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Abstract The integration of scheduling workers to perform tasks with the traditional
vehicle routing problem gives rise to the workforce scheduling and routing problems
(WSRP). In theWSRP, a number of service technicians with different skills, and tasks
at different locations with pre-defined time windows and skill requirements are given.
It is required to find an assignment and ordering of technicians to tasks, where each
task is performed within its time window by a technician with the required skill, for
which the total cost of the routing is minimized. This paper describes an iterated local
search (ILS) algorithm for the WSRP. The performance of the proposed algorithm is
evaluated on benchmark instances against an off-the-shelf optimizer and an existing
adaptive large neighbourhood search algorithm. The proposed ILS algorithm is also
applied to solve the skill vehicle routing problem, which can be viewed as a special
case of the WSRP. The computational results indicate that the proposed algorithm can
produce high-quality solutions in short computation times.
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1 Introduction

Theworkforce scheduling and routing problem (WSRP) and its variants are commonly
faced by many service providers, and have applications of home health care, field
technician scheduling, security personnel routing and manpower allocation.

The term WSRP is coined by Castillo-Salazar et al. (2012), and refers to a class
of optimization problems where service personnel are required to carry out tasks at
different locations. For example, nurses visitingpatients at their homes, and technicians
performing maintenance jobs in different companies can each be modeled as aWSRP.
As service personnel need to travel between different locations, minimizing their
distances and times for travel is usually considered as one of the objectives when
making operational decisions. This results in a routing problem of finding a set of
least cost routes for a given workforce, where each route consists of a sequence of
locations. Sometimes, tasks have associated time windows, within which service must
start. This type of problem can be modeled as an extension of the vehicle routing
problem with time windows (VRPTW), which is a well-known variant of the classical
vehicle routing problem (VRP).

Service personnel often specialize in different skill domains, and possess skills at
different levels. The tasks themselves have different skill requirements. For example,
in the telecommunications industry, tasks may include maintenance, installation, con-
struction and repair jobs, and technicians are trained in skills that allow them to only
be able to service a subset of these tasks. Thus, skill compatibility must be taken into
account to ensure that tasks are performed only by qualified personnel. The associated
scheduling problem involves the assignment of tasks to service personnel. In some
applications, tasks can be outsourced to a third party, albeit at the expense of additional
cost, if appropriate resources are not available to provide the required service, or better
operational performance can be achieved. The version of the WSRP that we consider
allows for outsourcing.

Due to its complexity, most of the existing research on the WSRP has aimed at
developing efficient heuristic solution algorithms. However, most of them are sophis-
ticated and highly problem specific. In this paper, a simple heuristic algorithm based
on iterated local search (ILS) is proposed to solve the WSRP. ILS is one of the most
conceptually simple and robust algorithms (Burke et al. 2010). The essential idea of
ILS is that when the local search is trapped at a local optimum, the ILS perturbs the
previously visited local optimum instead of generating a new initial solution, and then
restarts the local search from this modified solution (Lourenço et al. 2003). Although
the ILS has a very simple framework, it has been successfully applied to a wide variety
of optimization problems including the graph coloring problem (Chiarandini and Stüt-
zle 2002), the job shop scheduling problem (Lourenço 1995) and the vehicle routing
problem (Hashimoto et al. 2008; Chen et al. 2010; Walker et al. 2012; Penna et al.
2013; Michallet et al. 2014). However, no study has been reported on the application
of the ILS to the WSRP, which is the aim of this paper. The contribution of the paper
is a fast and simple algorithm for the WSRP with the objective of minimizing the total
travel cost and outsourcing cost. The proposed algorithm is also applied to solve the
skill vehicle routing problem (Skill VRP). To the best of our knowledge, this is also
the first ILS approach for the Skill VRP.
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The remainder of the paper is organized as follows. Section 2 reviews the related
literature on the WSRP. A formal definition of the problem is presented in Sect. 3.
Section 4 gives a description of the proposed ILS.Computational results for benchmark
instances are presented in Sect. 5. The paper ends with some concluding remarks in
Sect. 6.

2 Literature review

Recent studies on theWSRP include the work of Kovacs et al. (2012). They present an
adaptive large neighbourhood search (ALNS) algorithm to solve the service technician
routing and scheduling problem (STRSP). In this problem, tasks are associated with
time windows and skill requirements, outsourcing tasks is allowed, and team building
may be required in order to fulfill skill requirements of difficult tasks. The objective
is to minimize the total operational cost comprising the routing and outsourcing cost.
The scheduling aspect of this problem is adapted from the study of Cordeau et al.
(2010), which considers a technician and task scheduling problem arising in a large
telecommunications company. Cordeau et al. (2010) focus on the construction of teams
and the assignment of tasks to teams without considering routing costs between tasks.
Their problem is solved by using a construction heuristic and an ALNS algorithm.
Pillac et al. (2013) extend the study of Kovacs et al. (2012) by taking tools and spare
parts into account,where each taskmust be carried out by a technicianwith the required
skills, tools, and spare parts, and within the prescribed time window. The problem is
solved by a matheuristic consisting of a parallel version of ALNS algorithm and a
mathematical programming based post-optimization procedure.

Xu and Chiu (2001) also consider a field technician scheduling problem arising
in the telecommunications industry. The objective is to maximize the number of jobs
scheduled to technicians, while accounting for each job’s priority and skill constraints.
Three different heuristic approaches, namely, a greedy heuristic, a local search algo-
rithm, and a greedy randomized adaptive search procedure (GRASP) are proposed to
solve the problem. Castillo-Salazar et al. (2015) describe a greedy heuristic to address
theWSRPwith five types of time-dependent constraints, whichmodel the relationship
between tasks, e.g. one task needs to start after the completion of another task.

A variant of the WSRP is the skill vehicle routing problem (Skill VRP), which is
introduced by Cappanera et al. (2011). The Skill VRP differs from other problems
reviewed above in two aspects: (1) tasks do not have associated time windows, and (2)
the routing costs depend both on the traveling distance and the technician in such away
that increasing the skill level of the technician causes an increase in costs. The use of
technician-dependent routing costs is motivated by practical applications, since high-
skilled employees usually have higher salaries than those with only basic skills. The
SkillVRP is also studied bySchwarze andVoß (2012), but their study incorporates load
balancing and resource utilization when constructing tours for service vehicles. Their
motivation for proposing this model is their finding that many Skill VRP solutions
usually use only a subset of vehicles, and a considerable number of tasks are assigned
to vehicles with technicians that have higher skills than necessary.

