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Proof in Dynamic Geometry Contexts®®
Celia Hoyles and Keith Jones

Proof lies at the heart of mathematics yet we know from research in
mathematics education that proof is an elusive concept for many
mathematics students. The question that we are now asking is whether the
introduction of dynamic geometry systems will improve the situation — or
will it make the transition from informal to formal proof in mathematics
even harder? How far will innovative teaching approaches with computers
assist pupils in developing a conceptual framework for proof and in
appropriating proof as a means to illuminate geometrical ideas or will
computer use be seen to replace any need for proof?

1. Proof in School Curricula

Traditionally, in the school curriculum, proof has been taught largely in
the context of Euclidean Geometry. It has tended to be presented as a
formal confirmation of statements that pupils are told are true. This
approach emphasises the precise formulation of a standardised linear
deductive presentation of argument — form is often perceived as more
important than content. Research evidence suggests that such an approach
to proof is fraught with conceptual difficulties for pupils. We summarise
the main issues:

Pupils fail to appreciate the crucial distinction between empirical and
deductive arguments and, in general, show a preference for the use of
empirical argument over deductive reasoning (Balacheff, 1988; Chazan,
1993; Finlow-Bates, 1994; Martin & Harel, 1989; Porteous, 1990;
Williams, 1979). For many students, deductive proof provides no more
than evidence (Chazan, 1993; Fischbein, 1982; Williams, 1979). Proof is
not ‘used’ as part of problem solving and is widely regarded as an
irrelevant, 'added-on' activity. Geometric proofs, for example and
particularly the standard linear deductive style, frequently fail to ‘connect’
with learners who neither understand the purpose of the proof nor
appreciate its role in mathematical activity. If formal proof is presented

1 The authors acknowledge with thanks the contributions of L. Healy & R. Noss to an earlier draft
of this paper
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only as a way to demonstrate something that students are already
convinced is true, proof is likely to remain a meaningless activity (e.g.
Hanna and Jahnke, 1993; Tall, 1992; de Villiers, 1990).

The challenge for mathematics educators is to find ways in which
geometric proof has communicatory, exploratory and explanatory
functions alongside those of justification and verification. There are
considerable differences between countries in the treatment of proof in the
mathematics curriculum and we must be wary of making generalisations
based on evidence from just a few countries. Additionally we must always
attempt interpret student responses from a basis of what they are taught.
what is stressed in their curriculum and what is ignored Clearly
mathematical proof is unlikely to be appropriated without very careful
teaching.

2. An Approach to Proof in the U.K. Mathematics Curriculum

In the U.K. a process-oriented approach to proof has been developed
where students are encouraged to test and refine hypotheses in order to
achieve personal conviction with little emphasis on generalisation and
formal presentation of evidence of validity in the form of a proof. This
approach to proving and proof is now enshrined in the Mathematics
National Curriculum for England and Wales (see Chapter 6, section 1).
There is a hierarchical sequence of progression whereby students first use
inductive methods, move on to gain an appreciation of the difference
between empirical evidence and mathematical argumentation before finally
(only for those who reach the highest levels of attainment) constructing
formal proofs. These changes to a ‘process-approach’ to proof are
matched by a reduction in the study of geometry to small fragments of
shape and space.

The disappearance of geometry is perhaps not surprising given the
present emphasis in U.K on students generating their own empirical
evidence — which, in Euclidean geometry with ruler/compass, would be
difficult to achieve. In effect this means that the majority of students have
little chance to appreciate the importance of logical argument and few
opportunities to prove a geometry theorem. The implications of these
curriculum changes on students’ (age 15 years) understanding of the
multifaceted nature of justifying and proving in school mathematics have
been investigated by Hoyles and Healy in a nationwide survey of over
2500 high-attaining students (see Hoyles, 1997). We can argue that the
move towards a more process-oriented perspective represents an
understandable attempt to move away from the meaningless routines that
characterised geometrical proof in an earlier period. While some students
managed to undertake the routines of Euclid correctly, far fewer
understood more about geometry as a result. But in trying to remedy this
problem, we have removed two important aspects of mathematics: first that
it is not sufficient just to see a pattern, it is necessary to understand it and
to look at it scientifically. Second, it is not the single elements of
geometry that are important but the structures and relationships that bind
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them together. The question is, can the vital elements of proof and of
geometry be salvaged without returning to the lifeless forms of Euclid
which characterised the earlier mathematics curriculum?

