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Abstract. The equivalence class of a principal G2-bundle over S4 is classified by the value k ∈ Z

of the second chern class. In this paper we consider the homotopy types of the corresponding

gauge groups Gk, and determine the number of homotopy types up to one factor of 2.

1. Introduction

Let G be a simple, simply-connected, compact Lie group and let BG be its classifying space.

Since [S4, BG] ∼= Z, a principal G-bundle P −→ S4 is classified by the integer value k of its second

chern class. The gauge group Gk(G) of this bundle is the group of G-equivariant automorphisms of P

which fix S4. As there are countably many equivalence classes of principal G-bundles, potentially

there are countably many inequivalent gauge groups. However, in [CS] it was shown that the gauge

groups {Gk(G) | k ∈ Z} have only finitely many distinct homotopy types.

There has been considerable interest recently in determining precisely when Gk(G) ' Gk′(G) in

special cases. If a, b are two integers, let (a, b) be the greatest common divisor of |a| and |b|. It is

known that Gk(SU(2)) ' Gk′(SU(2)) if and only if (12, k) = (12, k′) [K]; Gk(SU(3)) ' Gk′(SU(3))

if and only if (24, k) = (24, k′) [HK]; and in a non-simply connected case, Gk(SO(3)) ' Gk′(SO(3))

if and only if (12, k) = (12, k′) [KKKT]. Slightly weaker results hold for Sp(2) and SU(5): a

homotopy equivalence Gk(Sp(2)) ' Gk′(Sp(2)) implies (40, k) = (40, k′) and if (40, k) = (40, k′)

then Gk(Sp(2)) ' Gk′(Sp(2)) when localized rationally or at any prime [Th2]; while a homotopy

equivalence Gk(SU(5)) ' Gk′(SU(5)) implies (120, k) = (120, k′) and if (120, k) = (120, k′) then

Gk(SU(5)) ' Gk′(SU(5)) when localized rationally or at any prime [Th3]. The localized statements

for Sp(2) and SU(5) stem from the fact that there are integral homotopy classes in dimensions larger

than 5, which leads to potential obstructions when attempting to produce integral statements from

local statements via a Sullivan arithmetic square.

The goal of this paper is to investigate the homotopy types of the gauge groups Gk(G2). A

pivotal step in determining the homotopy types of gauge groups for any simply-connected simple

compact Lie group G is determining the order of the Samelson product S3∧G 〈i,1〉−−→ G, where i is the

canonical group homomorphism S3 = SU(2) −→ G and 1 is the identity map on G. Remarkably,

despite decades of intense research in the topology of Lie groups, very little is known about such
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Samelson products. Most of the effort in the SU(3), Sp(2) and SU(5) cases mentioned above was

devoted to finding the precise order of 〈i, 1〉. As the Lie groups increase in complexity it becomes

less likely that the precise order of 〈i, 1〉 can be determined. Instead, it is more reasonable to look

for good upper and lower bounds on the order. We do this for G2 and are able to determine the

order of 〈i, 1〉 up to a single factor of 2.

Theorem 1.1. The Samelson product S3 ∧G2
〈i,1〉−→ G2 has order 4 · 3 · 7 = 84 or 8 · 3 · 7 = 168.

The 2 and 3-primary information in Theorem 1.1 demands a delicate analysis of the very subtle

homotopy theory of G2: the 3-primary problem is resolved using methods from unstable K-theory,

while the 2-primary problem involves extracting as much commutativity information as possible out

of the non-commutative group G2. This theorem greatly improves a result of Oshima [O], which

states that the Samelson product 〈π3(G2), π11(G2)〉 has order 2 · 3 · 7 = 42; note that Oshima’s

result is about certain homotopy groups of G2 while Theorem 1.1 is more fundamentally about the

space G2 itself.

Theorem 1.1 is applied to examine the homotopy types of the gauge groups Gk(G2).

Theorem 1.2. The following hold:

(a) if there is a homotopy equivalence Gk(G2) ' Gk′(G2) then (84, k) = (84, k′);

(b) if (168, k) = (168, k′) then Gk(G2) and Gk′(G2) are homotopy equivalent when

localized rationally or at any prime.

In particular, there are either 12 or 24 homotopy types for Gk(G2), and all odd primary homotopy

types are completely determined.

The authors would like to thank the London Mathematical Society and the Great Britain Sasakawa

Foundation for supporting mutual research visits which made this project possible. We would also

like to thank the referee for carefully reading the paper and making many helpful comments.

2. A method for determining the homotopy types of gauge groups

In this section we describe the basic method for determining the homotopy types of gauge groups

that will be used to prove Theorem 1.2. We first establish a context in which gauge groups are more

easily studied, from a homotopy theoretic point of view. As we will have to consider SU(3)-gauge

groups as well as G2-gauge groups at a certain point, the context will be written for the general case

of any simple, simply-connected compact Lie group G. We also suppress the group G by writing

Gk = Gk(G).

By [AB], there is a homotopy equivalence BGk ' Mapk(S4, BG) between the classifying space

BGk of Gk and the component of the space of continuous maps from S4 to BG which contains the

map inducing P . Further, there is a fibration Map∗k(S4, BG) −→ Mapk(S4, BG)
ev−→ BG, where ev

evaluates a map at the basepoint of S4 and Map∗k(S4, BG) is the kth-component of the space of
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pointed continuous maps from S4 to BG. It is well known that there is a homotopy equivalence

Map∗k(S4, BG) ' Map∗0(S4, BG) for every k ∈ Z; the latter space is usually written as Ω3
0G. Putting

all this together, for each k the evaluation fibration induces a homotopy fibration sequence

G
∂k−→ Ω3

0G −→ BGk
ev−→ BG

where ∂k is the fibration connecting map.

