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Using black hole perturbation theory and arbitrary-precision computer algebra, we obtain the
post-Newtonian (pN) expansions of the linear-in-mass-ratio corrections to the spin-precession angle
and tidal invariants for a particle in circular orbit around a Schwarzschild black hole. We extract
coefficients up to 20pN order from numerical results that are calculated with an accuracy greater than
1 part in 10500. These results can be used to calibrate parameters in effective-one-body models of
compact binaries, specifically the spin-orbit part of the effective Hamiltonian and the dynamically
significant tidal part of the main radial potential of the effective metric. Our calculations are
performed in a radiation gauge, which is known to be singular away from the particle. To overcome
this irregularity, we define suitable Detweiler-Whiting singular and regular fields in this gauge, and
we compute the invariants using mode-sum regularization in combination with averaging from two
sides of the particle. The detailed justification of this regularization procedure will be presented in
a forthcoming companion paper.

I. INTRODUCTION

Compact binaries are expected to be among the most
significant sources for gravitational wave detectors, and
over the last decade, modeling of these binaries has be-
come a mature field. For two widely separated compact
objects, post-Newtonian (pN) models of high order have
been developed [1, 2]. For compact objects of very dis-
similar masses, calculations using gravitational self-force
theory [3, 4] can now be performed with high accuracy
at linear order in the mass ratio [5–9], and calculations
at second order in the mass ratio are underway [10–14].
For objects of similar mass and small separations, fully
nonlinear numerical relativity can be used, and it is con-
tinually pushing to cover more of the binary parame-
ter space [15]. Furthermore, effective-one-body theory
(EOB) [16, 17] has the potential to model all of these
situations, given appropriate calibration data from each
of the other models.

In the last few years, work has increasingly been done
at the interface between these various models [18]. Of
particular interest to us is that self-force data has been
used to set benchmarks for numerical relativity, deter-
mine high-order pN parameters, and calibrate EOB.
One thing that has aided these efforts is the advent of
extreme-accuracy numerical self-force results, with accu-
racies of several hundred or thousands of digits [9, 19].
With these results, one can extract very high-order
(linear-in-mass-ratio) post-Newtonian (pN) coefficients,
which would be prohibitively difficult to calculate in an
analytical pN framework. Perhaps surprisingly, with
high-accuracy numerical self-force data one can extract
not only numerical values of the pN coefficients, but their
analytical form in terms of rational numbers (and their

∗ a.g.shah@soton.ac.uk
† a.pound@soton.ac.uk

product with π), and for some terms, even analytical
forms involving linear combinations of transcendentals.
The details of this procedure are given in Ref. [20].

To use data from one model in another, one must calcu-
late gauge- and coordinate-invariant quantities that can
be translated between formalisms. These invariants can
be divided into those related to dissipation and those re-
lated to conservative effects. In the dissipative sector, for
example, Ref. [19] calculated the ingoing-at-horizon and
outgoing-at-infinity gravitational-wave fluxes to 21pN or-
der for a particle in circular, equatorial orbit around a
Kerr black hole. However, most of the work done has
been in the conservative sector, where a richer variety
of invariants appear. The paragon of conservative invari-
ants is Detweiler’s redshift invariant [21], which is related
to the binding energy and angular momentum of a quasi-
circular binary system. Reference [9] determined the pN
expansion of this invariant up to 10.5pN order for a par-
ticle in circular orbit around a Schwarzschild black hole,
and Ref. [20] has pushed that expansion even further, to
21.5pN order. These high-order pN results are obtained
by fitting numerical results that are exact (up to numer-
ical error) at linear order in the binary’s mass ratio, and
because they are of such high pN order, they agree well
with numerical results not only in the weak field regime,
but also in the strong field, giving good accuracy at least
down to the innermost stable circular orbit.

Recently, other conservative invariants on circular or-
bits in Schwarzschild spacetime have been discovered and
calculated: the linear-in-mass-ratio correction to the spin
precession (due to the “self-torque” effect) was numeri-
cally calculated in Ref. [22], where the pN expansion was
found up to 3pN order (also see [23]); and conservative
tidal invariants, the eigenvalues of certain electric and
magnetic tidal tensors, were calculated in Ref. [8] to more
than machine precision.

In parallel with this numerical work, there have been
analytical calculations of invariants, made possible by
performing a pN expansion of the equations of self-force
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theory. Reassuringly, in all cases the results of the ana-
lytical calculations have precisely agreed with the expan-
sions extracted from numerical data. Reference [24] ana-
lytically calculated the pN series of ingoing and outgoing
fluxes for a particle in circular, equatorial orbit around a
Kerr black hole and confirmed the results in Ref. [19] to
11pN order. Bini & Damour have analytically calculated
the pN expansion of the redshift invariant up to 9.5pN or-
der [25–28], the spin precession to 10.5pN order [29, 30],
and tidal invariants to 7.5pN order [31].

Self-force calculations, whether numerical or analyt-
ical, of these invariants have proven to be very effec-
tive in calibrating EOB. Bini & Damour have used the
spin-precession invariant to calculate the correspond-
ing terms in the spin-orbit part of the effective Hamil-
tonian through an effective gyro-gravitomagnetic ratio.
They have likewise transcribed the tidal invariants into
the tidal interaction energy in the EOB formalism. A
semi-analytical simulation of tidally interacting binary
neutron stars using these calibrations was performed in
Ref. [32], and for compact stars the model was confirmed
by fully numerical simulation in Ref. [33].

Despite these successes, at this point in time, computa-
tions of the spin-precession and tidal invariants have been
performed at much lower accuracy than the extreme-
accuracy calculations in Refs. [9, 19]. In this paper, we
pursue the program initiated in Refs. [9, 19] by calcu-
lating the spin-precession and tidal invariants with an
accuracy greater than 1 part in 10500 for circular orbits
in Schwarzschild with orbital radii in the range 1018–
9×1033M . This allows us to extract the pN expansion of
the invariants to about 20 pN order. Such a procedure of
extracting pN coefficients from high precision numerical
data will be very important when calculating conserva-
tive invariants for orbits in Kerr spacetime, where ana-
lytical checks or computations are likely to be extremely
difficult.

Besides our high accuracy, our calculations differ from
others in our choice of gauge. Dolan et al [8, 22] per-
formed their calculations in the Lorenz gauge and Regge-
Wheeler-Zerilli gauge. Bini & Damour [29, 31] performed
theirs in the Regge-Wheeler-Zerilli gauge using analyt-
ical solutions of the Regge-Wheeler equation given by
Ref. [34]. In this paper we use a radiation gauge, fol-
lowing the methods of Refs. [9, 35–37]. Perturbations in
radiation gauges can be reconstructed from solutions to
the Teukolsky equation, making this gauge, unlike Lorenz
and Regge-Wheeler-Zerilli, ideal for calculations in Kerr
spacetime; hence, we view the calculations in this paper
as a step toward computing analogous invariants in Kerr.

Although it has this distinct advantage, the radiation
gauge has historically had two drawbacks. First, the re-
constructed metric does not contain the full solution of
the linearized Einstein equation, but must be completed
by adding a (non-radiation-gauge) perturbation that en-
codes the particle’s mass and angular momentum. (We
shall refer to the gauge of the completed solution as a
completed radiation gauge; elsewhere, it has been called

a modified radiation gauge.) Second, most quantities of
interest in self-force theory are constructed from a cer-
tain smooth vacuum perturbation called the Detweiler-
Whiting (DW) regular field [38], which in practice is
obtained from the retarded metric perturbation by sub-
tracting a certain divergent field called the DW singular
field. Until recently, there has been no well-justified way
of performing this procedure in a radiation gauge, which
has long been known to have pathological singularities
away from the particle [39].

However, both of these issues have, to a large extent,
been dealt with. Regarding the completion problem, it
has been incrementally better understood over the last
few years [37, 40–43]. The present paper provides some
description of the requirements on the completion term
in the metric perturbation in Schwarzschild, and a fu-
ture paper will contain a fuller description of the prob-
lem and its partial resolution in Kerr [44]. Regarding the
problem of regularization, recent work of Pound, Merlin,
and Barack (hereafter PMB) [43] has provided a rigor-
ous means of obtaining the correct gravitational self-force
from radiation-gauge perturbations, and this method has
been concretely implemented in Ref. [45]. Here we use a
regularization scheme, based on the results of PMB, that
combines standard mode-sum regularization [46] with a
certain averaging procedure. The rigorous justification
of this scheme will be presented in a companion paper,
but here we go some ways toward making it sensible by
providing a suitable definition of the DW regular field in
our completed radiation gauge.

The article is organized as follows. In Sec. II we de-
scribe the setup of our calculations, the invariants we
calculate, and our procedure for reconstructing and com-
pleting the retarded metric perturbation. In Sec. III we
describe our regularization procedure. In Sec. IV, we
discuss the extraction of pN coefficients. Most of these
coefficients we determine as numerical values, but we also
determine many coefficients in analytical form. Because
of the length of the expansions, we present the analytical
coefficients in an appendix B, and we present the numer-
ical coefficients in the accompanying supplementary files.
We work in units with G = c = 1.

Before proceeding to the body of the paper, we note
that in parallel with our efforts, a group comprising Chris
Kavanagh, Adrian Ottewill and Barry Wardell [47] have
also performed very high-order pN expansions of the
same invariants, using analytical methods in the Regge-
Wheeler-Zerilli gauge. At all orders that we have com-
pared, these two independent calculations have yielded
identical results.

II. SETUP

A. Circular orbits and invariant quantities

We consider a particle of mass µ orbiting a
Schwarzschild black hole of mass M . At zeroth order
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in µ/M , the trajectory is a circular geodesic γ0 of the
Schwarzschild metric gµν . In Schwarzschild coordinates,
its 4-velocity is given by

uα = ut(tα + Ωφα), with

ut =
1√

1− 3M
r0

, and

Ω =

√
M

r3
0

, (1)

where r0 is the orbital radius, Ω is the orbital frequency,
and φα and tα are the rotational and timelike Killing
vectors of the Schwarzschild spacetime, respectively. The
orbital energy and angular momentum per unit mass are
given by

Ê =
1− 2M

r0√
1− 3M

r0

,

L̂z =

√
Mr0

1− 3M
r0

. (2)

At linear order in µ/M , the particle sources a pertur-
bation hµν that exerts a self-force on the particle. The
perturbed trajectory γ is no longer a geodesic of the back-
ground metric, but it is a geodesic of an effective metric
g̃µν = gµν+hRµν , where hRµν is the DW regular field. If we
consider only the conservative dynamics, the perturbed
trajectory can be chosen, like the zeroth-order one, to be
a circular orbit.

