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Abstract In making practical decisions, agents are expected to comply with ideals of be-
haviour, or norms. In reality, it may not be possible for an individual, or a team of agents,
to be fully compliant — actual behaviour often differs from the ideal. The question we ad-
dress in this paper is how we can design agents that act in such a way that they select
collective strategies to avoid more critical failures (norm violations), and mitigate the ef-
fects of violations that do occur. We model the normative requirements of a system through
contrary-to-duty obligations and violation severity levels, and propose a novel multi-agent
planning mechanism based on Decentralised POMDPs that uses a qualitative reward func-
tion to capture levels of compliance: N-Dec-POMDPs. We develop mechanisms for solving
this type of multi-agent planning problem and show, through empirical analysis, that joint
policies generated are equally as good as those produced through existing methods but with
significant reductions in execution time.

Keywords Norms, Multi-Agent Planning, Dec-POMDPs

1 Introduction

With increased automation, the need for systems to act in such a way that they are cognizant
of normative expectations is critical. Norms declare ideals of behaviour, but they are inher-
ently violable: the actual behaviour of agents may differ from the ideal. Sub-ideal behaviour
may, however, be inevitable. It may not be possible for an agent (or a group of agents) to
be fully compliant, given resource limitations. An agent may decide to violate a norm now
in order to avoid a more serious violation in the future. A norm may be violated due to an
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unexpected outcome of a sequence of actions. In fact, inaction may not be sufficient to avoid
the violation of a norm: the world may change into a sub-ideal state unless an agent acts.
The challenge we address in this paper is how to develop effective reasoning mechanisms
for agents such that they operate robustly, both individually and as a collective, under nor-
mative expectations. By robust, we mean that the agents act so that they are as compliant
with the ideal as possible, given prevailing circumstances.

Any solution to this general problem must take into account uncertainties due to non-
deterministic action outcomes, dependencies between and among agents with respect to
actions and resources, and environmental changes that are not under their control. There
are two other important considerations we take into account: there may be expectations on
agents regarding how they should repair, or recover from, non-ideal states of affairs (so
called contrary-to-duty obligations); and the violation of norms may vary in severity. The
former of these is widely considered to be an important characteristic of real-world domains.
Prakken and Sergot [21] use an example derived from regulations about the appearance of
holiday cottages to illustrate this: there must be no fence (the primary obligation); and if
there is a fence, it must be white (the contrary-to-duty rule). In the case where there is a
fence (the primary obligation is violated), it is the duty of the owner to ensure that it is
painted white.

The idea that norms (or, strictly, the violation of norms) vary in severity is also widely
recognised, but, we argue, often poorly modelled for the purposes of practical reasoning. In
computational models, severity is often modelled through pre-defined sanctions [1]. Further,
the vast majority of examples used are fines, or some other loss of utility, implying an under-
lying additive assumption. The argument we present against this rather simplistic approach
is grounded, again, on how violations are classified in real-world domains. Distinguishing
different qualitative levels of violation is an important principle in law, often referred to as
“fair labelling”. According to Ashworth [3], for example, fair labelling is (in part) where
“offences are subdivided and labelled so as to represent fairly the nature and magnitude of
the law-breaking”. This is a principle reflected in various legal systems; e.g. misdemeanour
versus felony in the US. Similarly, in security contexts, information is often classified in
terms of levels (restricted, secret, etc.), representing the idea that the revelation of any doc-
ument at a higher security classification is always more severe than revealing any amount
of information at a lower classification. Of course, revealing any classified information is
undesirable, but severity levels give tipping points of compliance. There is an important
pragmatic reason that qualitative levels of violation are specified in this way: sanctions are
imposed after the fact and given an assessment of the context in which the norm was vio-
lated. All we know in advance (i.e. at the point where we need to make decisions about how
to act) is that violations of some norms are more/less severe than others. Further, specifying
sanctions for all norms over a single interval scale, equating to some loss of utility, can lead
to additive fallacies [18], where some number of violations at a lower level of severity are
taken to be as bad as, or worse than one at a qualitatively higher level. Such fallacies would
lead to poor practical decisions.

Contrary-to-duty obligations and violation severity provide complementary means to
specify requirements for system robustness. The use of contrary-to-duty obligations enables
us to reason about behaviour that goes some way to repair a failure. The use of severity
levels enables us to reason about behaviour that avoids critical levels of failure and that
minimises accumulated failures at some level.

Our starting point is a deontic logic for the specification of normative systems that may
contain contrary-to-duty structures [29], along with a strict partial order over obligations
that declares the relative severity of their violation. From this, we compute a preference re-
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lation over possible worlds that captures levels of system robustness (Section 3), which we
prove to be both transitive and acyclic. A transitive and acyclic preference relation is neces-
sary for reliable practical reasoning: with this input, an agent can compare worlds and hence
possible courses of action for compliance with the normative specification. Next, we pro-
pose a novel model of multi-agent planning under uncertainty that is suitable for reasoning
about domains with qualitative reward functions such as those representing levels of system
robustness. This multi-agent planning mechanism is grounded on Dec-POMDPs [2]: Nor-
mative Decentralised Partially Observable Markov Decision Processes, or N-Dec-POMDPs
(Section 4). We provide an algorithm for computing joint policies that uses a sequence of
linear programs that optimise against levels of robustness, iteratively introducing additional
constraints at less critical levels until no additional improvement can be found (Section 4.2).
The analysis of more/less preferred possible worlds is also exploited in the planner through
a Most-Critical-States (MCS) heuristic that is used to identify belief states to optimize an N-
Dec-POMDP policy towards a more compliant behaviour in a team of agents (Section 4.3).
We demonstrate through empirical analysis (Section 5) that this approach offers significant
reductions in execution times (by 50% in the most challenging problem considered) for the
N-Dec-POMDP solver with no loss in solution quality. Before moving on to present the two
key contributions of this research (in Sections 3 and 4), we outline a scenario that both illus-
trates the normative concepts that are core to the model and gives an intuition of the practical
reasoning problem we address. We defer our review of related research in norm-governed
and preference-based planning, and discussion of the model and possible avenues for future
research to Section 6.

The core contributions we claim of this research are twofold. First, we propose a mech-
anism to efficiently compute a preference relation over possible worlds from a normative
specification that correctly reflects both contrary-to-duty structures and violation severity.
Second, we present a multi-agent planning model, N-Dec-POMDPs, with a novel algorithm
and associated heuristic, that can efficiently compute effective joint plans given a qualitative
reward function, such as one that represents levels of compliance derived from a normative
system specification. We, therefore, contribute both to modelling and practical reasoning in
normative multi-agent systems, and to algorithms for decentralised planning under uncer-
tainty.

2 Motivating Scenario

Consider a force protection scenario in which various agents are deployed to protect critical
infrastructure in a harbour. This may involve, among other things, establishing and maintain-
ing a restricted area off shore, around the harbour, through which only authorised vessels
may pass. This restricted area is to be continuously monitored by assets such as UAVs, and
patrolled by boats. In specifying the norms for this scenario, we first consider the surveil-
lance task. Let us assume we have UAVs and helicopters available, and suppose that, ideally,
surveillance should be done by a UAV.

01 A UAV must always monitor the restricted area.
0, If no UAV is monitoring the area, a helicopter must monitor the area.

Norms O and O, capture a contrary-to-duty structure, with the primary obligation being
that a UAV is monitoring. If this is violated, we should at least have a helicopter monitor-
ing the area. Now, we can specify what should be done if an unauthorised vessel (boat) is
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Fig. 1: Partial order over severity of norm violation.

detected by an agent conducting surveillance. There are two interventions that we consider:
interception and reporting.

O3 If an unauthorised boat is detected, at least one agent must intercept it.
O4 If an unauthorised boat is detected and no agent intercepts it, the incursion must be
reported to headquarters.

Again, we have a contrary-to-duty structure, this time triggered by detection of an unau-
thorised boat, where the primary obligation is that at least one agent intercepts it. The ‘at
least one’ part of this obligation clearly introduces a requirement for agents to coordinate.
Finally, we have a further obligation on UAVs:

05 UAVs should not reveal their location.

Given the focus is on harbour protection, the most severe violation would be not to
intervene when an unauthorised boat is detected (violation of O3 and O4). The next most
severe violation is if the restricted area is not being monitored (violation of O,). Given this,
we can specify an ordering over the severity of norm violation in our scenario (see Figure 1).

Within the scenario, Os (UAV revealing its location) indirectly interacts with decisions
regarding which agent intercepts a detected unauthorised vessel: the location of a UAV is
revealed if it intercepts a suspicious vessel (a causal constraint). This is, however, one of
the least severe violations, and so it would be better for a UAV to intercept an unautho-
rised boat if it is the only agent available to do so. This is just one example of interactions
among normative (violable) constraints on agents’ actions, violation severity, dependencies
between agents’ actions, causal constraints, and stochastic events. In order to bore down on
the details of this kind of problem, consider a single UAV and a helicopter in this harbour
protection scenario and suppose that an unauthorised boat has been detected in the restricted
area. In Figure 2, we illustrate some of the states that might occur and transitions between
them. A transition ({8, ), 1.0) indicates that there is a joint action (8, &) where the UAV
does B and the helicopter does @, and if they perform this joint action this transition oc-
curs with probability 1.0. A transition ((_, _), p) indicates that this transition will occur with
probability p regardless of the actions of the agents.

Now, suppose that ¢ is the act of intercepting the unauthorised boat, and f is to monitor
the restricted area. If, in the initial state, the UAV intercepts the unauthorised boat (does
), then, regardless of what the helicopter does, we reach state B (‘bad’ state) in which the
UAV’s location is revealed. Subsequent transitions may also mean that the UAV’s location
is known, or we may return to a fully compliant state (the terminal state in Figure 2), which
we summarise using the transition probability p. What if the UAV chooses to continue to
conduct surveillance (action 3)? The outcome depends on the actions of the other agent.
If the helicopter intercepts the unauthorised boat (joint action (f, a)), then all is well. If
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((B,a),1.0)

Fig. 2: A simple 2-agent decision problem.

not, and the helicopter conducts surveillance, then there is some chance that the system will
transition to the state W (‘worse’ state) in which the unauthorised boat is neither intercepted
nor reported. Depending on the probabilities p and ¢ in this summarised situation, the likeli-
hood of the system entering state W and the proability of multiple violations of Os (entering
state B) may vary. What we want is a mechanism that produces plans for multiple agents
such that the qualitative differences between the possible execution paths that the system as
a whole may take are taken into account to drive more compliant behaviour. The resulting
plans need to provide guidance to agents for situations in which fully compliant behaviour is
not possible. In this small example this could occur if, for example, the helicopter is low on
fuel, leaving only a choice between a path with 1 or more violations of Os versus violation
of 03.

