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By analogy with the topological entropy for continuous endomorphisms of totally 
disconnected locally compact groups, we introduce a notion of topological entropy 
for continuous endomorphisms of locally linearly compact vector spaces. We study 
the fundamental properties of this entropy and we prove the Addition Theorem, 
showing that the topological entropy is additive with respect to short exact 
sequences. By means of Lefschetz Duality, we connect the topological entropy to 
the algebraic entropy in a so-called Bridge Theorem.
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1. Introduction

In [1] Adler, Konheim and McAndrew introduced a notion of topological entropy for continuous self-maps 
of compact spaces. Later on, in [2], Bowen gave a definition of topological entropy for uniformly continuous 
self-maps of metric spaces, that was extended by Hood in [31] to uniform spaces. This notion of entropy 
coincides with the one for compact spaces (when the compact topological space is endowed with the unique 
uniformity compatible with the topology), and it can be computed for any given continuous endomorphism 
φ : G → G of a topological group G (since φ turns out to be uniformly continuous with respect to the 
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left uniformity of G). In particular, if G is a totally disconnected locally compact group, by van Dantzig’s 
Theorem (see [42]) the family Bgr(G) = {U ≤ G | U compact open} is a neighborhood basis at 0 in G, 
and the topological entropy of the continuous endomorphism φ : G → G can be computed as follows (see 
[22,28]). For a subset F of G and for every n ∈ N+, the n-th φ-cotrajectory of F is

Cn(φ, F ) = F ∩ φ−1F ∩ . . . ∩ φ−n+1F.

The topological entropy of φ with respect to U ∈ Bgr(G) is

Htop(φ,U) = lim
n→∞

1
n

log[U : Cn(φ,U)],

and the topological entropy of φ is

htop(φ) = sup{Htop(φ,U) | U ∈ Bgr(G)}.

A fundamental property of the topological entropy is the so-called Addition Theorem: it holds for a 
topological group G, a continuous endomorphism φ : G → G and a closed normal subgroup H of G that is 
φ-invariant (i.e., φH ≤ H), if

htop(φ) = htop(φ �H) + htop(φ),

where φ : G/H → G/H is the continuous endomorphism induced by φ.
The Addition Theorem for continuous endomorphisms of compact groups was deduced in [21, Theo-

rem 8.3] from the metric case proved in a more general setting in [2, Theorem 19]; the separable case was 
settled by Yuzvinski in [48]. Recently, in [28], the Addition Theorem was proved for topological automor-
phisms of totally disconnected locally compact groups; more precisely, taken G a totally disconnected locally 
compact group, φ : G → G a continuous endomorphism and H a closed φ-invariant normal subgroup of G, 
if φ �H is surjective and the continuous endomorphism φ : G/H → G/H induced by φ is injective, then

htop(φ) = htop(φ �H) + htop(φ).

The validity of the Addition Theorem in full generality for continuous endomorphisms of locally compact 
groups remains an open problem, even in the totally disconnected (abelian) case.

In this paper we introduce a notion of topological entropy ent∗ for locally linearly compact vector spaces 
by analogy with the topological entropy htop for totally disconnected locally compact groups. Recall that 
a topological vector space V over a discrete field K was defined in [34] to be locally linearly compact if V
admits a neighborhood basis at 0 consisting of linearly compact open linear subspaces (see §2.1 for more 
details and properties). Denote by B(V ) the set of all linearly compact open linear subspaces of V ; clearly, 
V is locally linearly compact if and only if B(V ) is a neighborhood basis at 0.

Definition 1.1. Let V be a locally linearly compact vector space and φ : V → V a continuous endomorphism. 
The topological entropy of φ with respect to U ∈ B(V ) is

H∗(φ,U) = lim
n→∞

1
n

dim U

Cn(φ,U) , (1.1)

and the topological entropy of φ : V → V is

ent∗(φ) = sup{H∗(φ,U) | U ∈ B(V )}.
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The limit in (1.1) exists (see Proposition 3.2), and the deep reason for the existence of this limit is that, 
for every U ∈ B(V ), its linear subspace C2(φ, U) = U ∩ φ−1U (and analogously every Cn(φ, U)) has finite 
codimension in U (see §3.1, Remark 3.3, and see also Remark 1.3). Moreover, ent∗ is always zero on discrete 
vector spaces (see Corollary 3.9), and it admits all the fundamental properties expected from an entropy 
function (see §3.2).

One of the main results of the present paper is the Addition Theorem for locally linearly compact vector 
spaces and their continuous endomorphisms:

Theorem 1.2 (Addition Theorem). Let V be a locally linearly compact vector space, φ : V → V a contin-
uous endomorphism, W a closed φ-invariant linear subspace of V and φ : V/W → V/W the continuous 
endomorphism induced by φ. Then

ent∗(φ) = ent∗(φ �W ) + ent∗(φ).

In case V is a locally linearly compact vector space over a discrete finite field F, then V is a totally 
disconnected locally compact abelian group (see Proposition 2.7(b)) and

htop(φ) = ent∗(φ) · log |F|

(see Proposition 3.11). So, with respect to the general problem of the validity of the Addition Theorem for 
the topological entropy htop of continuous endomorphisms of locally compact groups, Theorem 1.2 covers 
the case of those totally disconnected locally compact abelian groups that are also locally linearly compact 
vector spaces.

To prove the Addition Theorem, we restrict first to the case of continuous endomorphisms of linearly 
compact vector spaces (see §4.1), and then to topological automorphisms (see §4.2). The technique used for 
the latter reduction was suggested to us by Simone Virili; in fact, Virili and Salce used it in a different context 
in [40] giving credit to Gabriel [23]. Finally, in Section 5, we prove the Addition Theorem for topological 
automorphisms (see Proposition 5.1), so that we can deduce it for all continuous endomorphisms of linearly 
compact vector spaces (see Proposition 5.2).

A fundamental tool in the proof of the Addition Theorem is the so-called Limit-free Formula (see 
Proposition 3.23), that permits to compute the topological entropy avoiding the limit in the definition 
in Equation (1.1). Indeed, taken V a locally linearly compact vector space and φ : V → V a continu-
ous endomorphism, for every U ∈ B(V ) we construct a linearly compact linear subspace U+ of V (see 
Definition 3.21) such that U+ is an open linear subspace of φU+ of finite codimension and

H∗(φ,U) = dim φU+

U+
.

This result is the counterpart of the same formula for the topological entropy htop of continuous endomor-
phisms of totally disconnected locally compact groups given in [28, Proposition 3.9] (see also [12] for the 
compact case and [25] for the case of topological automorphisms). Note that a first Limit-free Formula was 
sketched by Yuzvinski in [48] in the context of the algebraic entropy for endomorphisms of discrete abelian 
groups; a gap in the formulation was found in [22], and the correct version of this Limit-free Formula was 
later proved in a slightly more general setting in [12] (and extended in [27, Lemma 5.4] for the intrinsic 
algebraic entropy of automorphisms of abelian groups).

In [1] Adler, Konheim and McAndrew also sketched a definition of algebraic entropy for endomorphisms 
of abelian groups, that was later reconsidered by Weiss in [46], and recently by Dikranjan, Goldsmith, Salce 
and Zanardo for torsion abelian groups in [19]. Later on, using the definitions of algebraic entropy given 
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by Peters in [35,36], the algebraic entropy halg was extended in several steps (see [15,44]) to continuous 
endomorphisms of locally compact abelian groups.

In [46] Weiss connected, in a so-called Bridge Theorem, the topological entropy htop of a continuous 
endomorphism φ : G → G of a totally disconnected compact abelian group G to the algebraic entropy halg

of the dual endomorphism φ∧ : G∧ → G∧ of the Pontryagin dual G∧ of G, by showing that

htop(φ) = halg(φ∧).

The same connection was given by Peters in [35] for topological automorphisms of metrizable compact 
abelian groups; moreover, these results were recently extended to continuous endomorphisms of compact 
abelian groups in [11], to continuous endomorphisms of totally disconnected locally compact abelian groups 
in [14], and to topological automorphisms of locally compact abelian groups in [43] (in a much more general 
setting). The problem of the validity of the Bridge Theorem in the general case of continuous endomorphisms 
of locally compact abelian groups is still open.

In [26] the algebraic dimension entropy entdim was studied for endomorphisms of discrete vector spaces, 
as a particular interesting case of the algebraic i-entropy enti for endomorphisms of modules over a ring R
and an invariant i of Mod(R), introduced in [38] as another generalization of Weiss’ algebraic entropy (see 
also [39]). The algebraic dimension entropy is extended in [5] to locally linearly compact vector spaces, as 
follows. Let φ : V → V be a continuous endomorphism of a locally linearly compact vector space V . For 
every U ∈ B(V ) and n ∈ N+, the n-th φ-trajectory of U is

Tn(φ,U) = U + φU + . . . + φn−1U.

The algebraic entropy of φ with respect to U is

H(φ,U) = lim
n→∞

1
n

dim Tn(φ,U)
U

, (1.2)

and the algebraic entropy of φ is

ent(φ) = sup{H(φ,U) | U ∈ B(V )}.

Remark 1.3. Let φ : V → V be a continuous endomorphism of a locally linearly compact vector space V . 
As noted above for the topological entropy, the deep reason for the existence of the limit in Equation (1.2)
is the fact that, for U ∈ B(V ), its linear subspace U ∩ φU has finite codimension in U , that is, U has finite 
codimension in T2(φ, U) = U + φU . Furthermore, U has finite codimension in Tn(φ, U) for every n ∈ N+.

This phenomenon was isolated in [18], where, for an endomorphism ϕ : G → G of an abelian group G, 
a subgroup N of G is called ϕ-inert if N has finite index in T2(ϕ, N) = N + ϕN . Consequently, N has 
finite index in Tn(ϕ, N) for every n ∈ N+, and the intrinsic algebraic entropy of ϕ with respect to N can be 
defined as

H̃(ϕ,N) = lim
n→∞

1
n

Tn(ϕ,N)
N

;

the intrinsic algebraic entropy of ϕ is

ẽnt(ϕ) = sup{H̃(ϕ,N) | N ≤ G ϕ-inert}.