The perturbed spacetime loses the background’s sta-
tionarity and rotational symmetry, but it inherits the or-
bit’s helical symmetry. In convenient gauges, the helical
Killing vector is given by

kµ = tα + Ωφα, (3)

and at all points in the spacetime we have £khµν = 0 =
£kh

R
µν . We can use this Killing vector in combination

with hRµν or derivatives of hRµν to construct meaningful
scalar quantities on the orbit. Let ũµ be the four-velocity
of the perturbed trajectory, normalized as g̃µν ũ

µũν =
−1. The simplest of the invariants is Detweiler’s redshift
invariant,

ũt = 1/
√
−g̃µνkµkν |γ , (4)

which is the rate of change of the time of an inertial frame
at infinity relative to proper time in g̃µν along the orbit.
Next is the spin precession invariant,

ψ̃ = 1− ω̃/ũφ, (5)

which for a spinning particle is the angle of spin pre-
cession per unit radian of the circular orbit. Here the
precession frequency is ω2 = − 1

2 (ũt)2K̃µ
νK̃ν

µ, where

K̃µ
ν = ∇̃µkν |γ , and ∇̃µ is the covariant derivative com-

patible with g̃µν . The last set of quantities we shall
consider are the eigenvalues of the electric and magnetic
quadrupole tidal tensors associated with g̃µν . These are
conveniently written in terms of a Lie-transported spa-
tial triad (ẽµ1 , ẽ

µ
2 , ẽ

µ
3 ) on γ. The eigenvalues of the electric

tidal tensor are

λ̃E
i = R̃µανβ ẽ

µ
i ũ

αẽνi ũ
β , (6)

(with no summation over i); the magnetic tidal tensor
has two equal but opposite eigenvalues, with magnitude

λ̃B = R̃µανβũ
µẽα2 ẽ

ν
2 ẽ
β
3 . (7)

Here R̃µανβ is the Riemann tensor of g̃µν .
From these scalars, we can obtain gauge-invariant per-

turbative quantities by expanding g̃µν around gµν and
γ around γ0. Of interest to us in this paper are the
linear perturbations in ψ̃, λ̃E

i , and λ̃B, which were de-
rived in Refs. [22] and [8]. The explicit expressions in
Schwarzschild coordinates are

∆ψ =
hRtr,φ − hRtφ,r + Ω

(
hRrφ,φ − hφφ,r + f0r0h

R
rr

)
2r0uφ

+
uφ
[
Ω
(
Mr2

0htt + r0f
2
0h

R
φφ

)
+ 2Mf0h

R
tφ

]
2Mf0

, (8)

∆λE
1 =

Ω2f0 (2r0 − 3M)

r0 − 3M
hrr −

Ω2
(
2r2

0 − 6Mr0 + 3M2
)

f0 (r0 − 3M)
2 hRtt −

6MΩf0

r0 (r0 − 3M)
2h

R
tφ −

Ω2
(
r2
0 − 3Mr0 + 3M2

)
r2
0 (r0 − 3M)

2 hRφφ

− r0 − 2M

2(r0 − 3M)
hRkk,rr −

Ω

r0
hRrk,φ −

1

r0
hRtk,r, (9)

∆λE
2 =

M

r0(r0 − 3M)2
hRkk −

1

2r0(r0 − 3M)
hRkk,θθ −

Ω2

r0(r0 − 3M)
hRθθ, (10)

∆λE
3 =

Ω2

f0
hRtt − Ω2f0 h

R
rr −

Ω2

r2
0

hRφφ +
Ω

r0
hRkφ,r −

Ω

r0
hRrk,φ −

1

2r2
0f0

hRkk,φφ, (11)
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∆λB =
3Ω3f

1/2
0

(r0 − 3M)
hRθθ +

Ω3f
1/2
0 (r0 − 9M)

2(r0 − 3M)2
hRφφ −

Ω2(r0 −M)

f
1/2
0 (r0 − 3M)2

hRtφ −
ΩM(5r0 − 9M)

2f
1/2
0 r0(r0 − 3M)2

htt −
Ωf

3/2
0

r0
hRrr

+
f

1/2
0

2r2
0

[
Ω
[
hRθθ,r − 2hRrθ,θ − hRrφ,φ

]
− hRtr,φ

]
+

1

2f
1/2
0 r3

0

[
(r0 − 4M)hRtφ,r + Ω(r0 − 3M)hRφφ,r

]
− Ω

2f
1/2
0

hRtt,r

+
Ω

2f
1/2
0 r2

0(r0 − 3M)

[
f0 h

R
φφ,θθ + r2

0 h
R
tt,θθ

]
− 1

2f
1/2
0 r3

0

hRkθ,θφ +
(r0 −M)

2f
1/2
0 r3

0(r0 − 3M)
hRtφ,θθ, (12)

where f0 = 1 − 2M/r0, hkk = habk
akb, all functions are

evaluated on the zeroth-order trajectory, and commas
denote partial derivatives with respect to coordinates.
The tidal invariants are related by ∆λE

1 +∆λE
2 +∆λE

3 = 0.

The quantities ∆ψ, λE
i , and λB, as given above, are

defined by performing an expansion at fixed Ω. They are
invariant under any smooth gauge transformation that
leaves the helical Killing vector invariant; that is, for a
smooth gauge generator ξµ, the quantities are invariant
if £ξk

µ = 0 (and hence £kξ
µ = 0). In practice, this

means that to obtain the same result in any two gauges,
we must ensure that the perturbation hµν in each of these
gauges possesses three properties: (i) helical symmetry,
£khµν = 0, with kµ taking the form (3), (ii) asymptotic
flatness, (iii) regularity at θ = 0 and π, and (iv) con-
tinuity of certain metric components. We explain these
requirements in the next section.

B. Computation of the retarded field

We calculate the retarded field hµν in a completed ra-
diation gauge. After decomposing the perturbation into
tensor harmonic ` modes, we calculate the ` ≥ 2 modes in
an outgoing radiation gauge satisfying habl

a = 0, where
la is the outgoing principal null vector. We calculate
the ` = 0, 1 modes, which physically correspond to the
spacetime’s change in mass and angular momentum, in
the asymptotically flat Zerilli gauge. We briefly review
the reconstruction formalism here; more detailed descrip-
tions are available in Refs. [9, 35–37, 45]. For the com-
pletion, we make several points about continuity which
have not previously been discussed in the literature.

1. Reconstruction

The ` ≥ 2 part of the metric perturbation is extracted
from a Hertz potential, Ψ, which in turn is calculated
from the perturbed spin-2 Weyl scalar, ψ0, by solving the
separable Bardeen-Press-Teukolsky equation. The spin-2
retarded Weyl scalar has the form

ψ0(x) = ψ
(0)
0 + ψ

(1)
0 + ψ

(2)
0 , (13)

with

ψ
(0)
0 = 4πmut

∆2
0

r2
0

∑
`≥2

∑
m

A`m[(`− 1)`(`+ 1)(`+ 2)]1/2RH`,m
(r<)R∞`,m

(r>)2Y`m(θ, φ)Ȳ`m

(π
2
,Ωt
)
, (14a)

ψ
(1)
0 = 8πimΩut∆0

∑
`≥2

∑
m

A`m[(`− 1)(`+ 2)]1/22Y`m(θ, φ)1Ȳ`m

(π
2
,Ωt
)
×

{
[imΩr2

0 + 2r0]RH`,m
(r<)R∞`,m

(r>) + ∆0[R′H`,m
(r0)R∞`,m

(r)θ(r − r0) +RH`,m
(r)R′∞`,m

(r0)θ(r0 − r)]
}
, (14b)

ψ
(2)
0 = −4πmΩ2ut

∑
`≥2

∑
m

A`m2Y`m(θ, φ)2Ȳ`m

(π
2
,Ωt
)
×

{
[30r4

0 − 80Mr3
0 + 48M2r2

0 −m2Ω2r6
0 − 2∆2

0 − 24∆0r0(r0 −M) + 6imΩr4
0(r0 −M)]RH`,m

(r<)R∞`,m
(r>)

+2(6r5
0 − 20Mr4

0 + 16M2r3
0 − 3r0∆2

0 + imΩ∆0r
4
0)[R′H`,m

(r0)R∞`,m
(r)θ(r − r0) +R′∞`,m

(r0)RH`,m
(r)θ(r0 − r)]

+r2
0∆2

0[R′′H`,m
(r0)R∞`,m

(r)θ(r − r0) +R′′∞`,m
(r0)RH`,m

(r)θ(r0 − r) + W[RH`,m
(r), R∞`,m

(r)]δ(r − r0)]

}
. (14c)
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Here ∆ = r2 − 2Mr; ∆0 = r2
0 − 2Mr0; sY`,m(θ, φ)

are the spin-weighted spherical harmonics; the functions
RH`,m

(r) and R∞`,m
(r) are the solutions of the homoge-

nous radial Teukolsky equation that are ingoing at the
future event horizon and outgoing at null infinity, and a
prime denotes a derivative with respect to r; the Wron-
skian,

W[RH`,m
(r), R∞`,m

(r)] = RH`,m
R′∞`,m

−R∞`,m
R′H`,m

,

(15)

and the quantities A`m, given by

A`m :=
1

∆3W[RH`,m
(r), R∞`,m

(r)]
, (16)

are constants, independent of r.
The spin-weighted spherical harmonics sY`,m(θ, φ) and

their θ derivatives at θ = π/2 are calculated analytically.
On the other hand, we compute the functions RH`,m

and
R∞`,m

to more than 550 digits of accuracy using ex-
pansions in terms of hypergeometric functions given in
Ref. [48], namely

RH`,m
= eiεx(−x)−2−iε

∞∑
n=−∞

anF (n+ ν + 1− iε,−n− ν − iε,−1− 2iε;x), (17)

R∞`,m
= eizzν−2

∞∑
n=−∞

(−2z)nbnU(n+ ν + 3− iε, 2n+ 2ν + 2;−2iz), (18)

where x = 1 − r
2M , ε = 2MmΩ and z = −εx. We refer

the reader to [48, 49] for the derivation of ν (called the
renormalized angular momentum), and the coefficients
an and bn. Here F and U are the hypergeometric and
the (Tricomi’s) confluent hypergeometric functions. To
minimize the computation time we find recurrence rela-
tions between the different F ’s and U ’s, so that n=0 and
1 are sufficient to find all other n’s in Eqs. (17 & 18).

