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Abstract

We develop an action principle to construct the field equations for a multi-fluid system con-
taining charge-neutral fluids, plasmas, and dissipation (via resistive interactions), by combining
the standard, Maxwell action and minimal coupling of the electromagnetic field with a recently
developed action for relativistic dissipative fluids. We use a pull-back formalism from spacetime
to abstract matter spaces to build unconstrained variations for both the charge-neutral fluids and
currents making up the plasmas. Using basic linear algebra techniques, we show that a general
“relabeling” invariance exists for the abstract matter spaces. With the field equations in place, a
phenomenological model for the resistivity is developed, using as constraints charge conservation
and the Second Law of Thermodynamics. A minimal model for a system of electrons, protons,

and heat is developed using the Onsager procedure for incorporating dissipation.

PACS numbers: 04.40.Nr, 04.40.-b, 03.50.-z



I. INTRODUCTION

Relativistic fluid dynamics is a well developed area of research, with exciting applications
ranging from astrophysics to high-energy collider physics (see Andersson and Comer [1]).
These applications become more complex and involved as our computational technology
advances. In astrophysics, the state-of-the-art is represented by neutron-star simulations
(or work on supernova core collapse) including multi-dimensional neutrino transport [2, 3]
and compact mergers of magnetised binary stars including resistive effects [4, 5]. Meanwhile,
the high-energy physics problem has inspired the first simulations of second-order, causal,
dissipative models, building on the classic formulation of Israel and Stewart [6, 7]. In
parallel, there have been formal developments of the theory (including many relevant efforts
in the string-theory inspired area of holography, see for example, [8]).

When it comes to classical (general-) relativistic fluid dynamics, the most interesting
developments involve the consideration of multi-fluid systems, e.g. issues arising when com-
ponents become superfluid, when heat flows and when the electromagnetic charge current is
treated as a dynamical variable [1, 9-11]. These advances allow us to consider a wide range
of relevant phenomena, but the general theory is incomplete in two important respects. First
of all, we need to be able to consider dissipation (for which a plethora of mechanisms may
operate in a multifluid system). Secondly, we need to couple the dissipative fluid dynamics
to electromagnetism. The former poses a formal challenge because, while it is well-known
that non-dissipative fluid dynamics can be derived from an action principle [1, 12-15], the
inclusion of dissipation in these systems tends to be phenomenological. The second is key
if we want to move towards a greater level of realism in our astrophysics modeling.

Given the first of these two issues, the recently proposed strategy for extending the
variational approach to dissipative systems [16] is promising. In principle, it provides us with
an avenue for connecting dissipative channels with the underlying matter description and
equation of state models accounting for transport phenomena. This paper aims to address
the second issue by extending the variational derivation to account for electromagnetism.
In particular, we provide a variational derivation for charged multifluid systems, accounting
for particle reactions and resistive scattering. Having obtained the formal results we discuss
issues relating to electromagnetic gauge-invariance and develop a phenomenological model

inspired by (and consistent with) the formal results. These developments provide a robust



foundation for applications, as discussed in two companion papers [17, 18].

In Sec. II, we discuss the fundamental variables of the system and review the pull-back
formalism. We also show how to build in general re-labeling invariance for the matter spaces.
The total action, its variation, and resulting field equations are given in Sec. III. In Sec. IV,
we use a decomposition of the system variables and fluid field equations with respect to a
local “observer’s” frame-of-reference to illuminate various features of the resistivity and to
exploit them so as to produce a phenomenological model. A minimal model for a system of
electrons, protons, and heat is provided in Sec. V. Concluding thoughts and some discussion
of immediate applications of the formalism are presented in Sec. VI. Finally, in an appendix,
we show how minimal coupling can be considered as a special type of entrainment between
the electromagnetic four-potential and the charged fluid fluxes. The conventions of Misner,

Thorne, and Wheeler [19] are used throughout.

II. SYSTEM KINEMATICS: THE FIELDS AND VARIABLES

We will assume that our system has a number N, of independent fluid constituents (such
as electrons, protons, neutrons, and entropy). Each constituent has as its fundamental field
a particle number density current n¢, where x is a label that ranges over the various N.
constituents (e for electrons, p for protons, etc.). The density n, associated with a given
flux is given by n2 = —gunnl. Among the N, constituents there will be a number N,
which are charged, such that N, < N.. Each of these will have a charge e, which combines
with its associated flux current n? to give a charged flux current j¢ = eyng. Associated
with each flux is a (canonically conjugate) fluid momentum p [cf. Eq. (58)]. While not
dynamically independent (being a function of, in principle, all of the fluxes), its identification
is an important step towards extracting various physical properties of the system — such as
vorticity [cf. Eq. (59)]. The remaining field variables are the four-vector potential A, and
the spacetime metric g,,. With A, we couple the charged fluids to the electromagnetic field
(and vice versa); the metric couples all fields to the spacetime curvature (and vice versa).
At the end we have a complete system for describing a system of charged, self-gravitating,

relativistic fluids.