123



474 F. Xie et al.

Some studies have considered stochastic elements in the WSRP. For example,
Weintraub et al. (1999) study a scheduling and routing problem for service vehicles
belonging to an electric utility company in Chile, where service requests are stochas-
tic. Pillac et al. (2012) also consider a technician routing and scheduling problem with
stochastic service requests, which is solved by a parallel adaptive large neighbourhood
search (pALNS) and a multiple plan approach. Binart et al. (2016) solve a field service
routing problem with stochastic travel and service times using a two-stage stochastic
programmingmodel. Finally, Chen et al. (2015) describe a technician routing problem
with experience-based service times, where technicians learn over time, which results
in service times being reduced as experience increases.

Other problems closely related to the WSRP are the site-dependent vehicle rout-
ing problem with time windows (Cordeau and Laporte 2001; Cordeau et al. 2004),
the home health care scheduling problem (Blais et al. 2003; Bertels and Fahle
2006; Akjiratikarl et al. 2007) and the manpower allocation problem (Dohn et al.
2009).

3 Problem definition

In this section, we first provide a formal description of the WSRP that we address. We
then formulate a mixed integer programming (MIP) model for our problem.

TheWSRP is defined on a complete graph G = (V, A), where V = {0, 1, . . . , n+
1} is a set of vertices and A = {(i, j) : i, j ∈ V, i �= j} is a set of arcs. The vertex
0 denotes the depot and vertex n + 1 is a copy of the depot, and C = V \{0, n + 1}
represents the set of vertices that each have a unique task. Depending on the context,
we refer to a task i or a vertex i for any i ∈ C . A set K of technicians are available
to perform the tasks. Each technician is specialized in a number of skill domains at
different proficiency levels. Each task i ∈ C has an associated service duration di , a
time window [ei , li ] within which service should commence, and a skill requirement.
The depot and its copy also have time windows, which define the earliest departure
time e0 and the latest return time ln+1 of any technician. Also, the route duration of
each technician must not exceed a given time D. Each arc (i, j) ∈ A has an associated
cost ci j and travel time ti j .

In the studies of Cordeau et al. (2010) and Kovacs et al. (2012), each technician’s
skills and each task’s skill requirements are described by skill matrices, which are used
to determine if a single technician or a team of technicians would be able to perform
a given task. In this paper, we do not consider the possibility of building a team of
technicians, and thus simply define a binary parameter qki , where q

k
i = 1 if technician

k ∈ K is qualified to perform task i ∈ C , and qki = 0 otherwise. The values of qki can
be easily computed based on technicians’ skills and tasks’ skill requirements. Finally,
any task i ∈ C can be outsourced by incurring a cost oi , in the event that resources
are insufficient or too expensive to undertake all of the tasks.

TheWSRP can be formulated as a mixed integer programming model that contains
the following binary variables:
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xki j =
{
1 if arc (i, j) is traversed by technician k,

0 otherwise,
∀(i, j) ∈ A, k ∈ K ;

yi =
{
1 if task i is outsourced,

0 otherwise,
∀i ∈ V ;

and the continuous variable bki , ∀i ∈ V, k ∈ K , that lies within the interval [ei , li ] if
technician k does not perform task i ; otherwise, it is the time at which service of task
i commences, or the leaving time and returning time of technician k from and to the
depot when i = 0 and n + 1 respectively.

The mathematical model is presented as follows:

minimize
∑
k∈K

∑
(i, j)∈A

ci j x
k
i j +

∑
i∈C

oi yi (1)

subject to:

∑
k∈K

∑
j∈V

xki j + yi = 1 ∀i ∈ C (2)

∑
j∈V

xki j ≤ qki ∀k ∈ K , ∀i ∈ C (3)

∑
j∈V

xk0, j = 1 ∀k ∈ K (4)

∑
i∈V

xki,n+1 = 1 ∀k ∈ K (5)

∑
i∈V

xkih −
∑
j∈V

xkhj = 0 ∀k ∈ K , ∀h ∈ C (6)

bki + (di + ti j )x
k
i j ≤ bkj + li (1 − xki j ) ∀k ∈ K , ∀(i, j) ∈ A (7)

ei ≤ bki ≤ li ∀k ∈ K , ∀i ∈ V (8)

bkn+1 − bk0 ≤ D ∀k ∈ K (9)

xki j ∈ {0, 1} ∀k ∈ K , ∀(i, j) ∈ A (10)

yi ∈ {0, 1} ∀i ∈ C (11)

bki ≥ 0 ∀k ∈ K , ∀i ∈ V . (12)

The objective function (1)minimizes the total operational cost comprising routing and
outsourcing cost. Constraints (2) ensure that each task is either visited exactly once or
outsourced, while constraints (3) guarantee that the tasks can only be performed by
technicians satisfying the skill requirements. Constraints (4) and (5) ensure that each
technician departs from the depot and returns to the copy of the depot after completing
their service. Constraints (6) are the typical flow conservation equations. Constraints
(7) set the time variables bki , while constraints (8) enforce the timewindow restrictions.
Constraints (9) guarantee that the route duration for each technician is no more than
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the maximum time allowed. Constraints (10) and (11) represent the binary restrictions
on variables xki j and yi , and (12) are the non-negativity constraints on the variables

bki .

4 Iterated local search

This section describes our proposed iterated local search (ILS) algorithm for solving
the WSRP. The ILS consists of three main components: initial solution construction,
local search procedure and perturbation mechanism. They are combined into a multi-
start framework as given in Algorithm 1. At each iteration of the main loop between
lines 3 to 18, an initial feasible solution s is constructed for the ILS loop (lines 6
to 14). At each ILS iteration, the local search procedure takes as input the solution
s, and returns an improved solution s′, which is accepted as the new best current
solution if it is feasible and has a value f (s′) that is strictly smaller than that of the
incumbent solution s̄, denoted by f (s̄). Then a new starting solution s for the local
search procedure is generated by perturbing on the incumbent solution s̄ (line 12).
The ILS loop repeats until the maximum number of iterations without improvement
MaxItNI is met. Then the incumbent solution s̄ replaces the global best solution s∗ if
f (s̄) < f (s∗). This procedure repeats until a predefined number MaxIt of iterations
have been executed.