3. The Computer as a Context for Linking Empirical
and Deductive Reasoning

It is our conjecture that if we accept that formal proof should have a
central role in the curriculum, we need to design and begin to evaluate
innovative activities which enable students to make links between
empirical and deductive reasoning throughout that mathematical activity.
We need to find new contexts through which to introduce the use of clearly
formulated statements and definitions and agreed procedures of deduction
which also allow opportunities for connections with empirical
justifications. We suggest that the computer might offer just such a new
context. This assertion must be treated with caution. We cannot assume
that the introduction of the computer will bring about change, at least not
change for the better. On the contrary, the challenge is to construct new
pieces of learnable mathematics (based firmly on the old!) which are
learnable precisely because they harness the potential of the new
technology.

To date, work with computers in geometry education has largely been
around the use of dynamic geometry software (e.g. Geometric Supposer,
Cabri Géometre) where basic screen objects — points, lines and circles —
can be created and explored through direct manipulation. They provide a
model of Euclidean geometry which offers feedback through “‘dragging’ as
to whether constructions or theorems are ‘correct’. Parameters can be
varied so invariant relations are spotted, or lengths and angles measured so
‘results’ observed in the unchanging patterns in the measures. Thus
students are able to generate ample empirical evidence for geometric
theorems in ways which would have been difficult if not impossible before.
Attention has tended not to be focused on proving and proof but rather on
the software’s potential in aiding the transition from particular to general
cases — specific instances can be easily varied by direct manipulation or
text-based commands and the results ‘seen’ on the computer screen (see,
for example, diSessa, Hoyles & Noss, 1995; Laborde and Laborde, 1995).

The use of a dynamic geometry package such as Cabri-Géométre may
provide an opportunity for some students to consider the “why....” in
addition to the “what if....” and the “what if not...”. Such an approach
demands the provision of appropriate tasks and in designing them there are
been two (connected) issues. The first issue involves ensuring the students
experience the necessity of geometrical facts that are true in Euclidean
geometry. The second concerns providing the students with suitable
experiences to allow them to explain why these geometrical facts are
necessarily true.

In the following, we describes some work carried out with a lower
secondary school mathematics class (pupils aged 12). The idea is to
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provide the students with opportunities to experience what could be called
‘proof as explanation” (Hanna, 1989). The quality of the students,
mathematical analysis suggests that the use of a dynamic geometry
package such as Cabri-Géomeétre, coupled with suitable tasks, may provide
an opportunity for some students to develop the basis for a fuller
appreciation of the nature and purpose of mathematical proof.

In developing dynamic geometry contexts the following factors are critical:

e encouraging the students to make conjectures focusing on the
relationships between geometrical objects

e providing the means for the students to explain their actions and results

It is important here to distinguish between drawing and figure. Laborde
(1993 p49) makes clear the distinction in the following way “drawing
refers to the material entity while figure refers to a theoretical object”. In
terms of a dynamic geometry package, a drawing can be a juxtaposition of
geometrical objects resembling closely the intended construction. In
contrast, a figure additionally captures the relationships between the
objects in such a way that the figure is invariant when any basic object
used in the construction is dragged. The ability to check a construction by
dragging appears to be particularly important part of experiencing the
necessity of relevant geometrical facts.

Healy et al (1994) suggest introducing students to the idea of “messing
up” (or, more accurately, not messing up). They define “messing up” in the
following way: “After a figure was drawn it could be dragged to see if it
became unrecognisable, that is whether the different objects within the
design moved together in a sensible way or not” (op cit). While messing
up was an idea that was easily appropriated they found after a study of how
students’ understood the dependencies implicit in their constructions of
some simple figures that few students had developed any appreciation of
these — they did not example realise why they could not change the
relationship of constructed objects (see Holzl et al 1994) This study casts
doubt on how far experimental work with Cabri can assist students in
constructing systematic arguments — although much more work needs to be
done to investigate this. Students need explicit mathematical goals if they
were not going to use Cabri solely as a drawing tool rather than a tool for
constructing geometrical figures.

A suitable context for work on “proof as explanation” is the analysis of
static figures and their construction in the dynamic Cabri environment. In
other words, asking the students to construct, given a geometrical figure
drawn on paper, the corresponding geometric figure in Cabri such that the
Cabri figure can not be “messed up”.