After obtaining the `m modes of ψ0, we calculate the
radial part of the Hertz potential Ψ using the algebraic

relation

Ψ`m = 8
(−1)m(`+ 2)(`+ 1)`(`− 1)ψ̄`,−m + 12imMΩψ`m

[(`+ 2)(`+ 1)`(`− 1)]2 + 144m2M2Ω2
,

(19)
where the individual modes are defined as the coeffi-
cients in Ψ =

∑
`≥2

∑
m Ψ`m(r) 2Y`m(θ, φ)e−imΩt and

ψ0 =
∑
`,m ψ`m(r) 2Y`m(θ, φ)e−imΩt.

From the Hertz potential, the tetrad components of the
reconstructed metric perturbation are obtained using

hrec11 =
r2

2
(ð̄2Ψ + ð2Ψ), (20)

hrec33 = r4

[
∂2
t − 2f∂t∂r + f2∂2

r

4
− 3(r −M)

2r2
∂t +

f(3r − 2M)

2r2
∂r +

r2 − 2M2

r4

]
Ψ, (21)

hrec13 = − r3

2
√

2

(
∂t − f∂r −

2

r

)
ð̄Ψ, (22)

where the subscript boldfaced numbers 1 and 3 respec-
tively represent components along lα and mα (the com-
plex null vector on the 2-sphere). The other quantities
appearing here are f = ∆/r2 and the operators ð and ð̄,
the spin-raising and -lowering angular operators, which
act on a spin-s quantity η according to

ðη = − (∂θ + i csc θ∂φ − s cot θ) η,

ð̄η = − (∂θ − i csc θ∂φ + s cot θ) η. (23)

2. Completion

As mentioned previously, the reconstructed metric per-
turbation is incomplete. In the context of a Schwarzchild
background, the reconstructed perturbation corresponds
to the ` > 1 tensor-spherical-harmonic modes of the so-
lution to the linearized Einstein equation with a point
particle source. To complete the solution, we must add
perturbations that satisfy the remaining, ` = 0 and ` = 1,
pieces of the Einstein equation.

Appendix A discusses a large range of gauge choices for
the monopole solution. Here we add both monople and
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dipole solutions in the asymptotically flat Zerilli gauge,
as given in Eqs. (18)–(19) of Ref. [29]. The non-zero
components of the ` = 0 mode are given by

hδMtt< =
2µÊ

r0

1− 2M
r

1− 2M
r0

,

hδMtt> =
2µÊ

r
,

hδMrr < = 0,

hδMrr > =
2µÊ

r
(
1− 2M

r

)2 , (24)

and those of the ` = 1 mode are given by

hδJtφ< = −2µL̂z r
2 sin2 θ

r3
0

,

hδJtφ> = −2µL̂z sin2 θ

r
. (25)

The subscript < (>) indicates the metric perturbation
in the region r < r0 (r > r0). Outside the particle’s or-
bit, at r > r0, the perturbation contains invariant shifts
in the spacetime’s mass and angular momentum, corre-
sponding to the contributions from the particle. Inside
the particle’s orbit, at r < r0, the perturbations are pure
gauge. We can see this explicitly by adding a gauge per-

turbation £ξgµν with ξµ =
(
µÊ
r0f0

+ 2µL̂z

r30

)
tµθ(r0 − r),

which cancels the terms hδMtt< and hδJtφ< given above.
The reader may question why one choice of gauge is

preferable to another, and why we cannot simply set the
perturbation in the region r < r0 to zero, given that we
are calculating invariant quantities. The answer is that,
as mentioned below Eq. (12), the quantities are invariant
only within a certain class of gauges. As is well known,
the quantities we are interested in (at least as they have
been formulated historically) are invariant only within
the class of gauges in which the helical symmetry is man-
ifest, in the sense that the Killing vector takes the simple
form (3). It is also well known that these quantities are
invariant only within gauges that agree on the time at
infinity, which is usually resolved by working in gauges
in which the asymptotic flatness is manifest, in the sense
that limr→∞ hµν = O(1/r) in asymptotically Cartesian
background coordinates [50].1 However, here we point
out that the quantities are invariant only within a class of
gauges satisfying additional continuity conditions, which
prove to be essential in our regularization scheme.

Let us first restrict to the class of gauges with manifest
helical symmetry. The gauge transformations that alter

1 We stress “manifestness” here because this is only a matter of
gauge choice; the physical solution will still possess a Killing
symmetry even if we switch to a gauge in which that symmetry
is not plain to see, and likewise for asymptotic flatness.

our invariants even within this class are the ones which
preserve the symmetry, in the sense that £khµν = 0, but
which alter the Killing vector, in the sense that £ξk

µ 6= 0.
To our knowledge, the most general (continuous in r)
gauge generator that accomplishes this is given by

ξµ = (α1t+ α2φ)tµ + (β1t+ β2φ)φµ, (26)

where αi and βi are arbitrary constants. This generates
a transformation with nonzero components

δhtt = −2fα1, (27)

δhtφ = r2β1 sin2 θ − fα2, (28)

δhφφ = 2r2β2 sin2 θ. (29)

It alters the helical Killing vector to kµ → kµ + δkµ,
where

δkµ = £ξk
µ = −(α1 + Ωα2)tµ − (β1 + Ωβ2)φµ. (30)

By rewriting kµ + δkµ in the form (3) (times an overall
constant), we find that this shift simply corresponds to
Ω→ Ω+δΩ+O(µ2), with δΩ = (α1−β2+Ωα2−β1/Ω)Ω.

One can reason that the transformations spoil invari-
ance because our invariants are defined by an expansion
at fixed Ω, while these transformations alter Ω. This
makes the transformations dangerous, because the gauge
perturbation (27)–(29) is helically symmetric, satisfying
£kδhµν = 0. So if two people compute one of the “invari-
ants” in two different gauges related by this transforma-
tion, they might each think they are working in suitable
gauges. But the gauge perturbation contributes to the
“invariant”, and the two people will obtain different val-
ues from their calculations. To eliminate this possibility,
we must impose conditions on hµν that fix the freedom
represented by the generator (26). First, we notice that
the α2 term in Eq. (28) diverges (in regular Cartesian
coordinates) at θ = 0 and π. So we can remove that
freedom by requiring regularity at the poles. Similarly,
the β2 term contains conical singularities at θ = 0 and
π, with a deficit (or excess) angle of 2πβ2; this is to be
expected from the fact that in Eq. (26) it corresponds to
the coordinate transformation φ→ φ− β2φ.

This leaves us with the freedom in ξµ = α1tt
µ+β1tφ

µ.
At this stage, we must consider jump discontinuities at
r = r0. We replace α1 with α1 = α1+θ

++α1−θ
−, and the

analogue for β1, with θ± = θ[±(r − r0)]. This transfor-
mation still preserves the helical symmetry of the metric
perturbation, as the gauge perturbation it generates has
the helically symmetric form

δhtt = −2f(α1+θ
+ + α1−θ

−), (31)

δhtφ = r2(β1+θ
+ + β1−θ

−) sin2 θ. (32)

As mentioned at the beginning of this discussion, we can
partly abolish this freedom by imposing asymptotic flat-
ness. Assuming we always work in an asymptotically flat
gauge, the only remaining part of the unwanted freedom
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is encoded in the gauge perturbations

δhtt = −2fα1−θ(r0 − r), (33)

δhtφ = r2β1−θ(r0 − r) sin2 . (34)

How do we escape this last bit of freedom? Here we
propose what we consider to be the most natural choice:
we require continuity of the htt and htφ components of
the completion part of the metric. This brings us back
to the ` = 0, 1 solutions in Eqs. (24) and (25). We now
see why we do not use the freedom in Eqs. (33)–(34)
to eliminate hδMtt< and hδJtφ<: doing so would violate our
continuity condition.

In summary, the “invariant” quantities are invariant
within the class of gauges satisfying conditions (i)–(iv)
listed below Eq. (12), where we have now specified the
continuity condition. We stress that this continuity con-
dition (and the regularity conditions at the poles) are
not imposed in a quest for regularity. Indeed, we hap-
pily work with a perturbation that is not in a regular
gauge: The rr component of Eq. (24) is plainly discon-
tinuous across r = r0, and as we discuss in Appendix A,
this perturbation is also not regular at the horizon in
horizon-penetrating background coordinates. The recon-
structed perturbation is also discontinuous across r = r0,
a fact which we find experimentally and discuss further
in the next section. But none of these gauge irregularities
affect the values of the invariants, because they are not
generated by transformations of the form (26).

Since the “invariants” do not have unique values, in
principle we could equally well choose some other, less
regular class of gauges to work in. Here we take a prag-
matic stance: we want our invariants to agree with those
that would be calculated by anyone working in a “nice”
gauge that is asymptotically flat and continuous every-
where away from the particle (at least for r > 2M , where
the background coordinates are well defined). Clearly
such a “nice” gauge falls within the class defined by our
four conditions.

Although we have specified the continuity condition
at r = r0, properly speaking it must be imposed at all
radii. But it becomes important only at r = r0, because
only there is one tempted to introduce a discontinuity.
Especially in Kerr, setting the perturbation to zero in
the region r < r0 often appears the easy choice to make.
It is doubly tempting because the perturbation is often
already discontinuous across r = r0, as is the case for us
here.

If one is able to calculate the invariants from modes in
the region r > r0, one need not worry about the issue of
continuity. However, our regularization scheme will use
the average of modes from r → r+

0 and r → r−0 . Hence,
to ensure that our invariants have the same values as
would be found in a “nice” gauge, we must impose the
continuity conditions at r = r0.