3 Levels of Robustness in Normative System Specifications

Given a normative specification, such as the one described in the previous section, we need
to identify how compliant each state of affairs is so that we can guide the planning process.
In essence, our aim is to compute a preference relation over possible worlds that reflects the
level of compliance of those worlds with a set of norms. For example, we want worlds in
which Os is violated (B in Figure 2) to be preferred to those in which O3 is violated (due
to the severity specification), and worlds in which O3 is violated to be preferred to those
in which Oy is violated (due to the contrary-to-duty structure linking O3 and O4). We then
use this preference relation to build a ranking of possible worlds, which allows the space of
possible worlds to be partitioned into different severity ranges. We first present the semantics
of our model and define the notions of compliance of a world with a norm and coherence
between an obligation and a pair of worlds. With these definitions, we specify a transitive
and acyclic preference relation, Py, and present a method to efficiently compute a ranking
of possible worlds from this relation.

3.1 Normative System Semantics

Our semantics is inspired by Prohairetic Deontic Logic (PDL) [29], and other preference-
based deontic logics, such as that proposed by Prakken and Sergot [22], where dyadic (con-
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ditional) obligations are represented through a preference relation between worlds. These
logics rely on a normative specification that is free from logical conflict, which is adequate
for our purposes because we are interested in effective multi-agent decision making mech-
anisms in the presence of functional conflicts [10]; i.e. conflicts between a consistent set of
social norms and the actions of agents in a non-deterministic environment. The key advan-
tage of these logics, however, is that they adequately capture the concept of contrary-to-duty
obligations, avoiding well-known paradoxes of normative reasoning [11, 14]. In addition to
a set of norms, we declare a strict partial order over these norms that represents the relative
severity of their violation. We, therefore, define a model M = (W, PV, VA, OS,P,)! where:

- W=A{wi,...,wi,...,wy} is a set of n possible worlds.

— PV is a set of propositional variables, and ¢, ¢, denote individual propositions. The set
of well formed formulae of propositional logic, F, is such that PV C F, and if p,q € F
then —-p € F, pAg € F, etc.

— VA:W — 2PV ig a valuation function that assigns, to each world w € W, the set of
propositional variables that hold true in w.

- 0S={01=0(p1 | q1)),---,0m = O(pm | gm)} is a normative specification, where
pi and g; are two formulae in F. Intuitively, O(p; | ¢;) represents a dyadic obligation
to achieve (or maintain) p; that applies to worlds in which g; holds: an obligation to
achieve p; that is conditional on g;.

— P, C OS x OS is a strict partial order over obligations that reflects the relative sever-
ity of their violation. Given two obligations O; and O;, (0;,0;) € P, (or alternatively
O; =, Oj) means that a violation of O; is considered more severe than one of O;. P,
is a transitive relation, thus, if we consider a graph G, where each node represents an
obligation, and each edge a member of P,, we say that violating O, is more severe than
violating O, if and only if the node representing O, is reachable from O, through the
edges of G.

Propositional logic formulae are evaluated as usual over possible worlds. Given a world
w; € W, we define the logical entailment relation =, as follows:

- M=, ¢ iff ¢ € VA(w))
- M, —¢ iff ¢ & VA(w;)
- M, 01 A iff M =, ¢ and M |=,,, ¢

The other boolean operators are defined as usual. Prohibition is defined in terms of obliga-
tion: F(p | ¢) (p is forbidden whenever ¢ holds) is equivalent to O(—p | ¢) (—p is obliged
whenever ¢ holds). Contrary-to-duty structures are specified in this logic in the following
way: suppose that p is a state of affairs that is prohibited (F(p | T) or O(—p | T) where
T is a tautology) and that the achievement of the state of affairs ¢ in some way mitigates
the violation of this norm, then we state that O(q | p). In this way we capture the intuition
that in states of affairs where p holds, and hence norm F(p | T) is violated, g is obliged.
Furthermore, we assume that everything that is not forbidden is permitted.

We now define the compliance of a world with a dyadic obligation, and the coherence
of an ordered pair of worlds with respect to an obligation. These two concepts are used to
define the relationship between the normative and severity specifications and the preference
relation over worlds.

I In van der Torre and Tan [29] and in our prior research [15], a model also includes an accessibility
relation R C W x W in order to evaluate temporal logic formulae. This is not necessary here because our aim
is only to compute a ranking of possible worlds for use within a multi-agent planning mechanism.
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Table 1: Norms in the harbour protection scenario.

[ 1d [ Norm |
01 O(mu T)
0> O(mh jmu)
03 O(iu Viip Vip ‘ T)
Os | O(rep | =iy V ip V ip))
Os | O(-r,|T)

Definition 1 A world w; is compliant with an obligation O; = O(p | q) if M |=,,, =gV p; in
other words, if the obligation does not apply to w; (—g) or the obligation is satisfied (p). We
denote this by compliant(w;, 0;).

Definition 2 A preference for world w; over world w; is coherent with respect to Oy € OS,
written coherent(wi,wj, O), iff compliant(w;, Ox) and —~compliant(w;, Ox).

Definition 3 A preference for w; over w; is incoherent with respect to Oy € OS, written
incoherent(wi,wj, O), iff compliant(w;, Oy) and ~compliant(w;, Oy).

This concept of (in)coherence is used in considering whether or not a pair of worlds
(wi,w;) is part of the preference relation over worlds representing their relative “ideality”,
or compliance with a normative specification. Informally, the pair (w;, w;) is coherent with
obligation Oy if and only if, taking into account only compliance with Oy, w; would be pre-
ferred to wy; i.e. if w; satisfies the obligation but w; does not. Note that incoherence does not
simply mean that w; is not preferred to w;, but that w; is preferred to w;; i.e. that obligation
0; is incompatible with the preference (w;,w;). Therefore, while incoherent(w;,w , Ox) im-
plies that coherent(w;, w;, Ox) does not hold, the fact that coherent(w;,w;, Of) is false does
not imply incoherence. A pair of worlds can be neither coherent nor incoherent with an obli-
gation; e.g. if both the worlds comply with the obligation. We chose the term incoherence,
rather than conflict, in order to avoid confusion with the concept of conflicts among norms.

We can now formalise the norms described in Section 2: Table 1. For simplicity of
presentation, we assume there is an unauthorised boat in the restricted area (norm O3 is
triggered). We also simplify this illustration by using propositional variables: m,, the UAV
is monitoring the restricted area; my,, the helicopter is monitoring; i,, i, and i, the UAV,
helicopter or boat is intercepting the unauthorised boat; r, the UAV’s position is revealed;
and rep a report is made to headquarters.

There will be causal constraints on possible worlds in any domain model. In the harbour
protection scenario, for example, we have i, — r, (if the UAV is intercepting the unautho-
rised boat, its location is revealed) and —my, V —ij, (the helicopter cannot both monitor and
intercept). Possible worlds are then all the joint assignments of values for the propositional
variables that satisfy these constraints. Consider, for example, the following two possible
worlds: w3 (where rep and m,, are true with all other propositions false) and wy¢ (Where my,,
r, and i, are true). World wj violates obligation O3 because none of the agents is intercept-
ing. World wj¢ violates O; (the UAV is not monitoring) and Os (the UAV’s location has
been revealed). This means that obligation Os is violated in world wyg, but not in world w3:
coherent(ws, wig, Os). Similarly, coherent(wig,w3,03) holds.?

2 These world IDs (w3 and wig) are the same as those used in Table 2 and are generated as part of the
ranking mechanism that we will present in Section 3.3; we simply use the same IDs here for consistency.
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3.2 A Preference Relation over Possible Worlds

We define Py C W x W as a preference relation among worlds. We write (w;,w;) € Py,
or alternatively w; <, wj, if w; is preferred to w; according to the normative and severity
specification. Py is computed from M according to Equation 1.

wi <w wj <> 3 O € OS : coherent(w;,wj, Ox) and
(V Oy € OS s.t. incoherent(wi,wj,0y) : 1)
30,, € OS : coherent(w;,w;,0y,) and (O,, =, Oy))

Informally, we say that w; is preferable to w; if all the obligations O; that are complied
with by w;, and are violated by w;, are strictly less severe than at least one obligation O,, that
is complied with by w; and is violated by w;. The requirement that there exists at least one
obligation O that is complied with by w;, and that is violated by w/ is introduced in order to
make incomparable two worlds that violate exactly the same obligations. If we assume that
all obligations are incomparable in terms of their severity, a possible world w; is preferred to
another possible world w; if and only if w; violates a strict subset of the obligations violated
in w;. In this case, the second part of the equation (the universal quantification) is used
to solve the strong preference problem, making two worlds incomparable if they violate
incomparable obligations.

In order to illustrate this concept, and how the introduction of severity preferences af-
fects the resulting preference order over possible worlds, consider the situation depicted in
Figure 3. We consider two obligations: O; = O(m,, | T), the UAV should monitor the re-
stricted area; and O% = O(i, | T), a simplification of O3 in Table 1 that requires the UAV
to intercept an unauthorised boat. These are enforced over two possible worlds wy and wy
such that M |=,,, my, A =iy, and M |=,,, =my, Ai,. Clearly, w; complies with O; but violates

., whereas wp complies with O} but violates O;. An arrow (solid or dotted) labelled with
an obligation and directed from a world w; to a world w; represents the fact that the obli-
gation is coherent with w; being preferred to w;. Figure 3(a) represents the situation where
no severity relation is specified, whereas Figure 3(b) illustrates the result of introducing a
severity relation O} >, Oy, which reflects the requirement in our scenario that intercept-
ing is more critical than monitoring. In the first case we have that coherent(w;,w,,0;) and
coherent(wy,wy,0%) hold. Since the two obligations are incomparable, no preference be-
tween the two worlds can be inferred. In the second case, since violations of O’3 are defined
to be more severe than those of Oy, and there is no other obligation coherent with (w;,w>)
being included in the preference relation, we have that w is preferred to wy. We can think
of the arrow labelled with an obligation O; as overriding the arrows labelled with any O;
such that O; -, O;. Equation 1 can be interpreted as saying that w; is preferred to w; if for
each arrow from w; to w; there is one arrow from w; to w; that overrides it, and there is at
least one such arrow from w; to w;.