The concept of fully inert subgroup (i.e., a subgroup of G that is ϕ-inert for every endomorphism ϕ : G →
G) was investigated in [17,20,29], while the notion of inert endomorphism (i.e., an endomorphism ϕ : G → G

such that N is ϕ-inert for every subgroup N of G) was deeply studied in [7–9]. For a comprehensive survey 
on inert properties in group theory see [10].
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The second main result of this paper is the following Bridge Theorem, proved in Section 6, connecting 
the topological entropy ent∗ with the algebraic entropy ent from [5] by means of Lefschetz Duality (see 
§2.2). For a locally linearly compact vector space V and a continuous endomorphism φ : V → V , we denote 
by V̂ the dual of V and by φ̂ : V̂ → V̂ the dual endomorphism of φ with respect to Lefschetz Duality.

Theorem 1.4 (Bridge Theorem). Let V be a locally linearly compact vector space and φ : V → V a continuous 
endomorphism. Then

ent∗(φ) = ent(φ̂).

By analogy with the adjoint algebraic entropy for abelian groups from [16], the adjoint dimension entropy 
was considered in [26]: for a discrete vector space V let C(V ) = {N ≤ V | dimV/N < ∞}; for an 
endomorphism φ : V → V , the adjoint dimension entropy of φ with respect to N is

H∗
dim(φ,N) = lim

n→∞
1
n

dim V

Cn(φ,N) ,

and the adjoint dimension entropy is

ent∗dim(φ) = sup{H∗(φ,N) | N ∈ C(V )}.

It is known from [26, Theorem 6.12] that, for φ∗ : V ∗ → V ∗ the dual endomorphism of the algebraic dual 
V ∗ of V ,

ent∗dim(φ) = entdim(φ∗). (1.3)

As a consequence, the adjoint dimension entropy ent∗dim is proved to take only the values 0 and ∞ (see [26, 
Corollary 6.16]). So, imitating the same approach used in [24] for the adjoint algebraic entropy, a motivating 
idea to introduce the topological entropy ent∗ in this paper is to “topologize” ent∗dim so that it admits all 
possible values in N ∪ {∞}. In fact, if V is a linearly compact vector space and φ : V → V a continuous 
endomorphism, then B(V ) ⊆ C(V ), furthermore H∗(φ, U) = H∗

dim(φ, U) for U ∈ B(V ) (see Lemma 3.10), 
and so ent∗(φ) ≤ ent∗dim(φ).

Moreover, if V is a discrete vector space and φ : V → V is an endomorphism, then V̂ is linearly compact; 
it is also known from [5] that ent(φ) = entdim(φ), and so Theorem 1.4 gives the equality

entdim(φ) = ent∗(φ̂), (1.4)

that appears to be more natural with respect to that in Equation (1.3).
As a consequence of the Bridge Theorem 1.4 and the Addition Theorem 1.2 for the topological entropy 

ent∗, we easily obtain the Addition Theorem for the algebraic entropy ent proved in [5] (see Corollary 6.3). 
Clearly, in the same way, one could deduce Theorem 1.2 from Corollary 6.3 and Theorem 1.4.

We conclude by leaving an open question about the so-called Uniqueness Theorem. Indeed, a Uniqueness 
Theorem for the topological entropy in the category of compact groups and continuous homomorphisms was 
proved by Stojanov in [41]. The same result requires a shorter list of axioms restricting to compact abelian 
groups (see [11, Corollary 3.3]).

We would say that the Uniqueness Theorem holds for the topological entropy ent∗ in the category of 
all locally linearly compact vector spaces over a discrete field K and their continuous homomorphisms, if 
ent∗ was the unique collection of functions ent∗V : End(V ) → N ∪ {∞}, φ 	→ ent∗(φ), satisfying for every 
locally linearly compact vector space V over K: Invariance under conjugation (see Proposition 3.15(a)), 
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Continuity for inverse limits (see Proposition 3.15(e)), Addition Theorem, and ent∗(Fβ) = dimF for any 
finite-dimensional vector space F over K, where V =

⊕0
n=−∞ F ⊕

∏∞
n=1 F is endowed with the topology 

inherited from the product topology of 
∏

n∈Z F , and Fβ : V → V , (xn)n∈Z 	→ (xn+1)n∈Z is the left Bernoulli 
shift (see Example 3.16).

Question 1.5. Does the Uniqueness Theorem hold for the topological entropy ent∗ in the category of locally 
linearly compact vector spaces over a discrete field K?

The validity of the Uniqueness Theorem for ent∗ in the category of all linearly compact vector spaces over 
a discrete field K follows from the Uniqueness Theorem for the dimension entropy entdim in the category of 
all discrete vector spaces over K proved in [26] and from Equation (1.4).

It is a pleasure to thank the referee for the careful reading and his/her comments and suggestions, also 
for a further development of the theory exposed in the present paper.

2. Background on locally linearly compact vector spaces

2.1. Locally linearly compact vector spaces

Fix an arbitrary field K endowed with the discrete topology. A Hausdorff topological K-vector space V
is linearly topologized if it admits a neighborhood basis at 0 consisting of linear subspaces of V . Clearly, 
a linear subspace W of V with the induced topology is still linearly topologized, and the quotient vector 
space V/W endowed with the quotient topology turns out to be linearly topologized whenever W is also 
closed in V . A finite-dimensional linearly topologized vector space is necessarily discrete.

A linear variety of a linearly topologized vector space V is a coset v + W , where W is a linear subspace 
of V and v ∈ V ; the linear variety v + W is closed if W is closed in V . Following Lefschetz [34], a linearly 
compact space V is a linearly topologized vector space such that any collection of closed linear varieties of V
with the finite intersection property has non-empty intersection. We recall the following known properties 
that we frequently use in the paper.

Proposition 2.1 ([34, page 78], [32, Propositions 2 and 9],[45, Theorem 28.5]). Let V be a linearly topologized 
vector space.

(a) If W is a linearly compact linear subspace of V , then W is closed.
(b) If V is linearly compact and W is a closed linear subspace of V , then W is linearly compact.
(c) If W is another linearly topologized vector space and φ : V → W is continuous homomorphism and V

is linearly compact, then φW is linearly compact as well.
(d) If V is discrete, then V is linearly compact if and only if V has finite dimension.
(e) If W is a closed linear subspace of V , then V is linearly compact if and only if W and V/W are linearly 

compact.
(f) The direct product of linearly compact vector spaces is linearly compact.
(g) An inverse limit of linearly compact vector spaces is linearly compact.
(h) If V is linearly compact, then V is complete.

The following result ensures that a continuous isomorphism φ : V → W of linearly topologized vector 
spaces is also open whenever V is linearly compact.
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Proposition 2.2 ([6, Proposition 1.1(v)]). Let V be a linearly compact vector space and W a linearly topol-
ogized vector space. If φ : V → W is a continuous homomorphism, then φ : V → φV is open. In particular, 
any continuous bijective homomorphism φ : V → W is a topological isomorphism.

Recall that a linear filter base N of a linearly compact vector space V is a non-empty family of linear 
subspaces of V satisfying

∀U,W ∈ N , ∃Z ∈ N , such that Z ≤ U ∩W.

Theorem 2.3 ([45, Theorem 28.20]). Let N be a linear filter base of a linearly compact vector space V .

(a) If W is a linearly topologized vector space and φ : V → W a continuous homomorphism, then

φ

( ⋂
N∈N

N

)
=

⋂
N∈N

φN.

(b) If each member of N is closed and if M is a closed linear subspace of V , then

⋂
N∈N

(M + N) = M +
⋂

N∈N
N.

Remark 2.4. In [30] Grothendieck introduced axioms for an abelian category A concerning the existence 
and some properties of infinite direct sums and products. In particular, we are interested in the following 
axiom.

(Ab5*) The category A is complete and if A is an object in A, {Ai}i∈I is a lattice of subobjects of A
and B is any subobject of A, then

⋂
i∈I

(B + Ai) = B +
⋂
i∈I

Ai.

If the abelian category A satisfies the axiom (Ab5*), then the inverse limit functor from the category of 
inverse systems on A to A is an exact additive functor (see [30, §1.5, §1.8]).

Now let us consider the complete abelian category KLC of all linearly compact K-vector spaces. The sub-
objects of a linearly compact vector space V are the closed linear subspaces of V . Thus, by Theorem 2.3(a), 
the category KLC satisfies the axiom (Ab5*), and so the corresponding inverse limit functor is exact.

A topological K-vector space V is locally linearly compact (briefly, l.l.c.) if there exists a neighborhood 
basis at 0 in V consisting of linearly compact open linear subspaces of V (see [34]). In particular, every 
l.l.c. vector space V is linearly topologized. The structure of l.l.c. vector spaces is described by the following 
result.

Theorem 2.5 ([34, (27.10), page 79]). A linearly topologized vector space V is l.l.c. if and only if V ∼=top

Vc⊕Vd, where Vc is a linearly compact linear subspace and Vd is a discrete linear subspace of V . In particular, 
Vc ∈ B(V ).

Thus, every l.l.c. vector space is complete. Moreover, the class of all l.l.c. vector spaces is closed under 
taking closed linear subspaces, quotient vector spaces modulo closed linear subspaces and extensions.



I. Castellano, A. Giordano Bruno / Topology and its Applications 252 (2019) 112–144 119
In view of [5, Proposition 3], for an l.l.c. vector space V and W a closed linear subspace of V ,

B(W ) = {U ∩W | U ∈ B(V )} and B(V/W ) =
{
U + W

W
| U ∈ B(V )

}
. (2.1)

2.2. Lefschetz Duality

Let V be an l.l.c. vector space and let CHom(V,K) be the vector space of all continuous characters 
V → K. For a linear subspace A of V , the annihilator of A in CHom(V,K) is

A⊥ = {χ ∈ CHom(V,K) : χ(A) = 0}.

By [33, 4.(1’), page 86], the continuous characters in CHom(V,K) separate the points of V .
We denote by V̂ the vector space CHom(V,K) endowed with the topology having the family

{A⊥ | A ≤ V, A linearly compact}

as neighborhood basis at 0. The linearly topologized vector space V̂ is an l.l.c. vector space (see [34]). In 
particular, V̂ is discrete whenever V is linearly compact since 0 = V ⊥ is open. More generally, V is discrete 
if and only if V̂ is linearly compact, and V is linearly compact if and only if V̂ is discrete. Moreover, if V
has finite dimension, then V is discrete and V̂ is the algebraic dual of V , so V̂ is isomorphic to V .

By Lefschetz Duality, V is canonically isomorphic to ̂̂V ; indeed, the canonical map

ωV : V → ̂̂V such that ωV (v)(χ) = χ(v) ∀v ∈ V, ∀χ ∈ V̂ , (2.2)

is a topological isomorphism. More precisely, denote by KLLC the category whose objects are all l.l.c. vector 
spaces over K and whose morphisms are the continuous homomorphisms; let

−̂ :K LLC →K LLC

be the duality functor, which is defined on the objects by V 	→ V̂ and on the morphisms sending φ : V → W

to φ̂ : Ŵ → V̂ such that φ(χ) = χ ◦ φ for every χ ∈ Ŵ . Clearly, the biduality functor ̂̂− : KLLC → KLLC
is defined by composing −̂ with itself.