III. REGULARIZATION

From the retarded field we now wish to calculate the
invariants ∆ψ, ∆λE

i , and ∆λB. In Sec. II, we defined
these invariants in terms of the DW regular field, which
was originally defined in the Lorenz gauge [38]. While
it is easily generalized to any gauge smoothly related
to Lorenz, it is less easily generalized to more singular
gauges, among them the radiation gauge. In this section,
we utilize the results of PMB to define a DW regular
field in a completed radiation gauge; we show that the
invariants constructed from this field are equal to those
constructed from the regular field in any gauge smoothly
related to Lorenz. Motivated by the parity structure of
the transformation between the Lorenz gauge and radia-
tion gauge, we compute the invariants using a mode-sum
regularization formula that averages the ` modes from
opposite sides of the particle. The validity of this proce-
dure will be established in a companion paper.

A. Detweiler-Whiting fields

Radiation-gauge metric perturbations are known to
have singularities extending away from the particle, ei-
ther in the form of a string emanating from the particle
or in the form of distributional singularities supported
on a surface intersecting the particle [43]. In our calcu-
lations in this paper, we work in the “no-string” gauge
described by PMB; in the present context, this gauge is
regular everywhere except at the sphere at r = r0, which
supports a jump discontinuity and a delta function.

Rather than working directly with the metric per-
turbation, for our analysis we will instead refer to the
gauge transformation from any gauge smoothly related
to Lorenz. Let xµ0 be a point on the zeroth-order world-
line γ0. At a nearby point xµ = xµ0 + δxµ, the generator
of the gauge transformation has the discontinuous form

ξµ = [ξµ0+(x0, δx) + Zµ+(x0) +O(ε ln ε)]θ+

+ [ξµ0−(x0, δx) + Zµ−(x0) +O(ε ln ε)]θ−. (35)

Here ε is a measure of distance from xµ0 , such that δxµ ∼
ε. The quantities Zµ±(x0) are smooth functions of xµ0 .
The other terms, ξµ0± are irregular at the particle. It is
convenient to split them into pieces that become parallel
and perpendicular to the worldline as ε→ 0:

ξµ0± = ξ‖±(x0, δx)uµ(x0) + ξµ⊥±(x0, δx), (36)

where uµ(x0)ξµ⊥±(x0, δx) = 0. The parallel piece behaves
as

ξ‖±(x0, δx) ∼ ln(ε). (37)

Each of the perpendicular pieces ξµ⊥+ and ξµ⊥− is bounded
but has a direction-dependent limit δxµ → 0. The two
are related by

ξµ⊥+(x0,−δx) = −ξµ⊥−(x0, δx); (38)
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in other words, ξµ⊥ := ξµ⊥+θ
+ + ξµ⊥−θ

− has odd parity
under the parity transformation that interchanges points
on diametrically opposite sides of the particle. Its deriva-
tives ∂αξβ⊥ have even parity; this is also true of ∂αξ‖uβ ,
even though ξ‖ has no definite parity. These general
properties, derived by PMB, are all that we will re-
quire. We refer the reader to Ref. [43] for explicit expres-
sions. Given our construction of the metric, and the heli-
cal symmetry, continuity, and asymptotic flatness of the
(tweaked-for-asymptotic-flatness [50]) Lorenz-gauge solu-
tion, it is clear that ξµ satisfies the condition £kξ

µ = 0.
The retarded field in the no-string gauge is given by

hµν = hLµν + £ξgµν , (39)

where we will use “L” to indicate that a quantity is in the
Lorenz gauge. (An arbitrary gauge that is smoothly re-
lated to Lorenz could equally well be used.) As promised,
this gauge is discontinuous across the sphere at r = r0,
due to the θ± functions in ξµ, and it contains a delta
function on that sphere, due to derivatives of those func-
tions. Our reconstruction and completion procedure can-
not determine the correct δ function on the sphere to
make our computed metric perturbation a true solution
to the linearized Einstein equation with a point-particle
source, but PMB showed that the perturbation we obtain
is pointwise correct away from r = r0. Hence, we shall
always work away from the sphere.

PMB established that in this irregular gauge, the linear
correction δzµ to the particle’s trajectory, relative to the
trajectory zµ in the Lorenz gauge, is given by the average
of the regular part of the gauge transformation:

δzµ = −1

2
(Zµ+ + Zµ−). (40)

This is the regular change in position induced by the
singular generator ξµ.

How can we use this to define a Detweiler-Whiting reg-
ular field in the no-string gauge? The DW regular field
possesses three important properties: (i) the linear equa-
tion of motion can be written as the geodesic equation
in gµν +hRµν , (ii) hRµν is a smooth vacuum solution to the
linearized Einstein equation, and (iii) when evaluated at
a point xµ0 on the worldline, hRµν and all its derivatives

depend only on the causal past of xµ0 . To simplify the
analysis, let us ignore the third property and focus on
the first two. Consider a smooth transformation away
from Lorenz. It corresponds to a coordinate transforma-
tion xµ → xµ − ξµ, altering the position of the particle
to zµ + δzµ with δzµ = −ξµ(x0). It also alters the met-
ric perturbation to hLµν + £ξgµν . A priori, there is no

unique way of splitting hLµν + £ξgµν into singular and
regular pieces. However, if for a moment we ignore the
singular field and consider a geodesic in a vacuum metric
gµν + hRµν , it is obvious that since the Einstein equation

and geodesic equation are invariant, hRµν + £ξgµν will
remain a vacuum perturbation, and zµ + δzµ will be a
geodesic in gµν+hRµν+£ξgµν . This motivates the natural

choice of singular and regular fields in the new gauge:

hRµν = hRLµν + £ξgµν , (41)

hSµν = hSLµν . (42)

With this choice, hRµν is guaranteed to satisfy properties
(i) and (ii) mentioned above.

Now let us consider our singular gauge transformation
to the no-string gauge. Suppose we split ξµ into regular
and singular pieces of the form

ξµR =
1

2

(
Zµ+ + Zµ−

)
+O(ε), (43)

ξµS = ξµ − ξµR, (44)

where the O(ε) terms are smooth but for our purposes
can be arbitrary. Then according to Eq. (40) we have
δzµ = −ξµR(x0). Hence, from the argument laid out in
the case of a smooth transformation, the regular field

hRµν = hRLµν + £ξRgµν (45)

will satisfy the desired properties (i) and (ii): the per-
turbed motion is geodesic in gµν + hRµν , and hRµν is a
smooth vacuum perturbation. With this choice, the sin-
gular field is left to be

hSµν = hSLµν + £ξSgµν . (46)

These will be our definitions of the singular and regular
fields in the no-string gauge.

B. Invariance of the invariants

We now consider the construction of scalar quantities
from hRµν (and its derivatives) on the worldline. Let ∆I
be one such quantity. It can be any one of Detweiler’s
redshift, ∆ψ, ∆λE

i , ∆λB, etc., defined by substituting the
no-string-gauge hRµν into Eqs. (8)–(12). Before describing
the computation of this quantity, we first confirm that it
is equal to its value ∆IL in the Lorenz gauge (and hence
to its value in any gauge smoothly related to Lorenz).

Let us begin by defining retarded and singular ver-
sions of ∆I. We do this by extending ∆I away from the
worldline; for example, in Eqs. (8)–(12) we can multiply
each term by an arbitrary function of t, r, θ, φ that goes
smoothly to 1 at x0, and at points off x0, we can let hRµν
and its partial derivatives take their natural values. This
defines a field ∆Î[hR]. If we then replace the regular field

with the retarded or singular field, we obtain fields ∆Î[h]

and ∆Î[hS ].
∆I can be written as the limit of the difference between

these two fields,

∆I(x0) = lim
x→x0

{
∆Î[h](x)−∆Î[hS ](x)

}
. (47)

Note that while the extension is arbitrary, it must be the
same in both terms on the right. Starting from Eq. (47),
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we can establish our desired result, ∆I = ∆IL, by trans-
forming to the Lorenz gauge before taking the limit. In
the extended fields ∆Î, the only gauge-dependent quan-
tities are the perturbations hµν , hRµν , and hSµν ; the only
other dependencies are on the zeroth-order trajectory,
which is gauge-invariant [13], and on arbitrary smooth
functions that define the extension, which we wish to
keep the same in both gauges. Hence, the quantities
constructed from no-string fields are related to quanti-
ties constructed from Lorenz-gauge fields according to

∆Î[h] = ∆Î[hL] + ∆Î[£ξRgµν ] + ∆Î[£ξSgµν ], (48)

∆Î[hS ] = ∆Î[hSL] + ∆Î[£ξSgµν ], (49)

where we have appealed to Eqs. (39) and (46). Since
∆I is invariant under gauge transformations generated
by smooth vectors ξµ satisfying £kξ

µ = 0, we have
limx→x0 ∆Î[£ξRgµν ] = 0. The ξµS terms in Eq. (47) can-
cel, leaving us with

∆I(x0) = lim
x→x0

{
∆Î[hL](x)−∆Î[hSL](x)

}
, (50)

which is our desired result:

∆I = ∆IL. (51)

We have now shown that the invariants constructed
from the no-string-gauge regular field are equal to the
ones constructed from the usual DW field in gauges
smoothly related to Lorenz. However, we note that we
could have split ξµ into ξµR and ξµS in any number of other
ways and still obtained the same result. For example, we
could have defined ξµR = 0, and the calculations in this
section would have gone through just as well. In that
case, the regular field in the no-string gauge would have
been defined to be identically equal to the Lorenz-gauge
regular field. The message is that for the purposes of
calculating gauge-invariant scalars on the worldline, in
Eqs. (45) and (46) the regular gauge vector ξµR is almost
entirely arbitrary. So long as ξµR is smooth and helically
symmetric, the choice has no effect on the invariants.
Nevertheless, we think it is meaningful to define the reg-
ular metric to be the one in which the perturbed motion
is geodesic.

C. Averaged mode-sum regularization

Assured that we are calculating the correct quantities
∆I, we now describe our concrete method of performing
that calculation. PMB showed that the gravitational self-
force in the no-string gauge can be computed using mode-
sum regularization in combination with averaging from
opposite sides of the particle. Here we adopt the same
method for our calculation of invariants.

First note that the direction of the limit in Eq. (47)
is arbitrary so long as it avoids the sphere at r = r0.

Therefore we can replace the limit with the average of
two limits from opposite directions,

∆I = lim
δx→0

[
〈∆Î[h]〉 − 〈∆Î[hSL]〉

]
, (52)

where x0 + δx lies outside the sphere and x0 − δx
lies inside it, and to keep the expressions compact, we
have defined the average of a field F as 〈F 〉(δx) =
1
2 [F (x0 + δx) + F (x0 − δx)].