The following lemma describes the triple adjoint of ∂k and was proved in [L]. Recall that S3 i−→ G

is the inclusion of the bottom cell and G
1−→ G is the identity map.

Lemma 2.1. The adjoint of the map G
∂k−→ Ω3

0G is homotopic to the Samelson product S3∧G 〈ki,1〉−−→

G. Consequently, the linearity of the Samelson product implies that ∂k ' k ◦ ∂1. �

The order of ∂1 plays a crucial role in determining whether two gauge groups are homotopy

equivalent. The following general lemma was proved in [Th2].

Lemma 2.2. Let X be a space and Y be an H-space with a homotopy inverse. Suppose that

X
f−→ Y is a map of order m, where m is finite. Let Fk be the homotopy fiber of the composite

X
f−→ Y

k−→ Y . If (m, k) = (m, k′) then Fk and Fk′ are homotopy equivalent when localized

rationally or at any prime. �

In our case, suppose that the order of G
∂1−→ Ω3

0G is m. Observe that, by Lemma 2.1, the

homotopy fiber of k ◦ ∂1 is Gk. So Lemma 2.2 implies that if (m, k) = (m, k′) then Gk and Gk′ are

homotopy equivalent when localized rationally or at any prime. Therefore Theorem 1.2 (b) will be

proved once we show that the order of G2
∂1−→ Ω3

0G2 is 84 or 168. This will occupy the bulk of the

paper.

The order of ∂1 also plays a role in proving Theorem 1.2 (a). Given a homotopy equivalence Gk '

Gk′ , there is an isomophism [X,Gk] ∼= [X,Gk′ ] for any space X. The idea is to find an appropriate

space X for which the isomorphism [X,Gk] ∼= [X,Gk′ ] directly implies that (84, k) = (84, k′) when

the underlying Lie group is G2. This is a more ad hoc approach than for Theorem 1.2 (b), but in

determining the order of ∂1 it will become clear which choice of X we should choose.

The following lemma proved by Kono and Oshima in [KO, O] gives some preliminary information

on the order of ∂1. By [M], π11(G2) ∼= Z ⊕ Z/2Z. There is a choice of the integral generator

c : S11 −→ G2 such that the following holds.

Lemma 2.3. The composite S11 c−→ G2
∂1−→ Ω3

0G2 has order 3 · 7. �

In particular, Lemma 2.3 implies that ∂1 has order at least 21. To get the exact value of the

order, we will localize and work one prime at a time. At primes p ≥ 3, it will turn out that the lower

bounds given by Lemma 2.3 are exact bounds. However, at p = 2 it will be shown that the order

of ∂1 is 4 or 8, which is not accurately seen by Lemma 2.3. The 2-primary case is the most difficult.
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3. The case when p ≥ 5

For the remainder of the paper we work in the p-local setting. Fix a prime p and localize all

spaces and maps at p. When referring to homotopy group calculations we restrict to the rational or

p-component of the homotopy group.

In this section we determine the p-component of the order of G2
∂1−→ Ω3

0G2 for primes p ≥ 5, and

use it to prove the p ≥ 5-primary information in Theorem 1.2.

Lemma 3.1. The map G2
∂1−→ Ω3

0G2 has order 1 if p = 5 or p ≥ 11, and it has order 7 if p = 7.

Proof. By Lemma 2.1, the adjoint of ∂1 is the Samelson product S3 ∧G 〈i,1〉−→ G.

When p = 5, McGibbon [Mc] showed that G2 is homotopy commutative. Thus 〈i, 1〉 is null

homotopic, implying that ∂1 has order 1.

When p ≥ 7, Serre [S] showed that G2 ' S3 × S11. Thus S3 ∧ G2 ' S6 ∨ S14 ∨ S17, implying

that ∂1 may be regarded as a map S6 ∨ S14 ∨ S17 −→ G2. The calculations for π∗(G2) in [M] show

that π6(G2), π14(G2) and π17(G2) are all zero for p ≥ 7, except for π14(G2) ∼= Z/7Z. Thus if p ≥ 11

then 〈i, 1〉 is null homotopic, implying that ∂1 has order 1. If p = 7 then 〈i, 1〉 may have order 7. In

fact, by Lemma 2.3, the composite S3 ∧ S11 1∧c−→ S3 ∧ G2
〈i,1〉−→ G2 is nontrivial. Thus it represents

the generator of π14(G2) ∼= Z/7Z and so ∂1 has order 7. �

Proposition 3.2. If p = 5 or p ≥ 11 then Gk ' G2 × Ω4
0G2 for all k ∈ Z. If p = 7 then there is a

7-local homotopy equivalence Gk ' Gk′ if and only if (7, k) = (7, k′).

Proof. By Lemma 3.1, if p = 5 or p ≥ 11 then ∂1 is null homotopic. By Lemma 2.1, ∂k ' k ◦ ∂1,

and therefore G2
∂k−→ Ω3

0G2 is null homotopic for every k ∈ Z. Hence the fiber Gk of ∂k splits as

G2 × Ω4
0G2.

If p = 7, since ∂1 has order 7, the p-local analogue of Lemma 2.2 implies that Gk ' Gk′ if

(7, k) = (7, k′). On the other hand, if Gk ' Gk′ then π10(Gk) ∼= π10(Gk′), implying that π11(BGk) ∼=

π11(BGk′). In what follows, the information on the 7-component of π∗(G2) is from [M]. Consider

the homotopy fibration sequence G2
∂k−→ Ω3

0G2 −→ BGk −→ BG2. When k = 1, adjointing in

Lemma 2.3, the composite S11 c−→ G2
∂1−→ Ω3

0G2 is nontrivial. Since π11(Ω3
0G2) ∼= Z/7Z, ∂1 ◦ c

therefore represents a generator of π11(Ω3
0G2). So for a general value of k, since ∂k ' k ◦ ∂1 by

Lemma 2.1, ∂k ◦ c is null homotopic if (7, k) = 7 and represents a generator of Z/7Z if (7, k) = 1.