A. Fluid Particle Worldlines and Fluid Matter Space

The (charged and uncharged) “fluid particles” associated with a given flux will have
worldlines that follow from the unit four-velocity field u¢ = n?/n,. In general, the number
of independent four-velocities, or equivalently, the number of (charged and uncharged) fluids,
Ny will be equal to or less than N.. This is determined from the outset by the details of the
system that is to be described. When Ny = N,, each constituent can move independently
of the others, but when Ny < N, some of the constituents are flowing together; for example,
as the limit of dynamical locking due to the resistive form of interaction developed later.

In Fig. 1 we have a representation of some fluid-element worldlines, for a system of two
fluids. With respect to the local coordinate system {z° z'}, the points on the left-most,
x-fluid worldline are given by x% (1), where 7 is the proper time. The functions z¢ (7) can
be constructed from dz?/dr = u$ once the fluid field equations are satisfied and u¢ is known.
Likewise, for the right-most, y-fluid worldline, the functions z§ (A), where X is the proper
time, come from integrating dzj/d\ = u$, once the uj are known.

With respect to system evolution, one often has in mind an initial-value approach to
finding solutions. In our local coordinate system, we have an initial, spacelike slice at
2% = 0, and so our determination of z§ (7) and z¢ (A) for the two worldlines will be based
on the specification of their respective initial locations, namely, % (7o) and xy (Xg). This
brings up an important point: Assuming a given initial slice, and the fact that proper time
allows for some re-parametrization invariance, we see that z! (1) for each worldline is all
that is needed to set up the distribution of the worldlines on the initial slice. In fact, it is
plausible that once this labeling is in place, each fluid element will carry along with itself
(via Lie-dragging) its original label as it moves along its worldline.

This leads us to introduce for each fluid an abstract, three-dimensional “matter” space,
the coordinates of which can be used as dynamical variables for the fluids [12, 13]. The
role of the equations of motion is to guarantee that the initial set-up will lead to families
of worldlines as fibrations of spacetime. On the left in Fig. 1 we have placed the x-fluid
matter space having coordinates X2, A = {1,2,3}, and on the right is the y-fluid matter
space with coordinates X;‘. As we see in the figure, a “point” in either matter space is
identified with a worldline of a fluid element in spacetime. The X7 are in general a set of

three scalars on spacetime. They only vary from worldline to worldline, meaning for all 7



FIG. 1: A representation of the pull-back description for fluids based on matching worldlines in
spacetime to points in matter space. We have placed on the worldlines small squares filled with
dots. This is to emphasize the fact that the worldlines are for fluid elements, and not individual
particles, and thus “points” on the worldlines are best thought of as small (with respect to the

whole system) boxes containing a (thermodynamically describable) large number of particles.

of each worldline (and A for the other fluid worldlines)
X2 ()] = X2 0,25 (n0)] (1)
yet, for two different worldlines at, say, {0, z% (15)} and {0, 2’ (7o) + d2'}, we have
X207 (0)] # X2 [0, 2 (7o) + 627] . (2)

Next we will show how the X2 can be used as the fundamental fields for modeling fluid

dynamics.

B. Pull-back Formalism

Consider the three-form n},. which is dual to n$:

X d a __ beda,  x
Nabe = €dabeyx 5 TNy = ;€ Mped (3)



where our convention for transforming between the two is

Edeaﬁebcd = 3'(53 . (4)
Likewise, we introduce
aoc aoc | X X 1
/‘be = d ’ Mg s He = 3'€bcda,ux ) (5)

which is the three-form dual to .

We use the X2 to “pullback” n¥,. into the matter space where it is identified with n¥ g
ABC
Nabe = Jabe  TWABC » (6)

such that the Einstein convention applies to repeated matter space indices, and

ax oxs ox?

x 7ABC __
Jane ore Ozxb Oxc (7)

We also use the XA to “push-forward” a matter space quantity, u22¢ to the spacetime

three-form 2%

MfBC XjABC ibc ) (8)

Note that this construction leads to X which are conserved along their own worldlines
(i.e. they are Lie-dragged by their u?):
1 ( 1 b OX20XPOXC aXD>

dx4
X aVaXA -
dry Hx oy 3'6 oxle 9xb Ozc Oxd

ngep =0, 9)

since the term in parentheses vanishes identically.

Because of the antisymmetry in its indices, n% g~ allows a natural definition for a volume-
form €%~ — up to a normalization convention to be established in the next subsection —
on the x-matter space:

mipe =N €ipe (10)

where A* will be defined momentarily. Similarly, the antisymmetry of the indices of uA8¢

leads to an “inverse” volume form; namely,
ABC ABC
et = Myelt (11)

where M, will also be defined momentarily. The quantity ¢22¢ is inverse in the sense that
we impose

€5 el = 316558 5¢) (12)
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which implies

& poeiBC =31 (13)
Now, we can write
X 1 ABC 1 X ABC

N* = 315 Nape , Mx= g1€ABCHx (14)

Letting
Nx = —NgUy ,  J5 = —Uglly , (15)

we have
/J/an = MXNX . (16)

C. Matter Space Metrics

To complete the establishment of €%;, as a volume measure on its associated matter

space, we need to establish normalizations for it and €28, Because of their antisymmetry,

ABC

& pe and €2BY each have only one independent component: €5, and €l respectively.

Establishing a normalization for €% and e25¢

means setting values for €}y, and €122, We
will use a standard, linear algebra approach (see, Strang [20]) which, among other things,
leads to re-labeling invariance for the matter spaces.