Theorem 2.6 (Lefschetz Duality Theorem). The biduality functor ̂̂− : KLLC → KLLC and the identity func-
tor id : KLLC → KLLC are naturally isomorphic.

In particular, the duality functor defines a duality between the subcategory KLC of linearly compact 
vector spaces over K and the subcategory KVect of discrete vector spaces over K.

We recall that, for a continuous homomorphism φ : V → W of l.l.c. vector spaces,

(a) if φ is injective and it is open onto its image, then φ̂ is surjective;
(b) if φ is surjective, then φ̂ is injective.

As a consequence of Lefschetz Duality Theorem, every linearly compact vector space is a product of 
one-dimensional vector spaces (see [34, Theorem 32.1]). Moreover, one can derive the following result (see 
[5, Proposition 4 and Corollary 1]); note that every compact linearly topologized vector space is linearly 
compact.

Proposition 2.7. Let K be a discrete finite field and let V be a K-vector space.
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(a) If V is linearly compact, then V is compact.
(b) If V is l.l.c., then V is locally compact.

The above proposition implies that, for an l.l.c. vector space V over a discrete finite field, B(V ) is a 
neighborhood basis at 0 in V consisting of compact open subgroups; so, we obtain the following result.

Corollary 2.8. An l.l.c. vector space over a discrete finite field is a totally disconnected locally compact 
abelian group.

Given an l.l.c. vector space V , let B be a linear subspace of V̂ . The annihilator of B in V is

B� = {x ∈ V : χ(x) = 0 for every χ ∈ B}.

For every linear subspace B of V̂ , we have ωV (B�) = B⊥.
We recall now some known properties of the annihilators (see [34,33]) that we use further on.

Lemma 2.9. Let V be an l.l.c. vector space and A a linear subspace of V . Then:

(a) if B is another linear subspace of V and A ≤ B, then B⊥ ≤ A⊥;
(b) A⊥ = A

⊥;
(c) A⊥ is a closed linear subspace of V̂ ;
(d) if A is a closed, (A⊥)� = A.

Lemma 2.10. Let V be an l.l.c. vector space and A1, . . . , An linear subspaces of V . Then:

(a) (
∑n

i=1 Ai)
⊥ =

⋂n
i=1 A

⊥
i ;

(b)
∑n

i=1 A
⊥
i ⊆ (

⋂n
i=1 Ai)

⊥;
(c) if A1, . . . , An are closed, (

⋂n
i=1 Ai)

⊥ =
∑n

i=1 A
⊥
i ;

(d) if A1, . . . , An are linearly compact, (
⋂n

i=1 Ai)
⊥ =

∑n
i=1 A

⊥
i .

The following is a well-know result concerning l.l.c. vector spaces (see [33, §10.12.(6), §12.1.(1)]).

Remark 2.11. Let V be an l.l.c. vector space and U a closed linear subspace of V , then

V̂/U ∼=top U⊥ and Û ∼=top V̂ /U⊥.

The first topological isomorphism is the following. Let π : V → V/U be the canonical projection, consider 
the continuous injective homomorphism π̂ : V̂/U → V̂ ; noting that π̂(V̂/U) = U⊥, let

α : V̂/U → U⊥, χ 	→ π̂(χ), (2.3)

that turns out to be a topological isomorphism.
To find explicitly the second topological isomorphism, let ι : U → V be the topological embedding of U

in V and consider the continuous surjective homomorphism ι̂ : V̂ → Û ; in particular, ι̂(χ) = χ �U for every 
χ ∈ V̂ . Since ker ι̂ = U⊥, consider the continuous isomorphism induced by ι̂

β : V̂ /U⊥ → Û , χ + U⊥ 	→ χ ◦ ι, (2.4)

that turns out to be a topological isomorphism.
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A consequence of the above topological isomorphisms is the following relation that we use in the last 
section.

Lemma 2.12. Let V be a l.l.c. vector space, and let A, B be closed linear subspaces of V such that B ≤ A. 
Then Â/B ∼=top B⊥/A⊥.

Proof. Let ι : A/B → V/B be the topological embedding and β : V̂/B/(A/B)⊥ → Â/B the topological 
isomorphism given by Equation (2.4). Set π : V̂/B → V̂/B/(A/B)⊥ be the canonical projection. Since 

ι̂ = β ◦ π, ι̂ is an open continuous surjective homomorphism. Let α : V̂/B → B⊥ be the topological 
isomorphism given by Equation (2.3); then ϕ = β ◦π ◦α−1 is an open continuous surjective homomorphism 

ϕ : B⊥ → Â/B.

B⊥ α−1

ϕ

V̂/B

ι̂

π V̂/B
(A/B)⊥

β
Â/B

As kerϕ = A⊥, we conclude that B⊥/A⊥ ∼=top Â/B. �
3. Properties and examples

3.1. Existence of the limit and basic properties

Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism and U ∈ B(V ). For every n ∈ N+, 
Cn(φ, U) ∈ B(V ) by Proposition 2.1(b); hence, U/Cn(φ, U) has finite dimension by Proposition 2.1(d,e).

Moreover, Cn(φ, U) ≥ Cn+1(φ, U) for every n ∈ N+, so we have the following decreasing chain

U = C1(φ,U) ≥ C2(φ,U) ≥ · · · ≥ Cn(φ,U) ≥ Cn+1(φ,U) ≥ . . .

in B(V ). The largest φ-invariant subspace of U , namely,

C(φ,U) =
⋂

n∈N+

Cn(φ,U),

is the φ-cotrajectory of U in V ; it is a linearly compact linear subspace of V by Proposition 2.1(b).

Lemma 3.1. Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism and U ∈ B(V ). For 
every n ∈ N+, Cn(φ, U)/Cn+1(φ, U) has finite dimension and Cn+1(φ, U)/Cn+2(φ, U) is isomorphic to a 
linear subspace of Cn(φ, U)/Cn+1(φ, U).

Proof. To simplify the notation, let Cn = Cn(φ, U) for every n ∈ N+.
Fix n ∈ N+. Since Cn+1 ≤ Cn, and Cn+1 is open while Cn is linearly compact, Cn/Cn+1 has finite 

dimension by Proposition 2.1(d,e).
Since Cn+2 = Cn+1 ∩ φ−n−1U and Cn+1 = U ∩ φ−1Cn, it follows that

Cn+1 ∼= Cn+1 + φ−n−1U
−n−1 ≤ φ−1Cn + φ−n−1U

−n−1 .

Cn+2 φ U φ U
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On the other hand, since Cn+1 = Cn ∩ φ−nU ,

Cn

Cn+1
∼= Cn + φ−nU

φ−nU
.

Let φ̃ : V/φ−n−1U → V/φ−nU be the injective homomorphism induced by φ. Then

φ̃

(
φ−1Cn + φ−n−1U

φ−n−1U

)
≤ Cn + φ−nU

φ−nU

and so the thesis follows. �
The following result shows that the limit in the definition of the topological entropy H∗(φ, U) (see 

Equation (1.1)) exists and it is a natural number.

Proposition 3.2. Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism and U ∈ B(V ). For 
every n ∈ N+, let

γn = dim Cn(φ,U)
Cn+1(φ,U) .

Then the sequence of non-negative integers {γn}n∈N+ is decreasing, hence stationary. Moreover, H∗(φ, U) =
γ, where γ is the value of the stationary sequence {γn}n∈N+ for n ∈ N+ large enough.

Proof. To simplify the notation, let Cn = Cn(φ, U) for every n ∈ N+. By Lemma 3.1, γn+1 ≤ γn for every 
n ∈ N+. Hence, there exist γ ∈ N and n0 ∈ N such that γn = γ for all n ≥ n0. Since

U

Cn

∼= U/Cn+1

Cn/Cn+1
,

it follows that

dim U

Cn+1
= dim U

Cn
+ γn,

and so, for every n ∈ N,

dim U

Cn0+n
= dim U

Cn0

+ nγ.

Hence, H∗(φ, U) = limn→∞
1
n

(
dim U

Cn0
+ nγ

)
= γ. �

Remark 3.3. As pointed out above and in the introduction, the main property that permits to introduce the 
topological entropy ent∗ and to prove the existence of the limit in its definition (see Proposition 3.2) is that 
for V an l.l.c. vector space, φ : V → V a continuous endomorphism and U ∈ B(V ), the quotient U/Cn(φ, U)
has finite dimension for every n ∈ N+. The same property, and then also the result in Proposition 3.2, holds 
for a wider class of linearly topologized vector spaces that we call locally linearly precompact.

Let V be a linearly topologized vector space over a discrete field K. We say that V is linearly precompact
if for every open linear subspace U of V there exists a finite dimensional linear subspace F of V such 
that U + F = V (i.e., V/U has finite dimension). Moreover, V is locally linearly precompact if it admits a 
neighborhood basis at 0 of linearly precompact open linear subspaces. Clearly, a linearly compact vector 
space is linearly precompact and an l.l.c. vector space is locally linearly precompact.
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So, one could study the topological entropy ent∗ in the general case of continuous endomorphisms of 
locally linearly precompact vector spaces. Nevertheless, in this paper we remain in the class of l.l.c. vector 
spaces, where the stronger condition on the open linear subspaces of being linearly compact ensures a richer 
theory.

We see now that H∗(φ, −) is monotone decreasing in the following sense.

Lemma 3.4. Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism and U, U ′ ∈ B(V ). If 
U ′ ≤ U , then H∗(φ, U) ≤ H∗(φ, U ′).

Proof. Let U, U ′ ∈ B(V ) such that U ′ ≤ U . As Cn(φ, U ′) ≤ Cn(φ, U) for all n ∈ N+, from

U ′/Cn(φ,U ′)
(U ′ ∩ Cn(φ,U))/Cn(φ,U ′)

∼= U ′

U ′ ∩ Cn(φ,U)
∼= Cn(φ,U) + U ′

Cn(φ,U) ,

since all terms are finite-dimensional, it follows that

dim U ′

Cn(φ,U ′) ≥ dim Cn(φ,U) + U ′

Cn(φ,U)

Since Cn(φ, U) ≤ Cn(φ, U) + U ′ ≤ U ,

dim Cn(φ,U) + U ′

Cn(φ,U) = dim U

Cn(φ,U) − dim U

Cn(φ,U) + U ′

≥ dim U

Cn(φ,U) − dim U

U ′ .