An important consideration is to utilise some of the students existing
mathematical knowledge. A long-standing component of the primary
geometry curriculum in many countries is the recognising and sorting of
various simple plane shapes. This entails such matters as identifying circles
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and various specific triangles and quadrilaterals. In the secondary
curriculum, students are expected to know and use the properties of
quadrilaterals and be able to classify them on the basis of their properties.
Given these factors, and the fact that there has been both discussion about
the classification of quadrilaterals (for example, de Villiers, 1994) and
research involving students, ability to classify them (for instance, Fuys et
al, 1988), the ‘family of quadrilaterals’, provides a suitable choice of
context for the Cabri tasks.

In constructing quadrilaterals, a key idea is the use of the circle as a
length-carrier. This, in turn, depends on the locus definition of the circle.
Just as the idea of functional dependency may not be easy for lower
secondary school students to grasp, neither might the locus definition of
the circle (or, at least, it contrasts with what is claimed by Bishop, 1983, to
be the notion of the circle commonly-held by upper primary and lower
secondary pupils: that is, that a circle is a disc). Some way is required to
introduce the students to using the circle in the construction of other
geometrical objects.

What might be a promising approach to this problem, illustrated by the
work of one pair of pupils on a selection of the resulting Cabri tasks, is
described in the next section.

4. Children Working on Dynamic Geometry Contexts

The students reported on here are 12 year olds with no previous
experience of using a dynamic geometry package although they had all
used various drawing packages and other IT resources. The class is an
above-average mathematics class in a city comprehensive school whose
results in mathematics at age 16 are at the national average. The
mathematics teachers use a resource-based approach to teaching
mathematics and the students usually work in pairs or small groups. The
class has three 50-minute mathematics lessons per week.

Each of the classroom tasks requires the students, in pairs, to analyse a
figure presented on paper. The students are asked to construct the figure
using Cabri such that the figure is invariant when any basic point used in
the construction is dragged. This means that the students have to focus on
the relationship between the basic objects (points, lines and circles)
necessary to construct the figure.

Students worked on a sequence of tasks, during many sessions which
took place over a period of five months, with often several weeks between
sessions, since pairs took it at turns at the computer. During that time, of
course, the students continued with their regular mathematics programme.
This included some work on certain aspects of ‘shape and space’, although
none of it could be said to be directly relevant to the area of the
mathematics curriculum that was the focus of the Cabri work. The tasks
started with an exploratory session aimed at acquainting them with the
software, progress through a series of ‘starter tasks’ involving the
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construction of patterns of circles and lines that could not be ‘messed up’,
to a series of tasks which focus on the “family of quadrilaterals’.

The next paragraph presents some aspects of students’ work in one of
the ‘quadrilaterals’ tasks in which the students are given the figure of a
rhombus and its diagonals on paper, and they are asked to construct that
figure with Cabri. When we analyze one pairs’ work, we find that they
tackle this with consummate ease, checking after each individual action
that the figure does not mess up. They are expected not only to construct
the figure but also to explain why the shape is a rhombus. Although the
task refers to the shape as a rhombus, in part of their explanation, they
refer to it as a diamond. This is what they say:

The sides are all the same because, if the centre is in the right place, the
sides are bound to be the same.

The diagonals of the diamond cross in the middle, though they are
different sizes [lengths]. The diagonals bisect each other. The angles
[where the diagonals cross] are the same. They are right angles.

The opposite angles [of the rhombus] are the same. Two are more than
90 degrees but less than 180 degrees, and the others are less than 90
degrees but more than zero degrees.

This shape is a rhombus because the sides are the same, the diagonals
bisect at right angles and the opposites have the same angles.

In order to write down their explanation, the two pupils needed
appropriate support. The task on paper contained certain prompts. For
instance, the task suggested that attention be paid to the sides, the angles,
and the diagonals. The pupils are also prompted into focusing their
attention on these attributes and are provided with technical language (such
as bisect) when appropriate in order to assist the precision of their
explanation.