Algorithm 1 Iterated Local Search
1: procedure ILS
2: It ← 1, f (s∗) ← +∞
3: for It ← 1 to MaxIt do
4: generate initial solution s
5: set s̄ ← s, ItNI ← 0
6: while ( ItNI < MaxItNI) do
7: s′ ← Local Search (s)
8: if ((s′ is feasible ) and ( f (s′) < f (s̄))) then
9: s̄ ← s′
10: ItNI ← 0
11: end if
12: s ← Perturb(s̄)
13: ItNI ← ItNI + 1
14: end while
15: if ( f (s̄) < f (s∗)) then
16: s∗ ← s̄
17: end if
18: end for
19: Return s∗
20: end procedure

4.1 Search space

Anumber of studies have shown that an efficient exploration of infeasible solutions can
contribute significantly to the performance of a heuristic (Cordeau et al. 1997; Glover
andHao 2011; Cordeau et al. 2001;Vidal et al. 2012, 2013).We follow the same line of

123



Iterated local search for workforce scheduling and routing… 477

Fig. 1 Illustration of waiting time and time warp

thought here and allow the ILS to search infeasible, as well as feasible solutions, where
the constraint violations in the former relate to the route duration and time window
constraints. However, the skill requirement constraint is always respected, since it is
concerned with the scheduling aspect of the WSRP and its relaxation would enlarge
the search space dramatically. A solution s is therefore evaluated by an augmented
cost function, which is defined by

f (s) = c(s) + αd(s) + βw(s), (13)

where c(s) is the total operational cost as defined in (1), and d(s) andw(s) are the total
violations of duration and time window constraints, which are weighted by parameters
α and β, respectively.

The time window violation is measured based on a method proposed by Nagata
et al. (2010). If there is a late arrival to a customer i ∈ C at time ai > li , then it is
assumed that there is a penalty for the delay ai − li , and that service starts at time
li . In case of an early arrival at time ai < ei , then the technician has to wait until
time ei , but the waiting time is not penalized. The same method is used by Vidal et al.
(2013), who refer to the penalty as ‘time warp’. Figure 1 illustrates the waiting time
and time warp of a route with visits involving five vertices v1, . . . , v5. The horizontal
axis corresponds to time, while the vertical axis presents the sequence of visits. The
dots on each line show the start time of each visit, and the brackets on each line indicate
the time window of the corresponding task. As seen in Fig. 1, there are no penalties
associated with tasks v1, v3, and v5 as the visits are made within the respective time
windows. The bold line displays a possible schedule having a waiting time period at
vertex v2 and a time warp at vertex v4.

4.2 Move evaluation

Most local search heuristics spend the largest part of the overall computational effort
on move evaluation (Vidal et al. 2015). Efficient move evaluation techniques are there-
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fore crucial for improving algorithm performance, particularly when the search space
involves infeasible solutions.

The operational cost c(s) consists of the outsourcing cost and the total traveling
distancewhich can be computed in amortized O(1) time (Kindervater and Savelsbergh
1997). However, it takes O(n) to compute the penalties d(s) and w(s) in (13).

Nagata et al. (2010) propose an evaluation technique to compute the violation of
time window constraints in amortized O(1) time for most traditional neighbourhood
operators including 2-opt, inter-route swaps, and inter-route inserts. Vidal et al. (2013)
extend this technique to allow the evaluation of both duration and time windows
violations not only for inter-route but also for intra-route operators. A preprocessing
phase is required to develop relevant data for their evaluation techniques, and the
data must be updated once the route under consideration has been modified. Our ILS
incorporates the technique proposed by Vidal et al. (2013) to compute the violation
penalties for infeasible solutions.

4.3 Initial solution construction

Our procedure for constructing a feasible solution includes the following steps. The
existence of a feasible solution is guaranteed due to the possibility of outsourcing.
First, a task list L1 is created as follows. The first task in the list is selected at random.
The remaining entries in the list are constructed by sorting the remaining tasks of
C in non-decreasing order of the angle they make with a line drawn from the depot
to the randomly selected first task on L1. Then, a technician list L2 is constructed
by sorting the technicians of K in non-increasing order of the number of tasks they
are qualified to perform. We then randomly select a task i ∈ C from the list L1 and
insert it into the cheapest feasible position of the route of the first technician on list
L2. If the insertion violates feasibility, we insert i into the following technician’s
route. In the case where no feasible route can be constructed that incorporates task i ,
we set i to be outsourced. The procedure repeats by inserting tasks sequentially into
technicians’ routes following the above steps, yielding a feasible solution that consists
of technicians’ routes and a list of outsourced tasks.

4.4 Local search procedure

Our local search procedure consists of an inter-route search operator, an intra-route
search operator, and an update mechanism of the weight parameters α and β using in
(13).

The inter-route search uses a single neighbourhood structure called Swap and Relo-
cate that removes two paths, each containing at most two tasks from two different
routes, and then exchanges them. One of these paths may contain zero tasks, which
results in the path from the other route being relocated. Figure 2 gives an example
of this operator which removes two successive vertices v2 and v3 from route r1 and
one vertex v6 from route r2, and then exchanges them. This neighbourhood structure
is extended to allow an outsourced task to be swapped or relocated into the route of
one of the technicians. When considering new routes created by this operator, the skill
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Fig. 2 Example of the swap and
relocate operator

Fig. 3 Example of the 2-opt operator

requirement constraints must be always respected, but any violations of duration and
time window constraints are allowed.

The intra-route search consists of three neighbourhood structures, namely, opt1,
opt2 and 2-opt (Croes 1958), that operate on a single route. Operator opt1 removes
one task and inserts it into another position on the same route, while operator opt2
is similar but removes and inserts two adjacent customers on a route. Operator 2-opt
reverses the order of a sequence of successive visits on a route. Figure 3 provides
an example of the 2-opt operator which removes a path consisting of four vertices
{v2, v3, v4, v5} from route r , reverses the order of visits on this path, and then inserts
the path back into the same position to form a new route r ′. The cost of r ′ is evaluated
by the method described in Sect. 4.2.