Therefore, dim U ′

Cn(φ,U ′) ≥ dim U
Cn(φ,U)−dim U

U ′ , and so H∗(φ, U ′) ≥ H∗(φ, U), since dim U
U ′ does not depend 

on n. �
As a straightforward consequence of Lemma 3.4 it is possible to compute the topological entropy by 

restricting to any neighborhood basis at 0 in V contained in B(V ):

Corollary 3.5. Let V be an l.l.c. vector space and φ : V → V a continuous endomorphism. If B ⊆ B(V ) is a 
neighborhood basis at 0 in V , then

ent∗(φ) = sup{H∗(φ,U) | U ∈ B}.

Consequently, if W is an open linear subspace of V , then ent∗(φ) = sup{H∗(φ, U) | U ∈ B(W )}.

We consider now the case of topological entropy zero. The following result clearly follows from the 
definitions and from Corollary 3.5, it shows that ent∗ vanishes in presence of a neighborhood basis at 0
consisting of invariant open linearly compact linear subspaces.

Lemma 3.6. Let V be an l.l.c. vector space and φ : V → V a continuous endomorphism. If φU ≤ U for 
every U ∈ B, where B ⊆ B(V ) is a neighborhood basis at 0 in V , then ent∗(φ) = 0.

Example 3.7. For V an l.l.c. vector space, ent∗(idV ) = 0, where idV : V → V is the identity automorphism.

The following result concerns the general case of an endomorphism of zero topological entropy.
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Proposition 3.8. Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism and U ∈ B(V ). The 
following conditions are equivalent:

(a) H∗(φ, U) = 0;
(b) there exists n ∈ N+ such that C(φ, U) = Cn(φ, U);
(c) C(φ, U) is open.

In particular, ent∗(φ) = 0 if and only if C(φ, U) is open for all U ∈ B(V ).

Proof. (a)⇒(b) Since dim Cn(φ,U)
Cn+1(φ,U) = 0 eventually by Proposition 3.2, there exists n0 ∈ N+ such that 

Cn(φ, U) = Cn0(φ, U) for every n ≥ n0.
(b)⇒(c) is clear since Cn(φ, U) ∈ B(V ) for every n ∈ N+.
(c)⇒(a) If C(φ, U) is open, then U/C(φ, U) has finite dimension by Proposition 2.1(d,e). Therefore, 

H∗(φ, U) ≤ limn→∞
1
n dim U

C(φ,U) = 0. �
As a consequence, the topological entropy is always zero on discrete vector spaces, and so in particular 

on finite-dimensional vector spaces:

Corollary 3.9. Let φ : V → V be an endomorphism of a discrete vector space V . Then ent∗(φ) = 0.

On the other hand, for linearly compact vector spaces we can simplify the defining formula of the topo-
logical entropy as follows. Note that if V is a linearly compact vector space, then B(V ) = {U ≤ V | U open}; 
indeed, an open linear subspace of a linearly compact vector space is necessarily linearly compact by Propo-
sition 2.1(b).

Lemma 3.10. Let V be a linearly compact vector space, φ : V → V a continuous endomorphism and U ∈
B(V ). Then

H∗(φ,U) = lim
n→∞

1
n

dim V

Cn(φ,U) .

Proof. Since U, Cn(φ, U) ∈ B(V ), we have that V/U and V/Cn(φ, U) have finite dimension by Proposi-
tion 2.1(d,e). Then dim U

Cn(φ,U) = dim V
Cn(φ,U) − dim V

U and hence

H∗(φ,U) = lim
n→∞

1
n

(
dim U

Cn(φ,U) − dim V

U

)
= lim

n→∞
1
n

dim V

Cn(φ,U) ,

so we have the thesis. �
By Corollary 2.8, an l.l.c. vector space V over a discrete finite field is in particular a totally disconnected 

locally compact abelian group. We end this section by relating ent∗ to the topological entropy htop.

Proposition 3.11. Let V be an l.l.c. vector space over a discrete finite field F and φ : V → V a continuous 
endomorphism. Then

htop(φ) = ent∗(φ) · log |F|.

Proof. As B(V ) is a local basis at 0 in V contained in Bgr(V ), and since also Htop(φ, −) is monotone 
decreasing (see [13, Remark 4.5.1(b)]), we have that
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htop(φ) = sup{Htop(φ,U) | U ∈ B(V )}. (3.1)

Now, for every U ∈ B(V ), ∣∣∣∣ U

Cn(φ,U)

∣∣∣∣ = |F|dim U
Cn(φ,U) ,

and so

Htop(φ,U) = lim
n→∞

1
n

log
∣∣∣∣ U

Cn(φ,U)

∣∣∣∣ = lim
n→∞

1
n

dim U

Cn(φ,U) log |F| = H∗(φ,U) · log |F| .

Thus, htop(φ) = ent∗(φ) · log |F|. �
The previous result points out that, as long as we are dealing with l.l.c. vector spaces over discrete finite 

fields, the topological entropy ent∗ turns out to be a rescaling of the topological entropy htop and the most 
natural logarithm to compute the topological entropy htop is the one with base |F|.

Remark 3.12. When the discrete field K is infinite, even if an l.l.c. vector space over K is no more a locally 
compact group, one can still compare ent∗ with the topological entropy htop for uniformly continuous maps 
of uniform spaces introduced by Hood [31]. We leave open the problem to find a relation between ent∗ and 
htop in this case. It seems that they are different, at least in the positive values: the Bernoulli shift in this 
case has infinite topological entropy htop, while ent∗ is finite (see Example 3.16 below).

As the latter remark highlights, it could be meaningful to dedicate more attention to the dependence of 
the topological entropy ent∗ on the choice of the discrete field K:

Problem 3.13. Let E be a field extension of K. In which cases there exist functors

Flow(KLC) � Flow(ELC),

induced by restriction/extension of scalars? Assume such functors exist, how does ent∗ behave under trans-
portation along those functors?

Problem 3.13 will be discussed in the forthcoming paper [4].

3.2. Fundamental properties

In this section we list the general properties and examples concerning the topological entropy ent∗.

Lemma 3.14. Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism, W a closed φ-invariant 
linear subspace of V and φ : V/W → V/W the continuous endomorphism induced by φ. For n ∈ N+ and 
U ∈ B(V ) and

Cn(φ �W , U ∩W ) = Cn(φ,U) ∩W and Cn

(
φ,

U + W

W

)
= Cn(φ,U + W )

W
.

Proof. Let n ∈ N+ and U ∈ B(V ). Then φ �−n
W (U ∩W ) = φ−nU ∩W and

φ
−n

(
U + W

W

)
= φ−n(U + W ) + W

W
= φ−n(U + W )

W
.

The thesis follows from these equalities. �
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We collect in the next result all the typical properties of an entropy function, that are satisfied by the 
topological entropy ent∗.

Proposition 3.15. Let V be an l.l.c. vector space and φ : V → V a continuous endomorphism.

(a) (Invariance under conjugation) If α : V → W is a topological automorphism of l.l.c. vector spaces, then

ent∗(αφα−1) = ent∗(φ).

(b) (Monotonicity) If W is a closed φ-invariant linear subspace of V and φ : V/W → V/W the continuous 
endomorphism induced by φ, then

ent∗(φ) ≥ ent∗(φ �W ) + ent∗(φ).

In particular, ent∗(φ) ≥ max{ent∗(φ �W ), ent∗(φ)}. (If W is open, ent∗(φ) = ent∗(φ �W ).)
(c) (Logarithmic law) If k ∈ N, then ent∗(φk) = k · ent∗(φ).
(d) (weak Addition Theorem) If V = V1 × V2 for some l.l.c. vector spaces V1, V2, and φ = φ1 × φ2 : V → V

for some continuous endomorphisms φi : Vi → Vi, i = 1, 2, then

ent∗(φ) = ent∗(φ1) + ent∗(φ2).

(e) (Continuity on inverse limits) Let {Wi | i ∈ I} be a directed system (under inverse inclusion) of closed 
φ-invariant linear subspaces of V . If V = lim←−−V/Wi, then

ent∗(φ) = sup
i∈I

ent∗(φWi
),

where any φWi
: V/Wi → V/Wi is the continuous endomorphism induced by φ.

Proof. (a) Let U ∈ B(W ) and n ∈ N+. Since Cn(αφα−1, U) = α(Cn(φ, α−1U)), it follows that

dim U

Cn(αφα−1, U) = dim α(α−1U)
αCn(φ, α−1U) = dim α−1U

Cn(φ, α−1U) .

Hence H∗(αφα−1, U) = H∗(φ, α−1U). Since α is a topological isomorphism and U ∈ B(W ) if and only if 
α−1U ∈ B(V ), α induces a bijection between B(W ) and B(V ). Thus, ent∗(αφα−1) = ent∗(φ).

(b) Let U ∈ B(V ) and n ∈ N+. Lemma 3.14 implies that Cn

(
φ, U+W

W

)
= Cn(φ,U+W )

W . Since moreover 
W ≤ Cn(φ, U + W ) ≤ U + W , we have that

U + W

Cn(φ,U + W ) = U + W + Cn(φ,U + W )
W + Cn(φ,U + W )

∼= U

(W + Cn(φ,U + W )) ∩ U
= U

Cn(φ,U + W ) ∩ U
;

hence,

U+W
W

/
Cn(φ, U+W

W ) ∼= U + W

Cn(φ,U + W )
∼= U

Cn(φ,U + W ) ∩ U
. (3.2)

Moreover, by Lemma 3.14,

U

Cn(φ,U) + U ∩W
∼=

U
Cn(φ,U)

/
Cn(φ,U)+U∩W

Cn(φ,U)

∼=
U

Cn(φ,U)

/
U∩W ∼=

U
Cn(φ,U)

/
U∩W . (3.3)
Cn(φ,U)∩U∩W Cn(φ�W ,U∩W )
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Since Cn(φ, U) + U ∩W ≤ Cn(φ, U + W ) ∩ U , Equations (3.2) and (3.3) yield that

dim
(

U+W
W

/
Cn(φ, U+W

W )
)

= dim U

Cn(φ,U + W ) ∩ U
≤ dim U

Cn(φ,U) + U ∩W

= dim U

Cn(φ,U) − dim U

Cn(φ �W , U ∩W ) .

