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Inflammation is a major component of neurodegenerative diseases. Microglia are
the innate immune cells in the central nervous system (CNS). In the healthy brain,
microglia contribute to tissue homeostasis and regulation of synaptic plasticity. Under
disease conditions, they play a key role in the development and maintenance of the
neuroinflammatory response, by showing enhanced proliferation and activation. Prion
diseases are progressive chronic neurodegenerative disorders associated with the
accumulation of the scrapie prion protein PrPSc, a misfolded conformer of the cellular
prion protein PrPC. This review article provides the current knowledge on the role of
microglia in the pathogenesis of prion disease. A large body of evidence shows that
microglia can trigger neurotoxic pathways contributing to progressive degeneration. Yet,
microglia are also crucial for controlling inflammatory, repair and regenerative processes.
This dual role of microglia is regulated by multiple pathways and evidences the ability
of these cells to polarize into distinct phenotypes with characteristic functions. The
awareness that the neuroinflammatory response is inextricably involved in producing
tissue damage as well as repair in neurodegenerative disorders, opens new perspectives
for the modulation of the immune system. A better understanding of this complex
process will be essential for developing effective therapies for neurodegenerative
diseases, in order to improve the quality of life of patients and mitigating the personal,
economic and social consequences derived from these diseases.
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Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; APP/PS1, APPswe/PSEN1dE9;
Ara-C, cytosine arabinoside; ASC, apoptosis-associated speck-like protein containing a caspase recruitment domain; BBB,
blood-brain barrier; CCL2, C-C motif chemokine ligand 2; CCR2, C-C chemokine receptor type 2; CD, Cluster of
differentiation; C/EBPα, CCAAT/enhancer-binding protein alpha; COX, cyclooxygenase; CVO, circumventricular organs;
CJD, Creutzfeldt-Jakob disease; CNS, Central nervous system; CR3, complement receptor 3; CSF, cerebrospinal fluid; CSF1,
Colony stimulating factor; CSF1R, Colony stimulating factor 1 receptor; CTL/CTLD, C-type lectin/C-type lectin-like domain;
CX3CL1, C-X3-C motif chemokine ligand 1; CX3CR1, C-X3-C motif chemokine receptor 1; DAP12, DNAX-activating
protein of 12-kDa; EAE, Experimental autoimmune encephalomyelitis; EMP, Erythroid-myeloid progenitors; Iba1, Ionized
calcium-binding adaptor molecule 1; IL-1β, Interleukin 1β; IL-34, Interleukin 34; IRF8, Interferon regulatory factor
8; LPS, lipopolysaccharide; MFGE8, Milk fβt globule-EGF factor 8 protein; MHC, Major histocompatibility complex;
miR, microRNA; NFκB, Nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3, Nod-like receptor family
pyrin domain containing 3; NSAID, Nonsteroidal anti-inflammatory drug; NO, nitric oxide; NOX2, Nicotinamide
adenine dinucleotide phosphate-oxidase (NADPH) oxidase 2; PD, Parkinson’s disease; PGE2, prostaglandin E2; pMac,
pre-macrophage; poly I:C, Polyinosinic-polycytidylic acid; MM1, PRNP codon 129 Met/Met type 1; PrPC, cellular prion
protein; PrPSc, misfolded prion protein (scrapie); ROS, Reactive oxygen species; Runt1, Runt-related transcription factor
1; Sall1/3, Sal-like 1/3; SIRPα, Signal regulatory protein α; SOD1, superoxide dismutase 1; STAT1/3, Signal transducer and
activator of transcription 1/3; Tie2, TEK receptor tyrosine kinase; TGFβ, Transforming growth factor β; TK, thymidine
kinase; TIMD4, T-cell immunoglobulin and mucin domain containing 4; TNFα, Tumor nerosis factor α; TREM2,
triggering receptor expressed on myeloid cells 2; VV2, PRNP codon 129 Val/Val type 2; YS, yolk sac.
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MICROGLIA IN THE HEALTHY BRAIN

Origin and Turnover of Microglia
Since the initial description of microglial cells by Pio Del
Rio Hortega (del Río-Hortega, 1920, 1932; del Río-Hortega
and Penfield, 1927), their origin has been a source of debate.
However, it has been recently established that tissue resident
macrophages as microglia originate from erythroid-myeloid
progenitors (EMPs) emerging from the yolk sac (YS) during
primitive hemeatopoiesis at embryonic stages 7.0 (E7.0) to E9.5
(Cuadros et al., 1993; Alliot et al., 1999; Schulz et al., 2012;
Gomez Perdiguero et al., 2015; Sheng et al., 2015; Wang et al.,
2015). A pioneering study by Ginhoux et al. (2010) allowed
finding the earliest microglial progenitors in the YS during
mouse development, thanks to fate-mapping experiments that
allowed tagging early YS blood-island cells and then follow
the emergence of microglial cells into the central nervous
system (CNS). Fate mapping of YS progenitors from E6.5 to
E7.0 produced tagging of less than 4% of adult microglia, whereas
mapping from E7.0 to E7.25 produced 29% microglia being
labeled, allowing the definition that primitive EMPs that arise
before E7.5 are the main contributors to the adult microglial
population (Ginhoux et al., 2010). Then, several studies using
tamoxifen-inducible Cre lines in which the Cre-ER-T2/Mer-
Cre-Mer protein was expressed under the control of different
genes such as Colony stimulating factor receptor 1 (Csf1r; Schulz
et al., 2012), C-kit (Sheng et al., 2015), TEK Receptor Tyrosine
Kinase (Tie2; Gomez Perdiguero et al., 2015) corroborated that
microglial progenitors have a YS origin. A recent study by
Mass et al. (2016) has allowed a more precise definition of the
sequence of differentiation steps leading to the adult microglial
population. In the YS, uncommitted EMPs (Kit+ CD45lo Csf1r+