The inter-route search and the intra-route search can be combined in different ways
within the local search procedure. To test the effect of the search strategy on the
performance of the algorithm, we investigate the three following strategies:

1. Execute only the inter-route search operator;
2. Execute both the inter-route and intra-route search operators at each iteration of

the local search procedure;
3. Apply the intra-route search as a post-optimization procedure on the locally opti-

mal solution returned by the inter-route search.

After each iteration of the local search, the weight parameters α and β are adjusted
according to the duration violation d(s) and the time window violation w(s) of the
incumbent solution s as follows. If d(s) = 0, then the parameter α is divided by a
factor 1 + δ; otherwise, it is multiplied by 1 + δ, where δ > 0 is a parameter that
controls the strength of adjustment. The same rule applies to the parameter β with
respect to w(s). The initial values of α and β are both set to 1, as suggested by a
number of studies that have similar cost functions and weight parameters (Cordeau
et al. 2001, 1997; Ibaraki et al. 2008; Nagata et al. 2010).

The structure of the local search procedure is illustrated in Algorithm 2. The current
best solution s′ is set to the incumbent solution s. Then s is taken as input by the
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SearchStrategy function, which applies inter-route or intra-route search depending
on the search strategy selected and returns an improved solution ŝ if such a solution
exists. If f (ŝ) < f (s′), then ŝ replaces s′ as the current best solution. Then, the duration
violation d(ŝ) and time window violationw(ŝ) are computed, and parameters α and β

are adjusted accordingly by the controlmechanismdescribed above.Thepre-processed
data for the routes that have been modified at the current iteration are updated. This
procedure repeats until the local search becomes trapped at a locally optimal solution.

Algorithm 2 Local Search Procedure
1: procedure LocalSearch
2: input solution s
3: set α = 1 and β = 1
4: set s′ = s
5: set LocalOptimumFound = false
6: while (LocalOptimumFound = false) do
7: ŝ ← SearchStrategy(s)
8: if ( f (ŝ) < f (s′)) then
9: s′ ← ŝ, s ← ŝ
10: Compute d(ŝ) and w(ŝ), and update α and β

11: Update PreprocessData
12: else
13: set LocalOptimumFound = true
14: end if
15: end while
16: return s′
17: end procedure

4.5 Perturbation mechanism

The perturbation mechanism uses a random cross exchange operator, which removes
two paths from two randomly selected routes and exchanges them. Figure 4 gives
an example of the perturbation operator which removes a path of four successive
visits from route r1 and a path of two successive visits from route r2 �= r1, and then
exchanges them. Violations of duration and time window constraints are allowed,
but the skill requirement constraint must be respected. The perturbation procedure is
always carried out on the best solution found thus far, and applies the random cross
exchange operator p times, where p is a positive integer denoting the perturbation
strength.

Fig. 4 Example of the random cross exchange operator

123



Iterated local search for workforce scheduling and routing… 481

The perturbation strength p is a crucial parameter of the ILS. If p is too small, the
local search may not be able to escape from a locally optimal solution. If p is too
large, the ILS may behave similar to a random restart algorithm, making it difficult
to discover better quality solutions (Lourenço et al. 2003). In order to determine the
most appropriate value of p, we developed an adaptive mechanism, which adjusts
p according to the number of consecutive iterations without improvement, denoting
by ItNI. Let γ be a trigger for the adjustment of p. More precisely, whenever ItNI
has increased by γ , the value of p will be increased by 1 until it reaches the upper
bound p̄, where p̄ is used to prevent excessively large values of p to be chosen.
For example, if γ = 10 and p̄ = 5, then p starts from 1 and increases by 1 when
ItNI ∈ {10, 20, 30, 40}.

4.6 Reducing outsourcing cost

As the cost of outsourcing a task is usually higher than that of serving it by inter-
nal resources, reducing the outsourcing cost is considered as an objective within the
algorithm. This is achieved by a simple mechanism embedded in the perturbation pro-
cedure of the proposed ILS. At the beginning of the perturbation procedure, we check
the list of outsourced tasks. If it is not empty, we randomly select a task and insert it
to the cheapest position of the current solution, and then proceed with the perturba-
tion procedure; otherwise, we only apply the random cross exchange operator. The
insertion of outsourced tasks and the perturbation procedure is likely to produce an
infeasible solution, which will be improved by the local search procedure. Infeasible
solutions are evaluated by a cost function defined in (13), and weight parameters α and
β are dynamically adjusted based on the rule described in Sect. 4.4. If the local search
procedure cannot repair the infeasibility during the first few iterations, the weight
parameters will be adjusted to large values, such that the cost of scheduling a task to
a technician becomes greater than the cost of outsourcing it. As a consequence, the
local search tends to repair the infeasibility by simply outsourcing the relevant tasks.
In order to avoid the overuse of the outsourcing option, we force the local search
procedure to always select improved solutions with lower outsourcing costs, even if
solutions with higher outsourcing costs but lower overall costs exist.

5 Computational results

This section presents results of our computational tests conducted to assess the perfor-
mance of the proposed ILS. The ILS algorithm is coded in C++, and run on a personal
computer with Intel Core i5-3570 3.40GHz processor and 4 GBMemory (RAM). The
MIPmodel is implemented on the samemachine, and solved by the commercial solver
CPLEX 12.6. Our ILS results are compared with existing solutions of an ALNS algo-
rithm (Kovacs et al. 2012), where the reported ALNS results are based on the average
of five runs of the algorithm. To maintain consistency and provide a fair comparison,
we also perform five random runs of the ILS for each instance tested and report the
obtained results.
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5.1 Test instances

The experiments are conducted using the technician routing and scheduling problem
(TSRP) instances introduced by Kovacs et al. (2012). These instances are adapted
from the Solomon’s benchmark instances (Solomon 1987) for the VRPTW and the
test instances provided for the ROADEF 2007 challenge. They are available online at:
http://prolog.univie.ac.at/research/STRSP/.