The above provides some illustration of how the quality of
mathematical analysis of such geometrical figures, done by these particular
students, improved significantly and observably within three sessions
using Cabri. Nevertheless, it has to be stressed that this experience is
founded on the following factors: a well-established and carefully-nurtured
classroom culture that values mathematical thinking, a sequence of
carefully selected tasks, and a range of appropriate prompts from the
researcher and teacher (and possibly other classmates). It might be that,
without this combination of factors, the outcome would have been very
different.

In spite of the limitations of this study, and the recognition that it took
place in a rather particular context, we suggest that through working on
tasks such as the one described above, the students gained some insight
into the structure of plane geometry. They were able to explain the
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properties of a rhombus. When they came to constructing a square they not
only knew that the shape had to be a square but they also knew why.

In this process, both of experiencing the necessity of a result (in this
case, that the figure has to be a rhombus) and of coming to know why that
particular result is obtained, the ability to check by dragging appears to be
particularly important. This facility allows conjectures to be tested by
focusing attention on the relationships between the geometrical objects that
have been constructed. The commands “delete object” (and the object’s
dependents), together with “undo”, have also shown themselves to be
useful in a similar way. The argument is that experiencing the necessity of
such geometrical facts involves perceiving (at some level) the axioms of
the mathematical structure of plane geometry. Explaining why these
geometrical facts are necessarily true involves constructing chains of
reasoning. These are two of the essential components in a meaningful
experience of proof.

From the evidence so far gathered, it may be that carefully chosen tasks
using a dynamic geometry package provide a suitable context for some
students to develop an appreciation of mathematical proof. In order to see
how this view of proof as explanation develops further in the classroom,
the process of acceptance within such a setting is a vital aspect. In due
course, attention will need to be paid to that process and to how this
contributes to developing in students the basis for a fuller appreciation of
the nature and purpose of mathematical proof.

5. Discussion

The example serves to illustrate how it might be that in a curriculum
that fosters exploratory activity students with dynamic software in a
conjecturing atmosphere can develop a feel for proof as explanation — how
certain ‘inputs’ lead to certain results. Yet explanation is only one aspect
of proof (see, de Villiers, 1990). What about the rather crucial aspect of
proof as a test of validity. After work with this sort of software is there any
need for verification in a formal sense? Can ‘a way to prove’ be seen as
part of rather the constructive process or simply added to it as was the case
in paper and pencil contexts? There is a danger that the use of this
software will foster a process approach to geometry not possible before,
but in so doing — at least in UK - rather than taking a step forward we will
simply replay the mistakes of the past, and limit the mathematical work of
the majority to empirical argument and pattern-spotting.

Clearly, if proof is presented in the traditional way simply by replacing
figures on paper with figures on the screen, we may expect to find way
little improvement in pupils’ conceptions. But can we bridge the gap
between induction and deduction by (for example) stressing explicitly the
steps of construction, reflecting on these steps by the use of the ‘history’
tool as a symbolic trace of the process or stressing the use of the ‘check
property’ function? This approach will also aim to develop an explicit
characterisation of the problem in the computer context which if carefully
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chosen so as to provide ‘the bones of a proof’. Students would conjecture
about the relationships between geometrical objects, construct the objects
for themselves, and prove the truth of their conjectures in various ways but
not in a linear fashion but one which is spiral and iterative.

In this scenario, construction and proof would be we brought together in
ways not possible without an appropriate technology. We envisage that,
by constructing a ‘generic’ example with Cabri, students have to attend to
the relationships they are setting up, which can provide a basis for proving
together with a rationale for its necessity — provided that careful attention
is paid to the primitive objects available, the activity structures promoted
and the pedagogy on offer. In this way, we trust we can develop a flexible
appreciation of the roles of proof to include illumination, discovery and
communication alongside those of verification and rigour.

Clearly an enormous amount of work has to be done — to choose a
construction process that might lend itself to a formal proof as well as to
investigate the construction/proving cycle systematically. This is being
undertaken in a research study conducted by Hoyles and Healy during
1995 to 1998 (see, Hoyles and Healy, 1995).

Every country has special challenges to face. In the U.K., students tend
to work in a conjecturing and experimental atmosphere which surely must
be a pre-requisite for productive work with software. Yet, there is already a
noticeable trend to use powerful dynamic geometry tools in order to spot
patterns, generate cases, measure lengths and angles simply to provide
data. This data-driven approach could, if we are not careful, allow us to
side-step all the important mathematical content which the geometrical
domain is capable of offering.