Since we have a great deal of knowledge about the
Lorenz-gauge singular field, we express hSµν in terms of
it, giving us

∆I = lim
δx→0

[
〈∆Î[h]〉 − 〈∆Î[hSL]〉 − 〈∆Î[£ξSg]〉

]
. (53)

Following standard steps [46], we can rewrite this as a
sum over scalar spherical harmonic modes,

∆I =
1

2

∞∑
`=0

∑
k=±

[
(∆Î[h])`k − (∆Î[hSL])`k − (∆Î[£ξSg])`k

]
,

(54)

where (∆Î)`(t, r, θ, φ) is the `th term in the spherical har-

monic expansion of ∆Î, summed over azimuthal number
m, and (∆Î)`± = limr→r±0

(∆Î)`(t, δr, π/2,Ωt) is its limit

to the particle from r > r0 or r < r0. (Because the orbit
is circular, this quantity depends only on r0 in the end.)

For concreteness, let us examine ∆ψ̂. We note that the
singular field in the Lorenz gauge behaves as hSLµν ∼ 1/ε.

Since ∆ψ̂SL involves single derivatives of hSLµν , it behaves

as ∆ψ̂[hSL] ∼ 1/ε2. It is well known that this translates
into the large-` form

(∆ψ̂[hSL])`± = AψL1±L+AψL0± +AψL−1±/L+O(1/L2),

(55)

where L := ` + 1/2 and the regularization parameters

AψLn± are independent of `. From the general property

ξµ ∼ ln ε, we expect the same scalings for (∆ψ̂[£ξSg])`±,
and we assume

(∆ψ̂[£ξSg])`± = δAψ1±L+ δAψ0± + δAψ−1±/L+O(1/L2).

(56)

Based on this, we write Eq. (54) as

∆ψ =
1

2

∑
`,k=±

[
(∆ψ̂[h])`k −A

ψ
1kL−A

ψ
0k −A

ψ
−1k/L

]
− 1

2
(Dψ

+ +Dψ
−), (57)

where Aψn± = AψLn± + δAψn±, and the D terms contain
everything in the singular field modes that is not included

in the A terms. Explicitly, Dψ
± = DψL

± + δDψ
±,

DψL
± :=

∞∑
`=0

[(∆ψ̂[hSL])`± −A
ψL
1±L−A

ψ
0± −A

ψ
−1±/L],

(58)
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and the analog for δDψ
±. Note that the parameters Aψn±

and Dψ
± depend on the choice of extension in defining the

extended field ∆ψ̂[hS ], and they must all be calculated

in the same extension as is (∆ψ̂[h])`±.
Using the method developed in Refs. [35–37], we can

numerically (and uniquely) determine the Ai± param-
eters through large-` fits of the modes of the retarded
field. This allows us to numerically confirm the expected
behavior (56). However, there is no obvious way of de-

termining Dψ
± through numerical fits, and these D terms

become the central concern. Here we eliminate that con-
cern by contending that in the averaged form (57), the
D terms cancel in the mode-sum formula, meaning they
need not be determined.

First we consider the contribution toDψ
± from hSLµν . We

argue that the parameters DψL
± always vanish, regardless

of the choice of extension. To see this, observe that hSLµν
has the schematic form [4]

hSLµν ∼
1

ρ
+

(δx)3

ρ3
+O(ε), (59)

where ρ ∼ ε is the leading-order geodesic distance from
xµ0 to xµ0 + δxµ. Any quantity constructed from hSµν via
single derivatives and multiplication by smooth functions
will have the form

s(x)∂hSLµν ∼
δx

ρ3
+

(δx)3

ρ5
+

(δx)7

ρ7
+O(ε), (60)

where s(x) is smooth but arbitrary. Similarly, for two
derivatives, as appear in the tidal invariants,

s(x)∂2hSLµν ∼
(δx)2

ρ5
+

(δx)5

ρ7
+

(δx)8

ρ9
+

(δx)11

ρ11
+O(ε). (61)

Now, since they are finite and hence can contain no posi-
tive powers of L in their mode decomposition, the O(ε0)
terms may seem likely to generate a D term. How-
ever, these O(ε0) terms always have the discontinuous
(direction-dependent) form (δx)n/ρn, with odd n. The
sum of modes of a discontinuous quantity evaluated at
the point of discontinuity,

∑
`(δx)n/ρn in this case, con-

verges to the average of the quantity on an infinitesimal
circle around the point [51]. Because (δx)n/ρn terms
with odd n have odd parity around the point, they con-
tribute nothing to the mode sum, and hence contribute
no D. But the remaining terms in Eqs. (59)–(61) (that do
not vanish in the limit ε→ 0) only ever contribute non-
negative powers of L to the mode sum [52, 53]; in fact,
this should be true of any functions of the form (δx)n/ρp

with odd p > 0 [53]. So they too cannot produce a D.
This argument should be easy to make precise and

to extend to quantities constructed from any number of
derivatives. Hence, we conclude that D terms vanish
identically for any quantity constructed from the Lorenz-
gauge singular field via the action of derivatives and mul-
tiplication by smooth functions. This conclusion is inde-
pendent of extension, since a change in extension merely

corresponds to a change in the smooth functions multi-

plying the derivatves. Therefore, we have DψL
± = 0.

Now let us turn to δDψ
±. These D terms cancel in

Eq. (57) if they have the symmetry property δDψ
− =

−δDψ
+. Establishing this property requires a detailed lo-

cal analysis of ∆ψ̂[£ξSg], which will be carried out in a
companion paper. In the meantime, we present a plau-
sibility argument. From the general properties of ξµ de-

scribed in Sec. III A, it follows that ∆ψ̂[£ξSg] has the
form

∆ψ̂[£ξSg] ∼ [1 + δx+ (δx)2]∂2ξS + [1 + δx]∂ξS

+ ξS + o(ε0) (62)

where “o(ε0)” means “goes to zero in the limit ε →
0”. Now let us assume that all positive powers of L

in (∆ψ̂[£ξSg])`± arise from the negative powers of ε in

Eq. (62), and that δDψ
± arises from the order-ε0 terms.

For the purpose of this sketch, consider only the most sin-
gular terms in ∂ξµS . Given this restriction, order-ε0 terms
in Eq. (62) can only arise in the forms (δx)2∂2ξS , δx∂ξS ,
and ξS . Recall that the most singular terms in ∂ξS have
even parity, meaning δx∂ξS has odd parity; hence, this
term will vanish upon averaging. Similarly, the most sin-
gular term in ∂2ξS has odd parity, and so (δx)2∂2ξS also
vanishes upon averaging. Last, the ξS term in Eq. (62)
can only come in the form ξµS∂µgαβ , stemming from such
a term in £ξSgαβ . Since uµ∂µgαβ = 0, only ξµ⊥ con-
tributes to this term; and since ξµ⊥ has odd parity, this
contribution also vanishes under averaging. Therefore,

if δDψ
± is generated solely from the terms in Eq. (62)

that have finite, nonzero limits as ε→ 0, then averaging
eliminates the D terms in Eq. (57), as desired.

Following these arguments, we now allow ourselves to
set D± to zero in Eq. (57). This gives us our final formula
for ∆ψ:

∆ψ =
1

2

∑
`,k=±

[
(∆ψ̂[h])`k −A

ψ
1kL−A

ψ
0k

]
. (63)

Here we have used Aψ−1± = 0, a fact which we find nu-
merically.

Following identical arguments for the tidal invariants,
we obtain

∆λ =
1

2

∑
`,k=±

[
(∆λ̂[h])`k −Aλ2kL2 −Aλ1kL−Aλ0k

]
, (64)

where ∆λ is any of ∆λE
i or ∆λB.

When implementing these formulas, we first determine
the A parameters numerically. We find that the param-
eters, with our choice of extension, agree precisely with
the analytically derived parameters in the Lorenz gauge
in Ref. [8], with the lone exception of Aλ0k. After making
this determination, in practice we use the analytical pa-
rameters except in the case of Aλ0k, which we determine
numerically.
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As an aside, we note that one need not always define
the modes in these sums as scalar spherical harmonic
modes. It is computationally simpler to leave the har-
monics in the “natural” form they arrive in from the re-
construction procedure, which is a mixture of harmonics
of various spin weights; using this “natural” form avoids
having to re-expand spin-weighted harmonics into scalar
harmonics. Although strictly speaking the arguments
made in this section assume the modes are defined in
the scalar harmonic basis, we have experimentally found
that our results are unaltered by changing between the
“natural” and scalar basis. It is has been suggested to us
that this may hinge on our averaging from two sides of
the particle [53], as such averaging is known to annihilate
D terms that arise in some cases when nonscalar bases
are used. However, we leave exploration of this issue to
future work.

IV. EXTRACTION OF PN COEFFICIENTS

In our concrete implementation of the mode-sum for-
mulas (63)–(64), we follow the method of Ref. [36]. We
fit the ` modes to polynomials in L to numerically de-
termine the regularization parameters Ai±, and to gain
faster convergence, we also fit the power-law “tail” of the
singular field, which is made up of negative powers of L.

Up to numerical error, our calculations, including our
regularization procedure, are exact at linear order in µ,
and they can be used for particles on orbits of any radius
outside the Schwarzschild light ring at r = 3M . How-
ever, we wish to use our numerical results to extract pN
coefficients, and for this purpose, we focus on calculating
the invariants at very large orbital radii. Specifically, we
calculate the invariants for 144 different values of Ω by
placing the particle at

R = 1, 2, 3, ..., 9× 1018,19,20,...,33, (65)

where R = (MΩ)−2/3 is a coordinate-independent mea-
sure of orbital radius, which in Schwarzschild coordinates
is equal to the orbital radius r0 of our zeroth-order trajec-
tory. To obtain our desired accuracies of 1 part in 10500,
we calculate ` modes up to a maximum `max = 200.
These extreme accuracies are made possible with Math-
ematica’s arbitrary-precision algebra.