The set of instances of Kovacs et al. (2012) are generated using 12 instances of
Solomon (1987), namely, R101, R103, R201, R203, C101, C103, C201, C203, RC101,
RC103, RC201, RC203, where R, C and RC represent the random, clustered and a
mix of random and clustered geographical setting, respectively. Instance sets with
prefixes R1, C1 and RC1 have a short scheduling horizon, while those with prefixes
R2, C2 and RC2 have a long scheduling horizon. The final two digits in the name of
the instance indicate the time window density. In the 01 instances, all customers are
associated with time windows, while in the 03 sets, only 50% of customers have time
windows. In terms of the skill requirements, Kovacs et al. (2012) generate three types
of skill requirement matrices shown by 5× 4, 6× 6, and 7× 4 based on the ROADEF
data, where the rows of the matrices correspond to skill domains, and the columns
correspond to skill levels under each skill domain. The customer data of Solomon’s
instances are randomly paired with the skill data, which results in a total of 36 test
instances. All instances have 100 customers and a single depot. For each instance,
Kovacs et al. (2012) define a ‘team’ and a ‘no team’ version. As our study does not
consider the possibility of teambuilding,we only use the ‘no team’ version of instances
in our experiments. For each instance, there are two sets of technician data: one has a
sufficient number of technicians that feasibility can be achieved without outsourcing,
while the other has limited technicians such that it is impossible to service all tasks
without the use of the outsourcing option. The outsourcing cost of a task i is defined
as oi = 200+μ1.5

i , where μi measures the difficulty of task i , and is calculated as the
sum of the skill requirement for i in the skill matrix. The outsourcing cost is always
higher than the cost of assigning a task to a technician.

5.2 Parameter setting

The ILS requires five input parameters as follows: MaxIt; MaxItNI; δ, which is the
factor used to adjust weight parameters of duration and time window violations; p̄,
which is the upper bound that is used in the perturbation mechanism; and γ is the
adjustment factor of the perturbation strength. The value of MaxItNI is defined by
Penna et al. (2013) as

MaxItNI = |C | + λ|K |, (14)

where |C | is the number of customers, |K | is the number of technicians, and λ is a
weight parameter determining the influence of |K | on the value of MaxItNI. Thus,
instead of finding the most appropriate value forMaxItNI, the value of λ is examined.
Extensive parameter tuning suggests that a parameter setting shown inTable 1 performs
well.
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Table 1 Parameter setting for
the proposed ILS

Parameter MaxIt δ p̄ γ λ

Value 5 0.5 5 20 10

5.3 Performance measurement

The proposed ILS is evaluated against the MIP model and the ALNS (Kovacs et al.
2012) using benchmark instances. To compare the ILS and ALNS solutions, we com-
pute the relative percentage difference defined as

ImpSA/I = vS(ALNS) − vS(ILS)

vS(ALNS)
× 100 (15)

where vS(ALNS) and vS(ILS) represent values of the ALNS and ILS solutions respec-
tively, and S = {−, ∗,+} denotes the minimum, mean, and maximum values over five
random runs of the algorithm. For example, Imp−

A/I represents the relative percentage
difference between the values of the best solutions found by the ALNS and ILS over
five random runs. A positive value of ImpSA/I indicates an improvement of the ILS over
ALNS; otherwise, the cost of the ILS solution is greater or equal to that of the ALNS
solution.

By replacing vS(ALNS) of the expression (15) with vS(CPLEX), we obtain the
relative percentage difference between the values of the ILS solution and the optimal
solution produced by CPLEX, denoted by ImpSC/I. There is no difference between
v−(CPLEX), v∗(CPLEX) and v+(CPLEX), as they all refer to the value of the optimal
solution found by CPLEX.

In addition to the comparison of solution values, we compare the computational
times required by our ILS and the ALNS. Kovacs et al. (2012) run their ALNS on a
Pentium D computer with two 3.2GHz CPUs and 4 GB memory (the algorithm only
uses one CPU), which is different from our machine that is used to implement the
ILS and MIP model. In order to provide a fair comparison of computational speed,
we scale the reported CPU times according to the speed factors provided in the report
of Dongarra (2014). The report does not cover the two computers considered in our
experiments. Thus, we use a slower but similar computer (Pentium IV with 3.0GHz)
available in Dongarra (2014) instead of the computer used by Kovacs et al. (2012), and
use a speed factor of 1573 Mflop/s (millions of floating-point operations per second).
As there is no suitable substitute available in Dongarra (2014), we apply the same soft-
ware used byDongarra (2014) to record the speed factor of our computer, which yields
2462 Mflop/s. Based on the speed factors, the reported CPU times of the ALNS are
adjusted by multiplying a factor of (1573/2462), when comparing with the ILS times.

5.4 Evaluation of search strategies

Results on comparing the three search strategies described in Sect. 4.4 are shown in
Table 2.ColumnsheadedAvg. show the average solution values producedby theALNS
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and the ILS using three different strategies over five random runs. The corresponding
relative percentage differences between the values of the ALNS solutions and ILS
solutions are reported in columns titled Imp∗

A/I.
Comparing Strategy 1with Strategy 2 and Strategy 3, it can be seen that by applying

the intra-route search, the solution quality improves significantly from −0.21% to
0.54% and 0.51%, with the average computational time increasing accordingly. The
intra-route search is seen to be especially useful on the R2, C2 and RC2 types of
instances, which are characterized by a long scheduling horizon and a low number of
technicians, where each route contains a relatively high number of tasks. Comparing
Strategy 2 with Strategy 3, the difference between the average Imp∗

A/I values is only
0.03%. However, the average computational time of Strategy 2 is about 13% higher
than that of Strategy 3. Therefore, Strategy 3, which applies the intra-route search as a
post-optimization procedure on the local optimum returned by the inter-route search,
is recommended based on efficiency and effectiveness, and is used in the remainder
of our tests.

5.5 Comparison of performance

This section presents the results of evaluating our ILS against the MIP model and
the ALNS using benchmark instances containing 25, 50, and 100 tasks. In the tables
presented hereafter, the first group of columns shows the instance identifier, the number
of tasks |C |, and the maximum number of technicians |K |. Columns Opt. and Avg.
show, for each instance, the optimal solution value found by CPLEX, and the average
solution values foundby theALNSand ILSover five random runs.Columns Imp∗

C/I and
Imp∗

A/I give the relative percentage differences between the values of the ILS solutions
and the CPLEX solutions and the ALNS solutions, respectively. The average number
of outsourced tasks, the average number of technicians used, and the average CPU
time in seconds are reported in the columns headed |Co|, |K ∗|, and CPU, respectively.
Emboldening in the ILS columns is used to highlight values that correspond to an
improvement over the corresponding values of the ALNS.