It is certain that other countries with different traditions and cultures
will have other problems in trying to incorporate computer work into
geometry teaching and learning. What is required from all the community
is deep thought about the role of the tools in relation to geometrical
knowledge followed by careful and systematic evaluation of their use.

References

Balacheff, N. (1988), Treatment of Refutations: aspects of the complexity of a
constructivist approach to mathematics learning. In E. VVon Glasersfeld (Ed.),
Radical Constructivism in Mathematics Education. Dordrecht: Kluwer.

Bishop, A. J. (1983), Space and Geometry. In R. Lesh & M. Landau (Eds.),
Acquisition of Mathematical Concepts and Processes. Orlando, Flo: Academic
Press. p 173-203

Chazan, D. (1993), High School Geometry Students’ Justification for their
Views of Empirical Evidence and Mathematical Proof. Educational Studies in
Mathematics, 24(4), 359-387.

diSessa, A., Hoyles, C. & Noss, R. (1995) (eds), Computers and Exploratory
Learning. NATO ASI Series, Subseries F, Vol. 146, Springer-Verlag,
Heidelberg.



Computer Technology and the Teaching of Geometry 129

de Villiers, M. D. (1990). Proof in the Mathematics Curriculum. Paper
presented at the National Subject Didactics Symposium. University of
Stellenbosch.

de Villiers, M. (1994) ), The Role and Function of a Hierarchical
Classification of Quadrilaterals. For the Learning of Mathematics, 14(1),11-18.

Finlow-Bates, K. (1994). First year mathematics students' notions of the role
of informal proofs and examples. In J. da Ponte & J. Matos, (Eds.), Proceedings
of the Eighteenth Annual Conference of the International Group for the
Psychology of Mathematics Education, (Vol. 2, pp. 334-351). Lisbon.

Fischbein, E. (1982), Intuition and proof, For the Learning of Mathematics,
3(2), 9-18.

Hanna, G. (1989), Proofs that Prove and Proofs that Explain. Proceedings of
the 13th Conference of the International Group For Psychology of Mathematics
Education. Paris: Editions GR Didactique et Aquisition des Connaissances
Scientifiques. Vol 2, p 45-51.

Hanna, G., & Jahnke, H. N. (1993). Proof and Application. Educational
Studies in Mathematics, 24(4), 421-438.

Healy, L., Hoelzl, R., Hoyles, C., & Noss, R. (1994). Messing Up. Micromath,
10(1), 14-16.

Hoyles C. and Healy L. (1995) Justifying and Proving. ESRC research study.

Hoyles C. (1997), The Curricular Shaping of Students' Approaches to Proof.
For the Learning of Mathematics. 17(1) 7- 16.

Holz, R., Healy, L., Hoyles, C., & Noss, R. (1994). Geometrical Relationships
and Dependencies in Cabri. Micromath, 10(3), 8-11.

Laborde, C. (1993). The Computer as Part of the Learning Environment: the
case of geometry. In C. Keitel & K. Ruthven (Eds.), Learning from Computers:
mathematics education and technology. Berlin: Springer-Verlag. p. 48-67.

Laborde, C. & Laborde, J. M. (1995). What About a Learning Environment
Where Euclidean Concepts are Manipulated with a Mouse? In A. di Sessa, C.
Hoyles, R. Noss (Eds.), Computers and Exploratory Learning. NATO ASI Series,
Subseries F, Vol. 146, Springer-Verlag, Heidelberg.

Martin, W.G. & Harel, G. (1989), Proof frames of pre-service elementary
teachers, Journal for Research in Mathematics Education, 20(1), 41-51.

Noss, R. & Hoyles, C, (1996), Windows on Mathematical Meanings: learning
cultures and computers, Dordrecht: Kluwer.

Porteous, K. (1990), What do Children Really Believe?, Educational Studies
in Mathematics, 21(6), 589-598.

Tall, D. (1992). The Transition to Advanced Mathematical Thinking:
Functions, Limits, Infinity and Proof. In D. A. Grouws (Ed.), Handbook of
Research on Mathematics Teaching and Learning. (pp. 495-514). New York:
Macmillan.

Williams, E. R. (1979), An investigation of senior high school students’
understanding of the nature of mathematical proof. Unpublished doctoral
dissertation, University of Alberta, Edmonton.