To extract the pN coefficients from these results, we fit
the high-precision numerical data to the pN series in the
following manner: First, we utilze the known pN series
calculated by Bini and Damour, which were obtained to
8.5pN order for δψ and 7.5pN order for the tidal invari-
ants. We subtract these series from the numerical data
and then fit the result to a pN series yj logi(y), where
y = 1/R; i/2 is the pN order of a term. In perform-
ing the fit we first extract as many analytical coefficients
of the highest power of log(y) for a given pN order as
possible. This is done before anything else because the
analytical coefficient multiplying the highest power of log
is always either a rational number (for integer powers of y

in δψ and ∆λEn , and for half-integer powers of y in ∆λB)
or a rational number times π (for half-integer powers of
y in δψ and ∆λEn , and for integer powers of y in ∆λB).
Extracting two whole numbers (p and q of p/q or pπ/q)
from the numerical value requires less precision than ex-
tracting rational coefficients of transcendentals like π2, γ,
log(2), log(3), etc., which make up the pN coefficients of
less than maximum power of log(y) for a given pN order.
Once the coefficients of the highest power of log(y) are
calculated we subtract them (along with the known pN
series) from the numerical data and fit the resultant to
the pN series (without the terms whose coefficients are
known) and extract the coefficients of the second high-
est power of log(y). These coefficients usually have π2,
γ, log(2) and log(3) in them. We repeat these two steps
until as many analytical coefficients are extracted as pos-
sible. The third step is to subtract all the analytical coef-
ficients from the data and fit the remaining pN series, the
coefficients in which are determined as numbers with fi-
nite accuracy rather than as analytical expressions. This
procedure, explained in more detail in Ref. [20], enables
us to obtain the pN expansion to significantly higher or-
der than if we performed a straightforward numerical fit
of the data to the series yj logi(y).

In Figs. (1−3), we compare the pN-approximated in-
variants with their exact (up to numerical error) values
computed in Ref. [8], and we find good agreement all the
way to near R = 1/y = 4M . More precisely, we find that
our pN expressions are accurate to more than 4 digits
up to the innermost stable circular orbit (R = 6M), and
the approximation then worsens to less than 1 digit at
R = 4M . We also examine the efficacy of exponentially
resumming the pN series (as described in Ref. [54]). Fig-
ures (4) and (5) show the relative errors in the pN series
and in the exponentially resummed series for the tidal
invariants at R = 6M . We see that resummation offers
some improvement in the accuracy of the series at low pN
order, but it dos not provide any improvement at high pN
order. We leave it to future work to explore alternative
resummations, which may offer more marked improve-
ments. As a consistency check, we have verified that the
sum of the electric-type tidal invariants, ∆λE1 , ∆λE2 and
∆λE3 , is zero for any pN order. We also find that the
contributions to this sum from the retarded field, prior
to regularization, vanishes mode-by-mode for each `.

Because of the great length of the final expressions, we
place the analytical coefficients in Appendix B and the
numerical coefficients in the supplementary text files.

V. DISCUSSION

In this article, we have developed and implemented
tools for computing invariant quantities in a “no-string”
completed radiation gauge. At the level of formalism,
we have defined a Detweiler-Whiting regular field in the
no-string gauge, and we have shown that the invariants
constructed from this field take the same value as they
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would if constructed from the DW field in any gauge
smoothly related to Lorenz. At the level of practical
calculation, we have described a simple mode-sum regu-
larization scheme involving averaging from two sides of
the particle. In the cases of the spin-precession and tidal
invariants, the scheme is encapsulated in Eqs. (63)–(64).
The validity of this scheme will be rigorously established
in a companion paper. We have also identified continuity
conditions that must be imposed on the completion part
of the metric perturbation in order to obtain the correct
values for the invariants, and we expect that an extension
of these conditions will be vital to calculations in a Kerr
background.

By applying our regularization scheme, we obtained
our main results: very high order pN expansions of
the linear-in-mass-ratio corrections to the spin-precession
and tidal invariants for a particle in circular orbit about
a Schwarzschild black hole. These expansions were ex-
tracted from numerical results at very large orbital radii,
from 1018M to 9× 1033M . Using the analytical solution
to the Teukolsky equation found in Ref. [48], we were able
to obtain these numerical results with accuracy greater
than 1 part in 10500. This data was then used to nu-
merically fit and extract the analytical and numerical
coefficients in the pN expansion of the invariants.

To increase the accuracy of these numerically calcu-
lated quantities (at such large radii), one would have to
drastically increase the maximum computed ` mode.This
difficulty arises because of the large-` behavior of the sin-
gular field, which makes the mode sum converge slowly
unless one subtracts both the positive-power-of-L terms
and a large number of tail terms. The situation here con-
trasts with calculations of fluxes, in which the singular
field plays no role. To compute fluxes with an accuracy
of 1 part in 10600 in Ref. [19], going to `max = 40 was suf-
ficient, whereas to compute conservative invariants here,
we went to `max = 200.

Instead of hunting greater accuracy, the next step will
be to calculate the conservative invariants, along with the
pN expansion of the Detweiler redshift, in Kerr space-
time. This should provide a substantial improvement
to current EOB models. A computation of spin preces-
sion for a particle in circular orbit about a Kerr black
hole will provide the linear-in-mass-ratio, spin-spin part
of the effective Hamiltonian and improve the EOB model
for tidally interacting spinning binary systems.
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Appendix A: Metric perturbation corresponding to
the change in mass of the spacetime

The ` = 0 perturbation we used in Sec. II B 2 was suit-
able for our purposes, but by transforming to ingoing
Eddington-Finkelstein (EF) coordinates, one can see that
it is irregular at the future horizon. In addition, it is dis-
continuous across r = r0. Such gauge singularities do not
affect the calculation of invariants, but it is worthwhile
to construct the perturbation in a gauge that is mani-
festly regular. Since, it is easy to check the regularity of
the metric at the future event horizon in the ingoing EF
coordinates (v, r, θ, φ), we start with the Schwarzschild
metric in the those coordinates:

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2dθ2 + r2 sin2 θdφ2.

(A1)

We know from the solution in Sec. II B 2 that across
r = r0, there is an invariant shift of the spacetime’s mass
by an amount µÊ, and everything other than the mass in
the perturbation is gauge. (The jump in mass can also
be discovered from the invariant definitions of mass in
Ref. [55].) So we begin with a straightforward variation
of the mass in Eq. (A1),

hEF
vv =

2µE

r
θ(r − r0), (A2)

with the rest of the components being zero. Note that
the linearized Einstein equation only tells us about the
jump in mass across the particle’s orbit; it does not tell
us anything about the total mass, which can be freely
altered by adding a trivial perturbation of M everywhere
in spacetime. Here we have chosen to set the shift in mass
to be zero at r < r0.

We now perform a gauge transformation, hEF
ab → hab =

hEF
ab +∇aξb+∇bξa, so that hab is continuous across r = r0,

regular at the horizon, and asymptotically flat at spatial
infinity. Our strategy is similar to that of Ref. [40]. We
choose a spherically symmetric gauge vector (which re-
spects the symmetry of the problem),

ξa = (P (v, r), Q(v, r), 0, 0). (A3)

The term, Ξab := ∇aξb +∇bξa, is



13

Ξab =


(

2Q̇− 2M
r2 Q− 2fṖ

) (
Ṗ +Q′ − fP ′

)
0 0(

Ṗ +Q′ − fP ′
)

2P ′ 0 0

0 0 2rQ 0
0 0 0 2rQ sin2 θ

 ,

where a dot and a prime denote derivatives with respect
to v and r, respectively, and f = (1−2M/r). To preserve

the form of Eq (A1), we set Q = Q(r) and P = P (v).
Using this, we now have,

Ξab =


(
− 2M

r2 Q− 2fṖ
) (

Ṗ +Q′
)

0 0(
Ṗ +Q′

)
0 0 0

0 0 2rQ 0
0 0 0 2rQ sin2 θ

 .

To make the metric perturbation independent of the v
coordinate, we have P = α v where α is a constant which
needs to be determined from the three conditions men-
tioned earlier. We now split our gauge vector in half,
ξ = ξ<θ(r0 − r) + ξ>θ(r − r0). Since we want a regular
perturbation at the horizon, we choose Q on the inside
to have the form (r − 2M)i, where i is a positive integer
which will be fixed later, and to guarantee flatness at spa-
tial infinity we choose Q to have the form 1/(r − 2M)j ,
with j a positive integer which will be fixed later. With-
out loss of generality, we write

ξ< =

(
α<v, β<

(
r − 2M

r0 − 2M

)i
, 0, 0

)
,

ξ> =

(
α>v, β>

(
r0 − 2M

r − 2M

)j
, 0, 0

)
, (A4)

in which α</> and β</> need to be calculated. Imposing
continuity of hθθ or hφφ at r = r0 tells us that

β< = β> = β. (A5)

Imposing the asymptotic flatness condition gives us α> =
0. Imposing continuity of hvv fixes α<,

α< =
−µÊ
r0f0

, (A6)

and imposing continuity of hvr gives us

β =
µÊ

i+ j
. (A7)

We have thus calculated the metric perturbation which
is regular at the horizon, continuous across r = r0 and

flat at spatial infinity. We now write this metric per-
turbation in Schwarzschild coordinates (t, r, θ, φ). For
r < r0,

htt = 2Êµ

[
1− 2M

r

r0 − 2M
− M

r2(i+ j)

(
r − 2M

r0 − 2M

)i]
,

htr = Êµ

[
1

r0 − 2M
+

(i r − 2M)

r(i+ j)(r − 2M)

(
r − 2M

r0 − 2M

)i]
,

hrr =
2Êµ(i r −M)

(i+ j)(r − 2M)2

(
r − 2M

r0 − 2M

)i
,

hθθ =
2rÊµ

(i+ j)

(
r − 2M

r0 − 2M

)i
,

hφφ =
2rÊµ sin2 θ

(i+ j)

(
r − 2M

r0 − 2M

)i
. (A8)

For this metric perturbation to be regular at the future
event horizon, i ≥ 2. For r > r0,

htt = 2Êµ

[
1

r
− M

r2(i+ j)

(
r0 − 2M

r − 2M

)j]
,

htr = Êµ

[
2

r − 2M
− (j r + 2M)

r(i+ j)(r − 2M)

(
r0 − 2M

r − 2M

)j]
,

hrr = 2Êµ

[
r

(r − 2M)2
− (j r +M)

(i+ j)(r − 2M)2

(
r0 − 2M

r − 2M

)j]
,

hθθ =
2rÊµ

(i+ j)

(
r0 − 2M

r − 2M

)j
,

hφφ =
2rÊµ sin2 θ

(i+ j)

(
r0 − 2M

r − 2M

)j
. (A9)
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For this metric perturbation, j ≥ 2. We find that this
metric perturbation is not manifestly static, having a
nonzero time-independent htr component. Of course,
this is simply a gauge artefact, as we know from the so-
lution in Sec. II B 2 that the metric is static; in the gauge
of this section, the timelike, hypersurface-orthogonal
Killing vector is simply no longer tµ but some appro-
priate tµ + δtµ.