Table 3 gives experimental results on small instances containing 25 tasks. Compared
to CPLEX, our ILS algorithm consistently finds optimal solutions in all five random
runs for 19 out of 23 instances and produces an overall average gap of −0.18% over
all instances. Moreover, the average number of outsourced tasks given by the ILS is
exactly the same as that for CPLEX. Compared to ALNS, our ILS algorithm gives
better solutions for four instances, in particular RC101_5 × 4 and RC101_6 × 6, for
which the solutions found by the ILS improve the ALNS solutions by 9.32% and
12.56% respectively. The significant improvement on these two instances is achieved
by the reduction in the number of outsourced tasks. To test the statistical significance
between the performances of ALNS and ILS, we conduct the two-tailedWilcoxon test
on the paired samples between the average solution values obtained byALNS and ILS.
The test is performed at a 95% significance level, where a p value of less than 0.05
indicates the rejection of the null hypothesis, which says that there is no significant
difference between the results of ALNS and ILS. The p value of the Wilcoxon test for
instances containing 25 tasks is 0.24, which suggests that the performances of ALNS
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and ILS on this set of instances are similar. This can be explained by the fact that both
ALNS and ILS can solve a large majority of small instances to optimality. Perhaps
the most significant feature of ILS is the speed with which it produces good-quality
solutions, and it is significantly faster than the ALNS. With an average CPU time of
0.11 s, it only requires 7% of the time used by the ALNS. Although our computer is
faster, the effect of the computer speed is negligible compared to the improvement on
CPU times.

Table 4 presents results of the experiments on instances with 50 tasks. Of the
12 instances, our ILS algorithm discovers optimal solutions for seven and yields an
overall average deviation of−0.14% in comparison to CPLEX. The average deviation
of the ILS from the ALNS in terms of the solution values is 0.67%, and it finds better
solutions for five instances. The p value of the Wilcoxon test for this set of instances
is 0.06, which is very close to the margin of significance. This suggests that when the
problem size increases to 50, our ILS tends to perform better than the ALNS. Using
the computer speed factors, the average computation time of the ALNS is adjusted to
4.77 s, which is still considerably greater than the 1.89 s for ILS.

For instances with 100 tasks, a time limit of 7200s is imposed on CPLEX. Tables 5
and 6 report computational results on instances with limited and unlimited technicians,
respectively. The third to fifth columns of each table are associated to the results of
the MIP model solved by CPLEX, where the columns Best and Gap present, for each
instance, the value of the optimal or best solution found by CPLEX within the time
limit, and the percentage gap of the LP bound with respect to the best solution value.
In addition, we report the minimum andmaximum solution values found by the ALNS
and ILS over five random runs in columns titledMin. andMax., and the corresponding
percentage differences between the values of ALNS and ILS solutions are presented
in columns Imp−

A/I and Imp+
A/I respectively. Proven optimal solutions are underlined.

Of the 36 instances with unlimited technicians, CPLEX is only able to find optimal
solutions for 9, and for the 36 instances with limited technicians, the model finds
optimal solutions for 5 instances within the required time limit. This indicates that
instances with limited technicians tend to be more difficult to solve than those with
unlimited technicians, as the former problem considers the additional set of decisions
concerning the selection of tasks to be outsourced.

A comparison of ILS andALNS on instances with 100 tasks and limited technicians
is given in Table 5. Of the 36 instances, our ILS algorithm outperforms ALNS in 17.
In particular, for instances R101_5×4, RC101_6×6 and RC101_7×4, the solutions
found by the ILS are between 5% and 8% better in cost than those for ALNS. The
significant improvement on these instances can be explained by the reduced use of
the outsourcing option by the ILS. The average number of outsourced tasks of the
ILS solutions is 9.76, which is about 3% less than the value of the ALNS solutions.
To determine the statistical significance between the numbers of outsourced tasks
produced by the ILS and ALNS on this set of instances, we conduct a two-tailed
Wilcoxon test and a p value of 0.004 is obtained. This confirms that our ILS uses
significantly less outsourcing option than theALNS, and also implies that the proposed
mechanism of reducing outsourcing cost (described in Sect. 4.6) is effective. The
average percentage difference between the ILS and ALNS solution values is 0.82%.
Comparing the worst solutions found during five random runs, the ILS improves the
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ALNS solutions by 1.24%, which indicates that our ILS is more stable than the ALNS
when performing multiple runs. The average computational time required by ALNS
is 52.87 s, which is equivalent to 33.78 s after applying the conversion factor, and is
16.59% higher than that of ILS.

Table 6 provides a comparison of ILS and ALNS on large instances with unlimited
technicians. The average number of outsourced tasks is not reported in this table,
as these instances have enough technicians to avoid outsourcing. The ILS algorithm
outperforms ALNS in 30 out of 36 instances, and improves the best solutions for
24 instances. Of the 9 instances that are solved to optimality by CPLEX, our ILS
algorithm finds optimal solutions for 5 of them. The average percentage difference
between the ILS andALNS solution values is 0.64%.Moreover, the ILS solutions tend
to have smaller deviations within five random runs since the overall average values
of Imp−

A/I and Imp+
A/I are both greater than 0. In terms of speed, ALNS requires an

average solution time of 79.17 s, which is equivalent to 50.58 s under the adjustment
of computer speeds, but is still 20% higher than the average CPU time required by
ILS. Lastly, we conduct a two-tailed Wilcoxon test on the solution values of all large
instances containing 100 tasks and a p value of 0.02 is obtained. This indicates that our
ILS has a significantly better performance than the ALNS on the set of large instances
since the p value is less than the chosen significance level 0.05.