Our “ideality” preference relation, computed according to Equation 1, must be guaran-
teed to be transitive and acyclic. Transitivity is an intuitive property for a preference relation,
including those used in other preference-based deontic logics. Acyclicity is required in order
for us to be able to rank the possible worlds from the most to the least compliant, which we
do in Section 3.3. Moreover, given transitivity, and given the fact that our preference relation
is strict, the presence of a cycle would imply that each world in the cycle is less compliant
than itself. These properties are, therefore, necessary for this relation to effectively guide
practical reasoning.



Severity-Sensitive Norm-Governed Multi-Agent Planning 9

03 =0(iy | T) ..

(a) " e _‘iu "
4

01 =0(m, | T) "

/ 03=0(|T)
1

| 'Y

(b) " 0,3 e 01 "

4

01 =O(my | T)
Fig. 3: The effect of a severity specification on the preference relation over worlds.

Lemma 1 Given a set of possible worlds, W, a set of obligations, OS, and an acyclic sever-
ity specification that contains no infinite chain of preferences, P,, the preference relation
over possible worlds computed according to Equation 1 is transitive.

Proof Without loss of generality, let a possible world w; be characterised by the subset of
obligations that are violated in w;. In doing so, we will assume that all obligations that are
in OS, but not in the set w;, are complied with in the world w;. Consider three possible
worlds wy, wp and w3, such that ws <, wp and wy <,, wi. These possible worlds can be
partitioned such that, for example, world w; consists of the subsets of obligations that are
violated in that world, and that are, or are not, violated in worlds w, and ws; thus: w; =
(w1 \ (w2 Uws)) U ((wi Nwa) \ w3) U ((wi Nws) \ w2) U (wi NwaNws) (see Figures 4-6).

In order to prove that wz <,, w; holds, we first need to show that each obligation O3
in w3 is either in wy, or it is less severe than an obligation that is coherent with the pair
(w3, w1); that is, an obligation that is in w; but not in ws. We reason by cases, and consider
each separately:

1 03 € (wiNwaNws) or O3 € (wi Nws) \ wa. In these situations, O3 is also in wy, and
therefore O3 is not incoherent with (w3, wy).

2 03 € ((waNws)\wy). In this case, the obligation O3 is also violated in wy. Since wy <,
wi holds, and since O3 & wy, there must be an obligation O » € w \ wy such that O; » >,
O3. We can distinguish between two sub-cases:

2.1 017 € wi\ (w2Uws). In this case, O  is coherent with (w3, w) ), and is more severe
than O3.

2.2 017 € ((wiNws3) \ w). In this situation, Oy 5 is not coherent with (w3, w;) because
it is also violated in w3. Since O is also in w3, but not in w», it is incoherent with
(w3, w2). Therefore, there must exist an obligation O; € wy \ w3 that is more severe
than O1 ». We can distinguish between two further sub-cases:

2.2.1 Oj € wy\ (w3Uwy). This situation is depicted in Figure 4. Since O is incoher-
ent with (w2, w;) there must be an obligation Oy € w; \ wy that is more severe
than O;. From the transitivity of F, we have that Oy >, O3. If O is not in w3,
(thatis, O € wy \ (w2 Uws)), then Oy is coherent with the pair (ws, w;). If Oy is
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Fig. 4: Partition over three generic possible worlds: Cases 2.2 and 2.2.1

also in w3, that is, Oy € ((w1 Nw3) \ w2) we can apply again Case 2, but taking

O1 7 = Oy. Note that at each recursive application of Case 2, Oy must be dif-

ferent from any previous value of O >, otherwise P, would be cyclic. Since P,

does not contain any infinite chain of preferences, it follows that this recursive

reasoning must eventually terminate with an Oy € w; \ (wp Uws) or with case

2.2.2 detailed below.

O; € (waNwy) \ ws. In this case, O; is also in wy, and therefore is coherent

with (w3, w1 ). Moreover, for the transitivity of P,, we have that O i =0 Os3.

3 03 € (ws3\ (Wi Uws)). Given ws <,, wa, and since O3 is incoherent with (w3, ws) there
must be an obligation O3 € (w2 \ w3) such that O, 3 >, O3. We distinguish two sub-
cases:

3.1 033 € (w2 \ (w1 Uws)). Given wy <, wi, and since Oz 3 is incoherent with (w2, w1),
there must be an obligation O; » € (w; \ w2) such that O; » >, O 3. We distinguish
between two further sub-cases:

3.1.1 017 € (w1 \ (w2 Uws)). For the transitivity of P,, we have that O;, >, O3.
Moreover, O » is coherent with (w3, w ).

3.1.2 012 € ((wi N'ws3) \ wa). This situation is depicted in Figure 5. In this case,
obligation O » is neither coherent, nor incoherent with (w3, w;). By reasoning
in a similar way to Case 2.2.1, it is easy to see that there must be an obligation
Oy € (w1 \ w3) that is more severe than O3.

3.2 033 € (w2Nwy) \ ws. Since O, 3 is also in wy, it is coherent with (w3, wy).

2.2.2

This case-by-case analysis proves that, for each obligation O3 that is incoherent with
(ws,wy), there exists at least one obligation O; that is coherent with (w3, wy), and that is
more severe than Os3.

It remains to be shown that there is always at least one obligation (O in Equation 1)
that is coherent with (w3, w;). We prove this again through an exhaustive strategy. Since
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Fig. 5: Partition over three generic possible worlds: Case 3.1.2

w3 <, w2, there must be at least one obligation that is coherent with (w3, w;), thatis, O3 €
wa \ ws. There are two possible cases:

4 033 € ((wiNwy) \ w3). Since 012 € wy, it is also coherent with (w3, wy).
5 023 € (w2 \ (w1 Uws3)). Since wy <,, wi, and incoherent(wy, w1, 05 3), there must be an
obligation O » € (w; \ wy) that is more severe than O, 3. There are two sub-cases:
51 O € (w1 \ (w2Uwz)). If s0, Oy 5 is coherent with (w3, wy).
5.2 01, € ((wi Nws) \ wa). This situation is depicted in Figure 6. Since O 7 is also in
w3, and w3 <,, w2, there must be an O; € w; \ w3 that is more severe than O ». This,
in turn, must be different from O, 3, otherwise there would be a cycle in F,. If O;
is in ((wa Nwi) \ w3), then O; is also coherent with (w3,w). If, on the other hand,
Oj € (w2 \ (w1 Uws)), then, by reasoning in a similar way to Case 2.2.1 we can see
that there must be an Oy, in (w; \ (w2 Uw3)) that is coherent with (w3, wy). O

Lemma 2 Given a set of possible worlds, W, a set of obligations, OS, and an acyclic sever-
ity specification that contains no infinite chain of preferences, P,, the preference relation
among possible worlds, Py, computed according to Equation 1 does not contain any finite
cycle.

Proof Assume that there is a cycle in Py. From the transitivity of Py, we have that, for
all possible worlds w; in the cycle, w; <, w; holds. Consider now a possible world w; in
the cycle. Since there is no obligation that is coherent with (w;, w;), and from Equation 1 it
follows that w; <,, w; does not hold. Therefore, there must be no cycle in Py . O

3.3 Computing a Ranking over Possible Worlds

We can now use Py to rank worlds from the most to the least compliant.
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Definition 4 Given a set of possible worlds, W, and a preference relation, Py, we define the
ranking of the set as a function rankp,,) : W — N where:

1 if E(Wj,W,’)EPW

rank gy (wi) = max  (rank(p,)(w;)+1) otherwise @
(oj 1) €Py

Since there are no cycles in Py, such a ranking can always be computed, but the question
remains: how to do this efficiently?

Suppose there is a function VI : W x OS — that, given a set of obligations, associates
with each possible world the set of obligations that are violated in that world. If the satisfac-
tion of a formula in a possible world can be computed in constant time, then the complexity
of a naive algorithm for this function will be O(|OS|- [W]).

Consider now two possible worlds wy and w,. Given a set of obligations OS, and a
severity relation P,, we want to verify whether w; <,, w,. Notice that, in Equation 1, only
obligations that are either coherent or incoherent with (w;,ws) are considered. Therefore,
all violated obligations in VI(wy,0S) N VI(wz,0S) can be disregarded. In order to verify
whether wy <,, wo, we need to check that all violated obligations in Vi = VI(wy,0S) \
VI(wy, OS) are strictly less severe than at least one violated obligation in V, = VI(w;,0S) \
VI(wy,0S) and that the set V; is non-empty. A naive algorithm would consist of verifying,
using Depth-First Search over the graph induced by the severity relation, for each violated
obligation 01 € V; and each o, € V,, whether o7 is reachable from V. This algorithm would
run in time O(|OS|? - (|0S|+ |P,])) = O(|OS|> + |OS|* - |B,|), because the complexity of
verifying reachability is (|OS|+ |P,|).

Given two worlds wi and wy, Algorithm 1 verifies whether w; <,, wy. The algorithm
first computes the set of violated obligations V, that are coherent with (w;,w;) and the
set V| of those that are incoherent with (wy,wy). If V, is empty, then we can conclude

205
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Algorithm 1 Computing the preference relation, Py .
Input: W,08,P,,VI,w;,w>
Output: true iff w; <,, wo
1: V] = VI(W],OS) \ V](Wz,OS)
2: V= VI(w2,08) \ VI(wy,0S)
3: if V, is empty then
4: return false
5: else
6: S = empty stack
7
8

reachable = 0
for all o € V, do

9: pushoin§
10: reachable = reachable U o
11: end for
12: while S is not empty do
13: o= S.pop
14: for all o’ s.t. 0 =, o' do
15: if o' & reachable then
16: reachable = reachable U o’
17: pusho’in S
18: end if
19: end for
20: end while
21: if V| C reachable then
22: return true
23: else
24: return false
25: end if
26: end if

that wy <, wp does not hold. The algorithm then proceeds to use a Depth First Search
from multiple starting points (all the violated obligations in V;) to compute the set of all
obligations that are reachable from at least one violated obligation in V5; that is, all those
violated obligations that are less severe than at least one in V. Finally, we just need to verify
whether V; is included in the set of reachable states. Since we run a single depth first search,
we visit every violated obligation, and every member of P, at most once: the algorithm runs
in time O(|OS| + |B,]).