That is, the cokernel of π11(∂k) is Z/tkZ where tk = 7/(7, k). On the other hand, since π11(BG2) = 0,

we obtain that π11(BGk) is isomorpic to the cokernel of π11(∂k). Thus π11(BGk) ∼= Z/tkZ. Therefore

if Gk ' Gk′ then tk = tk′ , implying that (7, k) = (7, k′). �
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4. The case when p = 3

In this section we determine the 3-component of the order of G2
∂1−→ Ω3

0G2 and use it to help prove

the 3-primary information in Theorem 1.2. By Lemma 2.1, to find the order of ∂1 it is equivalent

to adjoint and find the order of the Samelson product S3 ∧G2
〈i,1〉−→ G2.

Localize all spaces and maps at 3. Let Z(3) be the integers localized at 3. It is well known that

H∗(G2;Z(3)) ∼= Λ(y3, y11) but we wish to make a precise choice of generators. There is a canonical

group homomorphism G2 −→ Spin(7). Let Spin(∞) be the infinite Spinor group, and consider the

composite

g : G2 −→ Spin(7) −→ Spin(∞).

Recall that H∗(BSpin(∞);Z(3)) ∼= Z(3)[p1, p2, . . .] where pi is the universal Pontrjagin class. Let

x4i−1 ∈ H∗(Spin(∞);Z(3)) be the cohomology suspension of pi. For i ∈ {1, 3}, define x4i−1 ∈

H∗(G2;Z(3)) by x4i−1 = g∗(x4i−1). Then

H∗(Spin(∞);Z(3)) ∼= Λ(x3, x7, x11, . . .) and H∗(G2;Z(3)) ∼= Λ(x3, x11).

Let A be the 11-skeleton of G2 and let j : A −→ G2 be the skeletal inclusion. Consider the

composite

〈i, j〉 : S3 ∧A 1∧j−→ S3 ∧G2
〈i,1〉−→ G2.

As a step in finding the order of 〈i, 1〉 we first find the order of 〈i, j〉. Notice that as Spin(∞) is an

infinite loop space, it is homotopy commutative, so g ◦ 〈i, j〉 is null homotopic. Therefore, there is a

lift

(1)

Ω(Spin(∞)/G2)

��
S3 ∧A

〈i,j〉
//

`
77ooooooooooo
G2

for some map `. We wish to choose a lift ` with good properties. To do so we use methods from

unstable K-theory.

Let Z = Spin(∞)/G2. We identify ΩZ up to dimension 18. Consider the Serre spectral sequence

of the homotopy fibration ΩZ −→ G2 −→ Spin(∞). Then we easily see that

H∗(ΩZ;Z(3)) ∼= Z(3)[y6, y14]

for ∗ < 18 where yi transgresses to xi+1 for i = 6, 14. Let E be the homotopy fibre of the map

P1 : K(Z(3), 6) −→ K(Z/3Z, 10). Then we have

H∗(E;Z(3)) ∼= Z(3)[u6]

for ∗ < 18. Since P1y6 = 0, the map (y6, y14) : ΩZ −→ K(Z(3), 6)×K(Z(3), 14) lifts to a map ΩZ −→

E ×K(Z(3), 14) which is an isomorphism in cohomology with Z(3)-coefficients up to dimension 18.

Thus ΩZ is homotopy equivalent to E ×K(Z(3), 14) up to dimension 18.
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Lemma 4.1. Let Y be a CW -complex of dimension < 17 such that H9(Y ;Z/3Z) = 0. Then [Y,ΩZ]

is a free Z(3)-module and the map

Φ: [Y,ΩZ] −→ H6(Y ;Z(3))⊕H14(Y ;Z(3))

defined by Φ(α) = (α∗(y6), α∗(y14)) is injective.

Proof. Since ΩZ is homotopy equivalent to E ×K(Z(3), 14) in dimensions < 18 and Y has dimen-

sion < 17, there is an isomorphism

[Y,ΩZ] ∼= [Y,E ×K(Z(3), 14)].

So to prove that Φ is injective it suffices to show that the map [Y,E] −→ [Y,K(Z(3), 6)] is injective.

By considering the homotopy fibration K(Z/3Z, 9) −→ E −→ K(Z(3), 6), the injectivity follows

from the assumption that H9(Y ;Z/3Z) = 0. �

Arguing as in [H], we obtain the following proposition.

Proposition 4.2. Let Y be a CW -complex of dimension ≤ 14 satisfying the hypotheses of Lemma 4.1.

Then there is an exact sequence

K̃O
−2

(Y )
Θ−→ Im Φ −→ [Y,G2] −→ K̃O

−1
(Y )

where Θ(ξ) = Σ−2(3!ch3(ξ ⊗ C), 7!ch7(ξ ⊗ C)) for ξ ∈ K̃O
−2

(Y ) = K̃O(Σ2Y ). �

Notice that Y = S3 ∧ A is of dimension 14, so it satisfies the hypotheses of Lemma 4.1 and

Proposition 4.2. Thus, arguing as in [H], we obtain the following.

Proposition 4.3. The lift ` in (1) may be chosen so that

`∗(u6, u14) = (i∗(x3)× j∗(x3), i∗(x3)× j∗(x11)) ∈ Im Φ. �

As spaces are localized at 3, the complexification c : K̃O
−2

(S3∧A) −→ K̃−2(S3∧A) ∼= K̃(S3∧A)

is an isomorphism since, if r : K̃−1(S3 ∧ A) −→ K̃O
−2

(S3 ∧ A) is the realification map, we have

r ◦ c = 2. By [Wa] there exists an element ζ ∈ K̃(S3 ∧A) such that

ch(ζ) = Σ3x3 +
1

5!
Σ3x11.