AA4.1+) differentiate into pre-macrophage (pMac; kit− CD45hi

F4/80−) that do not yet have a microglial phenotype. From
E9.5, as they initiate a core macrophage transcriptional program,
those pMacs colonize the whole embryo in a C-X3-C motif
chemokine receptor 1 (CX3CR1)-dependent manner. Indeed,
at E9.5 and E10.5, CX3CR1-deficient embryos exhibit a delay
in the colonization of progenitors and a decrease of pMacs
and macrophages population in the head while they display an
accumulation of pMacs in the YS and fetal liver (Mass et al.,
2016). Immediately following colonization of the embryonic
brain, a tissue specific transcriptional program is triggered and
leads to the production of postnatal microglia, including a
downregulation of T-cell immunoglobulin and mucin domain
containing 4 (Timd4) and mannose receptor (Cd206) and an
upregulation of Sal-like (Sall)1 and Sall3 (Lavin et al., 2014;
Mass et al., 2016). As the embryo develops, microglia progenitors
mature in a Interferon regulatory factor 8 (IRF8) and PU.1-
dependant manner by expressing a set of different markers
including CSF1R, Runt-related transcription factor (Runx1),
ionized calcium-binding adaptor molecule 1 (Iba1), C-X3-C
Motif Chemokine Receptor (CX3CR1), Tie2, the cluster of
differentiation 45 (CD45) or C-kit (Kierdorf et al., 2013; Mass
et al., 2016).

In humans, microglial cells are identified in the extracerebral
mesenchyme around 4.5 gestational weeks. At 5 gestational

weeks, they invade the parenchyma by entering the brain
primordium via the developing meninges, ventricular zone and
choroid plexus (Monier et al., 2006; Verney et al., 2010) and
they only exhibit a ramified morphology around the 35th week
(Hutchins et al., 1990; Esiri et al., 1991; Rezaie and Male, 1999).

In the adult, the microglial population is maintained by
a self-renewal process (Lawson et al., 1992; Askew et al.,
2017; Figure 1). A foundational study by Lawson et al. (1992)
defined a remarkably slow turnover rate of adult murine
microglia, by means of analyzing short-term 3H tymidine
incorporation. However, more recent insight arising from
repopulation paradigms suggested that microglia could have a
higher turnover capacity in the steady state. The pharmacological
depletion of microglia, by using a potent CSF1R inhibitor, is
followed by the rapid reconstitution of the microglia population
by proliferation of resident microglia, without the contribution
of circulating monocytes (Elmore et al., 2014). A transgenic
paradigm, allowing the depletion of microglia by diphtheria toxin
injection, validated this repopulating capacity, independent of
circulating monocytes (Bruttger et al., 2015). Although these
repopulation paradigms are distal from modeling a homeostatic
system, they suggested a latent potential for microglial cells
to proliferate more rapidly than thought before, allowing the
colonization of an empty niche. In this line, a recent study from
our group showed that in mice and humans the turnover of
microglia in the steady state is remarkably fast, allowing the
whole population to be renewed several times during a lifetime
(Askew et al., 2017). Indeed, whereas the previous study in the
healthy brain, using 3H thymidine and immunohistochemistry
for F4/80, had shown that, at a given time, only 0.05% of
the microglia were proliferating (Lawson et al., 1992), Askew
et al. (2017) recently demonstrated that 0.69% of the microglial
population is proliferating by using more sensitive techniques
(BrdU incorporation detected in Iba1+ cells and 2-photon
live imaging). Microglial proliferation is balanced by microglial
apoptosis, with these two mechanisms being synchronized
in time and space, allowing for a rapid remodeling of the
microglial landscape during a lifetime, without the contribution
of circulating monocytes (Askew et al., 2017).

Distribution and Function of Microglia in
the Adult Brain
The density and morphology of microglia varies considerably
across the healthy adult brain. In the mouse brain, there are an
estimated total number of 3.5 × 106 microglial cells, however
their distribution varies from 5% in the cortex and corpus
callosum, to 12% in the substantia nigra (Lawson et al., 1990).
In mice, microglia are more numerous in gray matter than
white matter and areas as the hippocampus, basal ganglia and
substantia nigra are particularly densely populated in microglia
(Lawson et al., 1990). In comparison, the less densely populated
areas include fiber tracts, cerebellum and much of the brainstem
whereas the cerebral cortex, thalamus and hypothalamus have
average cell densities (Lawson et al., 1990). This cell density
remains constant from early postnatal development to aging,
thanks to the constant turnover of the population (Askew et al.,
2017). In the human brain, microglia has been estimated to make
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FIGURE 1 | Microglia in the prion-diseased brain. In the healthy brain, microglia constantly surveil their microenvironment for any disturbance of brain homeostasis
and are kept in this surveiling state by signals mainly originating from healthy neurons. The microglial population is maintained by local self-renewal mediated via
CSF1R and its ligands CSF1 and IL-34. In the context of neurodegeneration and protein accumulation present in the prion-diseased brain, the microglial response is
characterized by functional changes involving increased proliferation, an inflammatory activation and the removal of apoptotic neurons. CX3CL1, C-X3-C motif
chemokine ligand 1; CX3CR1, C-X3-C motif chemokine receptor 1; CD200, Cluster of differentiation 200; CD47, Cluster of differentiation 47; SIRPα, Signal
regulatory protein α; CSF1R, Colony stimulating factor 1 receptor; CSF1, Colony stimulating factor; IL-34, Interleukin 34; MFGE8, Milk fat globule-EGF factor
8 protein; ROS, Reactive oxygen species; NOX2, Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase 2; NFκB, Nuclear factor
kappa-light-chain-enhancer of activated B cells; STAT1/3, Signal transducer and activator of transcription 1/3; TNFα, Tumor nerosis factor α; IL-1β, Interleukin 1β;
CCL2, C-C motif chemokine ligand 2; TGFβ, Transforming growth factor β; PrPSc misfolded prion protein (scrapie).