Note that the particle number densities can now take the form

n = (VeN®) (17)

where o
0 = gichoocber o0 g = P g, 1s)
and
ey = SN (19)
where .
Guy = 3'EABCEDEF93D9@E9%F o= %);2 83);‘2 g (20)

We will use the determinants of g2P and its inverse to form normalizations for €%z, and

ABC
€.

The standard, matrix definition [20] for the determinant of g2

1
Ay = '—XEABCEDEFngngQSF . (21)
3! (5123,)
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The “matrix” inverse g% of g2 is the solution to

92955 = 951955 = G5c9C = Ghe9lC = 05 (22)

and its determinant is

X 1 ABC DEF X
A% = mﬁx 9Ap9BEICE - (23)
Our last step is to impose
fBC DEngDgBEgCF = EABCEDEFngnggSF 3! (24)

(which means g, = 1) and thus find

L1 -1
6123:6}(_23:\/A:\/—A_X' (25)

We will assume that the explicit form for g% must be a combination of g8

X
and €50

Because g2? is symmetric, and taking into account Eq. (12), the only combination is

CD , EF
JAB = Ox€acE€BDFYx Yx - (26)
To complete the solution, we note that

N 1
nggAB = 5£ = ax = 5 (27)

It is straightforward to verify that
1
g;&c <2€CDF€BEGQ>?E95G) =0 , A#B. (28)

In a similar manner, we can find the inverse for gfyB . This is a bit trickier, as we are
mixing coordinates of two different matter spaces. We will consider it to have a “left”- and

a “right”-inverse:

xy CA _ xy _AC A
gBngX - gBngy =0
AC yx _ CA _yx A
gxy 9o = gyx 9o = 5B : (29)
As before, we use €28 and 5. to calculate the determinants
1
_ AD BE CF
AXY - 3 EABCEDEngy gxy gxy - Ayx )
€123€ 123
Xy __ ABC DEF Xy yX
A - 31123 123€x gADgBEgCF =A : (30)
lex™eg



The solution for the left-inverse is

9ap = aiyef:\CEe}éDFgchgfo ) (31)
where
1 A
Xy _BA A l yX
gABg x 514 — Ayy = 5 : (32>
Y Yy 2 Ay Ax
For the right-inverse it is
Ihp = a;XGQCEEEDFg}?ng}?XF ) (33)
where
1 A
AB _yX A I Xy
Gxy 9pa = 04 = Gy = 5~ - (34)
Yy Yy 2 Ax Ay
Finally, we see that
945 = 9ha - (35)

D. Matter Space Covariance

Because of the way we set up the worldline labeling — they are assigned, arbitrarily, on
some timelike slice (cf. Fig. 1) — we can assert that there should be a relabeling invariance
in the pull-back formalism. To that end, suppose we choose a new labeling scheme; e.g. we
use three scalars YA to mark individual fluid worldlines. However, this process must be
constrained in the sense that it only changes the label of a given worldline, and does not
map to a different worldline. Clearly this process is a mapping F* from the X to the YA,
1e.

Vi =FNX} (36)
Thus, the re-labeling of a worldline can be done, say, at {0,z (79)}, where

YA [0,2% ()] = FA{X2[0,2% (70)] } - (37)

Finally, the constancy of the YA along the worldline is preserved by the mapping since
vy  oFfdxpP

X

dr — 0XP dr

(38)

In principle, the n¥z, can have a functional dependence, say, of the X2 for each of the
N, constituents as well as all the g2? and gfyB . The mapping F? for the worldline at

{0,z (10)} must be such that
n5e V20,25 (10)] 4o} = { X2 [0, 22 (r0)] .} (39)

9



where the new matter space metric components are

—~AB __ aYXA 6Y;(B ab

* o Oz Oxb

OFA OFB 9xXCoxpP
OXC XD dra ozt 7
OFA OFF )

= 40
aXC oxD% (40)
and
—AB _ 8YXA aY;’B ab __ 6F)§4 aFf CcD (41)
T e dar T BXCoxDIY
By rewriting Eq. (39), we find
o AOYPOYS XA OXPoYS
= n -n
ABC gga gxb Oxe ABC 9ga 9zb dxe
OFD 9FF 9FF O\ 9XA9XBoxC
~ \0XA0XBoxC"PEr T MABC | e oab dac
OFP OFF OFF
:> X X X X =X (42)

Napc = (9X>‘;4 aXXB aXEnDEF )

where

I OF) OFP
Napc = NaBC (Ff> IXC M—DQSD’ ) . (43)