So K̃(S3 ∧A) is a free Z(3)-module generated by ζ and η : S3 ∧A −→ S14 −→ BU(∞) where

ch(η) = Σ3x11.

Proposition 4.4. The Samelson product S3 ∧A 〈i,j〉−→ G2 has order 3.
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Proof. First note that the restriction of 〈i, j〉 to S3 ∧ S3 is the Samelson product 〈i, i〉, which has

order 3 by [O]. So the order of 〈i, j〉 is at least 3.

By Proposition 4.2 there is an exact sequence

K̃(S3 ∧A) ∼= K̃O
−2

(S3 ∧A)
Θ−→ Im Φ −→ [S3 ∧A,G2] −→ K̃O

−1
(S3 ∧A).

Consider the map S3 ∧ A 〈i,j〉−→ G2. By Proposition 4.3, 〈i, j〉 is in Im Φ, and within this image, it is

represented by Σ3x3 + Σ3x11. Observe that Σ3x3 + Σ3x11 /∈ Im Θ, but

3(Σ3x3 + Σ3x11) = Θ(
1

2
ζ − 18

7!
η).

Therefore, by exactness, 3〈i, j〉 is null homotopic. Thus the order of 〈i, j〉 is at most 3. �

Proposition 4.5. Localized at 3, the map G2
∂1−→ Ω3

0G2 has order 3.

Proof. It is equivalent to adjoint and show that the map S3∧G2
〈i,1〉−→ G2 has order 3. Since G2 is an

H-space with the property that H̃∗(G;Z/3Z) ∼= Λ(H̃∗(A;Z/3Z)) and H̃∗(A;Z/3Z) has m generators

with m < p (m = 2 and p = 3 here), by [CN] there is a homotopy equivalence ΣG2 ' ΣA ∨ S15.

Thus 〈i, 1〉 can be regarded as a map (S3 ∧ A) ∨ S17 −→ G2. By Proposition 4.4, the composite

S3 ∧ A −→ S3 ∧ G2
〈i,1〉−→ G2 has order 3. By [M], the 3-component of π17(G2) is zero. Thus 〈i, 1〉

has order 3. �

Proposition 4.6. There exists a 3-local homotopy equivalence Gk ' Gk′ if and only if (3, k) = (3, k′).

Proof. Argue exactly as in the p = 7 case of Proposition 3.2. �

5. Preliminary homotopy theory for the p = 2 case

In Sections 5 to 8 we determine the 2-component of the order of G2
∂1−→ Ω3

0G2 and use it to prove

the 2-primary information in Theorem 1.2. This case is by far the most delicate, so the work has

been spread out over several sections. In this section we state some background facts about the

2-primary homotopy theory of G2 and mod-2 Moore spaces which will be used later on. Throughout

Sections 5 to 8 we assume all spaces and maps have been localized at 2 and homology is taken with

mod-2 coefficients.

Lemma 5.1 contains information on the homotopy groups of G2; all statements were proved in [M].

Lemma 5.1. The following hold:

(a) π6(G2) = 0;

(b) π7(G2) = 0;

(c) π8(G2) ∼= Z/2Z;

(d) π9(G2) ∼= Z/2Z;

(e) if S8 −→ G2 represents a generator of π8(G2), then the composite S9 η−→ S8 −→

G2 represents a generator of π9(G2) ∼= Z/2Z;
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(f) π14(G2) ∼= Z/8Z⊕ Z/2Z.

�

For r ≥ 1 and m ≥ 3, the mod-2r Moore space Pm(2r) is the cofiber of the degree 2r map on Sm−1.

Lemma 5.2 describes several properties concerning the 2-primary homotopy theory of Moore spaces;

a modern reference is [N, Proposition 6.1.6]. For m ≥ 4, let η : Sm −→ Sm−1 represent the generator

of the stable group πm(Sm−1) ∼= Z/2Z.

Lemma 5.2. Let m ≥ 4. The following hold:

(a) the degree 2 map on Pm(2) is nontrivial, and is homotopic to the composite

Pm(2)
q−→ Sm

η−→ Sm−1 j−→ Pm(2) where q is the pinch map to the top cell and j

is the inclusion of the bottom cell;

(b) the degree 4 map on Pm(2) is null homotopic;

(c) the degree 4 map on Pm(4) is null homotopic.

�

6. A lower bound on the order of ∂1 at 2

Let i′ : S3 −→ SU(3) be the inclusion of the bottom cell. Notice that the composite S3 i′−→

SU(3) −→ G2 is homotopic to the map S3 i−→ G2. Since the inclusion SU(3) −→ G2 is a homo-

morphism, we obtain a homotopy commutative diagram

(2)

S3 ∧ SU(3)
〈i′,1〉

//

��

SU(3)

��
S3 ∧G2

〈i,1〉
// G2.

There is a canonical map ΣCP 2 −→ SU(3) which induces the inclusion of the generating set in

homology (see [Wh, Chapter IV, Section 10] for example). Let ε be the composite

ε : S3 ∧ ΣCP 2 −→ S3 ∧ SU(3)
〈i′,1〉−→ SU(3).

Lemma 6.1. The composite S3 ∧ ΣCP 2 ε−→ SU(3) −→ G2 is nontrivial.