To compute the preference relation, we need to compare each ordered pair of possible
worlds, or each pair of subsets of OS, depending on which one is smaller. The resulting algo-
rithm has complexity O(min(|W [2,22195). (|OS| + |P,|)). Some properties of the preference
relation can be used in order to decrease the number of comparisons that are needed. In par-
ticular, from Equation 1, it is straightforward that, if a world w; violates a set of obligations
VI(w;, 0S), then every world wy such that VI(wy, OS) C VI(w;, OS) is preferable to w;. Since
Py is transitive, given two worlds w; and w, once we have established that w; <,, w; holds,
we can infer that, for all worlds wy such that VI(w, OS) C VI(w;, OS), wy <y w;.

Now we can rank the worlds according to Equation 2, obtaining a ranking where the
more compliant worlds are in a higher position; that is, they are associated with a lower
ranking number. To do so, we extend the topological sorting algorithm developed by [19],
computing the ranking while sorting the worlds in a linear extension of the partial order.
Instead of saving the nodes in an ordered list, we iteratively increase the ranking after elimi-
nating each level of the topologically sorted graph. We denote the set of pairs (w;,w;) € Py,
for any w; as from(w;,Pw), and the set of pairs (w;,w;) € Py, for any w; as ro(w;, Py).
Given a graph that represents the preference relation Py, from(w;, Py ) and to(w;, Py) de-
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Algorithm 2 Computing the ranking over possible worlds.
Input: W, Py
Output: rankp,,
1: toVisit=W
2: relation = Py
3: currentRank = 1
4: while toVisit is not empty do
5: nolncoming = {w; € toVisit : to(w;, relation) is empty }
6
7
8
9

toVisit = toVisit \ nolncoming
for all w; € nolncoming do
rank p,\(w;) = currentRank
: relation = relation \ from(w;, relation)
10: end for
11: currentRank = currentRank + 1
12: end while

note the outgoing and incoming edges of w;, respectively. In Algorithm 2 we iteratively find
all the nodes that have indegree 0 (those nodes with no incoming edges), and assign to them
the current ranking. After doing so, we remove these nodes and their outgoing edges, and
increase the current ranking value. We repeat this procedure until all nodes are visited.

This ranking of possible worlds, computed on the basis of a normative system specifi-
cation that captures both contrary-to-duty obligations and varying severity of violation, can
be used to guide agents within a team to make effective decisions about what to do. The
challenge now is that these decisions need to take into account strategies of action rather
than simply considering the compliance of agents with isolated states of affairs. Agents
need to take into account future possible compliance with a set of norms in making (collec-
tive) action decisions now. Decision mechanisms need to take into account uncertainties in
terms of action outcomes and exogenous influences on the state of the environment, and en-
able agents to coordinate their behaviour with others with influence over the environmental
state. In order to model decisions in this context, we propose a novel, decentralised plan-
ning mechanism that is driven by qualitative rewards reflecting this norm-based ranking of
possible worlds.

Returning to the harbour protection scenario, our main objective is to preserve the prop-
erties i, V i, V ip (unauthorised boats are intercepted) and, whenever i, V i, V i, does not
hold, to preserve rep (incursion into the restricted area is reported). Violations of O3 or O4
are more severe than other violations. Moreover, since we want to specify that having some-
one monitoring the area is more important than not revealing the UAV location, we want to
say that violations of O, are more severe than violations of O; or Os. This partial order is
illustrated in Figure 1. Looking at, for example, worlds w3z and wi¢ (Table 2), this ordering
means that w3 is considered worse than wig, even though fewer obligations are violated,
because the unauthorized boat is not intercepted in w3. Similarly, w;s should be considered
less preferable than wj¢ because it violates O, which is more severe than Os, whereas the
two are incomparable with regard to obligation O;. Part of the ranking over possible worlds
in our example computed using Algorithm 2 in this scenario is presented in Table 2. The
most and least compliant worlds are wg and wy, respectively, and we use A to refer to the
ranking of the least compliant world. World w3 appears, as expected, at a higher ranking
than worlds ws and w;g with wig considered more compliant than w5 given the relative
severity of violation of obligations O, and Os. States that are incomparable with respect to
violation severity and contrary-to-duty structures are ranked equally; e.g. worlds wy and w,
where O3 is violated in both and O and Os are equally severe violations.
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Table 2: Ranking of possible worlds in the harbour protection scenario.

[ R [ 1Id] World [ Violations

1 w9 [ —ip [ —rep [ ip [ —my [ T [ my [ —iy

3 Wie _‘ih rep _'ib mp Ty —my iy 01, 05
4 Wis | i | Trep | Tip | omy | oy | Tny | Ty 01,0,
6 w3 -y rep S | omy |y my —iy 03

7 w1 —ip rep —ip mp Ty —my —iy 01, 03
7 wy | Tip | rep | Tip | Tmy | 1y my | iy 03,05

A=15 | wyp [ —ig [ -rep [ =iy [ -my | ru [ -my | Siu | O1, 05,03, 04, Os

Given that we can reliably compute a ranking over possible worlds that takes into ac-
count normative constraints, we now turn to the problem of norm-governed planning for a
team of agents.

4 Norm-Governed Multi-Agent Planning

Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) are an ef-
fective means to model collective, distributed decision making where multiple agents, each
of them with a particular view of the environment, must coordinate their actions in a decen-
tralized fashion in order to optimize some joint-reward [2]. Existing Dec-POMDP formali-
sations are founded on a real-valued reward function that specifies the value an agent obtains
from performing some action in some state of affairs. Our problem is different, however. We
require a model of decentralised planning in which agents are rewarded for remaining as
compliant with social norms as possible. We have shown that norms are most naturally or-
ganised as levels of compliance. We want agents to operate in such a way that they maximise
their compliance, and in order to motivate agent behaviour in this way we require a model
of rewards that reflects these qgualitative levels of compliance. To achieve this aim, here we
propose a novel model of Dec-POMDPs with qualitative rewards, which we dub N-Dec-
POMDPs to reflect our aim of developing a model of severity-sensitive and norm-governed
multi-agent planning.

4.1 N-Dec-POMDPs

An N-Dec-POMDP is defined as a tuple, (1,S,6°,{A;},P;,{E;},Pe,R) where: I is a set of
agents, and S is the set of states; pY is an initial belief state, i.e. a probability distribution over
possible initial states; A; is a finite set of actions available to agent i and a = (ay,...,a,) is
a joint-action (one for each agent); Ps(s;|s;,a) represents the probability that taking joint-
action a in state s; will result in a transition to state s;; E; is a finite set of observations
available to agent i and E is the set of joint observations e consisting of one local observation
for each agent; Pe(e | 5;,a) specifies the probability of observing e when performing a joint-
action a that leads to a state s;; R is a reward function, the definition of which we provide
below.

We focus on finite-horizon N-Dec-POMDPs, and so assume that the execution termi-
nates after H steps. An action-state history is a sequence of joint actions, each followed by
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a state (a1 ,s', ..., a' s"), and an action-observation history is a sequence of local actions
each of them followed by a local observation (a1 el dé ) up to an instant of time ¢.
Agents decide how to act only according to their local observations, and so a solution for a
N-Dec-POMDRP is a joint-policy q € Q, consisting of a local policy ¢; € Q; for each agent
i;i.e. Q= Q1 x--- x Qy . Each local policy maps action-observation histories to stochastic
sub-policy choices.

To get an intuition of the strategies that are developed for agents during this planning
process, consider again the harbour protection scenario introduced in Section 2. A good
policy for the UAV may be to continue surveillance, even if it has observed an unauthorised
boat in the restricted area, but this depends on the context. If it is operating in a team with
some other agent (e.g. a helicopter), it may keep monitoring with a high probability if it
observes only one boat in the area (assuming the other agent will intercept it), and with
a low probability it will intercept the boat. In situations where the UAV intercepts more
than one boat in the area, the UAV may decide to intercept (or report) one of the boats
with a higher probability. These policies are, of course, stochastic, and observations (e.g.
detection of an incursion) lead to a choice between different sub-policies for each agent in
the team. The objective we have in this planning process is to find, given the initial belief
state ¥, a joint-policy for the agents in the team that maximizes the total expected value
of the joint-reward over the horizon H. Given a -steps-to-go joint-policy ¢, ¢} is the local
policy for agent i, ay is the joint-action prescribed by the policy, and 7] : E X Qﬁ_l —[0,1]
is the stochastic mappings that return, for each agent i and observation e, the probability of
selecting local sub-policy qfl € Qifl after observing e.

The expected value of executing a policy ¢ from a state s; can be computed recursively:

V(q07si) :R(siaaqo) (3)

V(ql’si) = R(si7aq1) + ( 5ire Ps(sj\si,aqz) X Pe(e|sj7aq1)><
Yo (V@) x[Lated ™)) @

We compute the immediate reward that is obtained from executing action ag from
state s; (Equation 3). Then we consider each possible outcome state s;, each possible joint-
observation, and all possible resulting joint sub-policy choices with their probabilities and
recursively evaluate these sub-policies from s; (Equation 4). This equation can be general-
ized for a generic belief state b as shown in Equation 5.

V(a',b) =} b(s)-V(d's) )

Most of this characterisation of an N-Dec-POMDP mirrors that of a standard Dec-
POMDP; the differences occur in the reward function and the way in which we optimise
agents’ policies.

One way to define the reward function in terms of norm violations is:

Vs; € S,aj eEA: R(si,aj) = frank(n)((si)) 6)

Essentially, we assign a higher penalty (a negative reward) to states at a lower level
of compliance (higher ranking). This approach, however, does not avoid the fallacies in
reasoning that we highlight in the introduction. Recall that, in solving a Dec-POMDP, we
want to find a joint-policy that maximises the expected value of the sum of the rewards
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ar a2
a a2
a3 a32

Fig. 7: Three example histories: iy, hy and h3.

accumulated during execution (i.e. minimises the penalties for norm violation). A reward
function, then, entails a preference relation over possible histories, where histories that have
a higher total reward are preferred.