The perturbation we have found is actually a large
class of (physically equivalent) perturbations, corre-
sponding to a variety of gauges labelled by i and j. How-
ever, no two members of this class are related by the he-
lically asymmetric gauge vectors discussed in Sec. II B 2,
and in line with that discussion, we have found exper-
imentally that the final result for any of the invariants
is independent of the values of i and j. Furthermore,
again in line with Sec. II B 2, we have also verified ex-
perimentally that continuity of the components of the
` = 0 solution need not be imposed except on hvv (or
htt); discontinuity of other components does not affect
the invariants.

It is not difficult to see that using the spherically sym-
metric gauge vector given in Eq. (A3), it is not possible
to find a gauge in which the metric perturbation is man-
ifestly continuous, regular at the horizon, asymptotically
flat, and static. This agrees with the extensive analy-
sis (focused on the Lorenz gauge) by Dolan and Barack
in Ref. [55]. Perhaps surprisingly, this appears to stem

from our choice of total mass of the spacetime. There
do exist ` = 0 solutions with all the above desired prop-
erties, but with a total mass of M + dM + µÊ rather
than M + µÊ. These slututions, first discovered in the
Lorenz gauge by Berndtson [56], correspond to having
transplanted a small part of the black hole’s mass into
the perturbation, such that the mass of the background
spacetime, M , differs from the black hole’s physical mass,
MBH = M+dM . While one can use these solutions, one
must be mindful that MBH 6= M in order to avoid any
hiccups.

Appendix B: Analytical results

Most terms in our pN expansions are obtained as real
numbers with a finite numerical precision. However,
many terms we find in exact, analytical form. In this
appendix we present those analytical coefficients. The
numerical coefficients are presented in the accompanying
text files.

We present the analytical coefficients of δψ for the fol-
lowing pN orders: (i) all the coefficients that were already
known, which go up to y17/2 [29] (as later corrected in
Ref. [30]), (ii) the highest power of log(y) for each pN or-
der from y9 to y37/2, and (iii) the second-highest power
of log(y) for each integer-pN-order from y9 to y15.

∆ψ = y2 − 3y3 − 15

2
y4 +

(
−6277

30
− 496 log(2)

15
− 16γ +

20471π2

1024
− 8 log(y)

)
y5 +

(
−87055

28
+

653629π2

2048
− 52γ

5

+
3772 log(2)

105
− 729 log(3)

14
− 26 log(y)

5

)
y6 − 26536π

1575
y13/2 +

(
−149628163

18900
+

7628γ

21
+

297761947π2

393216
− 1407987π4

524288

+
4556 log(2)

21
+

12879 log(3)

35
+

3814 log(y)

21

)
y7 − 113411π

22050
y15/2 +

(
403109158099

9922500
− 74909462γ

70875
+

3424γ2

25

+
164673979457π2

353894400
− 160934764317π4

335544320
+

340681718 log(2)

1819125
+

869696γ log(2)
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+

58208 log2(2)
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)
y8

+
1179591206π
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23264368π log(y)
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(
−5724079403437 log(y)
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30579194748876386 log2(y)

1491353238375

−690015272γ log2(y)

385875
− 14320872 log(2) log2(y)

42875
− 1108809

343
log(3) log2(y)− 345007636 log3(y)

1157625

)
y12
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− 1430850224π log2(y)

2480625
y25/2 +

(
−58168822370617659002 log2(y)
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+
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For ∆λE
1 , we present (i) all the pN coefficients (known

from [31]) up to y21/2, (ii) the highest power of log(y)
for each pN order from y11 to y43/2, and (iii) the second-
highest power of log(y) for each pN order from y11 to
y17.
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For ∆λE
2 , we present (i) all the pN coefficients (known

from [31]) up to y19/2, (ii) the highest power of log(y)
for each pN order from y10 to y43/2, and (iii) the second-
highest power of log(y) for each pN order from y10 to
y17.

∆λE
2 = −y3 − 3

2
y4 − 23

8
y5 +

(
−2593

48
+

1249π2

1024

)
y6 +

(
−362051

3200
+

1737π2

1024
− 256γ

5
− 512 log(2)

5
− 128 log(y)

5

)
y7

+

(
917879

1280
− 7637151π2

65536
+

16592 log(2)

105
+

176γ

7
− 729 log(3)

7
+

88 log(y)

7

)
y8 − 27392π

525
y17/2 +

(
1193824γ

2835

−24327985735π2

14155776
+

2368 log(2)

405
+

1215 log(3)

2
+

29225393π4

2097152
+

35725395527

2903040
+

596912 log(y)

2835

)
y9 +

58087π

1575
y19/2

+

(
−3286454596 log(y)

1819125
+

219136

525
γ log(y) +

438272

525
log(2) log(y) +

54784 log2(y)

525

)
y10 +

(
2672297839π

6548850

)
y21/2
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+

(
−4919133341971 log(y)

993242250
+

931408γ log(y)

11025
− 1573072 log(2) log(y)

1575
+

56862

49
log(3) log(y) +

232852 log2(y)

11025

)
y11

+

(
−1425524472919397π

349621272000
+

46895104γπ

55125
− 438272π3

1575
+

93790208π log(2)

55125
+

23447552π log(y)

55125

)
y23/2

+

(
336663160031017 log(y)

25744839120
− 3437020472γ log(y)

893025
+

3397300136 log(2) log(y)

1403325
− 47385

7
log(3) log(y)

−859255118 log2(y)

893025

)
y12 +

(
−2608988253558091529π

318155357520000
− 1940124γπ

42875
− 14576396π3

33075
− 2608166516π log(2)

1157625

+
739206

343
π log(3)− 970062π log(y)

42875

)
y25/2 +

(
72036007252477 log2(y)

10925664750
− 93790208γ log2(y)

55125
− 187580416 log(2) log2(y)

55125

−46895104 log3(y)

165375

)
y13 +

(
336629234198810065383583π

11565838080853056000
− 84454061934086γπ

11345882625
+

25421917126π3

9823275

+
731692656242π log(2)

194500845
− 616005

49
π log(3)− 42227030967043π log(y)

11345882625

)
y27/2 +

(
2680194891812081201 log2(y)

89481194302500

−2381473984γ log2(y)

1157625
+

910030784 log(2) log2(y)

385875
− 2217618

343
log(3) log2(y)− 1190736992 log3(y)

3472875

)
y14

+

(
3627715358766651040027π log(y)

118115176479300000
− 40142209024γπ log(y)

5788125
+

375160832π3 log(y)

165375
− 80284418048π log(2) log(y)

5788125

−10035552256π log2(y)

5788125

)
y29/2 +

(
−230100400220601639975419 log2(y)

10842973200799740000
+

104146032969424γ log2(y)

6807529575

−1070223775519216 log(2) log2(y)

34037647875
+

1848015

49
log(3) log2(y) +

52073016484712 log3(y)

20422588725

)
y15

+

(
959470947789066888806999π log(y)

9212983765385400000
− 104717532296γπ log(y)

17364375
+

1165602776π3 log(y)

165375
+

161636407304π log(2) log(y)

13505625

−57658068π log(3) log(y)

2401
− 26179383074π log2(y)

17364375

)
y31/2 +

(
−151808990580596480372 log3(y)

11073297794934375
+

80284418048γ log3(y)

17364375

+
160568836096 log(2) log3(y)

17364375
+

10035552256 log4(y)

17364375

)
y16 +

(
−3854184236032319074099692403π log(y)

30372818923129082400000

+
87324664477990228γπ log(y)

1456054936875
− 49560820650364π3 log(y)

3781960875
− 165995504947200028π log(2) log(y)

1531694154375

+
48048390

343
π log(3) log(y) +

21831166119497557π log2(y)

1456054936875

)
y33/2 +

(
−334487077678301085190949 log3(y)

3023010298017084375

+
487016857696γ log3(y)

40516875
+

7650935648 log(2) log3(y)

364651875
+

57658068 log(3) log3(y)

2401
+

60877107212 log4(y)

40516875

)
y17

+
8590432731136π log3(y)

1823259375
y35/2 − 1231646038737086398 log4(y)

353821349660625
y18 +

55101325697524π log3(y)

5469778125
y37/2

− 8590432731136 log5(y)

9116296875
y19 − 11871449505595480790806π log3(y)

408663658858021875
y39/2 − 812555208074128 log5(y)

191442234375
y20

− 1838352604463104π log4(y)

191442234375
y41/2 − 3091229654826478747312 log5(y)

1225990976574065625
y21 − 49849519190246954π log4(y)

1340095640625
y43/2

(B3)

For ∆λE
3 , we present (i) all the pN coefficients (known

from [31]) up to y19/2, (ii) the highest power of log(y)
for each pN order from y10 to y43/2, and (iii) the second-
highest power of log(y) for each pN order from y10 to
y17.
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∆λE
3 = −y3 − 1

2
y4 +

61

8
y5 +

(
1123π2

1024
− 1039

48

)
y6 +

(
−256 log(y)

5
+

1139π2

1024
− 512γ

5
+

1229711

9600
− 1024 log(2)

5

)
y7

+

(
7256 log(y)

105
+

30981749π2

196608
+

14512γ

105
− 431650697

403200
− 2187 log(3)

7
+

62128 log(2)

105

)
y8 − 54784π

525
y17/2

+

(
424180 log(y)

567
− 33612139π4

2097152
+

14942182769π2

14155776
+

848360γ

567
− 165133169609

14515200
+

33291 log(3)

14
− 894008 log(2)

2835

)
y9

+
376087π

2205
y19/2 −

(
−109568

525
log2(y)− 876544

525
log(2) log(y)− 438272

525
γ log(y) +

19261337776 log(y)