up 6%–18% of neocortical cells (Mittelbronn et al., 2001; Pelvig
et al., 2008; Lyck et al., 2009). Similarly, microglial morphology
varies considerably depending on specific regional properties.
Whereas they are usually more ramified in gray matter, in
white matter they display elongated somata and less ramified
processes preferentially oriented along fiber tracts (Lawson
et al., 1990; Mittelbronn et al., 2001; Torres-Platas et al., 2014).
The molecular determinants of those anatomical differences in
diversity and morphology are not clearly defined, however recent
studies showed that microglia have a distinct region-dependent
and age-dependent transcriptomic signature corroborating the
existence of the regional heterogeneity of microglial phenotypes
(Hickman et al., 2013; Grabert et al., 2016; Soreq et al., 2017).

In the healthy brain, microglia display a ‘‘surveilling’’
phenotype characterized by a small cell body and long branching
processes serving to continuously sense the microenvironment
to detect any alteration of CNS homeostasis (Kettenmann
et al., 2013; Figure 1). Microglia show invariant soma
positions but continually and rapidly moving processes (average
velocity around 2.5 µm/min; Davalos et al., 2005; Nimmerjahn
et al., 2005; Wake et al., 2009). Microglias rapidly change
their surveilling phenotype into a diversity of ‘‘activated’’
phenotypes after the alteration of the CNS homeostasis or
presence of a threat to neuronal integrity. They adopt a more
amoeboid and less ramified phenotype with a large soma and
rapidly trigger appropriate responses, which could range from

upregulation or de novo synthesis of cell-surface molecules
such as CD68 and major histocompatibility complex (MHC)
class II to phagocytosis or the release of molecular mediators,
including immune and non-immune factors (Kettenmann
et al., 2011; Figure 1). Consequently, this activated phenotype
is a generalized term that fails to take into account that
microglia can adopt numerous functionally different phenotypes,
depending on the exact nature of the stimulus (Perry et al.,
2010).

In the healthy brain, microglia is involved in several
mechanisms regulating CNS physiology. Microglia are in direct
contact with dendritic spines, axons and synapses, suggesting
that they participate in the regulation of synaptic structure and
function (Wake et al., 2009; Paolicelli et al., 2011; Squarzoni
et al., 2014). One of these mechanisms is synaptic pruning, a
process by which excess synapses formed in the developing brain
are eliminated to thereby increase the efficiency of the neural
network. In this process, microglia has been shown in direct
contact with the synapses and removing unwanted elements by
phagocytosis (Paolicelli et al., 2011). Electron microscopy and
high resolution in vivo engulfment assays have showed also
the presence of presynaptic and postsynaptic elements inside
microglial lysosomes (Berbel and Innocenti, 1988; Tremblay
et al., 2010; Schafer et al., 2012). Some proteins as complement
receptor 3 (CR3/CD11b), CX3CR1 or the adaptor protein
DNAX-activating protein of 12-kDa (DAP12), highly expressed
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by microglia, are involved in the process of synaptic pruning.
Indeed it has been shown that disruption of one of those proteins
resulted in synaptic abnormalities in both prenatal and postnatal
brain development (Stevens et al., 2007; Paolicelli et al., 2011;
Squarzoni et al., 2014).

As mentioned above, the interactions between microglia and
their surrounding cells have a major role in the determination of
the microglial phenotype. Healthy neurons maintain microglia
in their surveilling state via secreted and membrane bound
signals. The interaction of neuronal CD200 with microglial
CD200R leads to inactivation of microglia and plays a critical
role in neuroprotection (Lyons et al., 2007). In CD200-deficient
mice, microglia are more numerous, form more aggregate-like
structures, display less ramifications with shorter processes
and show an upregulation of CD45 and CD11b, which are
markers of activation (Hoek et al., 2000). The bidirectional
signaling between SIRPα and CD47 that can be co-expressed
by both neurons and microglia maintains microglia in their
surveilling state by inhibiting phagocytosis and inducing the
synthesis of the anti-inflammatory cytokines (Zhang et al.,
2015). The interaction of neuronal CX3CL1 with microglial
CX3CR1 constrains microglial activation (Lyons et al., 2009).
In models for Parkinson’s disease (PD) under a CX3CR1-
deficient background, microglia exhibit an over-activated
phenotype and neuronal cell death is enhanced (Bhaskar
et al., 2010; Cho et al., 2011). The neurotoxicity induced
by activated microglia in neurodegenerative diseases seems to
be worsened in CX3CR1-deficient mice, suggesting that the
signaling through CX3CL1/CX3CR1 regulates the phenotype
of microglia (Cardona et al., 2006). Another receptor involved
in the maintenance of the microglial surveilling state is the
triggering receptor expressed on myeloid cells 2 (TREM2)
associated with the adaptor protein DAP12. TREM2 is essential
for phagocytosis process by microglia (Takahashi et al., 2007)
and has recently been shown to interact with specific lipids
to promote microglial survival (Wang et al., 2015). Mutations
leading to a loss of function in TREM2 or DAP12 underlie
the Nasu–Hakola disease, in which patients display progressive
presenile dementia (Paloneva et al., 2000, 2002).