Consider the three execution histories /1, hy and h3 depicted in Figure 7. History A
visits three states s .1, s1.2 and s 3 with rankings r = 1, » = 6 and r = 1, respectively. History
hy visits states with rankings 4, 4 and 1, and history A3 visits states with rankings 4, 3 and
3. Using the reward function of Equation 6, these three histories would be associated with
rewards of —8 (h1), —9 (hy) and —10 (h3), and hence history h; will be preferred to &y,
and &, will be preferred to h3. This is inconsistent with our view of norm compliance as a
series of partially ordered levels. Our goal is to find policies that minimise the likelihood of
reaching states at lower compliance levels, and so we require a reward function such that:

1. Histories that include states with lower compliance levels are less preferred; and
2. If two histories are incomparable with respect to violations for all compliance levels
lower than level i, the history with fewer violations at level i is preferred.

In order to capture these requirements, we exploit the qualitative theory of MDPs pro-
posed by Bonet and Pearl [6]. This is based on an order of magnitude approximation for
utility and probability values, and was developed to model problems where only imprecise
information about quantitative parameters of an MDP is available. They define polynomials
and an infinite series of elements of the set 2 of extended reals. Given a variable € which
represents a small unknown quantity, an extended real is a rational function p/g, with p
and ¢ being polynomials in €. As an example, the quantity £~ can be used to represent
an unknown high utility, while £> can be used to represent a very small utility. Bonet and
Pearl define operations over the set ¥ of infinite series ¥ = ¥, cx€* and generalize the value
iteration algorithm [23] for Qualitative MDPs and POMDPs. Let y! and w? denote two
members of ¥ such that y/ = ¥ cf{&‘k, a € R and o(y') be the order of v, defined as
o(y') := min{k : ¢} # 0}. Equations 7-10 define the sum and comparison between two ex-
tended reals and the product of an extended real with a real. Note that the comparison of
extended reals is reduced to a lexicographic comparison of their coefficients.

(v +v?) =) (e + et ™
v <0 iff e <0 (®)
v <yriffy! —y? <0 )

(axy!) ::Zk(a xch)ek (10)
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Given a real parameter, p, the magnitude of an extended real is defined as:

W' lp ==Y, lexlp ™ (11)

Bonet and Pearl [6] then show that, for positive coefficients and large enough p, we have
y' < y? if and only if [y o < [[w2]p-

Given our requirements, therefore, we can characterise the reward function for an N-
Dec-POMDP: R: S x A — 2 is a reward function, and R(s;,a) specifies the reward obtained
by performing a in s;. We can then associate with each history, A, an extended real utility
Yy = Yo<i<a —cl'el where Ais the maximum ranking level of the given N-Dec-POMDP, and
each component c? corresponds to the number of states in the history that have rank A —i.
This is equivalent to assigning a state-based reward of —e” " to each state with rank i. Such
areward function can be interpreted as the agents incurring in a higher cost for visiting states
with higher rank. Equation 12 captures this formally.

Vs; € S,aj cA: R(s,-,aj) = —EA_mnk<PW)(Si) (12)

Consider again the example of Figure 7. Assuming a maximum rank, A = 6, history /;
is now associated with a value of —e® —2¢3, history Ay with —2e2—¢5 and history a3 with
—g2 —2¢3. From Equation 9 we have that (—&° —2¢%) < (—2¢? — &°) < (—€*> —2¢%), and
therefore, as expected, &3 is preferred to /i, and h; is preferred to ;. Maximizing the total
expected reward, therefore, implies minimizing the probability of reaching higher ranking
levels (lower levels of compliance).

4.2 Policy Optimisation in N-Dec-POMDPs

Given that finding a y-approximation of an optimal policy for a Dec-POMDP is NEXP-
complete, finding such a policy for an N-Dec-POMDP will be at least as hard given that
the introduction of qualitative levels of reward, representing norm compliance, does not
simplify the underlying decision problem. Due to this complexity, our approach is to develop
an algorithm that can efficiently find solutions without providing any guarantees on the
solution quality with respect to the optimum. One of the most successful existing algorithms
in solving large instances of Dec-POMDPs is Point-Based Policy Generation (PBPG) [32].
As discussed in Section 6.1, PBPG starts from the last time step and moves backwards using
the 7-steps-to-go policies as possible sub-policies for the (¢ + 1)-steps-to-go policies. At each
step, a heuristic is used to select a set of reachable belief states. A set of candidate policies
is then generated and evaluated from those belief states and only the best maxTrees policies
are retained. In the policy generation phase, one candidate for each possible joint-action is
created, and a linear program is used to find sub-optimal stochastic mappings for the given
belief state and joint-action. The mappings for each agent are iteratively improved while the
other agents’ policies are fixed. We adapt PBPG in order to approximately solve N-Dec-
POMDPs, and, in Section 4.3, propose a novel heuristic for qualitative reward domains to
restrict the selected belief states.

The reward function of an N-Dec-POMDP has its co-domain in ¥, and so we need to
define a procedure for policy optimisation that accepts reward values and returns expected
values in ¥. Note that P;, P, and 7:{ are defined as functions with real co-domain. To do this
we can use a combination of Equations 7 and 10 to evaluate joint policies.
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Fig. 8: Linear program for joint-policy optimisation through reward magnitude.

Variables: 8,7/ (¢! |e;)
Objective: maximize &
Subject to:
v (mb)lle < ) <P(e~5\avb) X (i (dilei) - mi (g ile—i) - (*HV’(q‘,A‘)Hp))>
s, q
Ve; € E; Z 7! (gtle)) =1
g,
Vei € Ejq; € Qi m (glei) >0

Since the linear program used in PBPG to improve the stochastic mappings of policy
candidates optimises a real valued expected total reward, it cannot be directly applied to im-
prove the policy of an N-Dec-POMDP. One alternative is to simply substitute each extended
real with its magnitude, and use the linear program to maximise the magnitude of the ex-
pected reward. The correctness of this approach relies on the fact that, for each pair ', y? €
¥ we can find a large enough p such that y' < y? if and only if | y'||, < ||y?| ,. Figure 8
gives the linear program for this method. The value of the current policy is V/*!(x,b), the
variables 7/ (g!|e;) represent the new values for the stochastic mappings of agent i, while
7_i(q"_;|e—;) are the fixed mappings for agents other than i, and § is the improvement that
needs to be maximized. This procedure is repeated until no further improvement is possible.
The solution corresponds to an equilibrium, where no agent can unilaterally improve its own
policy. We use the inverse of the magnitude in order to account for the fact that our extended
reals rewards have only negative coefficients. Tijs [28] shows that it is always possible to
find a p large enough such that lexicographic optimization reduces to linear programming.
Tijs’ proof does not show how to find a good value of p, however. As a result, this approach
can only approximate the solution of a lexicographic optimisation.

An alternative approach is to consider a series of A linear programs, each of them max-
imizing one coefficient of the value function. In Figure 9 we present the linear program that
maximises the value of the jth coefficient VJ? (m,b) of the value function. The improvement
of each jth component is represented by 6;. We start by maximizing the value of the co-
efficient of £°. Then for each subsequent LP, we improve only the jth components of the
value functions of the policies. However, for each kth component with k£ < j we introduce
an additional constraint to ensure that we do not decrease the kth component.

Note that improving the jth component might result in situations where, for some /th
component, with / > j, only a negative improvement is possible. These improvements repre-
sent a trade-off where we accept a decrease in one component of V/ (7, b) in order to improve
one that is associated with a higher ranking level (lower compliance). We say that an im-
provement sequence &, ..., 04 is acceptable if and only if, for each negative improvement
0; < 0, there exists a & > 0 such that k < j. Informally, an improvement is not acceptable
if it leads to a policy that has lower expected value than the initial one according to the
ordering among extended reals.

This translation guarantees that an acceptable improvement sequence results in locally
optimal solutions. While this approach requires solving A LPs, the first LP will have only
a sparse constraint matrix and can be solved very efficiently. The following LPs will only
have to consider a very constrained solution-space, and therefore can also be solved more
efficiently. In fact, since our main objective is to maximise values associated with higher
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Fig. 9: Linear program to optimise the jth coefficient of the ¥ value function.

Variables: §;,7/(q'|e;)

Objective: maximize &

Subject to:
Vit (m,b)+8; <Y (P(e sila,b)- Y (w] (qile:) - m-i(qe—s) 'V}(qfaé‘i)))
si-e q
VO<k<j Vit (mb)+ & <Y (P(e sila,b)- Y (] (dile:) - m_i (¢ ile~i) - Vi (d',s )))
sj.e q
Ve, € E; Z 7/ (gile;) =1

Ve; € Ei q; € O} m(glei) >0

ranking levels, and doing so will often restrict the space of possible policies to only a few
candidates, we can limit our sequence of improvements only to a limited number of higher
ranked levels and still expect to find close-to-optimal solutions. As we will show in Section
5, if we terminate our sequence of LPs when we find a non-zero coefficient for the value
function, we obtain considerable saving in execution time without affecting the quality of the
resulting policy. We refer to this approach as the greedy LP, and to the magnitude translation
as the magnitude LP.

Algorithm 3 Algorithm for the Greedy LP optimization

Input: ¥',a,0),...,0,
Output: m,...,7,
1: initialise 7, ..., 7, randomly.
2: VE=eval(Qy,..., 0, M, ..., M)
3: repeat
4 changed = false.
5 for ag=0tondo
6: for/=0to A—1do
7 (81, Tag) = LP(VE, Qb ..., 0L o, ., Ty g, )
8 if §; > 0 then
9: changed = true
10: end if
11: VFE=V'+§
12: if V¥ > 0 then
13: break
14: end if
15: end for
16: end for

17: until changed = true

Algorithm 3 formalises the greedy LP optimization. The algorithms takes as input the
belief against which we are evaluating our policy &', the candidate joint action a, and the
set of possible sub-policies Q! for each agent 1 <i < n, and it returns, for each agent 1 <
i < n, a function 7; that maps its local observations to a probability distribution over Q}. The
algorithm starts by initializing the mappings randomly and evaluating these mappings over
the belief b’ using Equation 4. It then considers each agent in turn in order to improve their
local policy (Lines 5-16). For each agent, the algorithm applies the LP of Table 9 to improve
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each component of the expected value function V* (7) starting from the one associated with
the highest ranked (least norm-compliant) level. After each call to the LP, the value V7 is
updated accordingly, and, if the value for the level being considered is greater than 0, the
improvement for the current agent is terminated (Line 13). This procedure is repeated until
we complete an iteration without any change in the value function (Lines 3-17).