Proof. Consider the long exact sequence in homotopy groups induced by the fibration sequence

ΩG2 −→ ΩS6 −→ SU(3) −→ G2 −→ S6. By Lemma 5.1, π6(ΩG2) = 0, so π6(ΩS6) injects into

π6(SU(3)). By [To1] and [M], both π6(ΩS6) and π6(SU(3)) are isomorphic to Z/2Z. Thus the

injection π6(ΩS6) −→ π6(SU(3)) is an isomorphism. A representative of the generator of π6(ΩS6)

is the map η : S6 −→ ΩS6 which is adjoint to S7 η−→ S6. Thus a representative of the generator

of π6(SU(3)) is the composite S6 η−→ ΩS6 −→ SU(3). On the other hand, by [B] the Samelson

product 〈i′, i′〉 : S6 −→ SU(3) is non-trivial, so it represents the generator of π6(SU(3)) ∼= Z/2. Since
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the composite S6 −→ S3 ∧ ΣCP 2 ε−→ SU(3) is the Samelson product 〈i′, i′〉, there is a homotopy

commutative diagram

S6 //

η

��

S3 ∧ ΣCP 2

ε

��

ΩS6 // SU(3)

where the top horizontal map is the inclusion of the bottom cell. Now consider the diagram

(3)

S6 //

η

��

S3 ∧ ΣCP 2 //

ε

��

S8
η

//

γ

��

S7

η

��
ΩS6 // SU(3) // G2

// S6.

The bottom row is a fibration sequence while the top row is a cofibration sequence. So the homotopy

commutativity of the left square implies that there is a map γ which makes the middle and right

squares homotopy commute. Since the composite S8 η−→ S7 η−→ S6 represents a generator of

π8(S6) ∼= Z/2Z, the map γ must be nontrivial. In particular, by Lemma 5.1, π8(G2) ∼= Z/2Z, so γ

represents a generator of this homotopy group.

Focus on the middle square in (3). The assertion of the lemma is that the composite S3∧ΣCP 2 ε−→

SU(3) −→ G2 is nontrivial. If it were trivial, then the homotopy commutativity of this middle

square would imply that the composite S3 ∧ CP 2 −→ S8 γ−→ G2 is null homotopic. This implies

that γ extends across S8 η−→ S7 to a map γ′ : S7 −→ G2. But by Lemma 5.1, π7(G2) ∼= 0, so γ′

is null homotopic, which implies that γ is null homotopic, a contradiction. Thus the composite

S3 ∧ ΣCP 2 ε−→ SU(3) −→ G2 is nontrivial. �

Let X be the 6-skeleton of G2 and let X −→ G2 be the skeletal inclusion. Observe that X is

a three-cell complex satisfying H∗(X) ∼= {x3, x5, x6} with Sq2(x3) = x5 and Sq1(x5) = x6, and

there is a homotopy cofibration S3 −→ X −→ P 6(2). As well, for dimensional reasons, there is a

homotopy commutative diagram

ΣCP 2 //

��

SU(3)

��
X // G2.

This diagram together with (2) implies that there is a homotopy commutative diagram

(4)

S3 ∧ ΣCP 2 //

��

S3 ∧ SU(3)
〈i,1〉

//

��

SU(3)

��
S3 ∧X // S3 ∧G2

〈i,1〉
// G2.
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Notice that the top row is the definition of ε so by Lemma 6.1 the upper direction around (4) is

nontrivial. Thus the lower direction around (4) is nontrivial. Therefore, if we let f be the composite

f : S3 ∧X −→ S3 ∧G2
〈i,1〉−→ G2

then we immediately obtain the following.

Corollary 6.2. The composite S3 ∧ ΣCP 2 −→ S3 ∧X f−→ G2 is nontrivial. �

Observe that there is a homotopy commutative diagram of homotopy cofibrations

S3 ∧ S3 // S3 ∧ ΣCP 2 //

��

S3 ∧ S5

1∧j
��

S3 ∧ S3 // S3 ∧X // S3 ∧ P 6(2)

where j is the inclusion of the bottom cell. By Lemma 5.1, π6(G2) ∼= 0, so the composite S3∧S3 −→

S3 ∧X f−→ G2 is null homotopic. Thus f extends through S3 ∧ P 6(2) and we obtain a homotopy

commutative diagram

(5)

S3 ∧ ΣCP 2 //

��

S3 ∧ S5

1∧j
��

S3 ∧X //

f

��

S3 ∧ P 6(2)

g
wwpppppppppppp

G2

for some map g. By Corollary 6.2, the left column in this diagram is nontrivial. Therefore the upper

direction around the diagram is nontrivial. This implies that the composite g ◦ (1 ∧ j) is nontrivial.

By Lemma 5.1, π8(G2) ∼= Z/2Z, so we obtain the following.

Lemma 6.3. The composite S3 ∧ S5 1∧j−→ S3 ∧ P 6(2)
g−→ G2 represents a generator of π8(G2) ∼=

Z/2Z. �

We now calculate the order of f . In general, if Y is an H-space let 2r : Y −→ Y be the 2r-power

map, and if A is a co-H-space let 2r : A −→ A be the map of degree 2r.

Lemma 6.4. The map S3 ∧X f−→ G2 has order 4.

Proof. Focus on (5). By Lemma 5.2, the identity map on S3 ∧P 6(2) ' P 9(2) has order 4. Thus the

order of g is at most 4, which implies that the order of f is at most 4.

We next show that the order of f is at least 4. Consider the composite S3∧X f−→ G2
2−→ G2. The

factorization of f through g in (5) implies that 2◦f factors as S3∧X −→ S3∧P 6(2)
g−→ G2

2−→ G2.

Observe that the homotopy cofiber of S3 ∧X −→ S3 ∧ P 6(2) is S3 ∧ S4 ' S7 and by Lemma 5.1,
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π7(G2) = 0. Therefore [S3∧P 6(2), G2] injects into [S3∧X,G2]. Thus to show that 2◦f is nontrivial

it suffices to show that 2 ◦ g is nontrivial.

It remains to show that 2◦g is nontrivial. Equivalently, we show that the composite S3∧P 6(2)
2−→

S3 ∧ P 6(2)
g−→ G2 is nontrivial. By Lemma 5.2, the degree 2 map on S3 ∧ P 6(2) factors as the

composite S3∧P 6(2)
1∧q−→ S3∧S6 1∧η−→ S3∧S5 1∧j−→ S3∧P 6(2), where q is the pinch map to the top cell.

