is also applied to solve a set of Skill VRP instances, and
results show that our algorithm is able to find optimal or near-optimal solutions in less than
0.5 seconds on average for all instances tested. Although the proposed algorithm is designed
for solving the workforce scheduling and routing problem, it can be easily adapted to tackle
other types of scheduling and routing problems.
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