5.6 Skill VRP instances

The proposed ILS algorithm is also applied to solve a set of Skill VRP instances, which
are generated basedon the benchmark instances ofSolomon (1987) and the skill pattern
introduced by Cappanera et al. (2011). As the Skill VRP does not involve timewindow
and capacity constraints, we use only the geographical information of Solomon’s
instances to generate three types of geographical data for Skill VRP instances, namely,
R, C and RC, which represent the random, clustered and a mixed of random and
clustered geographical setting, respectively. Similar to Cappanera et al. (2011) and
Schwarze and Voß (2012), we consider a skill set with three levels 1, 2 and 3, where
skill 1 denotes the lowest level, and skill 3 the highest. Each task i ∈ C is associated
with a skill requirement si ∈ {1, 2, 3}, which must be fulfilled by a technician k ∈ K
having a skill level ŝk ≥ si , where ŝk ∈ {1, 2, 3}. The skill data is randomly generated
according to the four patterns introduced by Cappanera et al. (2011), as given in the
Table 7, where each row of values represent a pattern that indicates the distribution of
skill requirements over tasks. For example, the first pattern {50, 10, 40} indicates that
a task i has a skill requirement si = 1 with probability 0.5, si = 2 with probability 0.1
and si = 3with probability 0.4. For each combination of skill pattern and geographical
data, we generated three random instances, which results in a total of 36 instances. All
the instances have two sizes, where one has 20 tasks and the other has 30 tasks. Each
instance has a set of three technicians K = {1, 2, 3}, where each technician k ∈ K is
specialised at a different skill level ŝk ∈ S; for example, ŝ1 = 1, ŝ2 = 2 and ŝ3 = 3.

In the Skill VRP, the routing costs depend on both the traveling distance and the
technician, such that the increasing skill level of the technician causes increasing costs.
Thus, for each arc (i, j) ∈ A and each technician k ∈ K , we follow the approach of
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Table 7 Distribution of skill
requirements over tasks

Pattern Skill

1 (%) 2 (%) 3 (%)

1 50 10 40

2 50 20 30

3 40 40 20

4 30 30 40

Schwarze and Voß (2012) by defining a skill dependent routing cost cki j by

cki j = ci jθ ŝk, (16)

where ci j is the traveling distance of arc (i, j) ∈ A, and θ is a weight parameter of the
skill level ŝk of the technician k ∈ K . Following the suggestion of Schwarze and Voß
(2012), we set θ = 1 in our experiments.

5.7 Results for skill VRP instances

The above Skill VRP instances are solved by using our ILS, and the results are com-
pared with the solutions obtained from a basic MIP model of Cappanera et al. (2011)
that is solved by using CPLEX 12.6. A time limit of 7200s is imposed on CPLEX,
and for instances not solved to optimality, we report the best values of the solutions
found within this time limit.

Table 8 presents results of the experiments for instances with 20 tasks. Of the 36
instances tested, CPLEX finds optimal solutions for 27 and exceeds the time limit
for 9 instances. The solutions produced by our ILS algorithm are exactly the same as
the optimal or best solutions found by CPLEX for all instances. The average compu-
tational time of our ILS is 0.08 s, which is negligible compared to the time used by
CPLEX.

Table 9 shows results of the experiments on instances with 30 tasks. For this
size of instances, CPLEX is only able to find optimal solutions for 10 out of 36
instances. Among these 10 instances, our ILS can produce optimal solutions for 9,
with the exception being instance R_4_1 for which our ILS found slightly worse
solutions that have an average gap of −0.66% to that of CPLEX. Of the remaining
instances that are not solved to optimality by CPLEX, our ILS produces better solu-
tions for 6 and equal cost solutions for 20 compared to the best solutions found by
CPLEX within the time limit. The average percentage difference between the values
of our ILS solutions and CPLEX solutions is 0.74%. The average computational time
required by our ILS is 0.48 s, which is also negligible compared to the time used by
CPLEX.
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Table 8 The comparison of exact and ILS solutions on Skill VRP instances with 20 tasks