By Lemma 6.3, the composite g ◦ (1 ∧ j) represents a generator of π8(G2) ∼= Z/2Z. Lemma 5.1 (e)

therefore implies that the composite g ◦ (1 ∧ j) ◦ (1 ∧ η) represents a generator of π9(G2) ∼= Z/2Z.

To compress notation, let g′ = g ◦ (1 ∧ j) ◦ (1 ∧ η). If the composite S3 ∧ P 6(2)
1∧q−→ S3 ∧ S6 g′−→ G2

was null homotopic, then g′ would extend across the cofiber of 1 ∧ q, implying that g′ factors as

a composite S3 ∧ S6 1∧2−→ S3 ∧ S6 g′′−→ G2 for some map g′′. But π9(G2) has order 2 and 1 ∧ 2 is

homotopic to the degree 2 map on S9, so g′′ ◦ (1 ∧ 2) is null homotopic. This implies that g′ is

null homotopic, contradicting the fact that it represents a generator of the nontrivial group π9(G2).

Hence g′ ◦(1∧q) is nontrivial. That is, g◦(1∧j)◦(1∧η)◦(1∧q) ' g◦2 is nontrivial, as required. �

Since f is the composite S3 ∧X −→ S3 ∧G2
〈i,1〉−→ G2, taking adjoints we obtain the following.

Corollary 6.5. The composite X −→ G2
∂1−→ Ω3

0G2 has order 4. �

Consequently, we obtain a lower bound on the order of the map G2
∂1−→ Ω3

0G2.

Corollary 6.6. The map G2
∂1−→ Ω3

0G2 has order at least 4. �

7. An upper bound on the order of ∂1 at 2

By Corollary 6.6 the map G2
∂1−→ Ω3

0G2 has order at least 4. In this section we will show that ∂1

has order at most 8. It is equivalent to show that the triple adjoint of ∂1 has order at most 8. Recall

by Lemma 2.1 that the triple adjoint of ∂1 is the Samelson product

Σ3G2
〈i,1〉−→ G2.

We will show that 〈i, 1〉 factors through a space of smaller dimension.

It is well known that the extended Dynkin diagram of G2 is given by the following:

α1 α2 −α̃

Therefore, there is a maximal rank subgroup SO(4) of G2 corresponding to the roots α1 and −α̃,

implying that there are two distinct copies of SU(2) in SO(4) ⊆ G2 corresponding to α1 and −α̃,

which we denote by SU(2)− and SU(2)+ respectively. Since −α̃ is the longest root, the inclusion

SU(2)+ −→ G2 is a generator i : S3 −→ G2, and for |α̃|2
|α1|2 = 3, the inclusion j : SU(2)− −→ G2 is

three times a generator of π3(G2). Therefore we obtain the following.

Lemma 7.1. There is an equality 〈j, 1〉 = 3〈i, 1〉, where 1 is the identity map on G2. �
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The Samelson product 〈j, 1〉 factors conveniently. Let V = G2/SU(2)+ and let q : G2 −→ V be

the projection.

Lemma 7.2. The Samelson product Σ3G2
〈j,1〉−−→ G2 factors as a composite Σ3G2

Σ3q−→ Σ3V
ψ−→ G2

for some map ψ.

Proof. By construction, SU(2)+ and SU(2)− commute in SO(4), and hence in G2, where SO(4) =

(SU(2)+ × SU(2)−)/(Z/2Z). This implies the asserted factorization. �

By Lemma 7.1, 〈j, 1〉 = 3 · 〈i, 1〉, so as 3 is a unit when localized at 2, if we define ψ′ = (1/3) ◦ ψ

then Lemma 7.2 immediately implies the following.

Corollary 7.3. The Samelson product Σ3G2
〈i,1〉−−→ G2 factors as Σ3G2

Σ3q−→ Σ3V
ψ′−→ G2. �

Consider the space Σ3V more closely. Observe that V = G2/SU(2)+ is the Stiefel manifold

SO(7)/SO(5). Thus H∗(V ) ∼= Λ(x5, x6), where Sq1(x5) = x6. We show that there is a homotopy

decomposition of Σ2V .

Lemma 7.4. There is a homotopy equivalence Σ2V ' P 8(2) ∨ S13.

Proof. The cohomology description for V implies that there is a homotopy cofibration

S10 f−→ P 6(2) −→ V

where f attaches the top cell to V . In particular, f represents an element in π10(P 6(2)). Ob-

serve that Σ2f is in the stable range, and by [Wu, Lemma 5.2(3)], the stable homotopy group

πSn+4(Pn(2)) ∼= 0. Therefore Σ2f is null homotopic, implying that there is a homotopy equivalence

Σ2V ' P 8(2) ∨ S13. �

Lemma 7.4 is used to obtain an upper bound on the order of ∂1.

Proposition 7.5. The map G2
∂1−→ Ω3

0G2 has order at most 8.

Proof. It is equivalent to show that the triple adjoint Σ3G2
〈i,1〉−→ G2 of ∂1 has order at most 8. By

Corollary 7.3, 〈i, 1〉 factors as the composite

Σ3G2
Σ3q−→ Σ3V

ψ′−→ G2.

By Lemma 7.4, the map Σ3V
ψ′−→ G2 is the same, up to a homotopy equivalence, as P 9(2)∨S14 a+b−→

G2 for some maps a and b. By Lemma 5.2 (b), the order of the identity map on Pm(2) is 4 if m ≥ 4,

so the order of a is at most 4. By Lemma 5.1 (f), π14(G2) ∼= Z/8Z ⊕ Z/2Z, so the order of b is at

most 8. Thus the order of a+ b is at most 8, implying that the order of ψ′ ◦ Σ3q is at most 8. �

Remark 7.6. In the proof of Proposition 7.5, it is not clear what the order of the map b is, and

determining this order seems to be a very delicate problem. Observe that if b has order at most 4

then ∂1 has order at most 4. We suspect that this is actually the case.
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Combining Corollary 6.6 with Proposition 7.5 we obtain the following.