By Equation (2.1) we have the thesis.
If W is open, then B(W ) is a neighborhood basis at 0 in V , and so ent∗(φ) = ent∗(φ �W ) follows by 

Corollary 3.5.
(c) For k = 0, ent∗(idV ) = 0 by Example 3.7. So let k ∈ N+ and U ∈ B(V ). For every n ∈ N+ we have

Cnk(φ,U) = Cn(φk, Ck(φ,U)) and Cn(φ,Ck(φ,U)) = Cn+k−1(φ,U). (3.4)

Let E = Ck(φ, U) ∈ B(V ). Hence, by Lemma 3.4 and Equation (3.4),

k ·H∗(φ,U) ≤ k ·H∗(φ,E) = k · lim
n→∞

1
nk

dim E

Cnk(φ,E) = lim
n→∞

1
n

dim E

C(n+1)k−1(φ,U)

≤ lim
n→∞

1
n

dim E

C(n+1)k(φ,U) = lim
n→∞

1
n

dim E

Cn+1(φk, E) = H∗(φk, E) ≤ ent∗(φk).

Consequently, k · ent∗(φ) ≤ ent∗(φk). Conversely, as Cnk(φ, U) ≤ E ≤ U , Equation (3.4) together with 
Lemma 3.4 yields

ent∗(φ) ≥ H∗(φ,U) = lim
n→∞

1
nk

dim U

Cnk(φ,U) = lim
n→∞

1
nk

dim U

Cn(φk, E)

≥ lim
n→∞

1
nk

dim E

Cn(φk, E) = 1
k
·H∗(φk, E) ≥ 1

k
H∗(φk, U).

So, k · ent∗(φ) ≥ ent∗(φk).
(d) Observe that B = {U1 × U2 | Ui ∈ B(Vi), i = 1, 2} ⊆ B(V ) is neighborhood basis at 0 in V . For 

U = U1 × U2 ∈ B, we have that Cn(φ, U) = Cn(φ1, U1) × Cn(φ2, U2) for every n ∈ N+; therefore,

U

Cn(φ,U) = U1 × U2

Cn(φ1, U1) × Cn(φ2, U2)
∼= U1

Cn(φ1, U1)
× U2

Cn(φ2, U2)
,

and so

H∗(φ,U) = lim
n→∞

1
n

U

Cn(φ,U) = lim
n→∞

1
n

dim
(

U1

Cn(φ1, U1)
× U2

Cn(φ2, U2)

)
= H∗(φ1, U1) + H∗(φ2, U2).

By Corollary 3.5, we conclude that ent∗(φ) = sup{H∗(φ, U) | U ∈ B} = ent∗(φ1) + ent∗(φ2).
(e) By item (b), ent∗(φ) ≥ supi∈I ent∗(φWi

). Conversely, let U ∈ B(V ). We claim that there exists k ∈ I

such that Wk ≤ U . In fact, since U is open in V , there exists an open linear subspace A belonging to the 
canonical neighborhood basis at 0 in 

∏
i∈I V/Wi such that A ∩ V ≤ U . Namely, let πi : V → V/Wi be 

the canonical projections. Since each V/Wi is linearly topologized by the quotient topology, there exists a 
finite family {Uj | j ∈ J}, with J ⊆ I, of open linear subspaces of V such that Wj ≤ Uj for all j ∈ J and 
A =

∏
i∈I Ai, where Aj = πjUj for j ∈ J and Ai = πiV for i ∈ I \ J . Since {Wi | i ∈ I} is directed, there 

exists k ∈ I such that j ≤ k for all j ∈ J . Thus, given the open (and so closed) linear subspace
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Uk =
⋂
j∈J

Uj + Wk ≤ Uj

for j ∈ J , we have that lim←−−πiUk is closed in V since each πiUk is open (and so closed) in V/Wi. Moreover, 
Uk is a closed linear subspace of lim←−−πiUk, thus by [37, Lemma 1.1.7], it follows that

Uk = lim←−−
i∈I

πiUk ≤ A ∩ V ≤ U ;

therefore Wk ≤ U .
Thus, H∗(φ, U) = H∗(φ, πkU) by Lemma 3.14, and hence

H∗(φ,U) ≤ ent∗(φWk
) ≤ sup

i∈I
ent∗(φWi

),

that concludes the proof. �
The following provides the main examples in the theory of entropy functions, that is, the Bernoulli shifts.

Example 3.16.

(a) Let V = Vd × Vc, where

Vd =
0⊕

n=−∞
K and Vc =

∞∏
n=1

K,

be endowed with the topology inherited from the product topology of 
∏

n∈Z K. Then Vc is linearly 
compact and Vd is discrete. In particular, Vc can be identified with 0 × Vc ∈ B(V ).
The left Bernoulli shift is

Kβ : V → V, (xn)n∈Z 	→ (xn+1)n∈Z.

The right Bernoulli shift is

βK : V → V, (xn)n∈Z 	→ (xn−1)n∈Z.

Clearly, βK and Kβ are topological automorphisms of V , and β−1
K = Kβ.

For every k ∈ N+, let Uk = 0 ×
∏∞

n=k K ∈ B(V ), and consider Bf (Vc) = {Uk | k ∈ N+} ⊆ B(V ). 
Since Vc ∈ B(V ), the family Bf (Vc) is a neighborhood basis at 0 in V contained in B(V ). Thus, by 
Corollary 3.5, for φ ∈ {βK, Kβ},

ent∗(φ) = sup{H∗(φ,U) | U ∈ Bf (Vc)}.

For every k ∈ N+, we have that βK(Uk) ≤ Uk, so ent∗(βK) = 0 by Lemma 3.6.
Let k ∈ N+ and consider Uk ∈ Bf (Vc). As Uk ≤ Kβ(Uk), we have that Cn(Kβ, Uk) = βn−1

K (Uk) = Uk+n−1
for every n ∈ N+. Thus,

H∗(Kβ, Uk) = inf
n∈N+

dim Cn(Kβ, Uk)
Cn+1(Kβ, Uk)

= 1,

and we conclude that ent∗(Kβ) = 1 by Corollary 3.5.
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(b) Let now F be a finite dimensional vector space and let V = Vd × Vc, with

Vd =
∞⊕

n=1
F and Vc =

0∏
n=−∞

F,

be endowed with the topology inherited from the product topology of 
∏

n∈Z F , so Vd is discrete and Vc

is linearly compact.
The left Bernoulli shift is

Fβ : V → V, (xn)n∈Z 	→ (xn+1)n∈Z,

while the right Bernoulli shift is

βF : V → V, (xn)n∈Z 	→ (xn−1)n∈Z.

Clearly, βF and Fβ are topological automorphisms such that Fβ−1 = βF .
It is possible, slightly modifying the computations in item (a), to find that

ent(Fβ) = dimF and ent(βF ) = 0.

By the latter example, it is clear that for a topological automorphism φ : V → V of an l.l.c. vector 
space V , in general ent∗(φ−1) does not coincide with ent∗(φ); consequently, property (c) of Proposition 3.15
cannot be extended to any integer k ∈ Z by the formula ent∗(φk) = |k| · ent∗(φ). Now, in the last part of 
this section, we find the precise relation between ent∗(φ−1) and ent∗(φ) and we deduce that equality holds 
in case V is linearly compact.

Analogously to the classical modulus for topological automorphisms of locally compact groups, we define 
the dimension modulus of V by

Δdim : Aut(V ) → Z, φ 	→ Δdim(φ,U) for U ∈ B(V ),

where

Δdim(φ,U) = dim φU

U ∩ φU
− dim U

U ∩ φU
.

In the next lemma we verify that this definition is well-posed, in fact it does not depend on the choice of 
U ∈ B(V ).

Lemma 3.17. Let V be an l.l.c. vector space, φ : V → V a topological automorphism and U1, U2 ∈ B(V ). 
Then Δdim(φ, U1) = Δdim(φ, U2).

Proof. Since B(V ) is closed under taking finite intersections, one can assume U1 ≤ U2 by arguing with 
U1 ∩ U2. Since U1 ∩ φU1 ≤ φU1 ≤ φU2 and U1 ∩ φU1 ≤ U1 ≤ U2, we have

dim φU1

U1 ∩ φU1
= dim φU2

U1 ∩ φU1
− dim φU2

φU1
,

dim U1

U1 ∩ φU1
= dim U2

U1 ∩ φU1
− dim U2

U1
.

Since φ is an automorphism, dim φU2 = dim U2 , and so
φU1 U1
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Δ(φ,U1) = dim φU1

U1 ∩ φU1
− dim U1

U1 ∩ φU1
= dim φU2

U1 ∩ φU1
− dim U2

U1 ∩ φU1
.

Analogously, since U1 ∩ φU1 ≤ U2 ∩ φU2 ≤ φU2 and U1 ∩ φU1 ≤ U2 ∩ φU2 ≤ U2,

dim φU2

φU1 ∩ φU2
= dim φU2

U1 ∩ φU1
− dim U2 ∩ φU2

U1 ∩ φU1
,

dim U2

U2 ∩ φU2
= dim U2

U1 ∩ φU1
− dim U2 ∩ φU2

U1 ∩ φU1
.

Since φ is an automorphism, dim φU2
φU1

= dim U2
U1

, and so

Δ(φ,U2) = dim φU2

U2 ∩ φU2
− dim U2

U2 ∩ φU2
= dim φU2

U1 ∩ φU1
− dim U2

U1 ∩ φU1
.

Therefore, Δ(φ, U1) = Δ(φ, U2) as required. �
It is clear from the definition that the dimension modulus is always zero for discrete vector spaces. 

Moreover, it follows from Lemma 3.17 that the dimension modulus is always zero also for linearly compact 
vector spaces, since one can take V itself as a linearly compact open linear subspace:

Lemma 3.18. If V is either a discrete or a linearly compact vector space and φ : V → V is a topological 
automorphism, then Δdim(φ) = 0.

The following result provides the precise relation between ent∗(φ−1) and ent∗(φ), it is inspired by its 
analogue for totally disconnected locally compact groups provided in [25, Proposition 3.2].

Theorem 3.19. Let V be an l.l.c. vector space and φ : V → V a topological automorphism of V . If U ∈ B(V ), 
then H∗(φ−1, U) = H∗(φ, U) − Δdim(φ). Hence,

ent∗(φ−1) = ent∗(φ) − Δdim(φ).

Proof. Since Cn(φ−1, U) = φnCn(φ, U) and Cn+1(φ, U) = Cn(φ, U) ∩ φ−1Cn(φ, U) for every n ∈ N+,

dim Cn(φ,U)
Cn+1(φ,U) = dim Cn(φ,U)

Cn(φ,U) ∩ φ−1Cn(φ,U)

= dim φn+1Cn(φ,U)
φn+1Cn(φ,U) ∩ φnCn(φ,U) = dim φCn(φ−1, U)

φCn(φ−1, U) ∩ Cn(φ−1, U) .