Microglia also express receptors that trigger essential cellular
survival and developmental signals. CSF1R plays a major
role in microglial development and survival. Expressed by
microglia (Akiyama et al., 1994; Raivich et al., 1998), CSF1R
is activated by two homodimeric glycoprotein ligands, CSF1
(Stanley and Heard, 1977) and Interleukin 34 (IL-34; Lin et al.,
2008). In the brain, IL-34 is primarily expressed by neurons
(Mizuno et al., 2011; Wang et al., 2012) whereas CSF1 is
mainly expressed by microglia (Chitu et al., 2016). These two
ligands present different patterns of regional expression in
the prenatal and postnatal brain. CSF1 is highly expressed in
the neocortex, corpus callosum, cerebellum and spinal cord,
whereas IL-34 is highly expressed in the forebrain (neocortex,
olfactory bulb and striatum; Wei et al., 2010; Nandi et al.,
2012). The binding of CSF1 or IL-34 to CSF1R leads to the
oligomerization and transphosphorylation of CSF1R followed by
the phosphorylation and activation of downstream cytoplasmic
mediators that promote microglia development, survival and

proliferation (Ségaliny et al., 2015). As described previously, the
development of tissue-resident macrophages including microglia
is dependent on Csf1r expression from the first stages of
development (Mass et al., 2016). Moreover, IL-34-deficient and
CSF1-deficient mice display fewer microglia in various regions
of the brain while Csf1r-deficient mice are completely devoid of
them (Dai et al., 2002; Ginhoux et al., 2010).

In addition to their manifold functions in maintaining
homeostasis in the healthy brain, microglia have been shown to
play a major role in driving innate inflammatory responses in
many neurodegenerative diseases. Prion disease is characterized
by progressive neurodegeneration, which is accompanied by
a pronounced microglia-mediated immune response, therefore
being an extraordinary model to study the role of microglia
in chronic neurodegenerative diseases. In this review, we will
explore the molecular determinants of the contribution of
microglia to the pathogenic cascade in prion disease, aiming to
address some of the most relevant remaining unknowns of the
role of microglia in prion disease: is microglial activation merely a
bystander effect of prion pathology, or what aspects of microglia-
mediated immune response are contributing to disease outcome
in a beneficial or detrimental manner? Can the microglia-
derived inflammatory response directly harm neurons and lead
to neuronal degeneration, or is neuronal loss a consequence
of misfolded prion protein (scrapie) (PrPsc) accumulation, or a
combination of both? In the following sections, we will provide
a comprehensive picture defining many aspects of microglial
biology in prion disease.

PRION PATHOLOGY

Transmissible spongiform encephalopathies or prion
diseases, such as Creutzfeldt-Jakob disease (CJD), are fatal
neurodegenerative disorders that affect humans and many
other mammals (Aguzzi and Calella, 2009). The infectious
agent consists of PrPSc. PrPSc can aggregate, recruit and convert
benign cellular prion protein (PrPC) into abnormal pathological
isoforms (Aguzzi and Calella, 2009). Thereby, prions act as
‘‘seeds’’ that trigger a chain reaction of PrP misfolding and
aggregation (Jarrett and Lansbury, 1993). Prion diseases have
a heterogeneous etiology, as they can be genetic, infectious
or sporadic. Infectivity requires the transfer of prion seeds
from affected individuals into healthy hosts, whereas in genetic
and idiopathic cases prion protein undergoes a spontaneous
misfolding of PrP molecules into self-propagating seeds. In
humans, sporadic CJD (sCJD) is the most common prion
disease, followed by genetic CJD (gCJD) and transmitted
CJD (iatrogenic CJD and variant CJD; Aguzzi and Calella,
2009). CJD has been also shown to be transmitted through
blood or blood derivatives (Llewelyn et al., 2004; Bishop et al.,
2013).

The prion neuropathology is characterized by spongiform
degeneration, synaptic and neuronal loss, gliosis and the
accumulation of aggregated PrPSC (DeArmond and Prusiner,
1995; Cunningham et al., 2003; Wadsworth and Collinge,
2011; Hilton et al., 2013). Prion disease typically has long
incubation times and a rapid disease progression, and can be
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manifested in different ways, with behavioral and pathological
differences within and across species (Prusiner, 1998; Tanaka
et al., 2006; Collinge and Clarke, 2007; Colby and Prusiner,
2011). Interestingly, different strains of prion (e.g., ME7, 79A,
22L, 22A) preferentially affect specific regions of the brain in
mice (Cunningham et al., 2005a). The simplest explanation
for such regional selectivity would be a differential tropism of
prion strains and thereby a regional aggregation and toxicity.
However, recent experiments assessing prion misfolding using
highly sensitive techniques showed that prion protein seeds
accumulate in all brain regions irrespective of neurodegeneration
(Alibhai et al., 2016).

Prions disease also provides an interesting experimental
approach to model many aspects of neurodegenerative diseases
associated with protein misfolding. In mouse models of
prion disease, microglia become activated early in the disease
process thereby representing a valuable tool for elucidating
the impact of neuroinflammation in chronic neurodegenerative
disorders.