5457375

)
y10

+
3093926951π

2182950
y21/2 −

(
578372 log2(y)

11025
− 170586

49
log(3) log(y) +

43072784 log(2) log(y)

11025
+

2313488γ log(y)

11025

+
6489947184307 log(y)

496621125

)
y11 +

(
46895104π log(y)

55125
− 876544π3

1575
+

93790208γπ

55125
− 8576539777810427π

1048863816000

+
187580416π log(2)

55125

)
y23/2 −

(
33036718714 log2(y)

9823275
+

1298349

49
log(3) log(y)− 127881949208 log(2) log(y)

9823275

+
132146874856γ log(y)

9823275
− 335124500204895341 log(y)

7079830758000

)
y12 +

(
−29313974π log(y)

55125
− 4812988π3

4725
− 58627948γπ

55125

−2772444986000367347π

136352296080000
+

2217618

343
π log(3)− 368654676π log(2)

42875

)
y25/2 +

(
−93790208 log3(y)

165375

−375160832 log(2) log2(y)

55125
− 187580416γ log2(y)

55125
+

982934088927911 log2(y)

98330982750

)
y13 +

(
−145732104236417π log(y)

11345882625

+
86968683554π3

9823275
− 291464208472834γπ

11345882625
+

459787882287862634382511π

4448399261866560000
− 16878537

343
π log(3)

+
754663492020986π log(2)

34037647875

)
y27/2 +

(
−30958304 log3(y)

42875
− 6652854

343
log(3) log2(y) +

828648896 log(2) log2(y)

77175

−185749824γ log2(y)

42875
+

7199663285885603857 log2(y)

89481194302500

)
y14 −

(
20071104512π log2(y)

5788125
+

160568836096π log(2) log(y)

5788125

−750321664π3 log(y)

165375
+

80284418048γπ log(y)

5788125
− 673907554336490184031π log(y)

13123908497700000

)
y29/2 +

(
883543413463072 log3(y)

102112943625

+
50635611

343
log(3) log2(y)− 4803573964261312 log(2) log2(y)

34037647875
+

1767086826926144γ log2(y)

34037647875

−486613296926917903160273 log2(y)

10842973200799740000

)
y15 −

(
64591604162π log2(y)

24310125
+

172974204π log(3) log(y)

2401

−6174618795224π log(2) log(y)

121550625
− 4330270808π3 log(y)

231525
+

258366416648γπ log(y)

24310125

−17429771806026061957846879π log(y)

64490886357697800000

)
y31/2 −

(
−20071104512 log4(y)

17364375
− 321137672192 log(2) log3(y)

17364375

−160568836096γ log3(y)

17364375
+

226425878356584732032 log3(y)

33219893384803125

)
y16 −

(
−1987230316366299533π log2(y)

39313483295625

−1316525886π log(3) log(y)

2401
+

58610758469076421988π log(2) log(y)

117940449886875
+

1289026569001972π3 log(y)

34037647875

−7948921265465198132γπ log(y)

39313483295625
+

2480775745377381465572630931521π log(y)

7380594998320367023200000

)
y33/2 −

(
−1417377419972 log4(y)

364651875
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−172974204 log(3) log3(y)

2401
+

3593882397152 log(2) log3(y)

364651875
− 11339019359776γ log3(y)

364651875

+
278583301344851336251078 log3(y)

1007670099339028125

)
y17 +

17180865462272π log3(y)

1823259375
y35/2 − 3637035753694361734 log4(y)

353821349660625
y18

+
963627402292868π log3(y)

38288446875
y37/2 − 17180865462272 log5(y)

9116296875
y19 − 11872699679876503682278π log3(y)

136221219619340625
y39/2

− 2244273037319536 log5(y)

191442234375
y20 − 3676705208926208π log4(y)

191442234375
y41/2 − 9478982798909722532248 log5(y)

557268625715484375
y21

− 1292924467017422π log4(y)

12762815625
y43/2 (B4)

For ∆λB, we present (i) all the pN coefficients (known
from [31]) up to y11, (ii) the highest power of log(y) for

each pN order from y23/2 to y43/2, and (iii) the second-
highest power of log(y) for each pN order from y23/2 to
y18.

∆λB = 2y7/2 + 3y9/2 +
59

4
y11/2 −

(
41π2

16
− 2761

24

)
y13/2 +

(
−112919π2

3072
+

1808γ

15
+ 240 log(2) +

1618039

2880

+
904 log(y)

15

)
y15/2 +

(
2756γ

105
+

3645 log(3)

14
+

491047651

201600
− 565685π2

3072
− 4492 log(2)

21
+

1378 log(y)

105

)
y17/2 +

856π

7
y9

+

(
−200961 log(3)

140
− 3881396γ

2835
− 1992212 log(2)

2835
− 26691349π4

524288
− 454873888681

50803200
+

7377893735π2

3538944

−1940698 log(y)

2835

)
y19/2 − 69473π

22050
y10 −

(
423235951437871681

1760330880000
+

1537376γ2

1575
+

2047552

525
γ log(2)− 28736ζ(3)

15

−83360241649γ

10914750
− 42496203125923π2

2477260800
− 89531499967π4

100663296
+

6139232 log2(2)

1575
− 82889847697 log(2)

10914750
− 1412559 log(3)

1232

−9765625 log(5)

7128
+

1023776

525
log(2) log(y) +

1537376γ log(y)

1575
− 83360241649 log(y)

21829500
+

384344 log2(y)

1575

)
y21/2

− 5843221973π

4365900
y11 −

(
2562124 log2(y)

11025
+

142155

49
log(3) log(y)− 2324624 log(2) log(y)

2205
+

10248496γ log(y)

11025

−42972211891457 log(y)

2648646000

)
y23/2 +

(
−54772016π log(y)

55125
+

1023776π3

1575
− 109544032γπ

55125
+

177773734055963π

20170458000

−656897824π log(2)

165375

)
y12 −

(
−28762016819 log2(y)

9823275
− 433572021 log(3) log(y)

26950
+

13579931188 log(2) log(y)

9823275

−115048067276γ log(y)

9823275
+

993028451553179707 log(y)

28319323032000

)
y25/2 +

(
−7303267π log(y)

11025
+

1495618π3

945
− 14606534γπ

11025

+
5157596639147063π

180360180000
− 1848015

343
π log(3) +

1061371118π log(2)

385875

)
y13 +

(
328448912 log3(y)

496125
+

87561952 log(2) log2(y)

11025

+
656897824γ log2(y)

165375
− 1286229465862031 log2(y)

98330982750

)
y27/2 +

(
261156926572103π log(y)

22691765250
− 72277933843π3

9823275

+
261156926572103γπ

11345882625
− 182312652332925353457079π

2224199630933280000
+

311318752347π log(3)

10375750
+

7448963901653π log(2)

34037647875

)
y14
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+

(
221190188 log3(y)

165375
+

5544045

343
log(3) log2(y)− 48536984 log(2) log2(y)

385875
+

442380376γ log2(y)

55125

−4569882002335828337 log2(y)

51132111030000

)
y29/2 −

(
−4684564432π log2(y)

1157625
− 562069329088π log(2) log(y)

17364375
+

175123904π3 log(y)

33075

−18738257728γπ log(y)

1157625
+

374731983268181645111π log(y)

5905758823965000

)
y15 +

(
−755861078825096 log3(y)

102112943625

−933956257041 log(3) log2(y)

10375750
+

2193478035579632 log(2) log2(y)

34037647875
− 1511722157650192γ log2(y)

34037647875

+
38836915123602398840281 log2(y)

834074861599980000

)
y31/2 −

(
−810653775143π log2(y)

121550625
− 144145170π log(3) log(y)

2401

+
815203478372π log(2) log(y)

121550625
+

24851128532π3 log(y)

1157625
− 3242615100572γπ log(y)

121550625

+
5225794921492869641929199π log(y)

16122721589424450000

)
y16 −

(
70258666136 log4(y)

52093125
+

4625762368 log(2) log3(y)

214375

+
562069329088γ log3(y)

52093125
− 1558708913165878011359 log3(y)

66439786769606250

)
y33/2 −

(
3494267335644677399π log2(y)

78626966591250

+
669844207552887π log(3) log(y)

1997331875
− 24682733286580834678π log(2) log(y)

117940449886875
− 1187368270177238π3 log(y)

34037647875

+
6988534671289354798γπ log(y)

39313483295625
− 1239754823171201756997341727389π log(y)

3690297499160183511600000

)
y17 −

(
1722436873016 log4(y)

364651875

+
144145170 log(3) log3(y)

2401
+

1132771565248 log(2) log3(y)

72930375
+

13779494984128γ log3(y)

364651875

−678345937778148753230629 log3(y)

2198552944012425000

)
y35/2 +

(
−247478286688π log3(y)

22509375
− 240540505566272π log(2) log2(y)

1823259375

+
4625762368π3 log2(y)

214375
− 494956573376γπ log2(y)

7503125
+

259176410061430480963534651π log2(y)

1330124531127517125000

)
y18

+
3420457033850597429 log4(y)

353821349660625
y37/2 − 252749329384718π log3(y)

7657689375
y19 +

60135126391568 log5(y)

27348890625
y39/2

+
11368575748083640757621π log3(y)

136221219619340625
y20 +

2330901537975412 log5(y)

191442234375
y41/2 +

857912842634576π log4(y)

38288446875
y21

+
46456527006194882616964 log5(y)

6129954882870328125
y43/2 (B5)
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FIG. 1: Fractional difference between the different pN-order-approximations and the numerical value of δψ.
Color-code is as follows - Black: 19pN, Magenta: 18pN, Blue: 17pN, Green: 16pN , Orange: 15pN, Red: 14pN.
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FIG. 2: Fractional difference between the different pN-order-approximations and the numerical values of ∆λE1 , ∆λE2 ,
and ∆λE3 . Color-code is as follows - Black: 20pN, Magenta: 19pN, Blue: 18pN, Green: 17pN , Orange: 16pN, Red:

15pN.
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FIG. 4: Fractional difference between the numerically calculated value and Taylor-summed pN series (represented by
dashed red line), and the fractional difference between the numerically calculated value and exponentially-resummed

pN series (represented by dot-dashed blue line), for different pN-order. These plots are at R = 6M .
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