Instance CPLEX ILS

Best Gap |K ∗| CPU Avg. Imp∗
C/I |K ∗| CPU

C_1_1 370.93 0.00 1.00 122.82 370.93 0.00 1.00 0.07

C_1_2 367.55 4.79 2.00 7200.00 367.55 0.00 2.00 0.12

C_1_3 367.55 8.85 2.00 7200.00 367.55 0.00 2.00 0.09

C_2_1 370.93 0.00 1.00 353.27 370.93 0.00 1.00 0.06

C_2_2 367.55 11.36 2.00 7200.00 367.55 0.00 2.00 0.17

C_2_3 367.55 9.63 2.00 7200.00 367.55 0.00 2.00 0.08

C_3_1 370.93 0.00 1.00 239.05 370.93 0.00 1.00 0.06

C_3_2 367.55 4.38 2.00 7200.00 367.55 0.00 2.00 0.15

C_3_3 367.55 0.00 2.00 2742.05 367.55 0.00 2.00 0.17

C_4_1 370.93 0.00 1.00 28.27 370.93 0.00 1.00 0.09

C_4_2 367.55 0.00 2.00 1307.39 367.55 0.00 2.00 0.13

C_4_3 370.93 0.00 1.00 1648.17 370.93 0.00 1.00 0.06

R_1_1 781.09 0.00 2.00 8.78 781.09 0.00 2.00 0.07

R_1_2 772.50 0.00 2.00 73.35 772.50 0.00 2.00 0.10

R_1_3 710.16 0.00 2.00 18.66 710.16 0.00 2.00 0.04

R_2_1 781.09 0.00 2.00 33.40 781.09 0.00 2.00 0.11

R_2_2 729.12 0.00 2.00 76.47 729.12 0.00 2.00 0.06

R_2_3 710.16 0.00 2.00 68.49 710.16 0.00 2.00 0.09

R_3_1 777.40 0.00 3.00 191.36 777.40 0.00 3.00 0.04

R_3_2 702.26 0.00 2.00 143.98 702.26 0.00 2.00 0.09

R_3_3 748.90 0.00 2.00 323.30 748.90 0.00 2.00 0.14

R_4_1 787.01 0.00 1.00 6.76 787.01 0.00 1.00 0.08

R_4_2 787.01 0.00 1.00 15.46 787.01 0.00 1.00 0.09

R_4_3 755.20 0.00 2.00 56.62 755.20 0.00 2.00 0.07

RC_1_1 658.21 0.00 1.00 27.38 658.21 0.00 1.00 0.05

RC_1_2 658.21 1.89 1.00 7200.00 658.21 0.00 1.00 0.03

RC_1_3 570.00 0.00 2.00 2034.46 570.00 0.00 2.00 0.03

RC_2_1 658.21 0.00 1.00 83.90 658.21 0.00 1.00 0.03

RC_2_2 658.21 8.77 1.00 7200.00 658.21 0.00 1.00 0.04

RC_2_3 570.00 4.21 2.00 7200.00 570.00 0.00 2.00 0.03

RC_3_1 658.21 0.00 1.00 786.79 658.21 0.00 1.00 0.06

RC_3_2 658.21 13.29 1.00 7200.00 658.21 0.00 1.00 0.04

RC_3_3 570.00 0.00 2.00 893.34 570.00 0.00 2.00 0.03

RC_4_1 658.21 0.00 1.00 26.89 658.21 0.00 1.00 0.05

RC_4_2 658.21 0.00 1.00 3180.79 658.21 0.00 1.00 0.03

RC_4_3 658.21 0.00 1.00 3042.84 658.21 0.00 1.00 0.03

Average 586.20 1.87 1.58 2287.06 586.20 0.00 1.58 0.08
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Table 9 The comparison of exact and ILS solutions on Skill VRP instances with 30 tasks

Instance CPLEX ILS

Best Gap |K ∗| CPU Avg. Imp∗
C/I |K ∗| CPU

C_1_1 439.45 2.87 1.00 7200.00 439.45 0.00 1.00 0.33

C_1_2 432.86 25.93 1.00 7200.00 432.86 0.00 2.00 0.11

C_1_3 429.52 31.50 2.00 7200.00 429.52 0.00 2.00 0.37

C_2_1 439.45 11.92 1.00 7200.00 439.45 0.00 1.00 0.40

C_2_2 432.86 26.22 2.00 7200.00 432.86 0.00 2.00 0.12

C_2_3 429.52 32.25 2.00 7200.00 429.52 0.00 2.00 0.39

C_3_1 439.45 23.09 2.00 7200.00 439.45 0.00 1.00 0.41

C_3_2 440.30 28.08 2.00 7200.00 439.45 0.19 1.00 0.42

C_3_3 449.16 32.15 2.00 7200.00 439.45 2.16 1.00 0.49

C_4_1 439.45 0.00 1.00 530.36 439.45 0.00 1.00 0.23

C_4_2 475.39 28.19 2.00 7200.00 439.45 7.56 1.00 0.51

C_4_3 505.33 32.30 2.00 7200.00 439.46 13.03 1.00 0.56

R_1_1 956.66 0.00 2.00 122.79 956.66 0.00 2.00 0.57

R_1_2 912.68 0.00 2.00 1319.63 912.68 0.00 2.00 0.60

R_1_3 812.97 0.00 2.00 797.14 812.97 0.00 2.00 0.56

R_2_1 956.66 0.00 2.00 766.26 956.66 0.00 2.00 0.67

R_2_2 921.17 7.18 3.00 7200.00 912.68 0.92 2.00 0.71

R_2_3 812.97 0.00 2.00 6507.53 812.97 0.00 2.00 0.57

R_3_1 964.61 0.28 3.00 7200.00 964.61 0.00 3.00 0.82

R_3_2 896.06 4.19 2.00 7200.00 896.06 0.00 2.00 0.71

R_3_3 890.27 4.01 2.00 7200.00 890.27 0.00 2.00 0.71

R_4_1 973.72 0.00 2.00 25.01 980.11 −0.66 2.00 0.74

R_4_2 981.64 0.00 1.00 3549.01 981.64 0.00 1.00 0.43

R_4_3 919.09 0.00 2.00 7036.77 919.09 0.00 2.00 0.73

RC_1_1 928.31 6.57 1.00 7200.00 928.31 0.00 1.00 0.40

RC_1_2 928.31 37.44 1.00 7200.00 928.31 0.00 1.00 0.34

RC_1_3 773.66 30.98 2.00 7200.00 773.66 0.00 2.00 0.47

RC_2_1 928.31 23.40 1.00 7200.00 928.31 0.00 1.00 0.48

RC_2_2 928.31 21.32 2.00 7200.00 928.31 0.00 1.00 0.34

RC_2_3 773.66 34.10 2.00 7200.00 773.66 0.00 2.00 0.46

RC_3_1 920.74 25.82 2.00 7200.00 920.74 0.00 2.00 0.50

RC_3_2 928.31 39.12 1.00 7200.00 928.31 0.00 1.00 0.37

RC_3_3 842.32 33.62 2.00 7200.00 842.32 0.00 2.00 0.52

RC_4_1 928.31 0.00 1.00 1429.17 928.31 0.00 1.00 0.43

RC_4_2 928.31 17.15 1.00 7200.00 928.31 0.00 1.00 0.33

RC_4_3 953.07 26.58 2.00 7200.00 920.74 3.39 2.00 0.48

Average 753.14 16.29 1.75 5813.44 749.06 0.74 1.58 0.48
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6 Conclusion

This paper presents an iterated local search (ILS) algorithm for solving the workforce
scheduling and routing problem (WSRP).Wehave examined different combinations of
neighbourhood structures, and results show that the strategy of applying the intra-route
search as a post-optimization procedure for the inter-route search provides effective
and efficient performance. The proposed ILS is evaluated against a mixed integer
programming (MIP) model and an adaptive larger neighbourhood search (ALNS)
algorithm (Kovacs et al. 2012) on benchmark instances with up to 100 tasks. Compu-
tational experiments indicate that the proposed algorithm can produce solutions that
are within an average gap of 1% to the optimal values in at most 40 s on average for
all instances tested here. Compared to other heuristic approaches (Kovacs et al. 2012;
Castillo-Salazar et al. 2015) for the similar problems, the proposed ILS has a relatively
simple structure and a small number of parameters.

The proposed ILS algorithm is also applied to solve a set of Skill VRP instances,
and results show that our algorithm is able to find optimal or near-optimal solutions in
less than 0.5 s on average for all instances tested. Although the proposed algorithm is
designed for solving the workforce scheduling and routing problem, it can be easily
adapted to tackle other types of scheduling and routing problems.
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