4.3 The Most-Critical-States Heuristic

In PBPG, heuristics are used to identify relevant belief states against which to optimize
the policy. The intuition behind PBPG is that, if the agents act in a way that is close to
the optimum, only a subset of states will be reachable. In building policies in a bottom-up
fashion, therefore, we can optimize them only against those states that are most likely to be
encountered during execution, increasing the scalability of the algorithm.

In finding a policy for an N-Dec-POMDP, our objective is to minimize the probability
of visiting states associated with a higher ranking level (lower compliance). The approach
we take, therefore, is to restrict the belief states we select so that they include only those
reachable states that are likely to lead to more severe violations. In so doing, we focus
planning effort on developing agent strategies to avoid these undesirable states. This has
the effect of improving the scalability of the algorithm without affecting the performance
of resulting policies. Inspired by the MDP and Dec-POMDP heuristics (we refer to these
by MDP and Dec) proposed by Seuken and Zilberstein [25] we exploit information that
is easily obtainable by computing the optimal policy for the underlying MDP and its value
function. The value function Viypp(s;) represents the expected utility that we would obtain if
the execution had started from s;, assuming the agents were able to fully observe the current
state of the system and to coordinate their decisions at each step. Vypp, thus, represents
a good candidate to heuristically assess the importance of a state, taking into account the
capability of a coalition to remain compliant or to recover from current violations. We define
Rlypp(si) € S to be the set of reachable states from a state s; if the coalition follows the
MDP policy for ¢ time steps, and we define pr,, (s;) to be the probability of reaching state
sj € Riypp(si). The values of these can be estimated using standard sampling techniques.
Given a threshold T € W, mcy is the subset of states, among those reachable from s;, such
that the product of their value function and their probability is less than 7. Formally:

mc¥ := {s; € Rypp(si) : Vupp(s;) *pr,(s;) < T}

Intuitively, if we accept Vypp(s;) to be a good approximation of the value that we can
expect to obtain from a state s; in the decentralized case, mc3F includes those reachable states
that have a potential impact on the expected ranking that is higher than 7.

Given an initial state s;, and a threshold 7, the MDP Most-Critical-States (MDPMcs)
heuristic is the heuristic that returns a belief state » such that:

75 r"’;i’: ?(‘Yk) if s; € mcy
b(sj) - Skemt'ij ! (13)
0 otherwise
These definitions can be easily generalized for an initial belief state. An improved ver-

sion of MDPMcs (denoted as DecMcs) can be obtained by using a previously obtained
policy q” to sample the set of reachable states and to evaluate them. We can simulate the
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execution of the system assuming that the coalition follows q for 7 steps. For each of a
number of simulations we obtain a state s; and a sub-policy q'#~*), which we use to evalu-
ate Vpec(s;). Note that a state can be reached following different paths, potentially resulting
in different sub-policies and values of Vp,.. For each state we take the minimum among
those values. In our experiments, a mixed approach (which is what we refer to as our Most
Critical States, or MCS heuristic), using qH to find the reachable states, and Vj;pp to eval-
uate their criticality led to better policies. Moreover, this mixed approach does not require
us to evaluate additional joint policies. While the best value for 7 depends on the scenario,
a typically good value is T = c&**!, where s is the order of Vy;pp(h°), and ¢ a small real.
This threshold captures all those states that might potentially to lead to the worst (highest)
ranking level reachable by an MDP-based execution.

With our method of mapping a normative system specification into a ranking over pos-
sible worlds, the magnitude and greedy approaches to solving an N-Dec-POMDP, and the
Most Critical States (MCS) heuristic, we can move on to evaluate our model. Existing bench-
mark problems for (Dec-)POMDPs do not include normative, or soft constraints, and so we
use the multi-agent harbour protection scenario that involves both contrary-to-duty struc-
tures and varying severity. We can, however, directly compare the magnitude and greedy
approaches to solving an N-Dec-POMDP, and compare MCS with standard PBPG.

5 Evaluation

In the harbour protection scenario introduced in Section 2, there are restricted and unre-
stricted areas, and both agents (UAV, helicopter and patrol boat) and unauthorized boats can
move between them. The UAV and the helicopter can perform the action monitor in order
to start monitoring their current area; this action always suceeds, but monitoring does not
guarantee detection of an unauthorised boat. Each agent is able to observe the location of
unathorized boats in the same area with probability 0.15. By monitoring an area, an agent
increases this probability to 0.75. Each agent can perform intercept; in order to intercept the
ith unauthorized boat, and an action report to report an incursion. Each of these actions will
succeed with a probability of 0.8, and the agent must commit to this task over two time steps
to have an effect. Each agent is able to observe its own location and, with a certain prob-
ability, the location of agents in the same area. By monitoring an area, an agent increases
its probability of correctly observing other agents’ locations. The behaviour of unauthorized
boats is controlled by the simulation. Throughout the simulation, each boat will move from
the unrestricted area to the restricted area with probability 0.11 or return to the unrestricted
area with probability 0.3. Initial exploration of possible values for these probabilities indi-
cated that these gave a good level of dynamism and indeterminism in the simulation, and
hence represent a good level of challenge for the planning problem. We chose a horizon,
H = 20, for all simulations; preliminary experiments showed that a horizon greater than
20 offered no additional benefit to the quality of the plans computed for any of the algo-
rithm/heuristic combinations. For the same reason, for each simulation maxTrees = 2 (the
number of policies retained at each step during plan generation). Each experimental con-
dition was repeated 20 times with identical initial conditions: all unauthorized boats in the
unrestricted zone, and all agents in the restricted zone with no agent monitoring.

We used three different instantiations of the harbour protection scenario, chosen in order
to investigate both under- and over-constrained conditions. The first consists of two agents
(one UAV and one helicopter) and three unauthorized boats. This is over-constrained be-
cause if all three unauthorized boats are in the restricted area at the same time, there are
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Table 3: Planning results for standard PBPG heuristics and MCS with the magnitude and
greedy linear program planners.

Standard MCS
Ag [ B Value [ Time Value [ Time
Magnitude LP

N 3 -5.88e-20 32.05 -5.88e-20 27.10
+3.76e-23 +2.89 +3.5%-23 +2.10

3 N -3.68e-20 185.25 -2.69¢-20 146.75
+3.70e-23 | +15.69 +8.27e-23 | +14.61

3 3 -4.61e-20 | 7609.10 -4.76e-20 | 5375.60
+3.58e-23 | +£484.27 +2.64e-22 | £578.30

Greedy LP

N 3 -5.88e-20 31.15 -5.88e-20 23.65
+3.02e-23 +2.96 +3.04e-23 +2.78

3 N -3.28e-20 112.20 -2.61e-20 79.85
+2.86e-21 +7.38 +4.56e-22 +7.66

3 3 -4.58¢-20 | 4984.80 -4.70e-20 | 3236.25
+3.04e-22 | +£483.49 || £5.94e-22 | £392.69

insufficient agents to intercept them all. In this case, the best choice for the agents is for one
of them to intercept a boat and for the other to issue a report to headquarters. The second
case consists of three agents (one UAV, one helicopter, and one patrol boat) agents and two
unauthorized boats. In this case, even if both unauthorized boats are in the restricted area
at the same time, the agents can intercept both (one by the patrol boat and one by the heli-
copter) and maintain surveillance (the UAV). The agents can remain fully compliant. In the
third case there are three agents and three unauthorized boats. If all three unauthorized boats
enter the restricted zone, the agents are then faced with the choice between intercepting all
three and maintaining surveillance. The three cases are, therefore, designed to maximise the
challenge with respect to agents making the most compliant joint action choices.

In Table 3 we report the average and standard deviation of the execution time and the
quality of the resulting policy for our planning algorithms and PBPG. Specifically we com-
pare execution of our planner using the standard PBPG heuristic and the MCS heuristic,
and the magnitude and greedy linear programs. The columns Ag and B specify the number
of agents and unauthorized boats in each scenario. The two columns Standard and MCS
compare the results for the two different heuristics. In particular, the MCS executions use a
combination of the MDPMcs and random heuristics® and the standard executions use a com-
bination of MDP and random heuristics. The first part of the table presents results obtained
using the magnitude LP, which optimises the inverse of the magnitude of the reward. The
second part of the table presents obtained using the greedy LP, interrupting improvement of
the solution as soon as we find a level with value lower than —0.001. The results are also
summarised in the box-plots presented in Figures 10-12.

The results are not normally distributed, and so we tested them for significance using the
Kruskal Wallis (analysis of variance) test, which does not assume a normal distribution of
residuals. There are no significant differences for the value obtained (policy quality): asymp-

3 The random heuristics sample for reachable states by simulating agents that choose a random action at
each step.
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Fig. 10: Execution time and policy quality (value) for the 2 agents and 3 boats case.
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Fig. 11: Execution time and policy quality (value) for the 3 agents and 2 boats case.
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Fig. 12: Execution time and policy quality (value) for the 3 agents and 3 boats case.

totic p-value of 1.000. We do, however, observe significant differences in execution time.
In order to better understand where these between-groups differences lie, we performed a
post-hoc analysis consisting of Bonferroni-corrected pairwise Mann-Whitney tests. Table 4
summarises the p-values for all the pairwise tests comparing the execution times of differ-
ent algorithms. Using this conservative method, we found that all pair-wise differences are
significant with the exception of two.

We further explored the differences in performance of the LPs in order to isolate the
effect of choosing the greedy LP over the magnitude LP. There is no significant difference
in the execution time of the magnitude and greedy LPs with both Standard and MCS heuris-
tics in the 2-agents, 3-boats case (Figure 10, p-values being 1.000 and 0.133, respectively).
We believe that this is due to the fact that this is an over-constrained problem, such that
we cannot easily discount those strategies that are more likely to lead to the most severe
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Table 4: Pair-wise differences in execution time: p-values.