MICROGLIAL PROLIFERATION AND
ACTIVATION IN PRION DISEASE

Prion disease is characterized by an increase in the number of
microglia, associated with an activated and phagocytic phenotype
(Perry et al., 2002; Perry and O’Connor, 2010; Figure 1). The
relative contribution of local proliferation of microglia vs. the
infiltration of bone-marrow derived progenitors to this increase
has been a source of debate during recent years (Gomez-Nicola
and Perry, 2015). However, a recent study demonstrated that, in
a murine model of prion disease, local proliferation of resident
microglial cells is a major component in the evolution of chronic
neurodegeneration (Gómez-Nicola et al., 2013). The increase in
microglial density and proliferative activity varies across different
regions such as the hippocampus (CA1) and the thalamus, the
later showing the biggest increase in cell numbers (Gómez-Nicola
et al., 2013). This increase in microglial numbers is independent
of the recruitment of circulating monocytes, evidenced by
comparing microglial density in prion diseased mice with a C-C
chemokine receptor type 2 (CCR2)−/− background with WT
mice (Gómez-Nicola et al., 2014).

The proliferation of microglia in prion disease is regulated by
the activation of CSF1R and the transcription factors PU.1 and
CCAAT/enhancer-binding protein alpha (C/EBPα, being this
system also active in human variant CJD and Alzheimer’s disease
(AD; Gómez-Nicola et al., 2013; Olmos-Alonso et al., 2016). The
inhibition of CSF1R blocks the proliferation of microglia, leading
to a decrease in neuronal death in the hippocampus (Gómez-
Nicola et al., 2013). A recent study showed that prolonged
inhibition of CSF1R in APPswe/PSEN1dE9 (APP/PS1) mice,
a model of AD-like pathology, blocks microglial proliferation
and leads to the prevention of synaptic degeneration and to
an improvement of performance in memory and exploratory
tasks (Olmos-Alonso et al., 2016). CSF1R blockade also showed
positive effect in mutant superoxide dismutase 1 (SOD1) models
of Amyotrophic Lateral Sclerosis (ALS) by reducing microglial
proliferation in the spinal cord and macrophage infiltration into

peripheral nerves (Martínez-Muriana et al., 2016). The studies
focused to targeting CSF1R suggest that microglial proliferation
in prion disease, AD and ALS has a net detrimental contribution
to the disease progression.

Targeting microglial proliferation by the specific inhibition
of CSF1R renders a different experimental outcome than the
unspecific removal of microglia. Some studies have aimed at
eliminating microglial cells in prion disease, either by the
transgenic expression of thymidine kinase (TK) and ‘‘suicide’’
of proliferating CD11b+ cells (Zhu et al., 2016), or by the
non-specific blocker of mitosis cytosine arabinoside (Ara-C;
Gómez-Nicola et al., 2013). These approaches indicated a
neutral or beneficial role of microglia, as their elimination
did not change the trajectory of the disease. However, the
technical limitations of these targeting approaches difficult
the interpretation. For example, the use of CD11b-TK mice
leads to a prominent and uncontrolled death of microglia
in the context of on-going neurodegeneration, not providing
a physiologically silent way to address the contribution of
the cells. Also, the TK transgene in CD11b-TK mice is
activated by the administration of ganciclovir, an agent recently
identified to have a potent anti-proliferative impact on microglia
during brain pathology (Ding et al., 2014). Similarly, the
use of Ara-C causes a shift in the microglial phenotype
towards a detrimental pro-inflammatory profile, independent
from its effects on cell proliferation, accelerating neuronal
death (Gómez-Nicola et al., 2013). Together, these findings
suggest that the specific and selective targeting of microglial
proliferation, instead to their elimination, is an optimal
approach to understand the contribution of these cells to the
pathology.

Activation of microglia is detectable from early stages of
prion disease pathogenesis (Betmouni et al., 1996) and becomes
more widespread as the disease progresses, closely associated
with the spread of neurodegeneration (Perry, 2016). Microglial
activation appears simultaneously with first behavioral deficits
(Guenther et al., 2001), at a time point when synapses start to
degenerate in the stratum radiatum of the hippocampus, but
no neuronal loss occurs yet (Cunningham et al., 2003; Gray
et al., 2009). Whether microglia activation is directly caused
by accumulating misfolded PrPsc or as a response to synaptic
damage cannot be reliably concluded. While studies in vitro
have demonstrated that microglia can be activated directly by
PrP and subsequently damage neurons (Brown et al., 1996;
Giese et al., 1998), there is limited evidence of a direct response
to PrPSc aggregates in vivo. In contrast, the mere presence of
misfolded prion protein, as detected in various brain regions
using high sensitivity techniques, might not be sufficient to
induce a microglia-mediated immune response in all brain
regions (Alibhai et al., 2016). However, it is widely accepted
that microglia activation precedes neuronal degeneration and the
onset of clinical disease (Williams et al., 1997; Giese et al., 1998).

The cytokine profile in the prion-diseased brain is associated
with the expression of both pro- and anti-inflammatory
molecules (Perry, 2016; Figure 1). While a number of
studies demonstrated a profile shifted to the anti-inflammatory
spectrum, dominated by the expression of transforming growth
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factor β (TGFβ, C-C Motif Chemokine Ligand 2 (CCL2)
and prostaglandin E2 (PGE2) with a limited pro-inflammatory
response characterized by IL-1β and tumor necrosis factor α