Proposition 7.7. The map G2
∂1−→ Ω3

0G2 has order 4 or 8. �

8. Towards the 2-types of G2-gauge groups

In this section we prove the 2-primary information in Theorem 1.2 (a): if there is a homotopy

equivalence Gk ' Gk′ then (4, k) = (4, k′). This requires several preliminary lemmas. Again,

througout this section, assume that spaces and maps are localized at 2.

For a space X, let X〈3〉 be the three-connected cover of X. In the case of G2, observe that

Ω3
0G2 ' Ω3G2〈3〉. Adjointing ∂1 twice, we obtain a map

φ : Σ2G2 −→ ΩG2〈3〉.

It is easier to work with ΩG2〈3〉 than G2〈3〉 because of the following lemma. Consider the canonical

fibration SU(3)
j−→ G2

p−→ S6. Take 3-connected covers and loop. Composing with the second

James-Hopf invariant H : ΩS6 −→ ΩS11, we obtain a homotopy commutative diagram of homotopy

fibrations

Y //

��

S5 //

E

��

SU(3)〈3〉

ΩG2〈3〉
Ωp

//

��

ΩS6 //

H

��

SU(3)〈3〉

��
ΩS11 ΩS11 // ∗

which defines the space Y . Let c̃ : S10 −→ ΩG2〈3〉 be the adjoint of three-connected cover of the

map S11 c−→ G2 appearing in Lemma 2.3.

Lemma 8.1. The homotopy fibration Y −→ ΩG2〈3〉 −→ ΩS11 has the following properties:

(a) the 14-skeleton of Y is P 8(2) [To2];

(b) the composite S10 c̃−→ ΩG2〈3〉 −→ ΩS11 is of degree 4 [M, Theorem 6.1]. �

Recall from Section 6 that X is the 6-skeleton of G2 and that there is a cofibration S3 −→ X
q−→

P 6(2), where q is the pinch map to the top two cells. By Lemma 8.1, the 8-skeleton of ΩG2〈3〉 is

P 8(2), implying that the 6-skeleton of Ω3
0G2 ' Ω3G2〈3〉 is P 6(2). Let j : P 6(2) −→ Ω3

0G2 be the

skeletal inclusion.

Lemma 8.2. There is a homotopy commutative diagram

X
u·q

//

��

P 6(2)

j

��
G2

∂1 // Ω3
0G2

where u is a unit in Z(2).
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Proof. Recall from (5) that there is a homotopy commutative square

S3 ∧X
1∧q

//

f

��

S3 ∧ P 6(2)

g

��
G2 G2

where f is the composite S3 ∧X −→ S3 ∧G2
〈i,1〉−→ G2 and, by Lemma 6.3, the restriction of g to S8

is a generator of π8(G2) ∼= Z/2Z. Adjointing, we obtain a homotopy commutative diagram

X
q

//

��

P 6(2)

γ

��
G2

∂1 // Ω3
0G2

where the restriction of γ to S5 represents a generator of π5(Ω3
0G2) ∼= Z/2Z. That is, up to

multiplication by a unit in Z(2), the restriction of γ to S5 is the inclusion of the bottom cell into Ω3
0G2.

The Bockstein therefore implies that, up to multiplication by a unit u in Z(2), γ is the skeletal

inclusion j. �

The homotopy cofibration S3 −→ X
q−→ P 6(2) is induced by a map P 5(2)

η−→ S3. This is

because, as a CW -complex, X has three cells in dimensions 3, 5 and 6 and the top two cells

are connected by a Bockstein. Further, as the bottom two cells are connected by the Steenrod

operation Sq2, the map η is an extension of the map S4 η−→ S3 representing a generator of π4(S3) ∼=

Z/2Z. For k ∈ Z, define the space Ck and the maps ck and dk by the homotopy pushout

(6)

P 5(2)
η

//

k

��

S3

dk

��
P 5(2)

ck // Ck.

The following lemma gives some information about the cohomology of the spaces Ck.

Lemma 8.3. The following hold:

(a) if (4, k) = 1 then Ck ' S3, so H∗(Ck) ∼= H∗(S3);

(b) if (4, k) = 2 or (4, k) = 4 then, as a module, H∗(Ck) ∼= H∗(S3) ⊕H∗(P 5(2)) ⊕

H∗(P 6(2));

(c) if (4, k) = 2 then Sq2 is nontrivial on the degree 4 generator in cohomology;

(d) if (4, k) = 4 then Sq2 is trivial on the degree 4 generator in cohomology.

Proof. If (4, k) = 1 then k is a unit in Z(2) so the map k is a homotopy equivalence. Thus the

pushout in (6) implies that dk is also a homotopy equivalence and the cohomology assertion follows.
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If (4, k) = 2 or (4, k) = 4 then 2 divides k so (k)∗ = 0. Also for dimensional reasons, (η)∗ = 0.

So the Mayer-Vietoris sequence determined by the pushout defining Ck implies that for each m ≥ 1

there is a short exact sequence

0 −→ Hm(P 6(2)) −→ Hm(Ck) −→ Hm(S3)⊕Hm(P 5(2)) −→ 0

of Z/2Z-modules. By inspection, this splits for each m ≥ 1 and part (b) follows.

Observe that there is a single generator x ∈ H4(Ck), and (ck)∗ is an isomorphism in degree 4.