Comparison of LPs Comparison of Heuristics
Scenario Heuristics Scenario LPs
Ag | B Standard | MCS Ag | B Magnitude | Greedy
2 3 1.000 0.133 2 3 0.000 0.000
3 2 0.000 0.000 3 2 0.048 0.034
3 3 0.000 0.000 3 3 0.003 0.003
.00 — —_ —_— Algorithm
-25 = I'\{/IaC:d-ggreedy
S
§ -.507 °
%
e

T T T
2 agents,3 3 agents,2 3 agents, 3
boats boats oats

Scenario

Fig. 13: Comparison of MCS+Greedy and random play.

violations. The strategy of solving multiple, smaller LPs at different ranking levels and ter-
minating when no significant improvement can be found, therefore, has little effect. There
are, however, significant differences in all other comparisons between the LPs, such that the
greedy LP significantly out-performs the magnitude LP.

We then explored the differences in performance of the heuristics in order to isolate the
effect of choosing the MCS heuristic over the Standard heuristic. The positive effect of using
the MCS heuristic over Standard is significant in all cases for either LP. It is interesting to
note that, although significant, the benefit in using the MCS heuristic is more marginal in
the 3-agents/2-boats case. This is the least constrained of the problems considered, given
that even if both unauthorised boats enter the restricted area at the same time, there are
sufficient agents to intercept both and maintain surveillance. This is expected because the
MCS heuristic was specifically designed to provide additional guidance to decision-making
in more challenging, over-constrained scenarios.

It is important to note here that the effects on execution time due to the use of the greedy
LP and the MCS heuristic are additive. When the problem is over-constrained, the use of the
MCS heuristic provides significant execution time improvements, and continues to provide
some benefits in less constrained scenarios. The greedy LP algorithm is able to exploit the
structure of the domain in all but over-constrained scenarios. In combination, the greedy
LP algorithm and MCS heuristic significantly improves execution times across all norm-
governed scenarios, regardless of how they are constrained with respect to resources. Fur-
ther, as the complexity of the scenario itself increases, the combined effect is more marked.
In the 3-agents, 3-boats case, execution times are more than halved: mean execution time
for magnitude/standard being 7609s, and for greedy/MCS being 3236s.

In common with all other algorithms for planning in Dec-POMDPs, our N-Dec-POMDP
planner does not provide guarantees for the quality of the solution. No existing model is able
to utilise the qualitative reward function that is necessary to reason about levels of norm com-
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[ Ag [ B [ MCS + Greedy | Random

2 3 —5.88e-20 —9.10e-1
+3.04e-23 £1.03e-1
3 9 —2.61e-20 —2.40e-1
+4.56e-22 +2.69¢-2
3 3 —4.70e-20 —7.5%-1
+5.94e-22 £7.17e-2

Table 5: Comparison of MCS+Greedy and random play.

pliance, but comparison with the alternatives above, including an adaptation of the standard
heuristic, provides the most objective assessment available. There is the question, however,
of whether our approach (or, indeed, whether any of the others considered) finds good poli-
cies. We may do this by comparing the quality of policies computed by our greedy algorithm
using the MCS heuristic with the expected value of a set of randomly computed policies. In
Figure 13 and Table 5 we present the results of this comparison. Our policies behave con-
sistently better, with the difference being more pronounced in more constrained situations.
Again, we tested these results for significance using the Kruskall-Wallis test, and obtained
a p-value of 0.000 in each case. We can, therefore, claim that our planning algorithm is
effective in finding good policies for decentralized, collective planning problems under un-
certainty.

6 Discussion

In placing this research in context, we first discuss the current research landscape on single
and multi-agent planning under normative (or equivalent) constraints. We then move on
to explore in more detail the model of norms used in this research, alternative modelling
approaches and discuss some avenues for future investigation. Our conclusions follow this
extended discussion.

6.1 Related Research in Norm-Governed Planning

Models of practical reasoning where action is both constrained by causal dependencies and
guided by ideals of behaviour (soft constraints or preferences) have been studied in a range
of contexts. Gerevini and Long [17] extended the Planning Domain Description Language,
PDDL, to include preferences. These are represented as boolean formulae that are satisfied
or violated by a plan. Even in the presence of preferences, however, PDDL requires the do-
main designer to specify a quantitative metric function to be optimised by a planner. These
metrics may, or may not, depend on the satisfaction of each constraint. For example, it is
possible to assign a real-valued weight to each constraint violation. Our approach is dif-
ferent because we specify gualitative preferences among constraint violations. Bienvenu et
al. [5] do consider qualitative priorities over constraints. Their formalism allows alternative
plans to be evaluated according to a lexicographic ordering over the set of constraints. Using
this approach, we can specify that avoiding the violation of a single norm is more impor-
tant than avoiding the violation of any other norms that follow in the lexicographic order.
Our approach is different, however: we do not simply consider norms in a lexicographic
order, rather we compute severity levels that depend on all norms that are violated in a state,
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and then consider severity levels in a lexicographic order. Moreover, Bienvenu et al. [5]
do not take into account how many times each constraint is violated. They do model the
specification of temporally extended preferences; that is, preferences that regulate execution
paths, instead of single states. While we do not discuss this issue in this paper, our model
can be directly extended in order to represent and reason about temporally extended norms,
as discussed in prior research [16]. These models only capture deterministic, single agent
scenarios, and do not support the specification of contrary-to-duty constraints.

In norm-aware practical reasoning, a number of different methods for reasoning about
norm compliance have been proposed. Meneguzzi and Luck [20], for example, extend the
BDI architecture to take into consideration norms. They describe algorithms that enable
agents to react to the activation and expiration of norms by modifying their intentions; i.e.
by introducing plans for the fulfilment of obligations and removing plans that violate pro-
hibitions. Dignum et al. [12] discuss the introduction of a preference relation over norms to
solve normative conflicts. This preference relation is taken into account only in situations
where it is not possible to comply with all norms. Our decision theoretic approach is differ-
ent in the sense that an agent might decide to violate a less severe norm even in the absence
of a conflict if, in doing so, the probability of violating a more severe norm in the future
decreases. Moreover, Dignum et al. only consider single agent scenarios and with a simpli-
fied (state-based) representation of norms. While these approaches support the specification
and reasoning about contrary-to-duty obligations, they only consider single agent scenarios
where the environment is fully observable and actions are deterministic.

Fagundes et al. [13] use Markov Decision Processes (MDPs) [23] to model a self-
interested agent that takes into account norms, and the possibility of violating them, in de-
ciding how to act. Violations are associated with sanctions, which result in the modification
of the transition probabilities, or of the agent’s capabilities. Agents consider the effects of
sanctions on their expected utility and weigh these against the potential benefits of violating
norms in order to decide upon a course of action. This model does not, however, explicitly
capture the relative severity of norm violations, and the representation of sanctions relies
on the assumption that the norm enforcement authority has the power to affect the agent’s
capabilities and the probabilities of transitions.

A more appropriate representation of severity levels of norm violation could be obtained
by representing the problem as a multi-objective MDP; that is, an MDP where the reward is
a vector, rather than scalar quantity, and where each component of the vector may represent
a different objective. A number of researchers have focussed on methods to efficiently solve
multi-objective POMDPs (Partially Observable MDPs) [24,26,30]. Some of these methods
attempt to find a set of policies that maximise the expected value for a set of possible scalar-
izations. A scalarization essentially gives a weight to each component of the reward value
and is formally defined as a linear function that takes a vector and returns a scalar. Roijers et
al. [24], for example, present OLSAR, a point-based algorithm based on Perseus [27] that
efficiently finds a set of approximately optimal policies for different scalarizations. Reason-
ing about norm compliance may be seen as a particular case of a multi-objective POMDP,
where each component represents the degree of compliance. From this point of view, differ-
ent scalarizations may be used to represent different degrees of severity for norm violation.
Such an approach, however, does not avoid the sort of fallacies in reasoning illustrated in the
introduction in terms of “fair labelling”, or with different classification levels in a security
setting. An alternative would be to take the approach proposed by Soh and Demiris [26],
where genetic algorithms are used to find the set of Pareto optimal solutions for a multi-
objective POMDP. A solution is Pareto-optimal if it is not possible to improve any com-
ponent of the expected reward vector without decreasing the value of another component.
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This approach assumes that the different components of the reward are of incomparable im-
portance and requires the user to decide which of the Pareto optimal solutions to adopt. We
propose a method that exploits the knowledge of the relative importance of each component
to improve the efficiency of the planning algorithm. A similar approach is taken by Wray and
Zilberstein [30], where they propose an algorithm to solve multi-objective POMDPs where
the reward components are ordered according to their degree of importance. This work only
deals with the single agent case, however, without considering the issue of coordination
among agents.

Problems in which a coalition of agents collaborate in order to maximise a joint reward
are often modelled as Decentralized Partially Observable MDPs (Dec-POMDPs) [2]. In a
Dec-POMDP, each agent has a local and partial view of the environment, and must take
a decision on what action to perform based only on its local observations. Finding a -
approximation of an optimal policy for a Dec-POMDP* has been proven to be intractable
[4]. For this reason, a substantial amount of research has focused on algorithms that can
efficiently find sub-optimal solutions without providing guarantees on the solution quality.
The vast majority of this focuses on quantitative models, where the joint reward is real-
valued.

Wu et al. [32], for example, propose Point Based Policy Generation (PBPG), an algo-
rithm for solving finite horizon Dec-POMDPs with real-valued rewards. The algorithm relies
on a set of heuristics to find belief states (probability distributions over possible states) that
are likely to be reachable after a given number of steps. Given an execution horizon H, the
algorithm starts by finding the best one-step policies (a one-step policy consists of a single
action) and evaluating them from the beliefs that are reachable at time H — 1. It then uses
these policies as sub-policies to build a set of candidate two-step policies, which are eval-
uated from the beliefs reachable at time H — 2. The algorithm proceeds in this way until it
builds the set of candidate policies for time 0. At each step, only the best MaxTrees policies
are retained and used as possible sub-policies, resulting in bounded memory complexity and
time complexity linear in the execution horizon. Because of this pruning, however, the algo-
rithm does not provide guarantees on the quality of the solution with respect to the optimum.