(TNFa; Minghetti et al., 2000; Walsh et al., 2001; Cunningham
et al., 2002, 2005b; Perry et al., 2002), other studies have
reported that also pro-inflammatory factors are up-regulated in
the prion brain (Campbell et al., 1994; Williams et al., 1994;
Kordek et al., 1996), suggestive of a mixed inflammatory profile.
The lack of consensus regarding the inflammatory profile in
the prion brain may arise from the fact that different prion
strains, stages of disease and techniques of detection were
used. Recent studies using a broader panel of markers support
the hypothesis that both pro-and anti-inflammatory factors
contribute to the immune response in prion disease. Vincenti
et al. (2015) re-analyzed a large transcriptomic database of
brains from multiple mouse strains exposed to various prion
strains and collected at different stages of disease progression
(Hwang et al., 2009) and proposed that most of the differentially
expressed genes in the prion brain were of microglial origin and
associated with the inflammatory response. Microglia isolated
from 79A-infected mice showed increased expression of IL-1β,
TNFα and CSF1, but not IL-6, IL-10 or TGFβ, which correlates
with disease progression and indicates a classical activation
phenotype of microglia in this prion model (Vincenti et al.,
2015). A recent longitudinal study reported new inflammatory
genes upregulated early in the prion brain, including genes
involved in inflammation, monocyte recruitment and growth
regulation (Carroll et al., 2015). Concerning signal transduction
pathways, an early activation predominantly of the Signal
transducer and activator of transcription (STAT)- and Nuclear
factor kappa-light-chain-enhancer of activated B cells (NFkB)
pathways has been observed in prion disease models, determined
by the up-regulation of STAT- and NFkB-responsive genes,
including many cytokines and chemokines, as well as by
the detection of increased phosphorylation of STAT1 and
STAT3 specifically (Llorens et al., 2014; Carroll et al., 2015).
The inflammatory response seems to be quite consistent between
different murine prion strains. Although prion strains 22L, RML
and ME7 revealed cellular and regional differences in PrPSc

accumulation, they showed a similar up-regulation mainly of
pro-inflammatory genes and chemokines which correlated with
the deposition of PrPSc and the onset of glial activation (Carroll
et al., 2016).

Targeting individual immune pathways which are
dysregulated in prion disease have shown differential effects in
modifying pathology. The absence of CCL2 does not drastically
affect the disease course (Felton et al., 2005; O’Shea et al.,
2008) and similarly, reducing PGE2 levels using dapsone or
Nonsteroidal anti-inflammatory drugs (NSAIDs) did not impact
disease progression (Guenther et al., 2001; Perry, 2010). On
the contrary, inhibition of TGFβ enhanced neurodegeneration,
indicating that this immune mediator is critically involved in
regulation of the innate immune response in prion disease
(Boche et al., 2006). TNFα as well as TNF receptor 1 knockout
mice show normal prion disease progression after intracerebral
injection of the prion protein (Klein et al., 1997; Mabbott et al.,
2000), whereas deficiency of IL-1 receptor type 1 prolongs prion

incubation time (Tamgüney et al., 2008) and delays disease onset
and protein aggregation and increases survival of diseased mice
(Schultz et al., 2004). PrP fibrils have been found to induce IL-1β

secretion by microglia in vitro, dependent on components of the
Nod-like receptor family pyrin domain containing 3 (NLRP3)
inflammasome, is sufficient to induce neuronal toxicity (Hafner-
Bratkovič et al., 2012; Shi et al., 2012). However, an in vivo
study using mice deficient in NLRP3 or the adaptor protein
apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC) and thereby lacking functional
NLRP3 inflammasome, failed to demonstrate a significant
impact on prion pathogenesis, indicating that inflammasomes
do not contribute to prion progression (Nuvolone et al., 2015).

Numerous studies have reported signs of oxidative stress
in brains of CJD patients as well as in murine models
of prion disease (Guentchev et al., 2002; Van Everbroeck
et al., 2004; Yun et al., 2006), which might play a role
in disease progression by contributing to neurotoxicity and
neurodegeneration. Stimulation of microglia with PrP fragments
in vitro has been shown to induce growth arrest and the release
of nitric oxide (NO) and PGE2 (Villa et al., 2016). Furthermore,
in patients with CJD as well as in a mouse model of prion,
production of NADPH oxidase 2 (NOX2) was up-regulated
specifically by microglia in the affected brain regions (Sorce et al.,
2014). Prion-induced mice deficient in NOX2 demonstrated
decreased production of reactive oxygen species (ROS), a delayed
onset of motor deficits and an increased survival time, indicating
that microglia-specific NOX2 production leads to the release of
ROS and affects prion pathology (Sorce et al., 2014).

It has been shown that microglia are able to engulf and
clear apoptotic neurons (Hughes et al., 2010; Kranich et al.,
2010). The phagocytic function of microglia is increased
in the prion-diseased brain and associated with enhanced
expression of scavenger receptors, cathepsins, and proteins
of the respiratory burst, while phagocytic microglia were
characterized by a lack of IL-1β expression (Hughes et al.,
2010). While microglia were efficient in the uptake of injected
latex beads and apoptotic cells, they were unable to remove
prion protein aggregates, even upon additional stimulation with
lipopolysaccharide (LPS; Hughes et al., 2010). Phagocytosis
of apoptotic neurons by microglia has been shown to be
dependent on milk fat globule epidermal growth factor 8
(MFGE8). Ablation of mfge8 resulted in accelerated prion
pathology, with reduced clearance of apoptotic bodies and
increased prion protein accumulation, indicating that microglia
phagocytosis via MFGE8 is a protective mechanism in prion
disease (Kranich et al., 2010). While in vitro studies using
microglia cells or organotypic brain slices proposed that
microglia can clear PrP and thereby decrease prion titers
(McHattie et al., 1999; Falsig et al., 2009; Kranich et al.,
2010; Zhu et al., 2016), evidence that they do so in vivo
is still missing. It is possible that the removal of misfolded
prion protein is simply inefficient or that PrPsc is not a
sufficient trigger to induce phagocytosis, a similar concept to
that proposed for phagocytosis of amyloid β (Aβ in AD (Guillot-
Sestier and Town, 2013; Prokop et al., 2013). Furthermore,
while the phagocytic function of microglia in prion disease
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is mostly considered to be beneficial and protective, it is
also conceivable that microglia, by taking up cell debris from
prion infected cells or possibly PrP aggregates, might even
contribute to the spreading of the pathogenic protein (Baker
et al., 2002).