It has been asserted that Galilean invariance does not allow for X (via N) dependence
in n¥zo. DBut, we see that general mappings exist which preserve the covariance of the
description, even those of a “translation” in matter space. This is important for what
follows later, since the resistivity enters precisely because we allow for the full set of n% -

to depend, in principle, on all of the X2

III. THE ACTION PRINCIPLE, FIELD EQUATIONS, AND GAUGE INVARI-
ANCE

In this section we will set up an action principle to derive the resistive-fluid, Maxwell, and
Einstein set of field equations. The pull-back formalism will be used to set up variations
of the fluid fluxes n¢ required to get the fluid equations with resistivity. The Maxwell
equations are obtained by varying A,, which appears in two pieces of the total action: one

built from the antisymmetric, Faraday tensor Fy;, defined as
Fab = va/4b - vbfla ; (44)
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and which satisfies a “Bianchi” identity
0= Vanc + VcAFab + vaca ) (45)

and the other constructed from a coupling term based on the scalar j¢A,. Finally, the stress-
energy tensor Ty, is obtained in the usual way by varying the total action with respect to the
metric g,. The Einstein field equations are obtained from the standard Hilbert action [21].
As these equations take the usual form, and our main focus is on the fluid dynamics, we
will not discuss the gravitational degrees of freedom here. However, we do provide the full
stress-tensor and so the Einstein equations follow immediately. Of course, it is important to
note that the formalism does account for coupling of the fluid to the dynamical spacetime.
The resistive fluid action Sy, (ignore boundary terms throughout) has as its Lagrangian an
energy functional A (also refereed to as the Master function). To motivate what it is we
will need to review some basic thermodynamics. Much of this discussion is in Andersson
and Comer [1], so we will try to limit the presentation here to the highlights.

Recall that thermodynamics allows one to describe a system with a large number of
particles in terms of a small number of state variables. For a one-fluid system at non-
zero temperature, each fluid element will have as its state variables the total number of
particles N, the total entropy S, and the total volume V. With an equation of state,
E = E(N,S,V), the remaining thermodynamic variables of chemical potential yu, pressure
p, and the temperature T' are calculable as functions of the state variables. This is seen

from the combined First and Second Laws of Thermodynamics:

dE = pdN — pdV + TdS | (46)
which implies
oE oE oFE

We assume that the total energy and the state variables are extensive in the sense that
if (N,S,V) are doubled, say, then E is also doubled. We also assume that the derived
variables (i, p, T) are intensive in that their values remain the same in the doubling process.

These assumptions result in the Gibbs-Duhem (or Euler) relation [22]; namely,
E+pV =uN+TS . (48)

11



Now we introduce the densities n, = N/V, ng = S/V, and A = —E/V, then Egs. (46) and
(48) lead to

PRI e
dA = dng — —d 4
2nn nl’l 2ns nS’ (9>
ph(n2,n?) = 2nn% = B"n, , (50)
OA
pi(n2,n?) = —2n3% = Bny (51)
W(n2,n?) = A+ B2+ Bn?, (52)

where we have put in place the notational conventions established earlier. It is essential to
note that the fundamental thermodynamic state variables are now (nZ,n?), the equation of
state is the, a priori, known function A(n? n?), and the remaining thermodynamic quantities
of particle number chemical potential u,, temperature pg, and the pressure W are calculable
from A.

Finally, we introduce the fluid four-velocity u® (where u%u, = —1) for our single fluid

system. The two fluid fluxes become n¢ = n,u® and n? = nsu® and we are to understand

2 = —n¥n?, where x = {n,s}. We can now

b' a'"x?

that the densities are obtained from them as n

see that the combined First and Second Law of Thermodynamics takes the form
dA = pidnf, + rsdnt (53)

and we have the emergence of the chemical potential covectors thermodynamically conjugate

to the fluxes:

o =Bl . oul=DBn . (54)
In the same spirit, the pressure ¥ is
U= A — pinf — gt (55)

Therefore, we have shown that given a form for A(n? n?), and acquiring the fluxes n?, say,
from solutions to the field equations, we can determine completely the remaining set of
thermodynamic variables: chemical potential, temperature, and pressure.

In the following section, we will consider a system with an arbitrary number of inde-
pendent fluid flows. Guided by analogies with superfluids, and ordinary heat conducting

fluids, we know that the energy functional must be expanded to allow for entrainment (see
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[1] for details). Mathematically, this means we include in A a dependence on all the scalars

2 X

formed from inner products of different fluid fluxes; ie. terms of the form ny, = —ngn

a'ty>

where x # y.

A. The Matter, Electromagnetic, and Coupling Actions

The fluid action Sy, (ignore boundary terms throughout) has as its Lagrangian the func-
tional A, and we know from the previous section that it depends on the n? = —n*n? and
the n2, = —gwnin’. An arbitrary variation of Sy, with respect to the fluxes ng and the

metric gives
0Sy =06 (/ d4x\/—gA)
M
/ d*z/= [Z paéns 4+ = (Agab‘i‘znxﬂx) 59ab] 5 (56)

where ¢ is the determinant of the metric and x; is the canonically conjugate momentum to

n%; that is, letting

o0 0
on2,

on? (57)

then

Mo = Yab (ani + Z Axyng) . (58)
y#X
As mentioned earlier, the momentum is an essential piece of the formalism. For example,

the antisymmetric vorticity two-form w¥, is obtained as the exterior derivative of 1; that
is,

Wap = 2V [afly) - (59)
Its role as vorticity is well established; e.g. when ) is the gradient of a scalar then w¥,
is zero (as is the case for superfluids). Notice also how the inclusion of niy has led to
so-called “entrainment”, a tilting of the fluid momenta in the sense that u¥ is no longer
simply proportional to its own flux n%. Entrainment [23-26] between neutrons and protons
is generally thought to be important in superfluid neutron stars and entrainment between
matter and entropy can be shown to be important for causal heat conductivity [27].