So as Sq2 detects η, Sq2(x) is nontrivial or trivial depending on whether k factors through η. If

(4, k) = 2 then k = 2 · v for some unit v ∈ Z(2), so k is homotopic, up to an equivalence, to the

degree 2 map. By Lemma 5.2, 2 factors as the composite P 5(2)
q−→ S5 η−→ S4 j−→ P 5(2). Thus

Sq2(x) is nontrivial in H6(Ck). On the other hand, if (4, k) = 4 then k is divisible by 4 so Lemma 5.2

implies that k is null homotopic. Therefore Sq2(x) is zero in H6(Ck). �

Since X is the cofiber of η, the pushout in (6) implies that for each k ∈ Z there is a homotopy

cofibration sequence

P 5(2)
ck−→ Ck −→ X

k·q−→ P 6(2)

where k · q = k ◦ q. Now consider the diagram

(7)

P 5(2)
ck //

j̃

��

Cku //

θk

��

X
ku·q

//

��

P 6(2)

j

��
Ω4

0G2
// Gk // G2

∂k // Ω3
0G2

where j̃ is the adjoint of j and the map θk will be defined momentarily. By Lemma 2.1, ∂k ' k ◦ ∂1.

So Lemma 8.2 implies that the right square homotopy commutes. Since the top row is a homotopy

cofibration sequence and the bottom row is a homotopy fibration sequence, the commutativity of the

right square implies that the composite Cku −→ X −→ G2 lifts to a map θk : Cku −→ Gk which can

be chosen to make both the middle and left squares homotopy commute. Since spaces are localized

at 2 and u is a unit in Z(2), there is a homotopy equivalence Cku ' Ck.

Lemma 8.4. The composite Ck
'−→ Cku

θk−→ Gk induces an isomorphism in homology in dimen-

sions ≤ 6.

Proof. We first need some information about H∗(Ω
4
0G2). By Lemma 8.1, there is a homotopy

fibration Ω3Y −→ Ω4
0G2 −→ Ω4S11 where the 7-skeleton of Ω3Y is P 5(2). Notice that the 13-

skeleton of Ω4S11 is S7. So for dimensional reasons, the homology Serre spectral sequence converging

to H∗(Ω
4
0G2) collapses in degrees ≤ 7. This implies that the composite P 5(2) −→ Ω3Y −→ Ω4

0G2 is

an isomorphism in degrees ≤ 6. Notice that this map is precisely j̃. In particular, this isomorphism

implies that Ω4
0G2 is 3-connected and H6(Ω4

0G2) ∼= 0.
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Now consider the homotopy fibration Ω4
0G2 −→ Gk −→ G2. Since G2 is 2-connected and Ω4

0G2 is

3-connected, the Serre exact sequence gives a long exact sequence

H6(Ω4
0G2) −→ H6(Gk) −→ H6(G2) −→ H5(Ω4

0G2) −→ · · · .

Thus (7) induces a commutative diagram of long exact sequences

H6(P 5(2)) //

j̃∗
��

H6(Cku) //

(θk)∗

��

H6(X) //

��

H5(P 5(2)) //

j̃∗
��

· · ·

H6(Ω4
0G2) // H6(Gk) // H6(G2) // H5(Ω4

0G2) // · · ·

Since H6(P 5(2)) ∼= H6(Ω4
0G2) ∼= 0, we in fact have a commutative diagram of long exact sequences

(8)

0 // H6(Cku) //

(θk)∗

��

H6(X) //

��

H5(P 5(2)) //

j̃∗
��

· · ·

0 // H6(Gk) // H6(G2) // H5(Ω4
0G2) // · · ·

By definition of X, the map X −→ G2 is the inclusion of the 6-skeleton. Notice that as G2 has no

7-cell, this map induces an isomorphism in homology in degrees ≤ 6. We have just seen that the

map j̃ induces an isomorphism in degrees ≤ 6. The five-lemma applied to the long exact sequences

in (8) therefore implies that (θk)∗ is an isomorphism in degrees ≤ 5. But observe as well in (8) that

because of the two lefthand zeroes, a diagram chase implies that (θk)∗ is also an isomorphism in

degree 6. �

Proposition 8.5. Suppose there is a homotopy equivalence Gk ' Gk′ . Then (4, k) = (4, k′).

Proof. A homotopy equivalence Gk ' Gk′ induces an isomorphism in cohomology as algebras over

the Steenrod algebra. By Lemma 8.4, this implies that H∗(Ck) is isomorphic to H∗(Ck′) as an

algebra over the Steenrod algebra in dimensions ≤ 6 (and therefore in all dimensions as Lemma 8.3

implies that, for any k, Ck has dimension at most 6). By Lemma 8.3, such an isomorphism can exist

if and only if (4, k) = (4, k′). �

9. The proofs of Theorems 1.2 and 1.1

In this section we prove our main results by putting together the partial results for individual

primes. We work integrally.

Proof of Theorem 1.1. To determine the order of S3∧G 〈i,1〉−→ G it is equivalent to calculate the order

of its adjoint G −→ Ω3
0G. By Lemma 2.1, this adjoint is ∂1. For a prime p, the p-components of

the order of ∂1 have been determined in Lemma 3.1 and Propositions 4.5 and 7.7 as: 1 if p = 5

or p ≥ 11; 7 if p = 7; 3 if p = 3; and 4 or 8 if p = 2. Thus the order of ∂1 is either 4 · 3 · 7 = 84 or

8 · 3 · 7 = 168. �
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Proof of Theorem 1.2. For part (a), if Gk ' Gk′ then Propositions 3.2, 4.6 and 8.5 imply that

(84, k) = (84, k′). For part (b), by Theorem 1.1, the order of G2
∂1−→ Ω3

0G2 is at most 84. By

Lemma 2.1, ∂k ' k ◦ ∂1, and the homotopy fiber of ∂k is Gk. Lemma 2.2 therefore implies that if

(168, k) = (168, k′) then Gk ' Gk′ when localized rationally or at any prime. �
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