By Proposition 3.2 and Lemma 3.17, it follows that

H∗(φ,U) −H∗(φ−1, U) = inf
n∈N+

(
dim Cn(φ,U)

Cn+1(φ,U) − dim Cn(φ−1, U)
Cn+1(φ−1, U)

)
=

= inf
n∈N+

(
dim φCn(φ−1, U)

φCn(φ−1, U) ∩ Cn(φ−1, U) − dim Cn(φ−1, U)
Cn(φ−1, U) ∩ φCn(φ−1, U)

)
= Δdim(φ),

since Cn(φ−1, U) ∈ B(V ) for all n ∈ N+. �
The following is a direct consequence of the above theorem and Lemma 3.18.
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Corollary 3.20. Let V be a linearly compact vector space and φ : V → V a topological automorphism. If 
U ∈ B(V ), then H∗(φ−1, U) = H∗(φ, U). Hence,

ent∗(φ−1) = ent∗(φ).

3.3. Limit-free Formula

This section is devoted to prove Proposition 3.23, which is a formula for the computation of the topological 
entropy avoiding the limit in the definition. The proof follows the technique used in [28, Proposition 3.9], 
which was developed by Willis in [47].

Definition 3.21. Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism and U ∈ B(V ). Let:

– U0 = U ;
– Un+1 = U ∩ φUn, for all n ∈ N;
– U+ =

⋂
n∈N Un.

For every n ∈ N+, Un ≥ Un+1 ≥ U+; moreover, each Un is linearly compact and so is U+ (see Proposi-
tion 2.1(a,b,c)). Furthermore, it is possible to prove by induction that, for every n ∈ N,

Un = {u ∈ U | ∃v ∈ U, u = φn(v) and φj(v) ∈ U ∀j ∈ {0, . . . , n}}. (3.5)

Since Cn+1(φ, U) = {u ∈ U | φk(u) ∈ U ∀k ∈ {0, . . . , n}}, it follows that

φnCn+1(φ,U) = Un ∀n ∈ N. (3.6)

For every n ∈ N, Un = Cn+1(φ−1, U) whenever φ is also injective.
In the following result we collect the main properties of the linearly compact subgroup U+ of an l.l.c. 

vector space V for U ∈ B(V ).

Lemma 3.22. Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism and U ∈ B(V ). Then:

(a) U+ is the largest linear subspace of U such that U+ ≤ φU+;
(b) U+ = U ∩ φU+;
(c) φU+/U+ has finite dimension.

Proof. (a) Since Un+1 ≤ Un ≤ φUn−1 for all n ∈ N+, by applying Theorem 2.3(a) to U and the decreasing 
chain {Un}n∈N, we have

U+ =
⋂
n∈N

Un ≤
⋂
n∈N

φUn = φ
( ⋂

n∈N

Un

)
= φU+.

Moreover, for every linear subspace W of V such that W ≤ U and W ≤ φW , it is possible to prove by 
induction that W ≤ Un for all n ∈ N, and so W ≤ U+.

(b) By construction,

U ∩ φU+ =
⋂
n∈N

(U ∩ φUn) =
⋂
n∈N

Un+1 = U+.

(c) Since U+ = U ∩ φU+ by item (b), U+ is open in φU+, which is linearly compact. Then φU+/U+ has 
finite dimension by Proposition 2.1(d,e). �
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We are now in position to prove the Limit-free Formula.

Proposition 3.23 (Limit-free Formula). Let V be an l.l.c. vector space, φ : V → V a continuous endomor-
phism and U ∈ B(V ). Then

H∗(φ,U) = dim φU+

U+
(3.7)

Proof. Let U ∈ B(V ). For every n ∈ N+, let

γn = dim Cn(φ,U)
Cn+1(φ,U) .

By Proposition 3.2, the sequence {γn}n∈N is stationary, and H∗(φ, U) = γ where γ is the value of the 
stationary sequence {γn}n∈N for n ∈ N+ large enough. Hence, it suffices to prove that

dim φU+

U+
= γ. (3.8)

Since φUn +U is linearly compact for every n ∈ N by Proposition 2.1(f), thus dim φUn+U
U is finite, being 

U open, by Proposition 2.1(d,e). Moreover, since φUn ≥ φUn+1 for all n ∈ N, the sequence of non-negative 

integers 
{
dim φUn+U

U

}
n∈N

is decreasing, and so stationary. Thus, there exists n0 ∈ N such that, for every 

n ≥ n0,

γ = dim Cn(φ,U)
Cn+1(φ,U) and φUn + U = φUn0 + U ;

since {φUn + U}n∈N is a decreasing chain,

φUn0 + U =
⋂
n∈N

(φUn + U).

Let m ≥ n0. Theorem 2.3(b) applied to the linearly compact linear subspace U + φU and the descending 
chain {Un}n∈N yields

φUm + U =
⋂
n∈N

(φUn + U) =
( ⋂

n∈N

φUn

)
+ U = φ

( ⋂
n∈N

Un

)
+ U = φU+ + U.

As U+ = U ∩ φU+ by Lemma 3.22(b), we have

dim φU+

U+
= dim φU+

U ∩ φU+
= dim U + φU+

U

= dim U + φUm

U
= dim φUm

U ∩ φUm
= dim φUm

Um+1
.

Equation (3.6) now gives φm+1Cm+1(φ, U) = φUm, so there exists a surjective homomorphism

ϕ : Cm+1(φ,U) → φUm/Um+1, x 	→ φm+1(x) + Um+1,

such that kerϕ = Cm+2(φ, U). Hence,
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φUm

Um+1
∼= Cm+1(φ,U)

Cm+2(φ,U)
.

Finally,

dim φU+

U+
= dim φUm

Um+1
= dim Cm+1(φ,U)

Cm+2(φ,U) = γ,

as required in Equation (3.8). �
The following useful consequence of the Limit-free Formula is inspired by its analogue in the context 

of totally disconnected locally compact groups. Here we adapt the proof of [28, Proposition 3.11] to our 
context for reader’s convenience.

Corollary 3.24. Let V be an l.l.c. vector space and φ : V → V a continuous endomorphism. Then

ent∗(φ) = sup
{

dim φM

M
| M ≤ φM ≤ V, M linearly compact, dim φM

M
< ∞

}
=: s.

Proof. By Proposition 3.23, ent∗(φ) ≤ s. To prove the converse inequality, let M be a linearly compact 
linear subspace of V such that M ≤ φM and φM/M has finite dimension. By Proposition 2.1(a,d,e), this 
implies that M is open in φM , since M is closed and φM is linearly compact, namely, M ∈ B(φM). By 
Equation (2.1), there exists U ∈ B(V ) such that M = U ∩ φM . As M ≤ φM and M ≤ U , we deduce that 
M ≤ U+ by Lemma 3.22(a). Therefore φM ≤ φU+, and so

ent∗(φ) ≥ dim φU+

U+
= dim φU+

U ∩ φU+
≥ dim φU+ ∩ φM

U ∩ φU+ ∩ φM
= dim φM

U ∩ φM
= dim φM

M
,

since U+ = U ∩ φU+ by Lemma 3.22(b). Finally, it follows that s ≤ ent∗(φ). �
4. Reductions for the computation of the topological entropy

In this section we provide two reductions that can be used to simplify the computation of the topological 
entropy. The first one follows from the Limit-free Formula and shows that it is sufficient to consider linearly 
compact vector spaces. Once we restrict to linearly compact vector spaces, we make a second reduction to 
topological automorphisms.

4.1. Reduction to linearly compact vector spaces

Let V be an l.l.c. vector space and φ : V → V a continuous endomorphism. By Theorem 2.5 we can 
assume that V = Vc ⊕ Vd, where Vc ∈ B(V ) and consequently Vd is discrete. Let

ι∗ : V∗ → V, p∗ : V → V∗

with ∗ ∈ {c, d} be the canonical injections and projections, respectively. Accordingly, we may associate to 
φ the following decomposition

φ =
(
φcc φdc

φcd φdd

)
,

where φ•∗ : V• → V∗ is the composition φ•∗ = p∗ ◦ φ ◦ ι• for •, ∗ ∈ {c, d}. Therefore, φ•∗ is continuous being 
composition of continuous homomorphisms.
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Lemma 4.1. In the above notations, consider φcd : Vc → Vd. Then

Im(φcd) ∈ B(Vd) and ker(φcd) ∈ B(Vc) ⊆ B(V ).

Proof. By Proposition 2.1(c), Im(φcd) is a linearly compact linear subspace of Vd. For Vd is discrete, Im(φcd)
has finite dimension by Proposition 2.1(d,e), so Im(φcd) ∈ B(Vd) = {F ≤ Vd | dimF < ∞}.

As ker(φcd) is a closed linear subspace of Vc, which is linearly compact, ker(φcd) is linearly compact 
as well by Proposition 2.1(b). Thus Vc/ ker(φcd) ∼= Im(φcd) is a finite dimensional linearly compact space, 
so V/ ker(φcd) is discrete by Proposition 2.1(d,e). Consequently, ker(φcd) is open in Vc, and so ker(φcd) ∈
B(Vc). �

We see now that in the above decomposition of φ, the unique contribution to the topological entropy of 
φ comes from the “linearly compact component” φcc.

Proposition 4.2. In the above notations, consider φcc : Vc → Vc. Then ent∗(φ) = ent∗(φcc).

Proof. By Lemma 4.1, K = ker(φcd) ∈ B(Vc) ⊆ B(V ). Thus, by Corollary 3.5,

ent∗(φ) = sup{H∗(φ,U) | U ∈ B(K)},
ent∗(φcc) = sup{H∗(φcc, U) | U ∈ B(K)}.

For U ∈ B(K), as in Definition 3.21, let

U0 = U and U cc
0 = U,

Un+1 = U ∩ φUn and U cc
n+1 = U ∩ φccU

cc
n , for every n ∈ N,

U+ =
⋂
n∈N

Un and U cc
+ =

⋂
n∈N

U cc
n .

Proposition 3.23 implies that

ent∗(φ) = sup
{

dim φU+

U+
| U ∈ B(K)

}
,

ent∗(φcc) = sup
{

dim
φccU

cc
+

U cc
+

| U ∈ B(K)
}
.