TREM2 has been implicated in several neurodegenerative
diseases such as AD (Jonsson et al., 2012; Guerreiro R. J. et al.,
2013), frontotemporal dementia (Guerreiro R. et al., 2013) and
ALS (Cady et al., 2014). TREM2 is an innate immune cell receptor
expressed on microglia and other myeloid cells is thought to be
involved in phagocytosis of apoptotic neurons and promoting
an anti-inflammatory phenotype (Takahashi et al., 2005, 2007;
Hsieh et al., 2009). In the context of prion disease, TREM2 has
been demonstrated to be up-regulated after prion infection, but
the depletion of TREM2 did neither change incubation time and
survival, nor microglia immune phenotype during prion disease
(Zhu et al., 2015).

Recently, there has been evidence of the involvement of
non-coding microRNAs (miR) in regulating the microglia
inflammatory response in prion disease. A number of miRs
implicated in the regulation of gliosis, glial cell proliferation,
the innate-immune response, inflammatory signaling, deficits
in neurotrophic signaling and synaptogenesis have been found
to be upregulated in human prion disease cases (Zhao et al.,
2016). Among them, miR-146a was observed to influence
immune response and activation state of microglia (Saba et al.,
2012).

While increasing evidence indicates that microglia activation
seems to contribute to prion pathogenesis, not much is
known about the mechanistic underpinnings. We have shown
recently that microglial expansion negatively affects prion disease
pathology (Gómez-Nicola et al., 2013), pointing towards a net
detrimental role of microglia during chronic neurodegeneration.
Another recent study emphasized a protective role of microglia
in prion disease, demonstrating accelerated disease pathology
upon microglia ablation in the brain (Zhu et al., 2016). This
dual role of microglia during prion disease provides further
proof that microglia function is highly dynamic and versatile,
by promoting neurotoxic effects through facilitating a potentially
aberrant and harmful inflammation in prion disease, but also by
provoking a protective response through tissue maintenance and
repair.

SYSTEMIC INFLAMMATION AND
MICROGLIAL PRIMING

The study of immune to brain communication is gaining
interest, with the immune system as a transducer of both
endogenous and exogenous challenges to the host. It is known
that systemic infection and inflammation are able to produce
behavioral changes, known as ‘‘sickness behaviors’’, that include
fever, malaise, anorexia, lethargy and depression (Dantzer
et al., 1998), demonstrating an important influence of the
immune system on CNS processes. LPS challenge in healthy
humans has been shown to produce sickness behavior with
fever and neuropsychological symptoms, including reduced
declarative memory performance (Krabbe et al., 2005) and

increased symptoms of depression (DellaGioia et al., 2012).
Systemic inflammation communicates with the brain by several
neural and humoral pathways. Receptors for inflammatory
mediators present on vagus nerve fibers can respond to
inflammatory signals and inform the nucleus of the solitary
tract and other regions of the brain (Wang et al., 2003).
Macrophages in the circumventricular organs (CVOs), which
are regions of the CNS without a tight blood-brain barrier
(BBB), are also able to communicate with systemic inflammatory
mediators. Signals generated in the CVOs subsequently travel
to other regions of the brain (Lacroix et al., 1998). A
third route of communication involves cerebral endothelial
cells of the BBB, which can transduce signals from blood
to the CNS (Laflamme and Rivest, 1999). The molecular
pathways by which systemic inflammation alters brain function
leading to sickness behavior are not completely elucidated.
It has been suggested that the link between the systemic
immune system and the CNS is located at the level of
the hypothalamus, the main brain region controlling the
neuroendocrine system. Systemic inflammation or ageing can
modify the hypothalamic function though NFkB activation and
microglial-neuronal crosstalk (Li et al., 2012; Zhang et al., 2013).
Further studies are needed to elucidate the exact mechanism
underpinning the alteration of neuronal function by systemic
inflammation.

It is known that microglia play an important role in immune-
to-brain communication (Perry and Teeling, 2013). Within
this context, the concept of microglial priming has been
proposed. Microglial priming occurs as a result of damage
associated with chronic neurodegenerative conditions (e.g.,
misfolded protein, neuronal debris or vascular changes), or
several other stressors affecting the nervous system, such
as maternal separation, acute injury or aging. It consists of
an exaggerated or heightened microglial response—much
stronger than that observed in stimulus-naïve microglia—to
a second inflammatory stimulus. Most of the evidence
supporting the hypothesis of microglial priming in chronic
neurodegenerative conditions arises from the study of prion
models. In fact, microglial priming was first described in
prion brains subjected to a systemic challenge mimicking
systemic infection (Combrinck et al., 2002). Cunningham
et al. (2005b) showed how intracerebral LPS injection in
prion mice results in exacerbated IL-1β expression, neutrophil
infiltration and NO expression, accompanied with increased
cell death. Systemic injection of LPS (Cunningham et al., 2009),
Polyinosinic-polycytidylic acid (poly I:C; Cunningham et al.,
2002, 2005b, 2007; Field et al., 2010) or TNFα (Hennessy et al.,
2017) in prion mice also leads to exacerbated in the brain,
with increased expression of pro-inflammatory cytokines and
chemokines including IL-1β TNFα and CCL2. Interestingly, the
increased inflammation triggered by LPS in ME7 prion brain
is independent on circulating IL-1β and IL-6 (Murray et al.,
2011; Hennessy et al., 2017). Although the exact mechanism
by which microglia is primed is still unknown, it has been
suggested that cyclooxygenase 1 (COX-1) expression in
microglia mediates the systemic effects of LPS in the prion
brain (Griffin et al., 2013). More recently, Hennessy et al.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 June 2017 | Volume 9 | Article 207