The Maxwell Action is

1
Shtar = 76~ d4:1:\/_ FF (60)

13



and its variation with respect to A, and the metric g, is

1 1

0SMaz = - / d*z/=g (V. F?) 5Ab_37 d'zy/=g (F.aF g™ — AF“F".) 6gay . (61)
™

The minimal coupling of the Maxwell field to the charge current densities is obtained from

the Coulomb action
Se = /M dzy/=g ) jiAs . (62)
whose variation with respect to n?, A,, and gq gins
68 = /M d'zy/=g> ( 95 Ay + exAgon + jaAagbc5gbc) . (63)
The variation of the total action S for the system is thus

6S = 0Su + 0Snar + 6Sc
— / dizy/— {Z 1+ exAg) O +— (vabuszgX) 5A,

ab _L Cd ab ac pb
n [Ag +Z nipi + JiAg™) = o= (FeaF g™ — AF Fc)] 59(11)}- (64)

Note that the minimal coupling has given a modification of the conjugate momentum familiar

from, say, quantum mechanics; namely,
fig = Mo + exAq . (65)

Of course, the field equations obtained from the variation above cannot be the final form,
since the term proportional to dn$ implies that the momentum £ must vanish. Clearly this
is not viable because it is essentially the condition that there be no energy or matter present.
This occurs because the components of dng cannot all be varied independently. We need a
constrained variation. The pull-back formalism provides a set of alternative variables which
does precisely that — the X can be varied independently. Also, we have to incorporate
the fact that the fluid momentum has changed from p to fX. This is straightforward since
all that is required is to take Eq. (5) and replace pf with %, p¥,. with fi¥,., and use that,

as well as ¥ = —u$ /i, as the basis for what follows below.

B. Lagrangian Displacements

Even though we have as our unconstrained dynamical variables the scalars X2, ultimately

we want the action principle to produce field equations for the fluxes. After all, there
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is decades of literature and computational techniques for fluids based on solving for the
components n¢ and not the X2, Fortunately, we can use Lagrangian displacements to bridge
variations of matter space variables to those of spacetime. Denoted £¢, the Lagrangian
displacement for a fluid needs to be such that it tracks the virtual displacements of fluid
element worldlines in spacetime. And even though it is a spacetime vector, with four
components, it has been shown (see [1]) that there is gauge freedom that reduces the number
of degrees of freedom back to three.

Using the standard definition of a Lagrangian variation in the relativistic context [1], we

write

AXE =0XA+ L, X2 =0, (66)

where § X2 is the Eulerian variation and L, is the Lie derivative. This means that convec-
tive variations are such that

XY

OXA = — Lo XA = —go—x
X ExMx xaxa

(67)

The displacements of the matter space fluid elements will lead to variations of n% 5., which,
in turn, will induce variations of n},.. The existence of more than one fluid means, also,

that we need to consider

ox4
A A A A A a a
AXF = OXT + Le X = Lo X = Le X7 = (G = &) 5o - (68)
The Lagrangian variation of n},. in general is
Aanbc == aI?)CBCAXnZBC ) (69>
and thus
5”217(: = _ngn;(bc + XjalchCAanBC ) (70)
where the Lie derivative of the n},. along the & is
X anz C X ag)c(l X 853 X 86}{
‘Cfxnabc = é}lf axs + ndbc% Tt Nyge b + 7/I‘abal@ . (71)

Andersson and Comer [16] have demonstrated that allowing n% 5~ to be a function of all
the X (including X;‘ for y # x), all the g2Z, and all the gfyB leads to a system of fluid
equations with dissipation of several types, among which is the resistive type of interactions

to be explored here and others coming from, say, shear and bulk viscosities. The resistive
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forms of dissipation are due to the presence of X;‘ (for y # x) in the n¥ o, and so we

consider here

Atlipe = ) ag;é%cﬁ Xy
y#X
8nABC aXD a a
- . aXD a a (5 gy) :
y#X

Using the facts that
Axgab _ 5gab _ QV(a b)

X b

1
5€abcd _ —§€ab6dgef59ef ,

and

ebcdaﬁfxnz(cd = 3l (givbni — nivbf}‘f + TZg(ngi) )
we find

1
(Sni =9 <§€b6danz{cd)
1 X
= bV, — £Vnd — nd <befi + §gbc59bc) n Z R (& =€)
e
where
RY = 1 aXy ~ABCanABC

31 oz I TOXD
and it satisfies the identity
ug Ry =0 .

The total “resistivity” current R is

which has the identity

C. The Field Equations

We now return to the flux variations of the combined fluid, Coulomb, and Maxwell actions

given in Eq. (64). The fact that we are summing over all constituents leads to

SN Ry (- =SS (mY - R ==Y R

X y#X X y#x X

16
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so that the variation of the action (excluding the Hilbert action for reasons stated earlier)

for the system is

o 4 p'e ~X X a 1 ab ya
0S = / dx\/_g{_Z(fa_{_qua_Ra)fx_E va _471-2)(:])( 514@

X

\Ifg“b + Z neub — FdFCdg“b — 4P F") 5gab} : (82)
where
£ =nb@y, = 2nlV i (83)
Iy = Von? (84)
and

The momentum equation for each fluid is
fo +Txity = Ry (86)
the Maxwell equation (including also Eq. (45)) is
Vo™ =V, (VOA" = VPA") = 4x )~ jo (87)
and the stress-energy tensor is