Since U ≤ K = ker(φcd) ≤ Vc, we deduce that φU = φccU ≤ Vc. Then it is possible to prove by induction 
that Un = U cc

n for all n ∈ N; therefore, U+ = U cc
+ and φU+ = φccU

cc
+ . Hence, ent∗(φ) = ent∗(φcc). �

Remark 4.3. The possibility to reduce the computation of ent∗ to the category of linearly compact vector 
space is a powerful tool. Indeed, the dynamic behaviour of continuous endomorphisms of linearly compact 
vector spaces is well-understood; see [3].

4.2. Reduction to topological automorphisms

For a continuous endomorphism φ : V → V of a linearly compact vector space V , the surjective core of 
φ is

Sφ =
⋂
n∈N

φnV.
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Lemma 4.4. Let V be a linearly compact vector space and φ : V → V a continuous endomorphism. Then:

(a) Sφ is a closed linear subspace of V ;
(b) φ(Sφ) = Sφ;
(c) U+ ≤ Sφ for all U ∈ B(V ).

Proof. (a) is an easy consequence of Proposition 2.1(a,c), while Theorem 2.3(a) implies (b), and item (c) 
follows by the definition of U+. �

Thus, Sφ is a closed φ-stable linear subspace of V , and so φ �Sφ
: Sφ → Sφ is surjective. The following 

result shows that ent∗(φ) = ent∗(φ �Sφ
). Moreover, by definition Sφ turns out to be the largest closed 

φ-stable linear subspace of V .

Proposition 4.5. Let V be a linearly compact vector space and φ : V → V a continuous endomorphism. Then

ent∗(φ) = ent∗(φ �Sφ
).

Proof. By Proposition 3.15(b), ent∗(φ) ≥ ent∗(φ �Sφ
). To prove the converse inequality, let U ∈ B(V ). 

By Lemma 3.22(c) and Lemma 4.4(c), U+ is linearly compact, U+ ≤ φU+ ≤ Sφ and φU+/U+ has finite 
dimension. Thus,

H∗(φ,U) = dim φU+

U+
≤ ent∗(φ �Sφ

), (4.1)

by Proposition 3.23 and Corollary 3.24. Consequently, ent∗(φ) ≤ ent∗(φ �Sφ
). �

Let V be a linearly compact vector space and φ : V → V a continuous endomorphism. Let LV denote 
the inverse limit lim←−−(Vn, φ) of the inverse system (Vn, φ)n∈N, where Vn = V for all n ∈ N:

· · · φ−→ Vn
φ−→ Vn−1

φ−→ · · · φ−→ V1
φ−→ V0. (4.2)

In other words,

LV =
{

(xn)n∈N ∈
∏
n∈N

Vn | xn = φ(xn+1) ∀n ∈ N

}
, (4.3)

endowed with the topology inherited from the product topology of 
∏

n∈N Vn. Since LV is a closed linear 
subspace of the direct product (see [37, Lemma 1.1.2]), LV is linearly compact as well by Proposition 2.1(c). 
Let ι : LV →

∏
n∈N Vn be the canonical embedding.

The natural continuous endomorphism∏
φ :

∏
n∈N

Vn →
∏
n∈N

Vn, (xn)n∈N 	→ (φ(xn))n∈N

induces a continuous endomorphism Lφ : LV → LV making the following diagram commute

∏
n∈N Vn

∏
φ ∏

n∈N Vn

LV

ι

Lφ
LV.

ι

(4.4)



136 I. Castellano, A. Giordano Bruno / Topology and its Applications 252 (2019) 112–144
Proposition 4.6. Let V be a linearly compact vector space and φ : V → V a continuous endomorphism. Then 
Lφ : LV → LV is a topological automorphism.

Proof. By construction, Lφ is continuous and injective. Since LV is linearly compact, it is sufficient to prove 
that Lφ is surjective by Proposition 2.2. Let x = (xn)n∈N ∈ LV , that is, φ(xn+1) = xn for every n ∈ N. 
Clearly, x = Lφ((xn+1)n∈N). �

The next part of this section is devoted to prove that ent∗(φ) = ent∗(Lφ). To this end, for every n ∈ N, 
let pn : LV → Vn be the canonical projection given by the usual restriction of the projection 

∏
n∈N Vn → Vn.

LV

ι

pn

Vn

∏
n∈N Vn

(4.5)

Let also Kn = ker pn, which is a closed Lφ-invariant linear subspace of LV .

Lemma 4.7. Let V be a linearly compact vector space, φ : V → V a continuous endomorphism and n ∈ N. 
Then, in the above notations:

(a) pn(LV ) = Sφ;
(b) for the topological isomorphism α : LV/Kn → pn(LV ) induced by pn and the continuous endomorphism 

Lφn : LV/Kn → LV/Kn induced by Lφ, one has

Lφn = α−1 ◦ φ �Sφ
◦α;

(c) ent∗(Lφn) = ent∗(φ).

Proof. (a) Let x = (xn)n∈N ∈ LV ; then φk(xn+k) = xn for every k ∈ N, and so pn(x) = xn ∈ Sφ.
Conversely, let s ∈ Sφ. By Lemma 4.4(b), we can set:

– xi = φn−i(s) ∈ Sφ for i ∈ {0, . . . , n};
– xi ∈ Sφ such that φ(xi) = xi−1 for i > n.

Thus, x = (xi)i ∈ LV and pn(x) = s, as required.
(b) By construction, Kn is a closed Lφ-invariant linear subspace of LV for every n ∈ N. Moreover, α is 

a topological isomorphism by Proposition 2.2. Let x + Kn ∈ LV/Kn. By (a),

α−1(φ �Sφ
(α(x + Kn))) = α−1(φ �Sφ

(pn(x))) = α−1(φ(pn(x))) =

= α−1(pn(Lφ(x))) = Lφ(x) + Kn = Lφn(x + Kn).

(c) Since α is a topological isomorphism, (c) is an easy consequence of (b) by Proposition 3.15(a) and 
Proposition 4.5. �

The next result shows that for the computation of the topological entropy in the case of linearly compact 
vector spaces one can reduce to topological automorphisms.
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Theorem 4.8. Let V be a linearly compact vector space and φ : V → V a continuous endomorphism. Then

ent∗(Lφ) = ent∗(φ).

Proof. Since 
⋂

n∈N Kn = 0, we have that the canonical map ρ : LV → lim←−−LV/Kn is an injective continuous 
homomorphism of linearly compact spaces. Since ρ(LV ) is linearly compact, then ρ is also surjective (see 
[37, Lemma 1.1.7]). By Proposition 2.2, we conclude that

LV ∼=top lim←−−LV/Kn. (4.6)

By Proposition 3.15(a), the latter identification preserves the topological entropy. Now Proposition 3.15(a,e) 
and Lemma 4.7(c) give ent∗(Lφ) = supn∈N ent∗(Lφn) = ent∗(φ). �

A flow in the category KLC is a pair (V, φ), where V is a linearly compact vector space and φ : V → V

is a continuous endomorphism. If (V, φ) and (W, ψ) are flows in KLC, then a morphism of flows from (V, φ)
to (W, ψ) is a continuous homomorphism h : V → W such that h ◦ φ = ψ ◦ h. We let Flow(KLC) denote the 
resulting category of flows in KLC. Clearly, it is well-defined a functor

L : Flow(KLC) → Flow(KLC) (4.7)

given by L(V, φ) = (LV, Lφ) and L(h) : LV → LW is the continuous homomorphism induced by the 
following morphism of inverse systems

· · · Vn

φ

h

· · · V1
φ

h

V0

h

· · · Wn

ψ
· · · W1

ψ
W0

namely Lh((vn)n∈N) = (h(vn))n∈N ∈ LW for every (vn)n∈N ∈ LV .
We conclude this section by showing that the functor L preserves the topological extensions in the sense 

of Proposition 4.9. Let φ : V → V be a continuous endomorphism of a linearly compact space V . For a 
closed φ-invariant linear subspace W of V , consider the following diagram.

0 W

φ�W

V

φ

V/W

φ

0

0 W V V/W 0

(4.8)

Thus, one constructs as above the following exact sequence of inverse systems of linearly compact spaces 
(see (4.2))

0 (Wn, φ �W )n∈N (Vn, φ)n∈N (Vn/Wn, φ)n∈N, 0 (4.9)

where V = Vn and W = Wn for every n ∈ N. Denote by

LW = lim←−−(Wn, φ �W ), LV = lim←−−(Vn, φ) and L(V/W ) = lim←−−(Vn/Wn, φ)

the corresponding inverse limits. Since the inverse limit functor in KLC is exact (see Remark 2.4) we have 
the short exact sequence in KLC (see [37, pages 4-5])
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0 LW LV L(V/W ) 0. (4.10)

In order to simplify the notation, we regard LW as a closed linear subspace of LV and, since L(V/W ) ∼=top

LV/LW , we identify L(V/W ) with LV/LW . Since the topological entropy is invariant under conjugation 
by Proposition 3.15(a), it one easily verifies the latter identification preserves the topological entropy.

The linear subspace LW turns out to be closed and Lφ-invariant in LV , therefore the following diagram

0 LW

(Lφ)�LW

LV

Lφ

L(V/W )

Lφ

0

0 LW LV L(V/W ) 0

(4.11)

commutes, where Lφ : L(V/W ) → L(V/W ) is the continuous endomorphism induced by Lφ.
On the other hand, by restriction in view of Equation (4.4) we have the commutative diagrams

∏
n∈N Wn

∏
φ�W ∏

n∈N Wn

LW

ι′

L(φ�W )
LW,

ι′

∏
n∈N(Vn/Wn)

∏
φ ∏

n∈N(Vn/Wn)

L(V/W )

ι′′

Lφ
L(V/W ),

ι′′

(4.12)

where L(φ �W ) and Lφ are both topological automorphisms by Proposition 4.6.
We see now how the functor L behaves under taking closed invariant linear subspaces and quotient vector 

spaces.

Proposition 4.9. Let V be a linearly compact vector space, φ : V → V a continuous endomorphism and W
a closed φ-invariant linear subspace of V . Then

(Lφ) �LW= L(φ �W ) and Lφ = Lφ,

where φ : V/W → V/W is induced by φ and Lφ : LV/LW → LV/LW is induced by Lφ. In particular, 
(Lφ) �LW and Lφ are topological automorphisms. Moreover,

ent∗(φ �W ) = ent∗((Lφ) �LW ) and ent∗(φ) = ent∗(Lφ).