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Obst et al. Microglia in Prion Disease

(2017) reported that astrocytes could be also primed in the
prion brain, and generate exaggerated levels of cytokines and
chemokines after systemic LPS challenge. Although these
findings suggest that microglia in the prion diseased brain are
primed by the ongoing pathology and that a secondary stimulus
switches these cells to an aggressive phenotype, there is still no
defining criteria to classify this state, and it remains unclear
whether different patterns of priming result from different
forms of neurodegeneration or different systemic inflammatory
stimuli.

Interestingly, priming observations and the impact of the
immune system on the CNS are not restricted to prion disease
(Perry, 2010; Cunningham, 2013). Systemic LPS injection
can induce degeneration of cells in the substantia nigra (Gao
et al., 2002; Qin et al., 2007) and systemic challenge with IL-1β

in an animal model of PD leads to enhanced degeneration
of substantia nigra neurons and pro-inflammatory cytokine
production (Pott-Godoy et al., 2008). Systemic challenge
with LPS or other bacterial toxins in an experimental
model of multiple sclerosis, Experimental autoimmune
encephalomyelitis (EAE), can also exacerbate neurological
symptoms (Schiffenbauer et al., 1993). Systemic LPS challenge
caused increased synthesis of pro-inflammatory cytokines in
the CNS of transgenic mouse models of AD-like pathology
(Sly et al., 2001), and tau phosphorylation (Roe et al., 2011).
Chronic systemic inflammation in the form of osteoarthritis
results in accelerated neuroinflammation and Aβ pathology
in APP/PS1/Col1-IL1βXAT mice (Kyrkanides et al., 2011).
There is also evidence about the impact of the immune system
upon human neurodegenerative diseases. Systemic infection
and increased systemic inflammation have been associated
to an enhanced cognitive decline in AD patients (Holmes
et al., 2003, 2009, 2011), and systemic infections are associated
with relapses in multiple sclerosis in patients (Buljevac et al.,
2002).

Overall, evidence suggests that systemic inflammation
contributes to the pathology during chronic neurodegenerative
conditions, with microglia acting as a hub of communication
between the systemic and CNS compartments. According to this
view, it is likely that a correct treatment and management of
systemic inflammation could potentially delay the progression of
neurodegenerative disorders.

ROLE OF MICROGLIA IN HUMAN PRION
DISEASES

Evidence from the literature supports a role of microglia-
mediated inflammation in human prion diseases. Activated
microglia are found in the brains of CJD patients (Sasaki
et al., 1993; Szpak et al., 2006) where they appear to be
closely associated with PrPSc deposits (Miyazono et al., 1991;
Guiroy et al., 1994; Muhleisen et al., 1995). However the
degree of microglial reactivity seems to depend on the subtype
of prion disease and the type of biochemical PrPSc (Puoti
et al., 2005; Shi et al., 2013). Increased levels of inflammatory
cytokines such as IL-8, CCL2, TGFβ, TNFα and IL-1β have

been found in the cerebrospinal fluid (CSF) of sporadic CJD
cases (Sharief et al., 1999; Stoeck et al., 2006, 2014) and the
inflammatory response seems to correlate with the severity
of lesions (Van Everbroeck et al., 2002). A recent study
demonstrated subtype-specific and region-specific changes in
glia activation and the expression of inflammatory mediators
in CJD, with inflammation being pre-dominant in the cerebral
cortex in the CJD subtype PRNP codon 129 Met/Met type 1
(MM1) and in the cerebellum in PRNP codon 129 Val/Val type
2 (VV2) cases (Llorens et al., 2014). Microglia markers such
as CD11b, Iba-1 and CD68 were found to be up-regulated in
a region- and subtype-specific manner which correlated with
the up-regulation of pro- and anti-inflammatory cytokines,
members of the complement system, the integrin family
and C-type lectin/C-type lectin-like domain (CTL/CTLD)
superfamily, toll-like receptors, colony-stimulating factors and
cathepsins (Llorens et al., 2014). Additionally, regulatory proteins
IL-34, PU.1 and C/EBPα involved in microglial proliferation
are increased in variant CJD (Gómez-Nicola et al., 2013).
The increased inflammatory response observed in the two
subtypes of CJD was further associated with an activation
of NFkB and STAT1, 3 signaling pathways (Llorens et al.,
2014). The finding that key regulators of inflammationCOX-
1/2 and PGE2, are elevated in brains of CJD (Minghetti et al.,
2000; Deininger et al., 2003; Llorens et al., 2014) further
speaks for a crucial role of inflammatory processes in human
prion disease, however the exact role of microglia-mediated
inflammation during the course of the fatal disease remains to
be elucidated.

CONCLUSION

Increasing evidence highlights the major contribution of the
expansion and activation of microglia to the pathogenesis of
prion disease. Activated microglia adopts a variety of functionally
diverse phenotypes depending on the disease stage and systemic
influences. While their response is manifold during prion disease,
targeting the microglia-mediated immune response appears to
be a useful approach to modify the disease course. Determining
the exact mechanistic underpinnings of the neuroinflammatory
processes in prion disease is an informative step in order to
develop novel treatment strategies targeting neurodegenerative
disease.
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