= g + Z niub — FdFCdg“b — 4FFt,) (88)

D. Impact of Change of Gauge for A,

An electromagnetic gauge transformation will impact the fluid equations of motion be-

cause of the change to the momentum; i.e. letting A, = A, + V,¢ we find
[Lz = Mﬁ + el — ﬂz = Mﬁ + exlea = /12 +exVao . (89)

It is important here to consider in more detail the ramifications of such a change of gauge,
since an application of the present work will be to numerical evolutions [18]. In the numerical
setting, we expect to be solving for the vector potential A, as we evolve the system. This
will require a choice of gauge for the vector potential, which will affect the explicit values of

terms (such as the resistivity) in the equations of motion.
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In Eq. (86) (i.e. the fluid equation of motion), we see the term involving I'y is changed

but not f*. What also changes is R¥, since the quantity g28¢ in R [cf. Eq. (77)] depends

on A,. Letting R denote the resistivity in the new gauge, we find

where

G =

a

Note that

Ry =) (RX—RY)

y#X
L ebea |/~ ABC anich 8X£
= ;56 [(Mﬁ +eyVed) Y Tpea XD Oz

on% g 0XP
(X x 7ABC ABC y
(lue + €Xve¢) bed aX}P O ]

= R, + G,

] bed "YXD D

y#x

Y RI=)Gi=0 = > R=) Ri+> Gi=0.

In the new gauge the fluid equation of motion becomes

0= [+l + R
= 4D (B + exVad) — (R +GY) .

Projecting along n? we find

0 = Teng (g + exVag) — ng (R + G7)

x D
Z (GZX _ Gz}’) , Gzy — leebcdex (X ABC anABC' 8Xy ) Vegb ]

(91)

(92)

(93)

(94)

We have seen above that the observables, including the stress-energy tensor, Faraday

tensor, and all hydrodynamic variables are independent of the choice of gauge for A,, as

expected. However, the fluid field equations are modified, which is also expected. Never-

theless, we can determine the modifications and thereby evolve the system regardless of the

choice of gauge.

E. Gauge

Invariance and Charge Conservation

To see other consequences of gauge invariance, we will consider a variation of the total

action, where the vector potential variation takes the form

§A, = Va6 .
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We assume that £¢ = 0 and dg,, = 0 under the change of gauge; thus, even though the term
RX acquires the gauge term G [cf. Eq. (91)] it does not affect n?. The total action thus

reduces to
1 4 ab
08 = — - d /=g (va 4WZJX> V.00
_ 4 ab -q
= 47T d 2/—gVa (va —47TZ]X> 5o (96)
which implies
Vo (ViF®) =4n> Vel =4r > T . (97)

However, the commutation of covariant derivatives acting on a two-index object is

VoVioFq— ViV Fy = R eap F a9 — R aan F°c ; (98)
hence,
1
_ Fab - Fab =
7V (V,F?) = e L R 0, (99)

since the Ricci tensor is symmetric and the Faraday tensor is antisymmetric. Thus, we

recover the expected conservation of charge:

d eTe=) Vaji=0. (100)

Using the field equations, and Egs. (80) and (100), we can show that V,T vanishes iden-

tically (as it should from diffeomorphism invariance):

VT = V, | W6l + Z nbys — —— (FaF*'s} — AF™F,.)

i ZRZ+<26XFX) "

X

IV. A PHENOMENOLOGICAL APPROACH TO THE RESISTIVITY

Having completed the formal considerations, we can turn our attention to applications.
As we do so, it is very important to appreciate that the n’; 5~ and how they enter A is assumed
to be “known” a priori. It is not until a specific application is intended that one would

necessarily require an explicit relation. An analogy is the Lagrangian for an interacting
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complex scalar field. A potential V(¢'¢) is introduced, but not generally specified until the
Euler-Lagrange equations are derived and a specific application is pursued.

At this point, the action principle has given us the tensorial structure of the equations
and how many different dissipative processes exist in general. Ideally, what we would do
next is use microphysics to specify the n% g~ and A. Admittedly that task is daunting and
would require more specifics about the actual systems to be described. Instead, we will
develop here a phenomenological form of the resistivity R, which is consistent with the field
equations above, the various identities, and the Second Law of Thermodynamics.

To begin, it is convenient to introduce a fiducial frame-of-reference! whose worldline is
determined by the unit four-velocity u®. Locally, we can decompose our fields into pieces

parallel to u® and perpendicular to u® using the projection operator
=0y +utup o, uut=-—1. (102)
For instance, the particle flux unit vectors are now decomposed as
WERLu = ui=ag @) =1 (103)

where v? is the (coordinate-based time) three-velocity.

Recall that the resistivity is given by [cf. Egs. (78) and (79)]

Ry=Y (R*-RY) , wRY=0, (104)

a
y#X

and RY is defined in Eq. (77). Its decomposition is
RY=1'RY = RY=(-uRY)u,+RY. (105)
The constraint on R [cf. Eq. (78)] becomes

0 = ufRY =y (u* +1f) RY

— —u'RY = U;RZY ; (106)

X

thus, R%Y — for given x and y — has only 3 free components Ray, and takes the form

RY = (00 + vhu,) R . (107)

! In an accompanying paper [17], we will consider a family of worldlines of this type and form a fibration
of spacetime, and in [18] we will make use of a field N* which is surface-forming and hence can provide a

foliation for a 3 + 1 decomposition of spacetime.
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Putting all these pieces together, the total resistivity takes the form
Ry = [(yr = o Yo+ B~ R (108
y#X
It is easy to see that the “time” and “space” pieces separately satisfy Eq. (80).