Proof. Let (xn)n∈N ∈ LW , that is, φ �W (xn+1) = xn for all n ∈ N. As W ≤ V and LW ≤ LV ,

L(φ �W )((xn)n∈N) = (φ �W (xn))n∈N = (φ(xn))n∈N = (Lφ) �LW ((xn)n∈N).

Now let (xn + W )n ∈ L(V/W ). As L(V/W ) ∼= LV/LW ,

Lφ((xn + W )n∈N) = (φ(xn) + W )n∈N
∼= (φ(xn))n∈N + LW = Lφ((xn)n∈N) + LW = Lφ((xn)n∈N + LW ).

By Proposition 4.6, it follows that (Lφ) �LW and Lφ are a topological automorphisms. Clearly, one 
deduces that LW is a Lφ-stable linear subspace of LV .

The last assertion follows from Theorem 4.8. �
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5. Addition Theorem

This section is devoted to prove the Addition Theorem for the topological entropy (see Theorem 1.2). 
We start by proving it for topological automorphisms.

Proposition 5.1. Let V be an l.l.c. vector space, φ : V → V a topological automorphism, W a closed φ-stable 
linear subspace of V and φ : V/W → V/W the topological automorphism induced by φ. Then

ent∗(φ) = ent∗(φ �W ) + ent∗(φ).

Proof. By Proposition 3.15(b), we have ent∗(φ) ≥ ent∗(φ �W ) + ent∗(φ). To prove the converse inequality, 
let M be a linearly compact linear subspace of V such that M ≤ φM and φM/M has finite dimension. 
Then

φM

M + (φM ∩W )
∼=

φM
M

/
M+(φM∩W )

M
.

Since M+(φM∩W )
M

∼= φM∩W
φM∩W∩M = φM∩W

M∩W , we have that

dim φM

M
= dim φM ∩W

M ∩W
+ dim φM

M + φM ∩W
. (5.1)

Since W is closed and M is linearly compact, M ∩W is linearly compact by Proposition 2.1(a). Moreover, 
φ(M ∩W ) = φM ∩ φW = φM ∩W , so M ∩W has finite codimension in φ(M ∩W ). Corollary 3.24 yields

dim φM ∩W

M ∩W
≤ ent∗(φ �W ). (5.2)

On the other hand, πM = M+W
W is linearly compact in V/W by Proposition 2.1(c). By the modular law, 

since M ≤ φM ,

M + (φM ∩W ) = φM ∩ (M + W ).

Therefore,

φM

M + (φM ∩W ) = φM

φM ∩ (M + W )
∼= φM + W

M + W
.

Moreover,

π(M) = M + W

W
≤ φM + W

W
= φ(πM).

Then

dim φM

M + φM ∩W
= dim φ(πM)

πM
,

and so, by Corollary 3.24,

dim φM ≤ ent∗(φ). (5.3)

M + φM ∩W
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By Equations (5.1), (5.2) and (5.3), we conclude that

dim φM

M
≤ ent∗(φ �W ) + ent∗(φ),

so Corollary 3.24 yields the required inequality ent∗(φ) ≤ ent∗(φ �W ) + ent∗(φ). �
A second step towards the proof of the Addition Theorem consists in proving it for linearly compact 

vector spaces:

Proposition 5.2. Let V be a linearly compact vector space, φ : V → V a continuous endomorphism, W a 
closed φ-invariant linear subspace of V and φ : V/W → V/W the continuous endomorphism induced by φ. 
Then

ent∗(φ) = ent∗(φ �W ) + ent∗(φ).

Proof. Consider the following short exact sequence of flows in KLC

0 W

φ�W

V

φ

V/W

φ

0

0 W V V/W 0.

By applying the functor L (see (4.7) and (4.11)), we obtain the commutative diagram

0 LW

(Lφ)�LW

LV

Lφ

L(V/W )

Lφ

0

0 LW LV L(V/W ) 0,

where Lφ : LV → LV is a topological automorphism by Proposition 4.6, and LW is a closed Lφ-stable 
linear subspace of L by Proposition 4.9. Therefore,

ent∗(φ) = ent∗(Lφ) = ent∗(L(φ �W )) + ent∗(Lφ) = ent∗(φ �W ) + ent∗(φ),

by Proposition 5.1, Theorem 4.8 and Proposition 4.9. �
We are now in position to prove the general statement of the Addition Theorem.

Proof of Theorem 1.2. Let Vc ∈ B(V ) and Wc = W ∩ Vc; then Wc ∈ B(W ). By Theorem 2.5, there exists a 
discrete linear subspace Wd ≤ W such that W = Wc⊕Wd. Let Vd ≤ V such that V = Vc⊕Vd and Wd ≤ Vd. 
Clearly, Vd is a discrete subspace of V , since Vc is open and Vc ∩ Vd = 0. By construction, the diagram
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0 Wc

(φ�W )cc

ιWc
W

φ�W
W

pW
c

Wc 0

0 Vc

φcc

ιVc
V

φ
V

pV
c

Vc 0

commutes, where ιWc , ιVc , p
W
c , pVc are the canonical injections and projections of W and V , respectively. This 

yields that Wc is a closed φcc-invariant subspace of Vc and that

(φ �W )cc = φcc �Wc
. (5.4)

Now, let π : V → V/W be the canonical projection and let V = V/W . Let V c = π(Vc) and V d = π(Vd); then 
V c ∈ B(V ) since V c is open and it is linearly compact by Proposition 2.1(c), while V d is discrete; moreover, 
V = V c ⊕ V d. The canonical continuous isomorphism α : Vc/Wc → V c is a topological isomorphism by 
Proposition 2.2; it makes the following diagram commute

V c

φcc

ιVc
V

φ
V

pV
c

V c

Vc/Wc

φcc

α

Vc/Wc.

α

In other words, α−1φccα = φcc and so, by Proposition 3.15(a),

ent∗(φcc) = ent∗(φcc). (5.5)

Finally, by using Equations (5.4) and (5.5), we obtain

ent∗(φ) = ent∗(φcc) = ent∗(φcc �Wc
) + ent∗(φcc)

= ent∗((φ �W )cc) + ent∗(φcc) = ent∗(φ �W ) + ent∗(φ),

by Proposition 4.2 and Proposition 5.2. �
6. Bridge Theorem

This section is devoted to prove that the topological entropy of a continuous endomorphism coincides 
with the algebraic entropy of the dual endomorphism with respect to the Lefschetz Duality.

Lemma 6.1. Let V be a l.l.c. vector space. Then U ∈ B(V ) if and only if U⊥ ∈ B(V̂ ).

Proof. Let U ∈ B(V ). Since U is linearly compact, U⊥ is open by definition. Conversely, assume that U⊥

is open. Since U⊥ = U
⊥ by Lemma 2.9(b), we may assume that U is closed. Since U⊥ is open in V̂ , there 

exists a linearly compact linear subspace W of V such that W⊥ ≤ U⊥. Since U and W are closed linear 
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subspaces of V , U ≤ W by Lemma 2.9(a,d). Thus U is a closed linear subspace of the linearly compact 
space W , and clearly U is linearly compact by Proposition 2.1(a).

Finally, since U is open in V if and only if the quotient V/U is discrete, Remark 2.11 implies that U is 
open in V if and only if U⊥ ∼=top V̂/U is linearly compact. �
Lemma 6.2. Let V be a l.l.c. vector space, φ : V → V a continuous endomorphism and U ∈ B(V ). Then 
(φ−n(U))⊥ = (φ̂)n(U⊥) for every n ∈ N+.

Proof. We prove the result for n = 1, that is,

(φ−1(U))⊥ = φ̂(U⊥). (6.1)

The proof for n > 1 follows easily from this case noting that (φ̂)n = (̂φn).
Let W = U⊥; then W ∈ B(V̂ ) by Lemma 6.1 and U = W� by Lemma 2.9(d). We prove that

φ−1(W�) = (φ̂(W ))�, (6.2)

that is equivalent to Equation (6.1) by Lemma 2.9(d). So let x ∈ φ−1(W�); equivalently, φ(x) ∈ W�, that 
is χ(φ(x)) = 0 for every χ ∈ W . This occurs precisely when φ̂(χ)(x) = 0 for every χ ∈ W , if and only if 
x ∈ (φ̂(W ))�. This chain of equivalences proves Equation (6.2). �

By applying the previous lemmas, we can now give a proof to the Bridge Theorem.

Proof of Theorem 1.4. Let U ∈ B(V ); so, U⊥ ∈ B(V̂ ) by Lemma 6.1. For n ∈ N+, it follows from 
Lemma 2.10 and Lemma 6.2 that

Cn(φ,U)⊥ = Tn(φ̂, U⊥).

Hence, in view of Lemma 2.12, U/Cn(φ, U) ∼=
∧

U/Cn(φ,U) ∼= Tn(φ̂, U⊥)/U⊥, and so

dim U

Cn(φ,U) = dim Tn(φ̂, U⊥)
U⊥ .

Therefore, H∗(φ, U) = H(φ̂, U⊥). By Lemma 6.1, we can conclude that ent∗(φ) = ent(φ̂). �
As a consequence of the Addition Theorem for the topological entropy ent∗ and the Bridge Theorem, we 

deduce now the Addition Theorem for the algebraic entropy ent proved in [5].

Corollary 6.3. Let V be an l.l.c. vector space, φ : V → V a continuous endomorphism and W a closed 
φ-invariant linear subspace of V . Then

ent(φ) = ent(φ �W ) + ent(φ).

Proof. Since W⊥ is a closed φ̂-invariant linear subspace of V̂ , consider the topological isomorphisms α :
V̂/W → W⊥ and β : V̂ /W⊥ → Ŵ given by Equations (2.3) and (2.4), respectively. It is possible to verify 
that the following diagrams commute.
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W⊥
φ̂�

W⊥
W⊥

V̂/W

α

φ̂

V̂/W

αα

V̂ /W⊥

β

φ̂
V̂ /W⊥

β

Ŵ
φ̂�W

Ŵ

(6.3)

By Theorem 1.4 and Proposition 3.15(a),

ent(φ) = ent∗(φ̂), ent(φ �W ) = ent∗(φ̂ �W ) = ent∗(φ̂) and ent(φ) = ent∗(φ̂) = ent∗(φ̂ �W⊥).

Then Theorem 1.2 yields

ent(φ) = ent∗(φ̂) = ent∗(φ̂) + ent∗(φ̂ �W⊥) = ent(φ �W ) + ent(φ),

and this concludes the proof. �
Alternatively, one can deduce the Addition Theorem for the topological entropy ent∗ from the Addition 

Theorem for the algebraic entropy ent and the Bridge Theorem.
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