To the best of our knowledge, the problem of qualitative decision making in decentral-
ized, stochastic scenarios has been previously addressed only by Brafman et al. [9]. Their
work is different in spirit, however. The authors build upon a simplified Dec-POMDP, where
only qualitative statements about the possible transitions and observations are available, and
a set of goal states is defined in place of a reward. They show that this problem can be solved
using classical planning techniques. Their formalism does not permit the specification of
different degrees of preferences among goals, however. Norms are often seen as constraints
over the behaviour of (groups of) agents. From this point of view, our work is related to
research on constrained Dec-POMDPs by Wu et al. [31]. Wu et al. consider a Dec-POMDP
with a single reward function, but multiple cost functions. The objective is then to maximise
the reward function, subject to constraints over cumulative costs. Rather than trying to min-
imise the number of constraint violations, their algorithm excludes all solutions that violate
one or more constraints. Our aim is to find solutions that minimise the qualitative level of
violation severity that occurs, and minimise the number of violations at each level.

4 Given a real 7, and an optimal policy with value V*, a y-approximation of this policy is a policy with
value V/ > V* —v.
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Fig. 14: Deontic preference model for the surveillance example.

6.2 Discussion of Alternatives and Future Research

Our starting point in this research is the extensive body of research in normative systems
specification and reasoning. We model classical contrary-to-duty structures, which capture
the important notion of reparation. We also argue for the related, but complementary notion
of violation severity levels. There are, of course, assumptions we make in this research, and,
as discussed in Section 6.1, practical reasoning under normative constraints is closely related
to preference-based planning. In this discussion, therefore, we briefly explore alternative ap-
proaches to model violation severity, and alternative reward functions for N-Dec-POMDPs.
We discuss some of the limitations of the mechanisms proposed and indicate some avenues
for future research.

First we discuss ceteris paribus networks (CP-nets) [7] in more detail, which is a com-
mon means to capture preferences in planning domains. Given a set of variables, V, each
of them with a domain of possible values, preferences may be expressed: given a variable
X; € V, and a (possibly empty) set of variables ¥ C V \ X;, we can specify a preference
over different outcomes of X; conditioned on a given assignment for the variables in Y. The
fact that these preferences are valid only when all the other assignments are equal makes
them weaker than the norm-induced preferences considered in our model. They do not al-
low us to represent contrary-to-duty structures. Consider, for example, the adaptation of the
contrary-to-duty structure concerning surveillance where we make explicit the idea that we
only want one agent (the UAV or the helicopter) monitoring the restricted area at any time
(see Figure 14):

1. It ought to be that the UAV is monitoring: O = O(my | T).

2. If the UAV is monitoring, it ought to be that the helicopter is not monitoring: O, =
O(—my, | my).

3. If the UAV is not monitoring, it ought to be that the helicopter is: O3 = O(my, | —my,).

The most preferred world is one in which the UAV is monitoring, but the helicopter is
not. The two worlds where only O; is violated (—m,, A my) or only O is violated (m, A my,)
are incomparable, and worlds in which neither agent is monitoring the area (O; and O3 are
violated) is least compliant.

We may attempt to capture this as a CP-Net, the preferences for which are illustrated in
Figure 15, thus:

1. P :my, < —-m,
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Fig. 15: CP-Net model for the surveillance example.

2. Py —my, < my, it my,
3. Py :my < —my, if —my,

Each arrow is labelled with the statements that induce the corresponding preference, and the
result is a complete ordering over possible worlds. While this ordering is consistent with that
obtained in our model, it introduces an additional constraint: m, A my, <,, —m, A\ my, which
is not entailed by the normative specification. We can introduce this additional constraint by
stating that a violation of O is more severe than a violation of O, but that may not be what
is intended. In fact, CP-Nets implicitly consider an unconditioned preference over a variable
X; as being more important than another preference that is conditioned on the value of X;. We
may remove the preference P3, making the two worlds m,, Amj, and —m, A my, incomparable,
but this would also result in worlds m, A —my, and m, A —m;, being incomparable. These
two worlds differ in all their variables, and CP-Nets do not offer a way to specify a direct
preference between them.

In subsequent research, Brafman et al. [8] extend CP-Nets by introducing preference
relationships among variables. If, for example, variable X; is more important than X,, we
should always prefer an improvement in X; to one of X>. This addresses some of the lim-
itations of CP-Nets, but the two variables concerned must be mutually preferentially inde-
pendent. In other words, the preference over the values of one variable must not depend on
the value of the other variable. Since, in our example, the preference over m;, depends on
the value of m,, importance relationships are not sufficient. Thus, CP-Nets cannot be used
to express contrary-to-duty obligations.

It may be argued that the severity relation does not add to the expressiveness of a
model of norms that already includes contrary-to-duty structures. Given a desired ranking
of worlds, it is always possible to define a normative system that uses only contrary-to-duty
norms, and that would result in the ranking required. If we say that L; is the boolean ex-
pression that identifies all the worlds at the ith level, we could define a normative system
as:

— O(Ly | true)
- O(L, | ~Ly)

- O(Ln | /\?;11 ﬁLi)

In order to do this, however, it would be necessary to know in advance the desired rank-
ing of worlds, which is not trivial. Moreover, our approach enables a more straightforward
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and natural formalization for the same normative system. The mechanisms presented in Sec-
tion 3 can then be used to efficiently compute exactly this ranking.

Our severity specification is defined as a strict partial order over single obligations; i.e.
P, C OS x OS. This allows us to specify that the violation of one obligation is more severe
than any number of violations of another. Moreover, if we define O; >, O, and O >, O3,
worlds violating both O, and O3 will be preferred to worlds that violate O;. It would be
interesting to consider an alternative relation: P, C 205 % 205 We could then express re-
lationships such as {01} =, {02}, {01} =, {02} and {03,053} =, {O;}. An interesting
direction for future research would to be study how to compute a meaningful, acyclic pref-
erence relation over possible worlds, given this richer severity specification. Assuming such
an ordering can be reliably computed, this alternative domain analysis could be directly used
as input to our N-Dec-POMDP solver.

The reward function of an N-Dec-POMDP favours histories where states associated with
an higher ranking level are visited less often. This approach may lead to unexpected results
in some situations that involve independent® norms of incomparable severity. Consider two
histories, & and hy. History h; consists of a sequence of states, (s1.1,51.2), such that in state
s1.1 there are no violations, but in state s1 » both obligations O and O, are violated. History
hy consists of a sequence of states, (s.1,52.2), such that in state s 1, Oy is violated, in s7 .7,
0, is violated. Assuming that violations of O and O, are incomparable with respect to
their severity, we might expect these two histories to be equally good (or bad). In the model
proposed here, state s; 5 in history #; would lie at a higher ranking level than either states
§2.1 Or 827 in hy, and hence h; will be preferred to /. The reason for this is that our objective
is not to minimise the sanctions received as a result of norm violation, but to minimise the
possible consequences of these violations. The goal of the norm analysis phase is to ensure
that more severe consequences are associated with higher ranked states. Of course, this does
not guarantee that any increase in ranking is associated with more severe consequences.

An alternative reward function for an N-Dec-POMDP may be defined that would result
in histories s and h; being assessed as equally good. We could, for example, rank all the
obligations according to their severity using an adaptation of Algorithm 2, applied to the
set of norms rather than the set of possible worlds. We may then give rewards to states that
equate to, for each ranking level /, —n.e2~! where n is the number of violations at level /.
Histories /4 and /, would then have the same reward. It is not clear, however, how we could
capture the fact that violating contrary-to-duty norms should be considered less desirable
than violating the corresponding primary norms, which is an important aspect of our model.

In our model, norm compliance is necessarily evaluated on single states. On the face of
it, this restricts the types of norm that can be represented. In many domains, for example,
obligations may include a deadline for fulfilment: temporally-extended norms. Norms may
also link individual actions, such as in separation of duty constraints where two actions must
be performed by two different agents. In order to evaluate compliance with such norms, we
must take into account sub-histories rather than individual states. It is possible, however, to
directly extend our model to consider such norms by keeping track of the evolution of norm
instances (activation, expiration, etc.) in each state, as discussed in previous research [16].
The cost is an (potentially significant) increase in the number of states, placing additional
burden on the planner.

In this paper, we have focussed exclusively on normative motives. These are social
drivers of action, but autonomous agents may also be driven by individual goals. Individual
goals may be encoded as obligations, but this would be to combine compliance to social

5 Two norms are independent if neither is a contrary-to-duty obligation of the other.
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expectations and individual drives. Severity could be used to capture the relative impor-
tance of individual goals and norms if goals are expressed as obligations. It may, however,
be more appropriate to make explicit the distinction between social norms and individual
goals. We could then employ multiple-objective optimisation methods to manage the trade-
off between remaining compliant with social expectations and satisfying individual goals.
This is an avenue for future research, given that a suitable approach would need to account
for the naturally qualitative nature of the reward function for norm-governed planning.

7 Conclusions

In the introduction, we claimed contributions both to modelling and practical reasoning
in normative multi-agent systems, and to algorithms for decentralised planning under un-
certainty. For the former, we have presented what we believe to be the first end-to-end
model from the analysis of a domain where the behaviour of agents is governed by norms,
through to a decentralised planning mechanism for multiple agents to act in concert such
that they maximise their compliance with these norms. We consider normative system spec-
ifications that include guidance for recovering from violations (contrary-to-duty obligations)
and avoiding critical levels of failure (severity). The domain analysis mechanism proposed
is guaranteed to generate a transitive and acyclic preference relation over possible worlds.
This preference relation enables possible worlds to be ranked from the most to least com-
pliant. This is then used to guide collective decision making in the presence of uncertainty,
with the goal of maximising the expected compliance of states in an execution history.

The N-Dec-POMDP planning mechanism is an adaptation of Dec-POMDPs for use with
a qualitative reward function. Our greedy LP algorithm approximately solves an N-Dec-
POMDP by starting with the problem of optimising against the highest levels of the reward
function, adding additional constraints associated with lower levels until no significant im-
provement can be found. The most-critical-states (MCS) heuristic also exploits the qualita-
tive structure of the reward function to guide planning effort. From the results obtained from
evaluating this planning mechanism, we may reliably conclude that both the greedy LP and
the MCS heuristic provide significant and considerable savings in terms of execution time
without affecting the quality of policies computed.
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