Using the fluid equations of motion we can relate the resistivity to the particle number

creation rate I'y. Note that Eq. (108) implies

Ug R = 7y (u® 4 v = —x Zwany (109)
y#X
where
Wi, = vy — vy . (110)

A projection of the fluid field equation [cf. Eq. (86)] along the u? flow leads to

Do = — Ty = weRE (111)
so that
Do = (3 7%) > wl, R (112)
y#X

To further constrain the resistivity, we can use conservation of charge [cf. Eq. (100)], overall
charge neutrality, and the Second Law of Thermodynamics (I's > 0). The conservation of

charge implies

ozz Ty _Z =" Zwany (113)

T y#x

and the Second Law of Thermodynamics takes the form

No= (') D we RE>0. (114)
{x#s)

We have not yet made any approximation in our system. However, our goal here is
to produce a phenomenological model, and so it makes sense to now employ the standard
analysis due to Onsager [28] (see also [29, 30]). The point is to introduce a form for the
dissipation by identifying thermodynamic fluxes — here the ]:Zzy — and forces — the wg,
These quantities must be such that they tend to drive the system to equilibrium — the
fluids become comoving (w§, = 0 for all x and y) — while simultaneously maintaining the

inequality of Eq. (114).
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Clearly, a model which makes the entropy production manifestly positive-definite will

work and so we assume

lfgzy = RYwY = RY=RY (52 + uavf,) w,” (115)
which leads to
By = 3 [(R 4 ) g + (B 4 R) ] wi (110
y#X
Now introduce
RY — RyX + RX}’ (117)

(obviously symmetric in x and y) to get

o= (St oo SRt (1)

y#x y#x
Noting that

o= ()7 Y RYwh (119)
Y#X
we finally arrive at
Ry = (v ') ta + > R (8 + vhug) wl™ . (120)
y#X

If there are no reactions (I'y = 0) then

R = ZRXY(52 + vPu, )w* . (121)
y#X

Given that the resistivities can depend, in principle, on all of the fluids in the system, any
restriction like zero particle creation for a subset of the fluids will have an impact on all the

particle creation rates; in particular, the entropy creation rate.

V. WHAT IS THE MINIMAL MODEL THAT INCLUDES RESISTIVITY?

Even with this more specific model, there are still a number of degrees of freedom — the
undetermined coefficients R; namely, if we have N, constituents, then for each choice of
x, there will be N, — 1 choices for y, and thus a maximum of N, (N, — 1) coefficients. Note
that the condition expressed in Eq. (80) is satisfied identically and so it does not reduce

the number of free R%. The conservation of charge is another matter. Ideally, it is also
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an identity, meaning that the total action Sgyc must be constructed in such a way that
it incorporates the electromagnetic gauge symmetry. However, in our phenomenological
model, we have chosen a form for the RX — it has not been derived as in Eq. (79) —
and so we must impose charge conservation “by hand”, meaning that Eq. (100) is in fact
an additional constraint on the system. Hence, a complete specification of the model will
require knowing N, (N, — 1) — 1 of the R coefficients.

We will first consider the simplest problem of a two-fluid, two-constituent system where
the two types of particles (with labels e and p) have equal but opposite charges (—e. = e, =

e). The particle creation rates are

Ve fTe = RPwg, (122)
v, BT, = RP°w?, . (123)

(noting that w¢, is spatial). Note that charge conservation [cf. Eq. (113)] implies ', = Iy,
or

PR = T R (124)

As the sum of R{ and RP vanishes identically, we see, as expected, that there is only one

free component R°?. Finally, the two resistivities are

e __  pep 2 . ’yp_lﬂp ep b b
R, = R® |wlu, — [ 14+ 25— | w,” (0, + vlua) | | (125)
0
Rp . W/I;IﬂpRep 2 + 1+ f)/e_l/je ep (5b+ b ) (126)
s B A

However, many applications in plasma physics have zero particle creation rates, and we see
in this case that the resistivities vanish. Essentially, we are proving that there can be no
resistivity without also taking into account heat; i.e. a non-zero entropy creation rate.

The simplest, non-trivial system has the two charged fluids and entropy. The creation

rates expand to

Ve 'Bi°Te = RPw? + R™wl (127)
9 Ty = RPwl, + RPul, (128)
7o BTy = R*w2 + RPwl, (129)
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and the resistivities are

R, = (RPwp, + R®wy,) ug + (RPwy® + R*wjy) (9 + veua) (130)
RP = (Rpewzp + Rpswszp) Uuq + (RPw” + RPw;?) (52 + vﬁua) , (131)
RS = (R*wl + RPw) ug + (R®wp® + RPw)”) (6 + vlua) - (132)

Charge conservation gives

1 1 - 1 1
0 = ( 1= RP¢ — TRep> U}I%e + ( 1~ Rpswf)s - TRQSUJSS) (133)
V5w Vel V5w Ve tpe

and the Second Law [cf. Eq. (114)] implies

R* R*>0. (134)
If we now assume that there is no charge creation, then

0 = RPwl + R®w (135)

es

0 = RPw?, + RPw?, . (136)

Unlike before, we can satisfy these conditions with something as simple as requiring the co-
efficients R°P, RP¢, R*, and RP® to vanish.? This will leave us with only two free coefficients,

R* and R*®, and resistivities of the form

R = Rewy® (60 +vlu,) (137)
RE = RPw” (62 + vdu,) | (138)
RS = (R*wl 4+ RPw2) us + (Rwi® + RPwi®) (8, + vlu,) (139)

Perhaps the most important point of developing this kind of phenomenological model is
to show that, even without specific forms for the n% -~ and A, the multi-fluid formalism is
robust enough to build increasingly complex models without first having to perform micro-

physical calculations. Of course, we would still need some insight from microphysics; e.g. to

determine R*¢ and R*P.

2
ep’

negligible dependence on the relative velocities.

2 Since w2, w?,, and wgs are linearly independent, this is tantamount to assuming that the R*Y have
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VI. CONCLUSIONS AND FOLLOW-ON WORK

The relativistic fluid system is the backbone of modeling many astrophysical phenomena,
cosmology and high-energy physics. Here, we have taken a unique step in the development
of the fluid modeling scheme: an action principle has been used to build a system of field
equations for relativistic plasmas including resistivity. This is a “first principles” approach
which is logically concise in the sense that many of the assumptions about the system’s
physics can be traced to the initial phase of constructing the action; in particular, it was
straightforward to take the action principle for dissipative, relativistic fluids from [16] and
add to it the standard action for electromagnetic fields and the usual Coulomb coupling of
the charged fluxes to the electromagnetic four-potential.

The present discussion is complemented by two companion papers. In [17] we use this
work’s results to develop a fully relativistic framework that allows for four (fluid) compo-
nents: normal and superconducting currents, heat flow, and a final component with normal
and superfluid flows. The purpose of the model is to extend and make contact with (in the
appropriate limit) ideal magnetohydrodynamics. A key component of the framework is the
insertion of a suitable family of observers of the fluid flow, who basically provide a fibration
of spacetime. While the model is suitable to describe isolated superfluid neutron stars, it is
not appropriate for numerical simulations of (say) merging neutron stars. Progress in this
direction is made in [18], which connects with the present discussion through use of a 341
foliation of spacetime.

While our focus here was on the resistivity, there is a clear process for building on these
results by adding in other dissipation channels (such as those arising from bulk and shear
viscosities) already included in the action principle of Andersson and Comer [16]. Basically,
we may follow the procedure presented here, with the only change being to include terms
like the matter space metrics g2? and giAP [cf. Egs. (18) and (20)] in the variation of 1% g
[cf. Eq. (72)]. This speaks to the power of having a first principles approach to developing
the overall form of the field equations, even if details of the formalism still will require
microphysics for dissipation coefficients [such as 2% and R in the phenomenological model;
cf. Eq. (139)].

To conclude, the variational approach has allowed us to make significant progress, both

formal and practical, on a problem which is central to modern relativistic astrophysics. The
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framework we have developed is ready to be applied and we expect to report progress on a

set of relevant problems in the near future.
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Appendix A: Vector Potential “Entrainment”

It may be worth noting that the Coulomb action in Eq. (62) depends on the metric, and
the combination n?A,, which is exactly of the entrainment form, if we consider it as part of
the fluid action Sy (cf. Eq. (56)). This means that, at least formally, we can consider A

to be a functional of the set {n?,n2 n?A,}. This may be interesting as there are general

Xy’
constraints that can be had for plasmas if we make statements about gauge-invariance of the
total fluid /plasma action and the vector potential entrainment. It is plausible that more
general forms for the entrainment could lead to known results in, say, non-linear media in a
more efficient way.

It is straightforward to work through the steps of varying the new action and obtaining

the equations of motion:

S = SM ( X AQ) + SMaac (Azz) ) (Al)

xy7
where

A2 = —nlA, . (A.2)
Next,

OA
_ 4 — X$0 a
(55’—/dx\/ glg pson 8A2(A(5n +ngoA,)

(Ag“b + Z nxux) 3gat

d4ZL'\/_ ( chCd ab 4FachC) 5gab

+ o / d'z/=g (V. F™) § A,

1
327

—/d4x\/—_g{—2(f2‘+l“xﬁa RX)f“—i( Ve 47TZQX ) a

X

\I/gab + Z nx,ux F chdgab - 4Fachc)

59(112} 3 (A3>
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where

~x x OA
Ho = Hg + QXAa ) QX (nfm n?{yu Az) = _@ : <A4>

We recover the minimal coupling when
Qx = €x . <A5)

What happens if we now impose gauge-invariance on the whole system? We consider a

variation of only the vector potential which is of the form
0A, =V, 00 . (A.6)

Taking into account the identity in Eq. (100), we see that
> Ve (Qung) =0 (A7)

This can also be written as

d,\
> <QXFX g ) =0. (A.8)

X

If Q, depends on only X2 (it is Lie-dragged by u2) then this reduces to

S oa.=0. (A.9)
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